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Many collections of data exhibit a common underlying structure: they consist of a

number of parts or factors, each with a range of possible states. For example, in a

collection of facial images, every image contains eyes, a nose, and a mouth, each of which

has a number of appearances.

We propose a new method, Multiple Cause Vector Quantization, for the unsupervised

learning of parts-based representations of data. Our technique automates the segmenta-

tion of the data dimensions into parts, while simultaneously learning a discrete model of

the range of appearances of each part.

We pose MCVQ as a probabilistic graphical model, and derive an efficient variational-

EM algorithm for learning and inference. We present applications of this model to prob-

lems in image decomposition, collaborative filtering, and document modeling.
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Chapter 1

Introduction

1.1 Parts

Many collections of data exhibit a common underlying structure: they consist of a number

of parts or factors, each with a range of possible states. When data are represented as

vectors, parts manifest themselves as subsets of the data dimensions that take on values in

a coordinated fashion. In the domain of digital images, these parts may correspond to the

intuitive notion of the component parts of objects, such as the arms, legs, torso, and head

of the human body. Prominent theories of computational vision, such as Biederman’s

Recognition-by-Components [3] advocate the suitability of a parts-based approach for

recognition in both humans and machines. Recognizing an object by first recognizing its

constituent parts, then validating their geometric configuration has several advantages:

1. Highly articulate objects, such as the human body, are able to appear in a wide

range of configurations. It would be difficult to learn a holistic model capturing all

of these variants.

2. Objects which are partially occluded can be identified as long as some of their parts

are visible.

1



Chapter 1. Introduction 2

3. The appearances of certain parts may vary less under a change in pose than the

appearance of the whole object. This can result in detectors which, for example,

are more robust to rotations of the target object.

4. New examples from an object class may be recognized as simply a novel combination

of familiar parts. For example a parts-base face detection system could generalize

to detect faces with both beards and sunglasses, having been trained only on faces

containing one, but not both, of these features.

The principal difficulty in creating such systems is determining which parts should

be used, and identifying examples of these parts in the training data.

In the part-based detectors created by Mohan et al. [26] and Heisele et al. [13] parts

were chosen by the experimenters based on intuition, and the component-detectors -

support vector machines - were trained on image subwindows containing only the part

in question. Obtaining these subwindows required that they be manually extracted from

hundreds or thousands of training images.

In contrast, the parts-based detector created by Weber et al. [30] proposed a way to

automate this process. First, potential parts - small subwindows of fixed size - were iden-

tified using the Förstner interest operator. Specifically, this selected regions containing

intersecting lines, corners, or the centres of circular regions. Next, the number of poten-

tial parts was reduced using k-means clustering. Finally, while training the geometric

model, the parts-set was further reduced, by selecting only those which lead to highest

detection performance. The resulting detector relied on a very small number of parts

(e.g. 3) corresponding to very small local features. Unlike the SVMs, which were trained

on a range of appearances of the part, each of these part-detectors could identify only a

single fixed appearance.

Parts-based representations of data can also be learned in an entirely unsupervised

fashion. These parts can be used for subsequent supervised learning, but the models
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constructed can also be valuable on their own. A parts-based model provides an effi-

cient, distributed representation, and can aid in the discovery of causal structure within

data. As an example, parts-based models are widely used by law enforcement agencies

to produce composite sketches. These systems allow a witness to create a likeness of a

suspect’s face by selecting an appearance for each part, from a vocabulary of standard

facial components.

The concept of parts can be applied to other types of data, such as bag-of-words text

data, and preference data. In the former each data vector gives word count information

- one vocabulary word per input dimension - for a single document. Parts, in this case,

would correspond to collections of words with related frequencies. This includes words

that often appear together, as well as words rarely appearing in the same document. In

the latter, the vector contains ratings given by a human subject to a number of books,

movies, et cetera. Parts would be formed from groups of related items, and appearances

of a part would correspond to different attitudes towards the items.

This thesis describes a new method, Multiple Cause Vector Quantization, for the

unsupervised learning of parts-based representations of data. Our technique automates

the segmentation of the data dimensions into parts, while simultaneously learning a

discrete model of the range of appearances of each part.

1.2 Thesis Organization

In Chapter 2 we introduce Multiple Cause Vector Quantization. We propose the model

in 2.2, and in 2.3 derive an EM algorithm for learning and inference. In section 2.4 we

relate MCVQ to similar parts-seeking techniques.

Experimental results using this method appear in Chapter 3, including applications
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to image decomposition, collaborative filtering, document modeling, and classification of

facial expressions.

In Chapter 4 we extend our model to handle data with class labels, learning these

labels if they have not been provided.

Finally, in Chapter 5 we summarize our contributions, and suggest directions for

further inquiry.



Chapter 2

Multiple Cause Vector Quantization

2.1 Overview

In this chapter we propose a stochastic generative model that can learn parts-based

representations of high-dimensional data. Our key assumption is that the dimensions of

the data can be separated into several disjoint subsets, or factors, which take on values

independently of each other1. We assume each factor has a small number of discrete

states, and model it using a vector quantizer. The selected states of each factor represent

the multiple causes of the input. Given a set of training examples, our model learns the

association of data dimensions with factors, as well as the states of each VQ. Inference

and learning are carried out efficiently via variational algorithms.

This representational scheme is powerful due to its combinatorial nature: while a

standard clustering/VQ method containing N states can represent at most N items, if

we divide the N into VQs of J states each, we can represent JN/J items. MCVQ is also

especially appropriate for high-dimensional data in which many values may be unspecified

for a given input case.

Material from this chapter and from the experiments in chapter 3 originally appeared

1Practically these factors are often not entirely independent, even when parts are involved. We

investigate this situation further in Chapter 4

5
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b ks krd x da d

µ kj

o kj
K

D

J

Figure 2.1: Graphical model representation of MCVQ. We let rd=1 represent all the

variables rd=1,k, which together select a VQ for x1. Similarly, sk=1 represents all sk=1,j,

which together select a state of VQ 1. The plates depict repetitions across the appropriate

dimensions for each of the three variables: the K VQs, the J states (codebook vectors)

per VQ, and the D input dimensions. To extend this model to multiple data cases, we

would include an additional plate over r, x, and s.

in Advances in Neural Information Processing Systems 15 [27].

2.2 Generative Model

In MCVQ we assume there are K factors, each of which is modeled by a vector quantizer

with J states. To generate an observed data example of D dimensions, x ∈ <D, we

stochastically select one state for each VQ, and one VQ for each dimension. Given these

selections, a single state from a single VQ determines the value of each data dimension

xd.

