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Abstract
Rank correlation measures are known for their resilience

to perturbations in numeric values and are widely used

in many evaluation metrics. Such ordinal measures have

rarely been applied in treatment of numeric features as a

representational transformation. We emphasize the benefits

of ordinal representations of input features both theoreti-

cally and empirically. We present a family of algorithms

for computing ordinal embeddings based on partial order

statistics. Apart from having the stability benefits of ordi-

nal measures, these embeddings are highly nonlinear, giv-

ing rise to sparse feature spaces highly favored by several

machine learning methods. These embeddings are deter-

ministic, data independent and by virtue of being based on

partial order statistics, add another degree of resilience to

noise. These machine-learning-free methods when applied

to the task of fast similarity search outperform state-of-the-

art machine learning methods with complex optimization

setups. For solving classification problems, the embeddings

provide a nonlinear transformation resulting in sparse bi-

nary codes that are well-suited for a large class of ma-

chine learning algorithms. These methods show significant

improvement on VOC 2010 using simple linear classifiers

which can be trained quickly. Our method can be extended

to the case of polynomial kernels, while permitting very ef-

ficient computation. Further, since the popular MinHash

algorithm is a special case of our method, we demonstrate

an efficient scheme for computingMinHash on conjunctions

of binary features. The actual method can be implemented

in about 10 lines of code in most languages (2 lines in MAT-

LAB), and does not require any data-driven optimization.

1. Introduction

Rank correlation measures have been well regarded as

robust measures in many performance evaluation schemes.

Since these methods rely on relative ordering of elements,

they are very resilient to noise and variations that do not af-

fect the implicit order. We make the case of applying this

thought to feature representation. High-dimensional feature

sets are quite common across all disciplines of signal anal-

ysis and many other domains. Precise values of each fea-

ture dimension in such high-dimensional spaces are often

not important. We argue for creating representations that

are based solely on the relative rank ordering of feature di-

mensions. Such representationswould enjoy all the stability

benefits of rank correlation measures while being useful to

generate discriminative features. Further, we base our em-

beddings on multiple partial order statistics rather than total

orderings, giving us another degree of resilience to noise

and giving rise to representations that have local support on

feature dimensions (useful for learning algorithms to distin-

guish “useless” dimensions if needed).

The main contribution of our paper is the Winner Take

All (WTA) hash, a sparse embedding method that trans-

forms the input feature space into binary codes such that

Hamming distance in the resulting space closely correlates

with rank similarity measures. Algorithm 1 gives the WTA

hash and Figure 1 shows it operating on four example in-

put vectors. In short, for each hash we permute the input

feature vector with Θ, take the first K components from

the permuted vector, and output the index of the maximum

component. Many hashes corresponding to different Θ can

be combined into an output hash vector.

This thought and simple methods that result from it are

very widely applicable. Our embedding method requires

no data-driven optimization. While being training-free and

easy to compute it outperforms state-of-the-art methods on

several tasks. Our method gives rise to a space of sparse

binary vectors. This makes it readily amenable for many

problems including:
• Using sparse binary vectors as tokens/hashes in Lo-

cality Sensitive Hashing schemes for fast similarity

search. Here we show that our method outperforms

several state-of-the-art machine learning methods [20,

19] for learning hash codes that are optimized for the

specific problem of similarity search on LabelMe. The

performance gap is significant, particularly when do-

ing sub-linear (approximate) nearest neighbor search.

• Using our embeddings to induce a ranking metric on

well known descriptors for similarity search. Here

we show that our method improves on SIFT [21] and

DAISY [26, 27] by about 11-12% (error rate for 95%

recall) on standard benchmarks.
• Our embeddings act as a nonlinear feature-space trans-

formation. When applied with linear classifiers they

outperform linear and chi-square kernel classifiers on

vocabulary histogram features.
Furthermore we make the following algorithmic contribu-

