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Abstract

We propose a new model for the probabilistic
estimation of continuous state variables from
a sequence of observations, such as tracking
the position of an object in video. This map-
ping is modeled as a product of dynamics ex-
perts (features relating the state at adjacent
time-steps) and observation experts (features
relating the state to the image sequence). In-
dividual features are flexible in that they can
switch on or off at each time-step depend-
ing on their inferred relevance (or on addi-
tional side information), and discriminative
in that they need not model the full gener-
ative likelihood of the data. When trained
conditionally, this permits the inclusion of a
broad range of rich features (for example, fea-
tures relying on observations from multiple
time-steps), and allows the relevance of fea-
tures to be learned from labeled sequences.

1. Introduction

Many real-world problems involve estimating a time-
series of continuous state vectors from a sequence of
high-dimensional observations. Examples include in-
ferring a trajectory of stock values based on the evo-
lution of various economic indicators; tracking a pa-
tient’s vital health signs through a myriad of symp-
toms; and finding the trajectory of a moving object
in a video. A standard probabilistic approach is to fit
the observations with a generative state-space model
(SSM). These models propose that the state is a latent
variable which evolves over time, and at each step is
respounsible for generating a noisy observation. State
estimates are obtained from observations by inverting
the probability model via Bayes’ rule. A canonical
example of a SSM is the Kalman filter, which mod-
els both the state dynamics and observations as linear
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functions of the state, corrupted by Gaussian noise,
which leads to a Gaussian posterior distribution over
the state at any time. Extensions of the Kalman fil-
ter allow for non-linearities in the state dynamics, and
the relationship between the state and the observa-
tions, and also extend the posterior state distribution
to be multi-modal.

Although highly successful, SSMs suffer some disad-
vantages. First, for computational tractability, SSMs
usually assume that observations are conditionally in-
dependent of each other given the state. Thus the esti-
mate of the state at a particular time can directly de-
pend only on the observations at that same time (and
the previous state), precluding the direct inclusion of
evidence derived from observations across a range of
time. Second, the relationship between state and ob-
servation at every time-step in an SSM is mediated
through a single, identical likelihood function, which
must generate the entire high-dimensional observation
given only the value of the state. Crafting such a likeli-
hood can be challenging, since it requires the ability to
accurately model all aspects of the observation, includ-
ing those that are irrelevant with respect to predicting
the state.

An alternative approach, which we pursue here, is to
directly model the conditional (posterior) distribution
of the states given the observations. We propose fit-
ting the posterior with a weighted log-linear combi-
nation of dynamics features (relating states at differ-
ent time-steps) and observation features (relating the
state to the observation sequence). Features are dis-
criminative, leveraged to predict the state from the ob-
servations, thus avoiding the problem of explaining the
high-dimensional observations faced by generative like-
lihoods. Using a conditional model also removes the
need to assume independence of observations, hence
each feature may incorporate evidence from any num-
ber of observations. Additionally, a wide variety of
observation features may be combined and the system
can learn, through supervised training, which features
are relevant for any given task. Our system also in-
cludes the ability at each time-step to switch between
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different dynamic features, and to selectively shut off
unreliable observation features.

A canonical application of this approach involves
tracking a moving object in a video as it follows a
complicated trajectory. Consider watching a basket-
ball game, and trying to just follow the ball. Generat-
ing a full description of the scene, including the com-
plex interaction of all the players, based on the ball
position at any time is hopeless. However, obtaining a
estimate of the ball’s location from the image is consid-
erably easier, as features such as colour and shape can
be highly discriminative. In addition, understanding
the basic dynamics of the ball motion can be useful in
tracking it even as it disappears behind some players.

We begin in Section 2 with a detailed description of
our model, followed by details on inference and learn-
ing (Section 3). We relate our model to similar ap-
proaches in Section 4. Finally, in Section 5, we apply
our model to a realistic tracking problem—estimating
the position of a basketball in a video—using a number
of different dynamics and observation features.