The selections are represented as binary latent variables, S = {skj}, R = {rdk}, for

d = 1...D, k = 1...K, and j = 1...J . The variable skj = 1 if and only if state j has been

selected from VQ k. Similarly rdk = 1 when VQ k has been selected for data dimension

d. These variables can be described equivalently as multinomials, sk ∈ 1...J, rd ∈ 1...K;

their values are drawn according to their respective priors, ak and bd. The graphical

model representation of MCVQ is given in Fig. 2.1.
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Assuming each VQ state specifies the mean as well as the standard deviation of a

Gaussian distribution, and the noise in the data dimensions is conditionally independent,

we have (where θ = {µdkj, σdkj}):

P(x|R, S, θ) =
∏

d

∏

k,j

N (xd ; µdkj, σdkj)
rdk skj

The resulting model can be thought of as a mixture model over J ×K possible states

for each data dimension (xd). The single state kj is selected if skjrdk = 1. Note that

this selection has two components. The selection in the j component is made jointly for

the different data dimensions, and in the k component it is made independently for each

dimension.

2.3 Learning and Inference

The joint distribution over the observed vector x and the latent variables is

P(x, R, S|θ) = P(R|θ)P(S|θ)P(x|R, S, θ) =
∏

d,k

ardk

dk

∏

k,j

b
skj

kj

∏

d,k,j

N (xd ; θ)rdkskj (2.1)

Given an input x, the posterior distribution over the latent variables, P(R, S|x, θ),

cannot tractably be computed, since all the latent variables become dependent.

We apply a variational EM algorithm to learn the parameters θ, and infer latent

variables given observations. We approximate the posterior distribution using a factored

distribution, where g and m are variational parameters related to r and s respectively:

Q(R, S|x, θ) =

(

∏

d,k

grdk

dk

)(

∏

k,j

m
skj

kj

)

(2.2)

The variational free energy, F(Q, θ) = EQ

[

− log P (x, R, S|θ) + log Q(R, S|x, θ)
]

is:

F = EQ

[

∑

d,k

rdk log(gdk/akj) +
∑

k,j

skj log(mkj/bkj) +
∑

d,k,j

rdkskj logN (xd ; θ)
]

=
∑

k,j

mkj log mkj +
∑

d,k

gdk log gdk +
∑

d,k,j

gdk mkj εdkj
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where εdkj = log σdkj +
(xd−µdkj)

2

2σ2
dkj

. The negative of the free energy −F is a lower bound on

the log likelihood of generating the observations. The variational EM algorithm improves

this bound by iteratively improving −F with respect to Q (E-step) and to θ (M-step).

Let C be the set of training cases, and Qc be the approximation to the posterior

distribution over latent variables given the training case (observation) c ∈ C. We further

constrain this variational approach, forcing the {gc
dk} to be consistent across all observa-

tions xc. Hence these parameters relating to the gating variables that govern the selection

of a factor for a given observation dimension, are not dependent on the observation. This

approach encourages the model to learn representations that conform to this constraint.

That is, if there are several posterior distributions consistent with an observed data vec-

tor, it favours distributions over {rd} that are consistent with those of other observed

data vectors. Under this formulation, only the {mc
kj} parameters are updated during the

E step for each observation c:

mc
kj = bkj exp

(

−
∑

d

gdk εc
dkj

)

/
J

∑

ρ=1

bkρ exp
(

−
∑

d

gdk εc
dρk

)

The M step updates the parameters, µ and σ, from each latent state kj to each input

dimension d, the gating variables {gdk}, and the priors {adk} and {bkj}:

gdk = adk exp
(

−
1

C

∑

c,j

mc
kj εc

dkj

)

/

K
∑

ρ=1

adρ exp
(

−
1

C

∑

c,j

mc
jρ εc

djρ

)

µdkj =

∑

c mc
kjx

c
d

∑

c mc
kj

σ2
dkj =

∑

c mc
kj(x

c
d − µdkj)

2

∑

c mc
kj

adk = gdk bkj =
1

C

∑

c

mc
kj

A slightly different model formulation restricts the selections of VQs, {rdk}, to be the

same for each training case. Variational EM updates for this model are identical to those

above, except that the 1
C

terms in the updates for gdk disappear. In practice, we obtain
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good results by replacing this 1
C

term with an inverse temperature parameter, that is

annealed during learning. This can be thought of as gradually moving from a generative

model in which the rdk’s can vary across examples, to one in which they are the same for

each example.

The inferred values of the variational parameters specify a posterior distribution over

the VQ states, which in turn implies a mixture of Gaussians for each input dimension.

Below we use the mean of this mixture, x̂c
d =

∑

k,j mc
kj gdk µdkj, to measure the model’s

reconstruction error on case c. (In practice the posterior probability lies almost exclu-

sively on a single choice of state per VQ, and a single choice of VQ per data dimension,

thus the resulting mixture of Gaussians has a single predominant mode.)

A variational approximation is just one of a number of possible approaches to perform-

ing the intractable inference (E) step in MCVQ. One alternative would be to approximate

the posterior with a set of samples drawn from the true posterior via Gibbs’ sampling.

Details of this approach for a closely related model can be found in [10].

2.4 Related models

MCVQ falls into the expanding class of unsupervised algorithms known as factorial meth-

ods, in which the aim of the learning algorithm is to discover multiple independent causes,

or factors, that can well characterize the observed data. Its direct ancestor is Cooperative

Vector Quantization [32, 14, 10], which has a very similar generative model to MCVQ,

but lacks the stochastic selection of one VQ per data dimension. Instead, a data vector

is generated cooperatively - each VQ selects one vector, and these vectors are summed

to produce the data (again using a Gaussian noise model). The contrast between these

approaches mirrors the development of the competitive mixture-of-experts algorithm [18]

which grew out of the inability of a cooperative, linear combination of experts to decom-

pose inputs into separable experts.
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Unfortunately CVQ can learn unintuitive global features which include both addi-

tive and subtractive effects. A related model, non-negative matrix factorization (NMF)

[20, 21, 24], proposes that each data vector is generated by taking a non-negative linear

combination of non-negative basis vectors. Since each basis vector contains only non-

negative values, it is unable to ‘subtract away’ the effects of other basis vectors it is

combined with. This property encourages learning a basis of sparse vectors, each cap-

turing a single instantiation of one of the independent latent factors, for example a local

feature of an image. Like NMF, given non-negative data MCVQ will learn a non-negative

basis, taken only in non-negative combinations. Unlike MCVQ, NMF provides no mech-

anism for learning compositional structure - how basis images or parts may be combined

to form a valid whole. Rather, it considers any non-negative linear combination of basis

vectors to be equally suitable, and hence NMF and MCVQ models differ in the range of

novel examples they can generate2. Recent work such as [22] suggests that non-negativity

alone may not be sufficient to ensure the learned basis corresponds to localized parts.

