Multiple Cause Vector Quantization

David Ross & Rich Zemel

University of Toronto

Introduction

- Goal: learn a parts-based representation of data vectors
- Motivating Assumptions:
 - 1. data dimensions can be separated into disjoint sets or *Causes*
 - 2. each cause has a small number of *States*
 - 3. causes take on states independently of each other
- Example: on face image data,
 causes could be eyes, nose, and mouth
 states could be different eye, nose and mouth shapes, respectively

Generative Model

- K Vector Quantizers (VQ's) [Causes]
- J Vectors per VQ [States]
- C Training Examples $\mathbf{X} = \{\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^C\} \subseteq \mathbb{R}^N$

To Generate an Example x^c

- 1. stochastically select one state of each VQ to be active
 - selection vector $\mathbf{s}^c \in \{0, 1\}^{JK}$, $s^c_{jk} = 1 \Leftrightarrow \text{state } j \text{ of VQ } k \text{ is active}$
- 2. stochastically select one VQ for each data dimension
 - selection matrix $\mathbf{R} \in \{0,1\}^{N \times K}$, $r_{ik} = 1 \Leftrightarrow \mathsf{VQ}\ k$ is relevant for x_i^c
- 3. the value assigned to x_i^c is the weight of the active state from the relevant VQ

$$x_i^c = \sum_{k,j \in k} s_{jk}^c r_{ik} w_{jki}$$

Shapes Data

- 1000 randomly generated gray-scale images
- each contains three shapes
- each shape has a fixed horizontal position, but variable vertical position
- vertical position of each shape randomly and independently selected, according to a uniform distribution

Data Examples

Shapes Data - Learned Model

Related Approaches

like MCVQ, the following approaches represent data as a linear combination of 'basis' vectors

Vector Quantization:

basis comprised of data templates - each example represented by nearest template (soft version: example is affine combination of templates)

Principal Component Analysis:

basis vectors are eigenvectors of data covariance matrix - example represented by arbitrary linear combination of bases

Non-Negative Matrix Factorization: (D. Lee & S. Seung)

example represented by non-negative linear combination of non-negative basis vectors

Shapes Data - Reconstruction

- learned model used to represent & reconstruct example images
- average root-mean-squared error was calculated for the training set (left) and an independent testing set (right)
- compared using description length (# of bits used to represent model + # of bits to encode all training examples using the model)

Learning & Inference

probability of a single example

$$P(\mathbf{x}^c|\mathbf{s}^c, \mathbf{r}, \mathbf{W}) = \prod_{i,k,j \in k} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} s_{jk}^c r_{ik} (x_i^c - w_{jki})^2\right)$$

define the prior probability of selecting each state and VQ to be

$$m_{jk}^c = E[s_{jk}^c]$$
 and $g_{ik} = E[r_{ik}]$

$$P(\mathbf{s}^c, \mathbf{R}) = \prod_{k,j \in k} (m_{jk}^c)^{s_{jk}^c} \prod_{i,k} (g_{ik})^{r_{ik}}$$

state and VQ selections ($\{s^c\}$ and R) are latent variables

if instead $\{s^c\}$ and R are observed, get complete likelihood of training data:

$$\mathcal{L} = \prod_{c} P(\mathbf{x}^{c} | \mathbf{s}^{c}, \mathbf{R}, \mathbf{W}, \mathbf{M}, \mathbf{G}) P(\mathbf{s}^{c}, \mathbf{R} | \mathbf{W}, \mathbf{M}, \mathbf{G})$$

$$= \prod_{c,i,k,j \in k} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} s_{jk}^{c} r_{ik} (x_{i}^{c} - w_{jki})^{2})\right) (m_{jk}^{c})^{s_{jk}^{c}} (g_{ik})^{r_{ik}}$$

Use EM algorithm to find a model that maximizes the expected complete data log-likelihood, or, equivalently, minimizes cost function

$$C = -E[\log \mathcal{L}]_{\mathbf{s}^c, \mathbf{R}}$$

$$= \frac{1}{2\sigma^2} \sum_{c,k,j,i} m_{jk}^c g_{ik} (x_i^c - w_{jki})^2 - \sum_{c,j,k} m_{jk}^c \log m_{jk}^c - \sum_{i,k} g_{ik} \log g_{ik}$$

Intuition: choose one VQ per pixel, one state per VQ that matches input

Update Rules

E – Step (inference)

$$m_{jk}^{c} = \frac{\exp\left(-\frac{1}{2\sigma^{2}}\sum_{i}g_{ik}(x_{i}^{c} - w_{jki})^{2}\right)}{\sum_{\nu=1}^{J}\exp\left(-\frac{1}{2\sigma^{2}}\sum_{i}g_{ik}(x_{i}^{c} - w_{\nu ki})^{2}\right)}$$

M – Step

$$w_{jki} = \frac{\sum_{c} m_{jk}^{c} x_{i}^{c}}{\sum_{c} m_{jk}^{c}}$$

$$g_{ik} = \frac{\exp\left(-\frac{1}{2\sigma^2} \sum_{c,j} m_{jk}^c (x_i^c - w_{jki})^2)\right)}{\sum_{\beta=1}^K \exp\left(-\frac{1}{2\sigma^2} \sum_{c,j} m_{j\beta}^c (x_i^c - w_{j\beta i})^2)\right)}$$

Performance on Face Images

Training Set * : 2429 gray-scale images of faces, each 19 \times 19 pixels Model Parameters: 6 VQ's, 12 states per VQ

^{*}CBCL Face Database # 1; MIT Center For Biological and Computation Learning http://www.ai.mit.edu/projects/cbcl

Weights masked by G

Example Reconstructions

• original on left, reconstruction on right

Comparison of Reconstruction Error

- testing set contained 472 images
- compared using description length (# of bits used to represent model + # of bits to encode all training examples under the model)
- i.e. for PCA: RNB + CRB, for MCVQ: $K(J+1)NB + CK \log_2 J$ R=#components; N=input dims; B=bits/float; C=#cases

Summary & Current Directions

- a generative model for data composed of independent *causes*
- learns a parts-based segmentation of images, and a range of states for each part
- competitive performance when summarizing and reconstructing data
- inherent feature selection provides low-dimensional representation for further processing

we are currently exploring:

- 1. applications to text classification
- 2. collaborative filtering
- 3. Bayesian learning for model selection