tions :
• We can compute rank embeddings of polynomial

spaces of degree p in O(p).
• Our method can bias the rank embeddings to be more

sensitive to elements at the head of the rank list. This

1



is often argued as a very desirable property in rank-

correlation [5, 6, 4] and makes intuitive sense in fea-

ture representation too (e.g. histogram bins with high

counts might be more relevant than ones with lower

values).
• We show that the well known MinHash [11, 12] is

a special case of our method when applied to binary

features. This means our polynomial rank embed-

ding scheme is effectively a way to compute MinHash

on pth-order conjunctions of binary variables in O(p)
time (as opposed to O(np)), which makes for a very

strong combinatorial result.
• Our embeddings are based on partial orders, in con-

trast to well known rank correlation methods, these

give machine learning systems an opportunity to set

preferences on partial orders that are important for a

given problem, a fact that is quite visible in our em-

pirical results on classification problems compared to

baseline methods [30].
• Our method is based completely on random permuta-

tions requiring no data-driven learning (except tuning

2 hyperparameters).
We begin with a review of related work that employs or-

dinal measures. Next we discuss rank correlation metrics,

showing how one of the simplest metrics motivates our pro-

posed feature transform, the "Winner Take All" hash family.

Algorithmic details of the transform appear in the follow-

ing section. Finally we conclude with experimental results

using WTA features for image retrieval, feature descriptor

matching, and image classification, followed by a brief dis-

cussion.

2. Related Work
Ordinal measures have been studied to some extent in

specific problems. [1] uses a permutation-distance-driven

ordinal measure for pixel correspondence in stereo match-

ing. Several papers talk about using pairwise pixel com-

parisons or related quantities for pattern matching [7, 13,

14, 15, 16, 17]. [10] builds an approximation to cosine dis-

tance based on concomitant rank orders. The basic strength

of these methods comes from using pixel pair representa-

tions as features. Although there have been several papers

using these features, they are often not emphasized as the

core part of the system or there hasn’t been any theoreti-

cal justification on why they should be used. Recent work

relating to large scale nearest neighbor search has also ex-

amined the idea of approximation using comparisons rather

than metric distances. However, their study is restricted to

approximating nearest neighbors given a distance metric,

which they relax to approximating top elements in rank or-

der that should be returned from such large scale lookups.

[9, 8] study properties of such algorithms that utilize a com-

parison oracle. Results from these and related works apply

directly to kernel versions of our formulationwith the added

advantage that our method allows a specification of decay

curves with respect to rank in the retrieval space that allows

a) packing of multiple constraints in a code (see Section

4) and b) preference for selecting top scoring neighbors in

similarity (see Figure 2).

3. Rank Correlation Spaces
As mentioned, when dealing with high-dimensional fea-

tures, the precise value of each feature dimension is of-

ten not required to solve the given problem (classification,

matching etc.). [2] argues that the “curse of dimensionality”

leads to sparse sampling of high-dimensional spaces and

that even strong norms (in terms of volume growth prop-

erties) like L∞ exhibit dynamic range compression in the

distances (which implies reduced variance on distribution

of pair-wise distances and higher susceptibility to noise in

each dimension). More commonly used distance metrics

like Euclidean suffer much more in this scenario. This also

implies that the contribution of any individual dimension to

the final distance is small in well-normalized feature vec-

tors under metrics like L2 and noise in each dimension can

effectively add up to degrade the metric. Rank correlation

measures are known for their stability to perturbations in

numeric values while giving a good indication of inherent

similarity / agreement between items / vectors being con-

sidered.

Our goal is a feature space transformation that results in

a space that is not sensitive to the absolute values of the fea-

ture dimensions but rather on the implicit ordering defined

by those values. In effect the similarity between two points

is defined by the degree to which their feature dimension

rankings agree. The simplest of these pairwise-order mea-

sures can be defined as below.