MCVQ also resembles a wide range of generative models developed to address image

segmentation [31, 15, 19]. These are generally complex, hierarchical models designed to

focus on a different aspect of this problem than that of MCVQ: to dynamically decide

which pixels belong to which objects. The chief obstacle faced by these models is the

unknown pose (primarily limited to position) of an object in an image, and they employ

learned object models to find the single object that best explains each pixel. MCVQ

adopts a more constrained solution with respect to part locations, assuming that these

are consistent across images, and instead focuses on the assembling of input dimensions

into parts, and the variety of instantiations of each part. The constraints built into

MCVQ limit its generality, but also lead to rapid learning and inference, and enable it

to scale up to high-dimensional data.

Connections can also be made between MCVQ and algorithms for biclustering, which

2For a concrete example, refer to the experiments on shape images appearing in Section 3.1.
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aim to produce a simultaneous clustering of both the rows and the columns of the data

matrix [25]. Biclustering has recently become popular in bioinformatics as a tool for

analyzing DNA microarray data, which presents the expression levels for different genes

under multiple experimental conditions as a matrix [8]. Assuming column-vector data,

the selection of a VQ for each data dimension in MCVQ produces a clustering of the

rows. MCVQ differs from other biclustering methods in that it produces not one but

K clusterings of the columns, one for each of the K VQs. In Chapter 4 we present an

extension that combines the clusterings, allowing MCVQ to produce a single biclustering

of the data.

Finally, MCVQ also closely relates to sparse matrix decomposition techniques, such

as the aspect model [16], a latent variable model which associates an unobserved class

variable, the aspect z, with each observation. Observations consist of co-occurrence

statistics, such as counts of how often a specific word occurs in a document. The latent

Dirichlet allocation model [4] can be seen as a proper generative version of the aspect

model: each document/input vector is not represented as a set of labels for a particular

vector in the training set, and there is a natural way to examine the probability of some

unseen vector. MCVQ shares the ability of these models to associate multiple aspects

with a given document, yet it achieves this in a slightly different manner. The aspect and

LDA models propose that each document – a list of exchangeable words – is generated

by sampling an aspect, then sampling a word from the aspect, for each word in the

document. On the other hand MCVQ models the aggregate word counts of a document.

For each word in the vocabulary, its entire document frequency is generated according

to the dictates of a stochastically-selected aspect (VQ). The stochastic selection leads

to a posterior probability stipulating a soft mixture over aspects for each word. In

the following chapter we present some initial experiments examining whether MCVQ

can match the successful application of the aspect model to information retrieval and

collaborative filtering problems, after evaluating it on image data.
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As an addendum for the interested reader, two early factorial models of note are the

Harmonium model of Freund and Haussler [9], and the Factorial Hidden Markov Model

of Ghahramani and Jordan [12].

2.5 Conclusion

We have presented a novel method for learning factored representations of data which can

be efficiently learned, and employed across a wide variety of problem domains. MCVQ

combines the cooperative nature of some methods, such as CVQ, NMF, and LSA, that

use multiple causes to generate input, with competitive aspects of clustering methods.

In addition, it gains combinatorial power by splitting the input into subsets, and can

readily handle sparse, high-dimensional data.

In the following chapter we explore applications of this method to several problem

domains.



Chapter 3

Experiments

3.1 Parts-based Image Decomposition: Shapes and

Faces

3.1.1 Overview

In this section we demonstrate MCVQ’s ability to learn a parts-based representation

of digital images, using two different data sets. The parts learned by MCVQ are fixed

subsets of the data dimensions, corresponding to fixed regions of the images. MCVQ does

not attempt to compensate for transformations (e.g. translation, rotation, scale) of the

object in the image window, thus is restricted to images that have been normalized for

variations in pose. The first data set consists of artificially generated images of shapes,

while the second consists of approximately normalized human faces.

Reconstruction performance is used to evaluate the quality of the learned models.

By reconstruction we mean, given a data example, using the model to generate a new

example that is as similar as possible to the original. The fidelity with which we can

reconstruct data examples (both training and testing) reveals how well the model captures

the essential features of the data distribution.

13
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VQ 1

VQ 3

VQ 2

k = 3

k = 2

k = 1

G

a)

b)

c)

µ for each state

Original Reconstruction

0.153RMS Error:

Figure 3.1: a) A sample of 24 training images from the Shapes dataset. b) A typical

representation learned by MCVQ with 3 VQs and 5 states per VQ. c) Reconstruction of

a test image: original (left) and reconstruction (right).

3.1.2 Shape Images

The first dataset used to test our model consisted of 11×11 gray-scale images, as pictured

in Fig. 3.1a. Each image in the set contains three shapes: a box, a triangle, and a cross.

The horizontal position of each shape is fixed, but the vertical position is allowed to vary,

uniformly and independently of the positions of the other shapes. Using nine possible

locations for each shape, we generated a data set of 93 = 729 shape images.

A model containing 3 VQs, 5 states each, was trained on 100 of the shape images. In

this experiment, and all experiments reported herein, annealing proceeded linearly from

an integer less than C to 1. The learned representation, pictured in Fig. 3.1b, clearly

shows the specialization of each VQ to one of the shapes.

The training set was selected so that none of the examples depict cases in which all

three shapes are located near the top of the image. Despite this handicap, MCVQ is able

to learn the full range of shape positions, and can accurately reconstruct such an image

(Fig. 3.1c). In contrast, standard unsupervised methods such as Vector Quantization
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(Fig. 3.2a) and Principal Component Analysis (Fig. 3.2b) produce holistic representa-

tions of the data, in which each basis vector tries to account for variation observed across

the entire image. Non-negative matrix factorization does produce a parts-based repre-

sentation (Fig. 3.2c), but captures less of the data’s structure. Unlike MCVQ, NMF does

not group related parts, and its generative model does not limit the combination of parts

to only produce valid images. For example, the NMF model could readily generate an

image with two or more triangles, while the MCVQ model could not.

Cooperative Vector Quantization, trained using the same model size as MCVQ, is

able to capture much of the part-structure. Figure 3.2d shows an example of a CVQ

model, where each circled set of five images depicts the states learned by one of the three

VQs. As can be seen in the third VQ (the five right-most vectors) the state vectors do

contain additive and subtractive global features, similar to those found by PCA. Unlike

MCVQ, these global effects are not “masked away” by a per-pixel stochastic selection.

When training CVQ using the variational algorithm given in [10], we have found it to

frequently converge to local minima that poorly describe the parts-based structure.