2. Model

Given a sequence of observations Y and correspond-
ing sequence of states X, we construct a model of the
conditional distribution of X given Y. The model
combines a set of dynamics features f;(x;—1,%;) for
j =1,...,J, and observation features gx(x;,Y) for
k=1,...,K. The basic model then combines these
features to provide a description of the conditional dis-
tribution:

JT KT
PX[Y) ocexp | D filxe—1,%) + Y gu(xt,Y)
=2 kt=1

In our model, both the dynamics and observation fea-
tures can be viewed as functions that predict the state
x;. That is, associated with each dynamics feature
fj(x¢—1,%;) is a function ¢;(x;—1), and with each ob-
servation feature gi(x:,Y) a function 74(Y,t). Each
feature then computes the distance between x; and
its respective function, scaled by some learned set of
parameters:

1
Fi(xe-1,%¢) = =5 (x¢ = $5(xe-1))" @y (x¢ = ¢(x-1))
1
g (%, Y) = ) (x¢ — ’Yk(Y;t))T Br (x¢ — (Y, 1))
The range of possible functions ¢;() and 7;() is broad,

including any off-the-shelf method of predicting the
state from other states or observations. In this paper

we will restrict our attention to linear functions for the
dynamics:

¢j(x¢—1) = Tjxp—1 — d;

For example, in describing the motion of object in two
dimensions, x; can include a pair of components for its
position, velocity, and acceleration, and (T, d;) could
correspond to constant-velocity and no acceleration, or
constant acceleration.

Table 1. A summary of notation

X =[x1...x7] state sequence

Y =[y1...yr] observation sequence
[i(xe—1,%¢) jt" dynamics feature function,
o its parameter
@j(x4-1) its prediction function
Uji binary switch on dynamics
Fi(Y,t) dynamics switch potential
gk (x:,Y) k" observation feature function,
B its parameter
Y. (Y, 1) its prediction function
Ukt binary switches on observations
Gr(Y, 1) observation switch potential

When including a large number of features, it is likely
that at any given time, some of them give very poor
predictions, and their contributions should be disre-
garded. This problem can be addressed by making
the set of features flexible; at each time-step features
can be turned off (meaning that their prediction will
not be included in the state estimate) based on their
inferred relevance. This is accomplished through the
introduction of hidden binary switch variables, u;; and
vt, one for each feature at each time-step.

Obtaining an accurate estimate of the state there-
fore is highly dependent on appropriately setting the
switches, to only include the relevant features in the
state representation. One piece of information po-
tentially relevant to determining the switches involves
evaluating the agreement between the feature predic-
tions; intuitively a feature making a very divergent
prediction can be switched off. Often, there is informa-
tion available in the observations to suggest which dy-
namics/observation features might be relevant. This
side information is captured by including learned po-
tential functions for each switch, F; and G, which
again can be off-the-shelf classifiers, trained discrimi-
natively in the same framework.

Putting these together, we arrive at the following log-
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probability of X given Y:

L =log Z exp < Z fi(xe-1, Xt)ujtJrZ gk (Xt, Y ) Ukt
u,v t,7 t,k

+ Zj:j (Y, t)u;e + Z Gr(Y, ﬁ)%t) —log Z(Y).

t,j t,k

where Z(Y) is the distribution’s normalizing function,
or partition function.

Note that because the switches are hidden, when we
integrate over our uncertainty for the switches we ef-
fectively get a mixture-of-Gaussian prediction for the
posterior state distribution at time ¢, which allows us
to elegantly capture multimodality. Further, during
inference, the posterior distribution over switches will
capture the probability that a given feature is going to
be of use at that point in the sequence.

The non-switching or “non-flexible” version of this
model—where u;; = viz = 1-—is an interesting special
case. Because the dynamics and observation features
are quadratic in X, the resulting conditional distri-
bution is Gaussian. This provides some advantages:
exact inference, partition function, and gradient com-
putations can be done efficiently, and learning (with
respect to o; and (3;) becomes a convex problem.
Practically, however, there are two considerable dis-
advantages. First, because the Gaussian is unimodal,
the resulting state distribution will be unimodal at all
time-steps; this can lead to an inability to recover from
errors in the state prediction. Second, the prediction
is no longer robust, which means that only dynamic
features which are all simultaneously applicable can
be included, and observation features must be always
accurate.

