Learning higher-order structures in natural images

Yan Karklin and Michael Lewicki

presented by David Ross Feb 3, 2005

Efficient Coding

- efficient coding + linear models
 - produce Gabor-like filters
 - good at explaining early visual processing
 - only limited visual structure can be represented
- goal: learn higher-order image structure (e.g. object location, surface texture)
- approach: non-linear efficient codes, via a hierarchical model

ICA

- Reduce redundancy in coefficients by making them independent
- square, noise-free: x = W⁻¹ u
- probability model

$$p(x|W) = p(u)|W| \qquad p(u) = \prod_{i} p(u_{i})$$

ICA basis functions

Coefficients are not independent

- why?
 - limitation of a linear model
 - only looking at statistical relationships among pixels

Hierarchical Model 1

- for each patch, the u's (coefficients) were not generated independently
- instead, variance of u's shows statistical regularities
 - by modeling these with efficient codes, hope to capture higher-order image structure
- 1st step: non-independent priors on the u's

$$p(\boldsymbol{u}|\lambda) = \exp\left(-\sum_{i} \left|\frac{u_{i}}{\lambda_{i}}\right|^{q}\right)$$

Hierarchical Model 2

- 2nd step: model variation in λ's between patches by learning an efficient code for it
 - v is code for λ 's using following relationship

$$\lambda = \exp(B \mathbf{v})$$

- put sparse, independent prior on v's (or recurse)
- so log(λ) coded as a linear combination of some variance basis vectors B
- when v=0, $\lambda=1$ and we get ICA

Inference & Learning

- they assume fixed image filters (W), as learned by ICA
- think of u = Wx as the input
- get best v by maximizing p(u|B,v)p(v) via gradient ascent
- solve for optimal* B, given u,v & Gaussian prior via gradient ascent
- "makes the assumption that the optimal solution for A is largely independent of the value of B"

Visualize variance basis vectors

• hypothesis: v codes for higher-order structure

Contrast, Orientation, Frequency

Examples with high activation

v forms a distributed code

Coefficients (u's) don't capture higher-order structure

Figure 8

Interpretation

- v_j's are analogous to complex cells, pooling output of first-order features
- model learned "a coarse code of position using broadly tuned spatial patterns"

Comparison to other methods

- Multi-layer sparse coding network (H&H)
 - different nonlinearity
- Gaussian scale mixtures (W&S)
 - trees? local neighborhoods?