NMFPCAVQOriginal

a)

c)

b)

e)

d)

0.2140.7160.502RMS Error:

CVQ

1.06

Figure 3.2: Other methods trained on shape images: a) VQ, b) PCA, c) NMF, and d)

CVQ. e) Reconstruction of a test image by the three methods (cf. Fig. 3.1c).
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As an empirical comparison, we tested the reconstruction error of each of the afore-

mentioned methods on an independent test set consisting of the remaining 629 images.

Since each method has one or more free parameters (e.g. the # of principal components)

we chose to relate models with similar description lengths. We informally define descrip-

tion length to be the number of bits required to represent the model, plus the number

of bits to encode all the test examples using the model. This metric balances the large

model cost and small encoding cost of VQ/MCVQ with the small model cost and large

encoding cost of PCA/NMF. Specifically, using V basis vectors or states, PCA/NMF

models contain V real-valued vectors, while VQ models contain 2V , and MCVQ models

contain 2V + K, where K is the number of VQs. To encode a single example, by indi-

cating the most likely states to have generated it, VQ and MCVQ require only log2 V

and K log2(V/K) bits respectively. On the other hand, PCA and NMF require a vector

of V real numbers to encode each example (PCA focuses only on minimizing the cost of

reconstruction errors [14]).

Model Parameters RMS Error

MCVQ 3 VQs, 12 states 0.21

PCA 12 components 0.22

MCVQ 2 VQs, 18 states 0.26

MCVQ 4 VQs, 9 states 0.26

MCVQ 8 VQs, 4 states 0.34

MCVQ 6 VQs, 6 states 0.35

NMF 12 basis vectors 0.35

VQ 38 vectors 0.49

Table 3.1: Average root-mean-squared reconstruction error for various models trained on

the shapes image data.

Using a description length of about 5.9 × 105 bits, and pixel values ranging from -1
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to 1, the average root-mean-squared reconstruction error was calculated, and is shown in

Table 3.1. Note that this metric may be useful in determining the number of VQs. We

computed the r.m.s. error for various MCVQ model sizes, keeping the total number of

states (nearly) the same. The model with 3 VQs, the correct number for this data set,

achieves the lowest reconstruction error of all the MCVQ models.

3.1.3 Face Images

As a more interesting visual application, we trained our model on the face images from

the CBCL Face database #1 [1]. The dataset consists of 19 × 19 gray-scale images,

each containing a single frontal or near-frontal face. An MCVQ model of 6 VQs with 12

states each was trained on 2000 of the training images, requiring 15 iterations of EM to

converge. As with shape images, the model learned a parts-based representation of the

faces.

ReconstructionOriginal ReconstructionOriginal

RMS Error: 0.289 RMS Error: 0.152

Figure 3.3: The reconstruction of two test images from the Faces dataset. Beside each

reconstruction are the parts—restricted for simplicity to the most active state in each of

the six VQs—used to generate it. Each part j ∈ k is represented by its gated prediction

(gdk ∗ mkj) for each image pixel i.
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The reconstruction of two test images, along with the specific parts used to generate

each, is illustrated in Fig. 3.3. It is interesting to note that the pixels comprising a single

part need not be physically adjacent (e.g. the eyes) as long as their appearances are

correlated.

We again compared the reconstruction error of MCVQ with VQ, PCA, and NMF.

The training and testing sets contained 1800 and 629 images respectively1. Using a

description length of 1.5 × 106 bits, and pixel values ranging from -1 to 1, the average

root-mean-squared reconstruction error was 0.12 for PCA, 0.20 for NMF, 0.23 for MCVQ

(both 3 and 6 VQs), and 0.28 for VQ.

3.2 Collaborative Filtering

The application of MCVQ to image data assumes that the images are normalized, i.e.,

that the head is in a similar pose in each image. Normalization can be difficult to

achieve in some image contexts; however, in many other types of applications, the input

representation is more stable. For example, many information retrieval applications

employ bag-of-words representations, in which a given word always occupies the same

input element.

We test MCVQ on a collaborative filtering task, utilizing the EachMovie dataset,

where the input vectors are ratings by users of movies, and a given element always

corresponds to the same movie. The original dataset contains ratings, on a scale from 1

to 6, of a set of 1649 movies, by 74,424 users. In order to reduce the sparseness of the

dataset, since many users rated only a few movies, we only included users who rated at

least 75 movies and movies rated by at least 126 users, leaving a total of 1003 movies and

1The CBCL Face database #1 contains standard training and test sets of 2429 and 472 images

respectively. Unfortunately the standard testing images are significantly different from the training

images; the test faces appear at different scales, rotations, and levels of noise than the training faces. To

compensate for this, we restricted our attention to the standard training set, randomly selecting images

for our new data split.
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VQ 1 VQ 2 VQ 3 VQ 4
U

se
r

1

The Fugitive 5.8 (6) Pulp Fiction 5.5 (4) Cinema Paradiso 5.6 (6) Shawshank Redemption 5.5 (5)

Terminator 2 5.7 (5) Godfather: Part II 5.3 (5) Touch of Evil 5.4 (-) Taxi Driver 5.3 (6)

Robocop 5.4 (5) Silence of the Lambs 5.2 (4) Rear Window 5.2 (6) Dead Man Walking 5.1 (-)

Kazaam 1.9 (-) Brady Bunch Movie 1.4 (1) Jean de Florette 2.1 (3) Billy Madison 3.2 (-)

Rent-a-Kid 1.9 (-) Ready to Wear 1.3 (-) Lawrence of Arabia 2.0 (3) Clerks 3.0 (4)

Amazing Panda Adventure 1.7 (-) A Goofy Movie 0.8 (1) Sense & Sensibility 1.6 (-) Forrest Gump 2.7 (2)

U
se

r
2

Best of Wallace & Gromit 5.6 (-) Tank Girl 5.5 (6) Mediterraneo 5.3 (6) Sling Blade 5.4 (5)

The Wrong Trousers 5.4 (6) Showgirls 5.3 (4) Three Colors: Blue 4.9 (5) One Flew ... Cuckoo’s Nest 5.3 (6)

A Close Shave 5.3 (5) Heidi Fleiss... 5.2 (5) Jean de Florette 4.9 (6) Dr. Strangelove 5.2 (5)

Robocop 2.6 (2) Talking About Sex 2.4 (5) Jaws 3-D 2.2 (-) The Beverly Hillbillies 2.0 (-)

Dangerous Ground 2.5 (2) Barbarella 2.0 (4) Richie Rich 1.9 (-) Canadian Bacon 1.9 (4)

Street Fighter 2.0 (-) The Big Green 1.8 (2) Getting Even With Dad 1.5 (-) Mrs. Doubtfire 1.7 (-)

Figure 3.4: The MCVQ representation of two test users in the EachMovie dataset. The

3 most conspicuously high-rated (bold) and low-rated movies by the most active states

of 4 of the 8 VQs are shown, where conspicuousness is the deviation from the mean

rating for a given movie. Each state’s predictions, µdkj, can be compared to the test

user’s true ratings (in parentheses); the model’s prediction is a convex combination of

state predictions. Note the intuitive decomposition of movies into separate VQs, and

that different states within a VQ may predict very different rating patterns for the same

movies.