Figure 1. Factor graph of the model for two time-steps.

The parameters of the feature functions, a; and By
can be learned using a straight-forward application of
the Contrastive Divergence learning algorithm (Hin-
ton, 2002). Contrastive Divergence is an approxi-
mate gradient-descent in parameter space, used in

undirected graphical models with intractable partition
functions.

;(f = {3 0xe =)o~ ;) IX, Y]
— E[Z(Xt — @) (%t — ¢j)T|Y]
¢ (1)
% = E[zt:(xt — ) (xe — )" ]1X, Y]

— E[> (%t = i) (xe — 1) "[Y]

t

3. Inference

Given a sequence of observations, inferring the cor-
responding state sequence consists of computing the
probability distribution P(X|Y). Performing this cal-
culation directly is infeasible, unfortunately, since it
requires marginalization over all possible settings of
the hidden variables, u;; and vi;. However, several
variational and approximation schemes readily apply
to this formulation. Here we focus on a particular
MCMC method that exploits special structure in the
model to allow efficient approximate inference.

Given the hidden variables, the state sequence X forms
an (undirected) linear-Gaussian Markov chain, thus
P(X|U,V,Y) can be readily computed. Similarly,
given the state sequence, the switches are condition-
ally independent, so inference of P(U, V|X,Y) is easy.
From these facts, we arrive at a simple method for
drawing samples from P(X, U, V|Y).

1. Obtain an initial estimate U, V of the switch vari-
ables. For example, these can be based on the
side-information provided by features F; and G.

2. Infer P(X|ﬂ7V,Y), a Gaussian in X, and draw
from it a state sequence sample X.

3. Infer P(U,Y|X,Y), and from it draw samples of
the switches U and V.

4. Goto 2, and repeat this sampling procedure for
the desired number of iterations.

We now present a message-passing scheme for infer-
ring the state given the switches, followed by a pair of
simple equations for inferring the switches given the
state. Each iteration of this scheme (and of learning)
has a computational cost that scales linearly in the
length of the sequence and the number of observation
and dynamics features, but, like Kalman smoothing,
scales cubically in the dimensionality of the state.
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3.1. Inferring State X given Switches U,V

Given the switches and observations, the belief prop-
agation algorithm can be used to exactly compute
the marginal P(x¢|U,V,Y) and pairwise marginal
P(x¢-1,%:|U, V,Y) distributions. These can be used
to draw samples of the state sequence, as well as to
compute the expectations (1) required for learning.
Note that because the features are quadratic in X,
the marginals and pairwise marginals will be Gaussian
distributions.

Inference using belief propagation requires a two-
phase message passing schedule, much like the Kalman
smoother; messages are passed forward, from the be-
ginning of the state sequence to the end, and backward
in the opposite direction. Each message consists of a
Gaussian distribution, with mean vector p and preci-
sion matrix 7 (which, for notational convenience, we
will use in place of the inverse covariance matrix). As
in Kalman smoothing, the messages can be written re-
cursively, each in terms of the message preceding it.
We will break this into four steps: forward prediction
of x; given x;_1, forward correction to incorporate ob-
servations at time ¢, backward prediction of x; given
X¢+1, and backward correction.

To begin with, we define a number of terms which will
appear several times in the message-passing equations.
Note that because they depend on the switches, these
terms must be recomputed at each time-step.

A=) ajuy B = vk
J k

ol = ZO[jTjth ToT = ZT?O[jT]'th
J J
Tod = ZTjO[jdju]’t

ad = E ajdjujt
J J

Yi=> Buv(Y, v
k

Forward Prediction:
Tiji—1 = A — aT(TaT + Ti’:l)_laTT
Hijt—1 = (Tt|t71)_1[aT(T0‘T + th—l)_l
(rlapi s = Tad) + ad)
Incorporating Evidence (forward correction):
th =Ty-1+B Htf = (th)_l(Tt\t—lﬂt\tq +y1)
Backward Prediction:
Tejp1 = TaT — aTT(A + 72 ) taT
Hitjt+1 = (Tt|t+1)_1[aTT(A + "'tb+1>_1

