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Introduction

e Goal: learn a parts-based representation of data vectors

e Motivating Assumptions:
1. data dimensions can be separated into disjoint sets or Causes
2. each cause has a small number of States
3. causes take on states independently of each other

e Example: on face image data,

causes could be eyes, nose, and mouth
states could be different eye, nose and mouth shapes, respectively



Generative Model

VRik=1 VQk=2 VQ k=K
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e /< Vector Quantizers (VQ's) [Causes]
e J \Vectors per VQ [States]

e C Training Examples X = {x1,x2,... x¢} C RN



To Generate an Example x°

1. stochastically select one state of each VQ to be active

- selection vector s¢ € {0, 1}/5,
s;?k = 1 < state 5 of VQ k Is active

2. stochastically select one VQ for each data dimension

- selection matrix R € {0, 1}/VxK,
rik = 1 & VQ kis relevant for ¢

3. the value assigned to z; Is the weight of the active state from the
relevant VQ
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Shapes Data

1000 randomly generated gray-scale
Images

each contains three shapes

each shape has a fixed horizontal po-
sition, but variable vertical position
vertical position of each shape ran-
domly and independently selected,
according to a uniform distribution

Data Examples




Shapes Data - Learned Model

Example




Related Approaches

like MCVQ, the following approaches represent data as a linear combination
of ‘basis’ vectors

basis comprised of data templates - each example represented by nearest
template (soft version: example is affine combination of templates)

Principal Component Analysis:
basis vectors are eigenvectors of data covariance matrix - example
represented by arbitrary linear combination of bases
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(D. Lee & S. Seung)
example represented by non-negative linear combination of non-negative
basis vectors
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Shapes Data - Reconstruction

e |learned model used to represent & reconstruct example images

e average root-mean-squared error was calculated for the training set

(left) and an independent testing set (right)

e compared using description length (# of bits used to represent model +
# of bits to encode all training examples using the model)
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Reconstruction Error on Testing Images
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Learning & Inference

probability of a single example
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define the prior probability of selecting each state and VQ to be
msk = E[Sgk] and  g;x = Elry]
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state and VQ selections ({s°} and R) are latent variables

If instead {s°} and R are observed, get complete likelihood of training data:
L = H P(x°|s, R,W,M,G) P(s“, R| W, M, G)
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Use EM algorithm to find a model that maximizes the expected complete
data log-likelihood, or, equivalently, minimizes cost function

C = —E[logL]lscr
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Intuition: choose one VQ per pixel, one state per VQ that matches input
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Update Rules

(inference)

exp ( -

1 2
5o Y gk — wjk)?))
i

J
1
>~ exp (- 552 >~ ik (@ — wyri)?))
v=1 1

Z m§k 5
C

Z m§k
C

exp ( — ﬁ Z m(z; — fwjki)Q))
C,J
K 1 5
> exp (- 503 2. Mp(ef — wip:) ))
=1 C,J



Performance on Face Images

Training Set * : 2429 gray-scale images of faces, each 19 x 19 pixels
Model Parameters: 6 VQ's, 12 states per VQ

Weights
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*CBCL Face Database # 1; MIT Center For Biological and Computation Learning
http://www.ai.mit.edu/projects/cbcl
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Weights masked by G
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Example Reconstructions

e original on left, reconstruction on right
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average (rms) reconstruction error

Comparison of Reconstruction Error

e testing set contained 472 images

e compared using description length (# of bits used to represent model +
# of bits to encode all training examples under the model)

e i.e. for PCA: RNB + CRB, for MCVQ: K(J+ 1)NB+ CK logs J
R=#components; N=input dims; B=bits/float; C=#cases
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Summary & Current Directions

e a generative model for data composed of independent causes

e |learns a parts-based segmentation of images, and a range of states for
each part

e competitive performance when summarizing and reconstructing data

e inherent feature selection provides low-dimensional representation for
further processing

we are currently exploring:

1. applications to text classification
2. collaborative filtering

3. Bayesian learning for model selection