5831 users. The remaining dataset was still very sparse, as the maximum user rated 928

movies, and the maximum movie was rated by 5401 users. We split the data randomly

into 4831 users for a training set, and 1000 users in a test set. We ran MCVQ with 8

VQs and 6 states per VQ on this dataset. An example of the results, after 18 iterations

of EM, is shown in Fig. 3.4.

Note that in the MCVQ graphical model (Fig. 2.1), all the observation dimensions

are leaves, so an input variable whose value is not specified in a particular observation

vector will not play a role in inference or learning. This makes inference and learning

with sparse data rapid and efficient.

We compare the performance of MCVQ on this dataset to the aspect model. We
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Figure 3.5: The average absolute devia-

tion of predicted and true values of held-

out ratings is compared for MCVQ and

the aspect model. Note that the num-

ber of users per x-bin decreases with in-

creasing x, as a user must rate at least

x + 1 movies to be included.

implemented a version of the aspect model, with 50 aspects and truncated Gaussians for

ratings, and used “tempered EM” (with smoothing) to fit the parameters[17]. For both

models, we train the model on the 4831 users in the training set, and then, for each test

user, we let the model observe some fixed number of ratings and hold out the rest. We

evaluate the models by measuring the absolute difference between their predictions for a

held-out rating and the user’s true rating, averaged over all held-out ratings for all test

users (Fig. 3.5).

For further analysis of MCVQ applied to collaborative filtering tasks, the reader is

referred to [5].

3.3 Document Modeling

MCVQ can also be used for information retrieval from text documents, by employing

the bag-of-words representation. We present preliminary results on the NIPS corpus 2,

which consists of the full text of the NIPS conference proceedings, volumes 0 to 12. The

data was pre-processed to remove common words (e.g. the), and those appearing in fewer

than five documents, resulting in a vocabulary of 14,265 words. For each of the 1740

papers in the corpus, we generated a vector containing the number of occurrences of each

2Available at http://www.cs.toronto.edu/~roweis/data.html
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Predictive Sequence Learning in Recurrent Neocortical Circuits The Relevance Vector Machine

R. P. N. Rao & T. J. Sejnowski Michael E. Tipping

afferent ekf latent ltp svms hme similarity extraction

lgn niranjan som gerstner svm svr classify net

interneurons freitas detection zador margin svs classes weights

excitatory kalman search soma kernel hyperparameters classification functions

membrane wp data depression risk kopf class units

query critic mdp spline jutten chip barn mdp

documents stack pomdps tresp pes ocular correlogram pomdps

chess suffix prioritized saddle cpg retinal interaural littman

portfolio nuclei singh hyperplanes axon surround epsp prioritized

players knudsen elevator tensor behavioural cmos bregman pomdp

Figure 3.6: The representation of two documents by an MCVQ model with 8 VQs and

8 states per VQ. For each document we show the states selected for it from 4 VQs. The

bold (plain) words for each state are those most conspicuous by their above (below)

average predicted frequency.

word in the vocabulary. These vectors were normalized so that each contained the same

number of words. A model of 8 VQs, 8 states each, was trained on the data, converging

after 15 iterations of EM. A sample of the results is shown in Fig. 3.6.

When trained on text data, the values of {gdk} provide a segmentation of the vo-

cabulary into subsets of words with correlated frequencies. Within a particular subset,

the words can be positively correlated, indicating that they tend to appear in the same

documents, or negatively correlated, indicating that they seldom appear together.

3.4 Classification: Face Expressions

As motivated in the introduction to this thesis, parts-based representations are useful for

feature extraction - to produce a new representation of the data which may be more useful

for subsequent supervised learning. In this capacity, we apply MCVQ to the supervised

classification of facial expressions.
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3.4.1 AR Face Database

The following experiments were performed using a subset of the AR Face Database [23],

which consists of images of frontal faces of 126 subjects under a number of different

conditions. The five conditions included in our data set were: 1) anger, 2) neutral, 3)

scream, 4) smile, and 5) sunglasses. We grouped our data into five classes, based on the

condition depicted.

The data set in its raw form contains faces which, although roughly centred, appear

at different locations, angles, and scales. Since MCVQ does not attempt to compensate

for these differences, we manually aligned each face such that the eyes always appeared in

the same location. Next we cropped the images tightly around the face, and subsampled

to reduce the size to 29 × 22 pixels. Finally, we converted the image data to grayscale,

with pixel values ranging from -1 to 1. Examples of the preprocessed images can be seen

in Figure 3.7.

Figure 3.7: Examples of preprocessed images from the AR Face Database. These im-

ages, from left to right, correspond to the conditions: anger, neutral, scream, smile, and

sunglasses.

From this data, training and testing sets containing 1000 and 275 examples respec-

tively were constructed. Each set contained an equal number of images from all of the

classes.
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3.4.2 MCVQ for feature selection

In this experiment we investigated the suitability of MCVQ as a dimensionality reduction

technique, with a goal of learning a discriminative set of features to assist subsequent

classification. We began by learning an MCVQ model with 15 VQs, 11 states each, from

the training set. To represent each training example, we used the posterior probabilities of

the state-selection variables, the mkj’s, as estimated using our variational approximation.

This reduced representation consisted of 15× 11 dimensions, but only 15× 10 degrees of

freedom.

Using the reduced representation of our data, we trained a support vector machine

classifier, specifically a ν-SVM [29, 28] with a Gaussian kernel. The parameters for

the experiment, chosen using 10-fold cross validation, were ν = 0.8 and σ2 = 330 ≈

2 × (15 × 11).

During testing we used the MCVQ model to estimate the mkj’s of the test examples,

and classified them using the SVM. The classification rate was 0.77 (212 correct of 275).

Alternate classification techniques

As baseline comparisons, we attempted the same classification task using a support vector

machine trained on the pixel values only, and using a human subject.

For the support vector machine, we again used a ν-SVM with Gaussian kernel and

parameters selected by cross validation. The specific parameters employed were ν = 0.4

and σ2 = 255 ≈ 0.4× # pixels per image. The SVM achieved a classification rate was

0.84 (230 of 275 correct).