(Ttb+1N?+1 + ad) — Tad]

Backward Correction:
T =Ty41 + B py = (7)) (Tepes 1 thegesr + Y1)

The marginal distribution of x; can be obtained by
multiplying all messages coming into it:

Tt = Tiji—1 + B + Ty
ue = (Tt)71(7t|t—1ﬂt|t—1 + ¥+ o1 Beje1)-

The pairwise marginal distribution is obtained by mul-
tiplying together the forward message into x;_1, the
backward message into x;, and an additional fac-
tor arising from the dynamics features. The result-
ing mean is simply the concatenation of the marginal
means, (x;—1,X¢), and the precision is sum of the pre-
cisions from the messages and dynamics factor

—aT?
A + B + Tt‘t+1

Tt,”tfg + B + TO[T
—aT

Tt—1,t =

3.2. Inferring Switches U,V given State X

As mentioned above, given the state sequence the
switch variables are independent, thus P(U, V|X,Y)
factorizes into a product of simple distributions.

The posteriors of the observation switches vy; are in-
dependent Bernoulli distributions, with probability

P(uge = 1) = 0 (gr(xt, Y) + Gr(Y, 1))

where () is the logistic function o(x) = 1/(1 + e~%).
The posterior distribution of the dynamics switches
u;¢ at each time-step is Multinomial—a discrete choice
over J options. The probability that switch k is on at
time ¢ is

eXp(fj(Xt—laXt) + fj(th))
Zj/ exp(fjr(xe—1,%¢) + Fj (Y, 1))

P(th = 1) =

4. Related Work

Our approach has notable similarities to previous work
using Conditional Random Fields (CRFs) (Lafferty
et al.,, 2001) and also Products-of-Experts (PoE’s)
and energy-based models (Hinton, 2002; Teh et al.,
2003), and indeed in some ways can be considered
a variant or extension of either of these frameworks.
However, typically CRFs are concerned with discrete
states and include simple, discrete features (such as
delta-function indicator-variables). In contrast our
model works with a combination of continuous and
discrete state, incorporates unobserved latent variables
during training and testing, and employs continuous-
valued feature functions. Some of these elements have
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been used individually in other models proposed re-
cently, such as (Quattoni et al., 2005; Sudderth et al.,
2005), but to our knowledge the particular combi-
nation of these elements is novel to the model pre-
sented here. Likewise, PoE’s or energy-based mod-
els have been predominantly applied to modelling the
full joint density, rather than the conditional poste-
rior as in our case. Within this class of models, our
work has some commonalities with exponential fam-
ily harmoniums (Welling et al., 2005), where we use
Bernoulli/Multinomial and Gaussian layers, with the
extension in our model that this distribution is con-
ditioned on a set of observation features, and that
the Gaussians units have a linear chain dependency.
Our work also bears some similarities to the Fields-of-
Experts (Roth & Black, 2005), in the sense that we
learn an undirected, translation-invariant dependency
structure.

Our model draws additional inspiration from several
approaches in the general sequential state-estimation
literature and it shares some commonalities with
models based around switching state space models
(switching-SSMs) (Ghahramani & Hinton, 2000). As
with our work, these generative models employ a set of
switches that select between distinct state-transition
functions, as well as having switch-dependent emis-
sion distributions. Switching-SSMs typically couple
the switch states through time in a directed Markov
chain; although we currently do not do this, it would
be a computationally feasible extension to our model.
In relation to switching-SSMs, our model is able to
leverage the usual advantages of discriminative train-
ing in conditional models — namely that the switch
variable can be set up to have a rather rich depen-
dency on the observation sequence without incurring
extra difficulties with inference or tractability. Our
model differs from switching-SSMs in another impor-
tant way: SSMs fit the joint probability of state and
observations, whereas our model disregards the ob-
servation density, instead fitting only the conditional
probability of state given observations.

