Multiple Cause Vector Quantization

David Ross \& Rich Zemel
University of Toronto

Introduction

- Goal: learn a parts-based representation of data vectors
- Motivating Assumptions:

1. data dimensions can be separated into disjoint sets or Causes
2. each cause has a small number of States
3. causes take on states independently of each other

- Example: on face image data, causes could be eyes, nose, and mouth states could be different eye, nose and mouth shapes, respectively

Generative Model

- K Vector Quantizers (VQ's) [Causes]
- J Vectors per VQ [States]
- C Training Examples $\mathbf{X}=\left\{\mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{C}\right\} \subseteq \mathbb{R}^{N}$

To Generate an Example x^{c}

1. stochastically select one state of each VQ to be active

- selection vector $\mathrm{s}^{c} \in\{0,1\}^{J K}$,

$$
s_{j k}^{c}=1 \Leftrightarrow \text { state } j \text { of } \mathrm{VQ} k \text { is active }
$$

2. stochastically select one VQ for each data dimension

- selection matrix $\mathbf{R} \in\{0,1\}^{N \times K}$, $r_{i k}=1 \Leftrightarrow \mathrm{VQ} k$ is relevant for x_{i}^{c}

3. the value assigned to x_{i}^{c} is the weight of the active state from the relevant VQ

$$
x_{i}^{c}=\sum_{k, j \in k} s_{j k}^{c} r_{i k} w_{j k i}
$$

Shapes Data

- 1000 randomly generated gray-scale images
- each contains three shapes
- each shape has a fixed horizontal position, but variable vertical position
- vertical position of each shape randomly and independently selected, according to a uniform distribution

Shapes Data - Learned Model

Related Approaches

like MCVQ, the following approaches represent data as a linear combination of 'basis' vectors

Vector Quantization:

basis comprised of data templates - each example represented by nearest template (soft version: example is affine combination of templates)

Principal Component Analysis:
basis vectors are eigenvectors of data covariance matrix - example represented by arbitrary linear combination of bases

-

Non-Negative Matrix Factorization: (D. Lee \& S. Seung)
example represented by non-negative linear combination of non-negative basis vectors

Shapes Data - Reconstruction

- learned model used to represent \& reconstruct example images
- average root-mean-squared error was calculated for the training set (left) and an independent testing set (right)
- compared using description length (\# of bits used to represent model + \# of bits to encode all training examples using the model)

Learning \& Inference

probability of a single example

$$
P\left(\mathbf{x}^{c} \mid \mathbf{s}^{c}, \mathbf{r}, \mathbf{W}\right)=\prod_{i, k, j \in k} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} s_{j k}^{c} r_{i k}\left(x_{i}^{c}-w_{j k i}\right)^{2}\right)
$$

define the prior probability of selecting each state and VQ to be $m_{j k}^{c}=E\left[s_{j k}^{c}\right] \quad$ and $\quad g_{i k}=E\left[r_{i k}\right]$

$$
P\left(\mathbf{s}^{c}, \mathbf{R}\right)=\prod_{k, j \in k}\left(m_{j k}^{c}\right)^{s_{j k}^{c}} \prod_{i, k}\left(g_{i k}\right)^{r_{i k}}
$$

state and VQ selections ($\left\{\mathbf{s}^{c}\right\}$ and \mathbf{R}) are latent variables
if instead $\left\{\mathbf{s}^{c}\right\}$ and \mathbf{R} are observed, get complete likelihood of training data:

$$
\begin{aligned}
\mathcal{L} & =\prod_{c} P\left(\mathbf{x}^{c} \mid \mathbf{s}^{c}, \mathbf{R}, \mathbf{W}, \mathbf{M}, \mathbf{G}\right) P\left(\mathbf{s}^{c}, \mathbf{R} \mid \mathbf{W}, \mathbf{M}, \mathbf{G}\right) \\
& \left.=\prod_{c, i, k, j \in k} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} s_{j k}^{c} r_{i k}\left(x_{i}^{c}-w_{j k i}\right)^{2}\right)\right)\left(m_{j k}^{c}\right)^{s_{j k}^{c}}\left(g_{i k}\right)^{r_{i k}}
\end{aligned}
$$

Use EM algorithm to find a model that maximizes the expected complete data log-likelihood, or, equivalently, minimizes cost function

$$
\begin{aligned}
C & =-E[\log \mathcal{L}]_{\mathbf{s}^{c}, \mathbf{R}} \\
& =\frac{1}{2 \sigma^{2}} \sum_{c, k, j, i} m_{j k}^{c} g_{i k}\left(x_{i}^{c}-w_{j k i}\right)^{2}-\sum_{c, j, k} m_{j k}^{c} \log m_{j k}^{c}-\sum_{i, k} g_{i k} \log g_{i k}
\end{aligned}
$$

Intuition: choose one VQ per pixel, one state per VQ that matches input

Update Rules

E-Step (inference)

$$
m_{j k}^{c}=\frac{\left.\exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i} g_{i k}\left(x_{i}^{c}-w_{j k i}\right)^{2}\right)\right)}{\left.\sum_{\nu=1}^{J} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i} g_{i k}\left(x_{i}^{c}-w_{\nu k i}\right)^{2}\right)\right)}
$$

M - Step

$$
\begin{aligned}
w_{j k i} & =\frac{\sum_{c} m_{j k}^{c} x_{i}^{c}}{\sum_{c} m_{j k}^{c}} \\
g_{i k} & =\frac{\left.\exp \left(-\frac{1}{2 \sigma^{2}} \sum_{c, j} m_{j k}^{c}\left(x_{i}^{c}-w_{j k i}\right)^{2}\right)\right)}{\left.\sum_{\beta=1}^{K} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{c, j} m_{j \beta}^{c}\left(x_{i}^{c}-w_{j \beta i}\right)^{2}\right)\right)}
\end{aligned}
$$

Performance on Face Images

Training Set * : 2429 gray-scale images of faces, each 19×19 pixels Model Parameters: 6 VQ's, 12 states per VQ

[^0]Weights masked by G

Example Reconstructions

- original on left, reconstruction on right

Comparison of Reconstruction Error

- testing set contained 472 images
- compared using description length (\# of bits used to represent model + \# of bits to encode all training examples under the model)
- i.e. for PCA: $R N B+C R B$, for MCVQ: $K(J+1) N B+C K \log _{2} J$ R=\#components; $\mathrm{N}=$ input dims; $\mathrm{B}=\mathrm{bits} /$ float; $\mathrm{C}=\#$ cases

Summary \& Current Directions

- a generative model for data composed of independent causes
- learns a parts-based segmentation of images, and a range of states for each part
- competitive performance when summarizing and reconstructing data
- inherent feature selection provides low-dimensional representation for further processing
we are currently exploring:

1. applications to text classification
2. collaborative filtering
3. Bayesian learning for model selection

[^0]: *CBCL Face Database \# 1; MIT Center For Biological and Computation Learning http://www.ai.mit.edu/projects/cbcl