PO(X,Y ) =
∑

i

∑

j<i

T ((xi − xj) (yi − yj)) (1)

where xi and yi are the ith feature dimensions in X,Y ∈
Rn and T is simply a threshold function

T (x) =

{

1 x > 0

0 x ≤ 0

Equation 1 simply measures the number of pairs of feature

dimensions in X and Y that agree in ordering. Pairwise-

order is a similarity measure and can easily be converted

to a measure of distance. [3] presents a good analysis of

various ranking based measures of disarray (distance) and

shows that they satisfy metric properties. In particular [3]

shows that variance of pairwise-disarray estimators grows

as O(n3) where n is the dimensionality of the feature vec-

tor over which rank agreement is computed. Analysis pre-

sented in [2] implies that the metric space resulting from

this transformation does not accentuate the effects of “curse

of dimensionality” compared to the original vector space.

Another observation that is often made [4, 5, 6] in con-

text of ranking is that agreement among high ranking co-



efficients in a list is often more important than those fur-

ther down the list. We propose a framework that allows

for such weight decay effects to be incorporated. Finally

the main contribution of our paper is a sparse embedding

method that transforms the input feature space into binary

codes such that Hamming distance in the resulting space

closely correlates with rank similarity measures. Such an

embedding can be generated without any machine learning

and shows superior performance on a wide variety of tasks.

The embedding is highly nonlinear by construction and fur-

ther allows learning algorithms (e.g. for classification tasks)

to learn parameters that are local to different parts of the

ordinal space. The sparse codes being binary, can also be

used directly for indexing purposes for large scale nearest

neighbor lookups, we show that this simple technique out-

performs state-of-the art machine learning based methods

on this task. Specifically we show later that our method is

a generalization of the well-known MinHash [11, 12] and

should enjoy the theoretical benefits of LSH schemes dis-

cussed in [12, 11, 9, 18].

If we regroup the pairwise summations with respect to

ranks, then our simple pairwise-order function PO can be

rewritten in the following form:

PO(X,Y ) =
∑

i

∑

j<i

T ((xi − xj) (yi − yj))

=
∑

i

Ri (X,Y ) (2)

where

Ri (X,Y ) =| L (X, i) ∩ L(Y, i) | (3)

L (X, i) = {j | X(i) > X(j)} (4)

Equation 2 groups pairwise agreement terms by one of

the indices in the pair. Here Ri(X,Y ) basically measures

the ranking agreement for index i with all the indices that

rank below i. To do so we denote with L (X, i) the indices
of elements in X that are ranked below index i. The rank

agreement at index i is the cardinality of the intersection of

the corresponding L sets from X and Y . For the example

given in Figure 1, we want to compute PO(X,Y ) between
vectors specified in (a) and (b). The term R0(X,Y ) will
measure the size of the intersection set of indices smaller

than index 0. L(X, 0) = {1, 2, 3, 5} are the set of indices

in (a) that have values smaller than that at index 0, similarly

for Y , L(Y, 0) = {3, 4, 5}which givesL (X, i)∩L(Y, i) =
{3, 5}leading to R0(X,Y ) = 2. Eq 2 rearranges all unique

pairwise summations into intersections of these “less than”

lists. The inner summation instead of covering all j < i

now covers all j s.t. X(j) < X(i) and the result is the

same since in both cases we do cover all unique pairs (i, j).

We now discuss a generalization of pairwise-ordering

agreement that puts a steep nonlinearity on Ri (X,Y ) such
that larger intersection sets are given more weight.

Figure 1: An example with 6-dimensional input vectors, K

= 4, and θ = (1, 4, 2, 5, 0, 3). X in (a) and (b) are unrelated

and result in different output codes, 1 and 2 respectively.

X in (c) is a scaled and offset version of (a) and results in

the same code as (a). X in (d) has each element perturbed

by 1 which results in a different ranking of the elements,

but the maximum of the first K elements is the same, again

resulting in the same code.

Algorithm 1WTA Hash

Input: A set of m Permutations Θ, window size K , input

vectorX .

Output: Sparse vector of codes CX .

1. For each permutation θi in Θ.

(a) Permute elements ofX according to θi to getX
′

.

(b) Initialize ith sparse code cxi
to 0.

(c) Set cxi
to the index of the maximum value in

X ′(1...K)

i. For j = 0 toK − 1

A. IfX
′

(j) > X
′

(cxi
) then cxi

= j.