With respect to the particular application to object
tracking, a number of models employing CRF-style
approaches have recently been suggested, including
(Sminchisescu et al., 2005; Taycher et al., 2005).
While our approach shares some of the same mod-
elling philosophies as these approaches, including em-
ploying a variety of features, discriminative training,
and dynamic models, the overall form and components
of our approach is significantly different. Also from
the broader tracking literature there are several ap-
proaches that have some aspects in common with our
work. In particular, Collins et al. (2005) shares the no-

tion that it is advantageous to have a candidate pool
of mechanisms to estimate the object position, and
to swap these in and out based on their local perfor-
mance and consistency. However, this model has no
explicit representation of dynamics, and is restricted
to simpler features than those in our framework. In
a similar vein, Forsyth and Ponce (2002) suggests an
approach that employs a Kalman filter in conjunction
with “gated” observations. Lastly, we note that Isard
and Blake (1998) use particle filtering and a switch-
ing dynamics model to follow a simple bouncing ball,
which influenced our choice of an illustrative experi-
ment using a bouncing ball in a more realistic setting.

5. A visual tracking application

As a test of our model, we apply it to the problem of
tracking the position of a basketball in video. Here, we
show that by combining several different simple (and
often unreliable) observation and dynamics features,
we can obtain a reliable tracker.

In this setting the observations are a sequence of
grayscale images. For the state at time ¢ we use a 6-
dimensional vector encoding the position, velocity, and
acceleration of the ball. Augmenting the state-space
with velocity and acceleration is a standard transfor-
mation (Forsyth & Ponce, 2002), allowing higher-order
dynamics to be modeled using features that only look
at pairs of temporally adjacent states. Training data
consists of a sequence of images, as well as the ground
truth locations of the target object (with velocity and
acceleration computed via finite differencing).

In our tracker, we include eight different observa-
tion features. The first six are based on small tem-
plate images. Given an observation image, each tem-
plate is compared (efficiently, using convolution) to
all possible sub-patches in the image, and (Y, t) re-
turns the location of the most-similar patch based on
sum-of-squares distance. The next feature uses a 3-
component principal components analysis (PCA) sub-
space. Again, the subspace is applied to all areas of
the current image, and ~y, () returns the location of the
image patch with lowest sum-of-squares reconstruction
error. The final feature is based on temporally-local
background subtraction. It takes five observation im-
ages (the current, two proceeding, and two following
images), computes the mean image, and returns the
point in the current image that differs most from this
mean (after Gaussian blur of the difference image). As
expected, this feature can work well when there is only
one rapidly-moving object, but can be very unreliable
when there is any other motion (including camera mo-
tion) in the image. None of these features are able
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to estimate the velocity or acceleration, thus for these
dimensions of the state the ¢ ()’s always predict zero.
Note that in our model it is perfectly acceptable for a
feature to consider only a subset of the state dimen-
sions.

For each of these observation features we include
side-information to help determine the values of the
switches. For the template and PCA features, we com-
pute the sum-of-squares error of the best-matching im-
age patch, and for the background subtraction feature,
we compute the maximum squared difference between
the current and mean images. Each switch potential
Gy, takes a (different) linear combination of these values
and returns the result. Thus each G can be thought
of as a logistic-regression classifier, attempting to de-
termine the observation switches vy using only infor-
mation from the observation images.

Four dynamics features are included, each using a lin-
ear predictor of x; from x;_1. We do not include any
side-information for the dynamics, thus F; is simply a
constant bias.

5.1. Tracking a basketball

The video data for this evaluation consisted of four
video sequences, totalling around 8400 frames, for
which the ground truth location of the basketball was
obtained by hand. We trained two separate trackers to
evaluate performance during weak and strong general-
ization scenarios. In the first experiment we used one
sequence (referred to as Simon, 1796 frames) contain-
ing a single player bouncing, throwing and dribbling
a basketball. The tracker was trained using the first
500 frames (as well as the corresponding ground truth
points) and tested on the remaining frames. In the sec-
ond experiment we used three sequences in which play-
ers pass a basketball by rolling (roll, 1556 frames),
bouncing (bounce, 1897 frames), and by both rolling
and bouncing (roll+bounce, 3126 frames). Here the
tracker was trained on the first 500 frames of roll
and bounce, and tested on the held-out roll and
bounce frames (weak generalization), as well as on the
previously-unseen roll+bounce sequence (strong gen-
eralization).