The human subject, after studying the labelled training data, was able to correctly

classify 0.77 (213 of 275) of the test images.

In both cases, the vast majority of the errors were caused by anger images being

misclassified as neutral, or vice versa. (76% of the errors for the SVM and 85% for the

human.)
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Discussion

In this experiment we have observed that the reduced representation learned by MCVQ

contains most of the class-discriminative information contained in the original data set.

Classification performance using MCVQ’s learned features equaled that of a human on

this difficult task, despite using less than one quarter as many degrees of freedom as are

present in the original images.

Increasing the number of VQs and states in the model did not improve classification

performance.

A possible explanation for the superior performance of the SVM on raw pixel values

is that the experimental setup, namely using well-normalized images without occlusion,

does not leverage the advantages of parts-based classifiers, as previously described.
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Discovering dependencies among

part selections

4.1 Introduction

The multiple cause vector quantization model consists of a number of vector quantizers

which compete amongst themselves to describe each dimension of a high-dimensional data

space. The generative process it proposes to produce an observed data vector includes

a number of latent selections. First, each VQ selects a single state as a proposed data

vector. Then, for each dimension, one of the VQs is selected to “write to” the actual

data vector (with additive Gaussian noise).

Although MCVQ assumes these selections to be independent, clearly in real world

data there are dependencies. For example, consider the case of modeling human faces.

As shown in 3.1, MCVQ can be trained such that each VQ captures a different part or

region of the face, and each state represents a possible appearance of that part. If one

part were to select an appearance with high pixel intensities, due to lighting conditions

or skin tone, then it seems likely that the other parts should appear similarly light.

In this chapter we propose a method of learning these dependencies between part

25
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selections by introducing an additional higher-level cause, or “class” variable, on which

the state selections are conditioned. We examine two settings: first we consider the case

in which the class variable is observed, corresponding to labeled training data, and second

we consider the case in which it is unobserved, and must be inferred.

In the observed case this allows us to learn distributions over state selections based

on the class of the data, and to classify new data based on the inferred posterior over

state selections. In the unobserved case, we learn a probabilistic clustering over data

cases, based on their state selections. When treated generatively, both of these cases

allow us, given only a single vocabulary of parts, to produce data from any of the classes

by appropriately setting the new variable.

4.2 Model

A multiple cause vector quantization model consists of K vector quantizers, each with J

states. A state is made up of a mean vector and a diagonal covariance matrix, specifying

a Gaussian distribution in data space. To generate a data vector x ∈ <D from a given

model, a state is stochastically selected for each VQ, and a VQ is selected for each

dimension xd of the data vector. We represent these selections using the binary latent

variables R = {rdk} and S = {skj}, exactly as described in section 2.2.

Suppose that each data vector comes from one of N different classes, for some positive

integer N . We assume that for a given data vector the selections of the states for each

VQ (the S’s) depend on the class, but that the selections of VQ per data dimension (the

R’s) do not. Specifically, for training case x, we introduce a new multinomial variable y

which selects exactly one of the N classes. y can be thought of as a collection of binary

variables {yn} for n = 1 . . .N or equivalently as an indicator vector y ∈ {0, 1}N , where

yn = 1 if and only if class n has been selected. Using a Multinomial(β) prior distribution

for y, the prior over selections takes the following form (cf. section 2.3):
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P(R,S,y) = P(R)P(S|y)P(y)

=

(

∏

dk

grdk

dk

)(
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nkj
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skjyn
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)(
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n

βyn

n

)

(4.1)

The graphical model representation is given in Figure 4.1.

DK

C

x d
c rd

csc
 ky c

Figure 4.1: Graphical model with additional class variable, yc, where c is an index over

the C cases in our training data. Note that yc can be either observed or unobserved.

Note that for each class n there is a different prior distribution over the state selections.

We represent these distributions with {bnkj}nkj, where bnkj is the probability of selecting

state j from VQ k given class n. Since the model contains N priors over S, one to

be selected for each data vector, then we can think of this model as incorporating an

additional vector quantization, this time over distributions for S.

If the class variable y corresponds to an observed label for each data vector, then the

new model can be thought of as a standard MCVQ model, but with the requirement that

we learn a different prior over S for each class. On the other hand, if y is unobserved,

then the new model learns a VQ over the space of possible priors for S, rather than the

single maximum likelihood point estimate learned in standard MCVQ.

4.2.1 Unsupervised Case

In the unsupervised case, yc, for each training case c = 1 . . . C is an unobserved variable,

like Rc and Sc. As in standard MCVQ, the posterior P(R,S,y|x, θ) over latent vari-
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ables cannot tractably be computed. Instead, we use the following mean-field variational

approximation:

Q(R,S,Y) =

(
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cdk

g
rc
dk

dk
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nkj
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n
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Note that, as in standard MCVQ, we restrict the posterior selections of VQ made for

each training case to be identical, i.e. P(R1) = P(R2) = · · · = P(Rc).

Using the variational posterior, the prior (4.1), and the standard likelihood, we obtain

the following expression for the Free Energy:

F = −EQ[log P(X ,R,S,Y|θ)] −H(Q)

= −EQ

[
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By differentiating F with respect to each of the parameters and latent variables, and

solving for their respective minima, we obtain the EM updates used for learning the

model.

The E-step updates for mc
nkj and zc

n are:

mc
nkj ∝ bnkj exp

(

−
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d

gdkε
c
dkj

)

zc
n ∝ βn exp
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kj
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nkj log
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)

The M-step updates for adk, gdk, µdkj, and σdkj are unchanged from standard MCVQ,

except for the substitution of
∑

n(mc
nkjz

c
n) in place of mc

kj, wherever it appears. The

updates for βn and bnkj are:
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βn =
1

C

∑

c

zc
n bnkj =
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c mc
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c
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∑

c zc
n

A useful interpretation of the latent variable y is that, for a given data vector, it

indicates the assignment of that datum to one of N clusters. Specifically, zc
n can be

thought of as the posterior probability that example c belongs to cluster n.

4.2.2 Supervised Case

In the supervised case, we are given a set of labelled training data (xc,yc) for c = 1 . . . C.

Note that this case is essentially the same as the unsupervised case - we can obtain the

supervised updates by constraining zc = yc, for c = 1 . . . C. Since the class is known, we

may now drop the subscript n from mc
nkj.