2. CX =
[

cx0
, cx1

, ..., cxm−1

]

, C containsm codes, each

taking a value between 0 andK − 1.

4. WTA Hash family

4.1. Intuitive Explanation

We’ll now discuss the details of the transformation tech-

nique. Figure 1 illustrates the basic transformation. Al-

gorithm 1 outlines the transformation method where the

permutations in the algorithm are generated randomly and

stored for use by all data points. The method relies on cod-

ing multiple partial orderings of the data point as a way to

lower bound the ranking agreement in case of a match. Es-

sentially the method picks K dimensions at random from

the sample and codes the dimension with the highest value

in the subset. Note that the randomization is without re-

placement and has to be consistent across all samples and

hence the notion of permutations. Thus equality in the

codes ci implies that we increase our estimate of Eq. 1 by

K − 1. If two vectors X and Y have the same value for



output code c0, lets say c0 = a, for a window size of K ,

this means that both X and Y match in K − 1 inequali-

ties that state X ′(a) > X ′(i) and Y ′(a) > Y ′(i) for all

i : 0 ≤ i < K , i 6= a. So T
((

x
′

a − x
′

i

)(

y
′

a − y
′

i

))

= 1

for all i : 0 ≤ i < K , i 6= a which gives us a progres-

sively better lower bound on pairwise-order agreement (Eq.

1) between X and Y as more codes match. Since we are

only encoding the “winner” in each subset according to a

given criterion (max in this case) we call the resulting fam-

ily of hash functions “Winner Take All” (WTA). Other fam-

ilies encoding multiple points from a partial order are pos-

sible, however for the scope of this work we only analyze

the WTA family.

First we look at the simple case of K = 2. Algorithm

1 will pick two indices at random and generate a code ci
which is 0 if θi(0) ≥ θi(1) and 1 otherwise. So for K =
2 the algorithm codes pairwise inequalities as bits. When

we compute Hamming similarity (number of matching bits)

between two vectors X and Y that are coded through this

method, the result is number of pairwise-order agreements

between X and Y (which is the same as Eq. 2). Now for

K > 2, algorithm 1 codes the index of the max element in

a K-sized subset of feature dimensions. To see why this is

meaningful, lets look at the example in Figure 1. HereK =
4, vectors (a), (c) and (d) are related while (b) is random.

When we apply the permutation θ we get vectors X
′

given

in the second row. We then look at the first K elements

in the permuted vectors (given in row 3). The code is the

index of the max element in this permuted form. Now c =
1 for (a) and (c) implies that index 1 was the max among

the 4 indices in both the vectors. Which means that both

(a) and (c) satisfy 3 inequalities, namely X ′(1) > X
′

(0),
X ′(1) > X

′

(2) and X ′(1) > X
′

(3). When we compute

pairwise-order agreement between (a) and (c) (Eq 1), these

3 terms will add positive contribution. This implies that

equality in code ci adds K − 1 to our estimate of PO in

Eq. 1, effectively acting as a lower bound. If we generate

a large number of codes, then the bound becomes tighter as

all possible pair combinations are considered.

Another aspect of this method merits a discussion. Our

choice ofK leads to different emphasis on pair-wise agree-

ments for indices at the head of the list. For example, con-

sider the degenerate case in which K = N , where n is

the dimensionality of the feature vector. Every permutation

simply encodes the global max element, so n − 1 inequal-

ities that relate the max element to all the others would be

captured. (In general each permutation encodes K − 1 in-

equalities relating to the max within firstK elements of that

permutation.) HenceK = n puts complete emphasis on the

head of the list. On the other hand we saw that K = 2 does
not put any bias on the head as all pairs are encoded. Values

of K between 2 and n lead to a progressively steeper bias

to the head elements. We formally analyze the dependence

below.
4.2. Mathematical Analysis

Note that window size K has an influence in the distri-

bution of which indices from the original vector end up in

the code. It is easy to see that for K = n where n is the

dimensionality of the feature vector, we get only the global

max of the vector in the code, andK = 1 follows a uniform
distribution since there is no comparison involved. While

both these codes are not useful in practice, they give us an

idea of the distributions being induced. Lets analyze the

more interesting case of 1 < K < n.