To train the template features, we extracted 19 x 19-
pixel image patches of the basketball from the train-
ing images. The first five templates were obtained by
running K-means clustering on the patches, while the
sixth was simply one of the training patches (we chose
the last image). The PCA model was also fit using
these training patches. The linear parameters of the
switch potentials G, were fit using logistic regression.
Although they can often correctly locate the basket-

Table 2. Fraction of time that each observation feature cor-
rectly locates the ball in the Simon sequence: the ground
truth, and as estimated by our tracker.

Feature Locates the ball
True Estimated
K-means 1 0.34 0.36
K-means 2 0.53 0.53
K-means 3 0.61 0.61
K-means 4 0.63 0.60
K-means 5 0.63 0.63
Last training patch | 0.33 0.34
PCA 0.81 0.81
Background Sub. 0.08 0.83

ball, none of the features is always “on the ball”. The
reliability of each observation feature (the frequency
with which it predicts a location within 5 pixels of the
basketball), and the frequency with which our tracker
switches it on at test time are given in Table 2. The
most reliable feature is PCA (0.81), and the “back-
ground subtraction” feature (0.08) is the least.

To train the dynamics features (T; and dj), in the
first experiment we hand-segmented the ground-truth
states from the training data into four regimes: flying
(the basketball in free-flight), holding (the basketball
in the hands of the player), bouncing off the ground,
and bouncing off the wall. The parameters of each ¢;()
were chosen to minimize ||x; — (T;x;—1 + d;)|| for the
set of corresponding ground-truth states. Segmenting
the data can be time consuming, so in the second ex-
periment we used manually-chosen dynamics features,
corresponding to flight, rolling, bouncing, and holding.

Finally, the feature precisions a; and 3y, as well as the
logistic-regression parameters, were refined using 300
iterations of Contrastive Divergence learning. Given
the learned model, we track the basketball by apply-
ing 20 iterations of the inference method described in
Section 3, producing an estimate of the state sequence
and the switches.

5.2. Results

To quantitatively assess the trackers’ performance, for
each of the test sequences we computed an error rate
defined to be the fraction of frames in which the pre-
dicted state was more than 5 pixels away from the true
location of the basketball. As a baseline, we also at-
tempted to track the sequences using an SSM, specif-
ically a Kalman filter fit to the training data. We
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experimented with including different subsets of the
observations features , as well as including/not includ-
ing velocity and acceleration in the state, but in all
cases the Kalman filter performed very poorly. For
further comparison, we applied the incremental visual
tracker (IVT) recently proposed by Lim et al. (2005).
IVT uses particle-filter dynamics with a PCA likeli-
hood, and has demonstrated good performance.

The result of tracking the Simon sequence is shown in
Figure 2. As can be seen the basketball is tracked well
throughout the sequence. Although the tracker loses
the ball briefly on four occasions, it quickly recovers.
The error rate of the tracker was 0.1196, versus 0.7229
for the Kalman filter. The IVT was able to track the
first part of the sequence without error, but it lost
track of the ball after 688 frames and was unable to
recover, resulting in an error rate of 0.613.

The results of the second experiment are shown in Fig-
ure 3. The error rates for the tracker were 0.0208 on
roll, 0.0766 on bounce, and 0.1004 on roll+bounce.
The corresponding rates for the Kalman filter were
0.8333, 0.9434, and 0.9697. The IVT tracked the
first 700 frames of roll, 125 frames of bounce, and
730 frames of roll+bounce before failing, giving error
rates of 0.37, 0.919, and 0.767. The discrepancy in
error rates between the three trackers highlights the
difficulty in choosing an appropriate metric for quan-
titatively comparing tracking results. However, we feel
that fraction of time “on-the-ball” seems the most ap-
propriate measure for this application.

5.3. Dealing with missing observations

To test our model’s ability to deal with missing ob-
servations, and the quality of the learned dynamics
features, we modified the above sequence so that all
observation features would be off for 20 consecutive
frames, while the ball is in free flight. Occlusion is a
notoriously difficult problem for tracking, as state-of-
the-art trackers perform simple diffusion until telltale
observations enable the tracker to locate the object.
(Jepson et al., 2001)

The result can be seen in Figure 2 (lower-right im-
age). The model is able to successfully track through
the 20-frame (98-pixel displacement) simulated occlu-
sion. Note that the uncertainty in the state estimate
(indicated by blue circles of one standard deviation)
grows during the missing observations, peaking at the
middle of the occlusion.