As stated earlier, when the y’s are given, we learn a different prior over state selections

for each class n:

bnkj =
1

Cβn

∑

c

mc
kjy

c
n

where the prior probability of observing class n, βn, can be calculated from the training

labels:

βn =
1

C

∑

c

yc
n

The posterior probabilities of selecting each state to have generated example c, mc
kj,

depends only on the prior corresponding to c’s class.

mc
kj ∝ byckj exp

(

−
∑

d

gdkε
c
dkj

)

From the probability model described above we can derive a method for classifying

new test cases. Given an unlabelled testing vector, x, and a model θ, we can estimate

the most likely class ŷ using the rule:
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ŷ = argmax
y

P(x,y, |θ) (4.2)

= argmax
y

∑

R

∑

S

P(x|R,S, θ)P(R,S,y)

This rule poses a computational difficulty, since it requires we sum over all possible

configurations of the latent selection variables R and S. For a model with K VQs,

J states each, operating on D-dimensional data, the above sum would contain KDJK

terms, which is intractable for all but the smallest settings of J, K, and D.

An approach for dealing with this summation is to use a Monte Carlo approximation.

If we draw a set {(Rq,Sq)}q of Q samples from the prior distribution P(R,S|y), we can

approximate the summation with P(x,y|θ) ≈
∑

q P(x|Rq,Sq, θ)P(y)/Q, giving us the

approximate classification rule:

ŷ = argmax
y

P(y)

Q

∑

q

P(x|Rq,Sq, θ) (4.3)

4.3 Experiments

In this section we present experimental results obtained by training the above models on

images taken from the AR Face Database. The data is described in detail in section 3.4.

4.3.1 Supervised Case

Learning class-conditional priors

In our first experiment we trained a supervised model on the entire data set, with a

goal of learning a different prior over state selections for each of the five classes of image

(anger, neutral, scream, smile, and sunglasses).

The model consisted of 5 VQs, 10 states each. The image regions that each VQ learned

to explain are shown in Figure 4.2. For each VQ k we have plotted, as a grayscale image,
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the prior probability of each pixel selecting k (i.e. adk, d = pixel index). The two regions

which we expected to be the most class discriminative, the mouth and the eyes, were

captured by VQs 3 and 4 respectively.

VQ 1 VQ 2 VQ 3 VQ 4 VQ 5

Figure 4.2: Image regions explained by each VQ. The prior probability of a VQ being

selected for each pixel is plotted as a gray value between 0=black and 1=white.

The priors over state selection for these VQs varied widely depending on the class

of the image being considered. As an example, in Table 4.1 we have plotted the prior

probability, given the class, of selecting each of the states from VQ 3. In the figure we can

see that the prior probabilities closely matched our intuition as to which mouth shapes

corresponded to which facial expressions. For example the first state (from the top)

appears to depict a smiling mouth. Accordingly, the smile class assigned it the highest

prior probability, 0.34, while the other classes each assigned it 0.05 or less. Also, if we

examine the scream column, we see that the highest prior probabilities were assigned to

the second and tenth states - both widely screaming mouths.

Note that for sunglasses, which does not presuppose a mouth shape, the prior showed

a preference for the more neutral mouths. The explanation for this is simply that most

subjects in the data adopted a neutral expression when wearing sunglasses.

One method for qualitatively evaluating the suitability of a class-conditional prior is

to use it to generate novel images from the model, and see how well they match the class.

Samples drawn this way using each of the five priors can be seen in Figure 4.3.

In addition to learning a prior for each class, this framework allows us the flexibility

to generate images from “hybrid” classes by combining the learned priors. For example,
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State Mean anger neutral scream smile sunglasses

0.03 0.03 0.02 0.34 0.05

0.02 0.01 0.36 0.02 0.02

0.05 0.15 0.01 0.11 0.11

0.18 0.22 0.02 0.17 0.20

0.19 0.20 0.01 0.02 0.19

0.12 0.09 0.23 0.18 0.10

0.23 0.18 0.01 0.03 0.15

0.08 0.04 0.04 0.02 0.10

0.07 0.06 0.04 0.07 0.06

0.02 0.02 0.26 0.04 0.02

Table 4.1: Class conditional priors over mouth selections. Each column represents one of

the states from VQ 3. The rows show, for each class, the prior probability of selecting each

state from VQ 3. The images displayed are the mean of each state, masked (multiplied)

by the prior probability of each pixel selecting VQ 3.
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the sunglasses images in the training set all have neutral mouth shapes. By combining

the priors for sunglasses and scream, we were able to define a new class. This new prior

was created by averaging the sunglasses and scream priors for VQs 1,2, and 5, using the

scream prior for VQ 3, and using the sunglasses prior for VQ 4. An image randomly

generated using the hybrid prior is shown in Figure 4.3.

Figure 4.3: On the left are examples generated from each of the five priors learned,

one for each class. On the right is an image generated using a combination of the priors

for scream and sunglasses (see text). (The images do not include the Gaussian noise

described in the generative process.)

MCVQ classifier

Our second experiment tested the effectiveness of the MCVQ classifier proposed in section

4.2.2. Using the training data we constructed an MCVQ model with observed class

variables. Applying the approximate classification rule given by (4.3), and using 10000

samples, a classification rate was obtained. The experiment was repeated for different

numbers of VQs, keeping the total number of states fixed at 150. The results have been

tabulated below:

# VQs States per VQ Classification Rate

6 25 169/275 ≈ 0.61

15 10 165/275 = 0.60

25 6 173/275 ≈ 0.63

As stated in section 3.4, a support vector machine trained on raw pixel values achieves

0.84 accuracy in this classification experiment.
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4.3.2 Unsupervised Case

To evaluate the performance of the unsupervised model, we trained a model on a subset

of the five classes, with the hope that it would learn clusters corresponding to the original

classes.

The data set was restricted to contain only three classes - neutral, scream, and sun-

glasses - totalling 765 images. To prevent the images from being clustered simply by their

overall brightness levels, for this experiment we performed equalization of the intensity

histogram for each of the training images. The model we trained consisted of 15 VQs,

10 states each, and the latent class variable had 3 settings (i.e. 3 clusters).

In Table 4.2 we see the relationship between learned clusters and classes. The first

cluster corresponded to the sunglasses class, containing all but two of the sunglasses

images. The second and third clusters contained approximately equal numbers of neutral

and scream images. Closer examination revealed that, of those not wearing sunglasses,

88% of the males had been placed in cluster 2, and 80% of the females in cluster 3.

Examples of training images assigned to each of the clusters are shown in Figure 4.4.

cluster 1 2 3

neutral 0 154 101

scream 0 139 116

sunglasses 253 0 2

totals 253 293 219

cluster 1 2 3

female 112 46 184

male 141 247 35

totals 253 293 219

Table 4.2: Number of images from each class assigned to each cluster. We consider an

image to belong to the cluster with the highest posterior probability (zc
n).
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Figure 4.4: Two training examples randomly selected from each of the three clusters.