6. Discussion

We have presented a novel framework for inferring
complex trajectories from high-dimensional and noisy
data. One of the key advantages of our approach is
that we have complete flexibility about the observa-
tion and dynamics features that we use in our model.
The discriminative learning procedure can appropri-
ately weight the confidence of different predictors, as
well as integrating these predictions over time with a
versatile dynamics model, and learning to effectively
gate in and out different features based on their in-
ferred accuracy and relevance. Although the features
used in this paper are relatively simple, we still ob-
tain impressive results. One exciting prospect is the
possibility of using rather more powerful predictors in
combination — for instance one could use as observa-
tion features the outputs from state-of-the-art object
detectors, or even other trackers. We could also use in-
formation from multiple frames (for example estimated
optical flow) to help make predictions.

Our model can also readily be extended by improv-
ing the side information that constrains the inference
of which features to use. Our current model does not
utilize side information to help select the dynamics
switches; some interactions could be used here to im-
prove performance. Also, the switches are condition-
ally independent at each time-step. Whilst it might
not be practical to couple all the observation switches
over time, it seems feasible to take the multinomial
switches controlling the dynamics and couple them
in a linear Markov chain. Inference (for smoothing)
would then consist of a forwards-backwards pass of
belief propagation for both the continuous state and
the dynamics switches, whilst the observation switches
would remain conditionally independent given the con-
tinuous state.

One of the main drawbacks of our approach is that we
require a fully labelled sequence to train on, and in cer-
tain applications such data (and in sufficient quantities
to constrain all the parameters of the model without
encountering problems with overfitting) may be hard
to come by. A simple way around this would be to
bootstrap from other tracking methods, using them
to provide an initial labelling of sequences for train-
ing and using human intervention only on the more
challenging segments.

In addition to incorporating more powerful features,
there are a number of other interesting directions in
which this work may be taken. One area that we have
started to explore is the performance of different in-
ference algorithms. The dependency structure of our
model allows for a relatively efficient MCMC proce-
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Figure 2. Tracking a basketball (Simon sequence). The full video is available at http://www.cs.toronto.edu/~dross/cdf_
icml06/. The location of the ball, as predicted by the model, is given in blue. The locations predicted by the eight
observations are drawn as yellow boxes (if the corresponding switch is 1) or as red circles (if the switch is 0). The ball is
successfully tracked during fast motion (frame 594), when bouncing off the ground (607) and the wall (636), and when
dribbled by the player (825). The model does lose track of the ball when it is occluded (1088), but quickly recovers when
the ball becomes visible again (1106). The dynamics allow the ball to be tracked even when all observation features’
predictions are erroneous (and one bad feature is on!) (1214). The model can also cope with motion of the camera
(1393). (MISSING DATA: lower right) The basketball is successfully tracked through a 20-frame (98 pixel displacement)

simulated occlusion.

dure for obtaining samples from the conditional poste-
rior. Other (approximate) inference methods such as
variational approximations, particle filtering or non-
parametric belief propagation may also be of use in
our model, particularly for real-time or online/filtering
applications.

Another interesting direction for this work might be
the inclusion of multi-modal observations and multi-
sensory fusion for inference of state. The features we
use need not entirely constrain the state, and one of
the strengths of our model is that it is able to combine
many weak predictors to give a single good estimate
of state. As a example relative to the experiments
presented here, one could imagine a simple auditory
cue as being rather useful in inferring the occurrence
of a bounce — potentially allowing us to deal with

changes in behaviour even when the ball is visually
occluded.

Moving beyond the scope of tracking applications con-
sidered here, the general ideas behind our model seem
to hold promise for a wide range of applications — ex-
amples under consideration include articulated body
recovery, prediction of financial time series, and flexi-
ble combination of stereoscopic depth predictions.
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