4.4 Discussion

In this chapter we have presented an extension to MCVQ that allows higher-level causes

or relationships to be learned from the data. Specifically, assuming the data comes from

a pre-specified number of classes, our extension models the relationships between data

vectors, based on the state selections each class favours in an MCVQ model.

Given a set of labelled data, such as facial images classified by the expression of the

subject, we were able to learn a single vocabulary of parts, and the likelihood of each

part appearing in images of a given class. These probabilities are of interest since, by

applying Bayes’ rule, we can discover how the possible states for each feature affect what

class a data vector will belong to.

We proposed a supervised classification method based on using these class-conditional

likelihoods for discrimination. Although the method was moderately successful at clas-

sifying facial expressions, its performance was poor in comparison with other standard

techniques.

Finally, we have shown that when the data are not labelled, we can learn a clustering

of the data into classes while simultaneously learning the relationships described above.
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Conclusions

5.1 Discussion

Parts-based representations provide an efficient framework for modelling vector-valued

data. They allow a large number of patterns to be described using selections from a small

number of discrete alternatives. Learning parts from data can provide valuable insights

into the causes that interact to generate the observations.

We have presented Multiple Cause Vector Quantization, an unsupervised method

for learning parts-based representations of data. It improves upon related methods in

that it can be trained efficiently, is able to group learned components into alternative

appearances of the same part, and can be applied to any type of vector-valued data.

Like many clustering methods, MCVQ requires the model size, namely the number

of VQs and the number of states per VQ, to be specified a priori.

When trained on image data, each VQ learns to model a local feature. The locality

property is obtained without the need to explicitly include it in our prior distributions.

In fact it would be undesirable to do so, since in certain instances the model can be

improved by grouping two or more disjoint regions, such as the eyes of a face, in the

same part.

36
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MCVQ is restricted in its visual applications, since it does not attempt to compen-

sate for transformations (e.g. translation, rotation) of the object in the image window.

Fortunately, this drawback does not apply to other sorts of data, such as bag-of-words

text and preference data.

MCVQ provides a framework suitable for additional levels of learning, such as group-

ing data vectors by the parts they contain. When used to cluster data in this fashion,

MCVQ learns how the various appearances of each part contribute to the resulting label

assigned to a data vector.

5.2 Future Directions

When experimenting with MCVQ, obtaining good results often required a judicious choice

of the model size parameters - most importantly the number of VQs. Ideally we would like

these parameters to be learned from the data. In that aim, we would like to investigate

the application of Bayesian model selection techniques, such as Variational Bayesian EM

[2], to MCVQ.

We conclude with an overview of two additional directions for further research.

5.2.1 Continuously Parameterized Part Models

To model the range of appearances of each part, MCVQ uses vector quantization1, re-

sulting in a discrete number of possibilities. An alternative to this would be to use a

continuously parametrized model, such as factor analysis.

The model proposed by factor analysis (e.g. [11]) assumes that the data x ∈ <D has

been generated as a linear combination of J basis vectors, usually with J � D, plus

axis-aligned Gaussian noise. More specifically, if we let Λ ∈ <D×J be our basis or factor

loading matrix, s ∈ <J be the latent representation of x, Ψ be a diagonal covariance

1or, more accurately, a mixture of Gaussians with axis-aligned covariance
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matrix, and µ be the mean of the data set, then:

x|s ∼ N (Λs + µ, Ψ)

To extend this model, we would allow K factor analyzers to competitively generate

the data, where for each dimension d of each data vector, one winning factor analyzer

(FA) is selected. Using rdk, as before, as random variables indicating these selections,

the likelihood would be:

P(x|R,S) =
∏

dk

N (xd ; Λk
d sk + µk, Ψ

k
d)

rdk

where Λk
d indicates the dth row of the kth factor loading matrix, and Ψk

d indicates the

variance in the dth dimension of the kth FA. Following both FA and MCVQ, the priors

for the latent variables would be:

P(S) =
∏

ck

N (sk ; 0, I) P(R) =
∏

dk

a rdk

dk

This probabilistic model is nearly identical to MCVQ, but allows sk to be a linear

combination of basis vectors, rather than a stochastic selection. This would provide a

significant advantage when, for example, modelling the overall brightness level of a part,

which MCVQ must model using a quantization over possible levels.

5.2.2 Alternative Variational Approximation

In section 2.3 we advocate the use of a non-standard mean-field variational approxima-

tion. Specifically our approximation restricts the posterior probability of VQ selection,

for each data dimension, to be the same across all training cases. The typical mean-field

approximation would be

Q(R,S) =

(

∏

cdk

gc
dk

rc
dk

)(

∏

ckj

mc
kj

sc
kj

)

(5.1)
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µ for each state

VQ 3

VQ 2

VQ 1

A

k = 2

k = 3

k = 1

Figure 5.1: Results on the shapes experiment, trained using the conventional mean-field

variational posterior, equation (5.1).

(contrast with (2.2)), where we allow the posterior probability gc
dk of choosing VQ k for

the dth dimension to vary for each training case c. In this setting, the prior probabilities

adk indicate the association of data dimensions with VQs.

Experiments with this variation gave poor results. The prior distribution over VQ

selections ad for each VQ d had high entropy, thus the VQs did not specialize to different

parts of the data. An example of such a model, trained on the shapes data as described

in section 3.1, is shown in Figure 5.1.

One approach to improving the parts-based representations learned by this model

would be to incorporate a hyper-prior distribution over the VQ selections, the rdk’s, that

would encourage their distributions to have low entropy. An example of such a prior is

Brand’s entropic prior [6, 7]. Specifically, we could add

P(A) ∝
∏

d

exp(−α Entropy(ad)) =
∏

d

exp(α
∑

k

adk log adk)

to the complete likelihood (2.1). This has the effect of adding the term −α
∑

dk adk log adk

to the free energy, increasing it by α times the entropy of the ad distributions.

Unfortunately, given a reasonable amount of data, the standard entropic prior (α = 1)

has little influence on the free energy, compared with the contribution made by the like-

lihood. The prior’s influence could be increased by using a larger value for the parameter
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α. This will lead to models with lower VQ selection entropies, but has the unappealing

feature that the prior needs to be adjusted based on the amount of data observed.

Initial experiments using the entropic prior have yielded poor results, in terms of

learning a model that captures parts and is suitable for further learning. For example,

Figure 5.2 shows a typical model learned during the shapes experiment, using α = 15.

µ for each state

VQ 3

VQ 2

VQ 1

A

k = 2

k = 3

k = 1

Figure 5.2: Results on the shapes experiment using the entropic prior.

In the future, we plan to investigate methods of improving the performance when using

the entropic prior, as well as exploring other alternative variational approximations.
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