First let us define an index j that represents the positions

in the sorted vector of dimensions. For a window size K ,

the probability that max θ (ci) over K elements lies at an

index on or after j is given by

PK (Rank (θ (ci)) > j) =

(

n−j
k

)

(

n
k

)

So to derive PK (Rank (θ (ci)) = j) for 0 ≤ j <

n − K we difference the cumulative distribution followed

by some simplifications that are easy to work out. Also

PK (Rank (θ (ci)) = j) = 0 for j > n−K .

PK (Rank (θ (ci)) = j) = PK (Rank (θ (ci)) > j)−

PK (Rank (θ (ci)) > (j + 1))

=

(

n−j
K

)

(

n
K

) −

(

n−j−1
K

)

(

n
K

)

=

(

n−j

K

)

(

n

K

) .
K

n

=
K

n

(K−1)
∏

l=0

(

1−
j

n− l

)

(5)

Figure 2 plots PK (Rank (θ (ci)) = j) for different val-
ues ofK . The value ofK gives us an easy knob to tune for

giving higher weight to top elements in the vectors vs. the

others. Assuming that lots of permutations are generated

the final similarity function induced in the limit would be

given by

SK (X,Y ) =

∑n−1
i=0

(

Ri(X,Y )
K−1

)

(

n

K

) (6)

where Ri (X,Y ) is given by Eq. (3) and (4).
Let us denote by i indices into vectors X and Y while

θ(i) will denote indices into permuted vectors X
′

and Y
′

.

If index i is chosen as the hash code for for a given random

permutation it implies

X(i) > X(j)∀j 0 < θ(j) < K, j 6= i

which means that all the other indices in the permutation

are members of the set L(X, i). If i is chosen as the hash

code for both X and Y (for a fixed random permutation θ)

it means that all the indices 0 < θ(j) < K belong to both

L(X, i) and L(Y, i). By implication the number of ways

codes for a permutation θ on vectors X and Y can collide

on value i is given by
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Figure 2: (a) Rate of sampling a given index from the sorted

list. The curves show different decay factors depending on

the value of K . (b) Contribution to similarity for a given

value of Ri(X,Y ) for different values ofK .

N (X,Y, i) =

(

L(X, i) ∩ L(Y, i)

K − 1

)

=

(

Ri (X,Y )

K − 1

)

The total number of ways codes for a permutation θ on

vectorsX and Y can collide on any code is given by

N (X,Y ) =
∑

i

N (X,Y, i)

=
∑

i

(

Ri (X,Y )

K − 1

)

K leading indices of a permutation θ can be drawn from

n dimensions in
(

n
K

)

ways. So the probability of collision

of codes given by a random permutation θ on vectorsX and

Y is given by

SK (X,Y ) =

∑n−1
i=0

(

Ri(X,Y )
K−1

)

(

n

K

)

This also proves the LSH property for our codes where

the probability of collision induces a family of distance

functions that are approximated.

An intuitive interpretation of SK (X,Y ) is as follows.

The number of ways in which index i can be the max over

a K-sized permutation is given by the number of ways in

which one can pick K − 1 elements that are smaller than

the element at i and common to both X and Y. Notice that

for K = 2 we get a normalized version of Eq. 2 back.

However for larger values ofK this family of hash functions

strongly prefers intersection sets with large cardinality (with

the corresponding indices following distribution given by

Eq. 5). Figure 2 illustrates the nonlinear effect of K on

amplifyingRi(X,Y ) for different values ofK .

4.3. Polynomial kernel extension
Apart from allowing preferential treatment to top ele-

ments, the simple structure of the algorithm also allows us

to perform the same operations in kernel spaces. Simply

transforming the original feature vector to a vector that re-

flects kernelized distances over data samples allows us to

use the same framework. WTA coding in such transformed

Algorithm 2WTA Hash on polynomial kernels.

Input: A set ofm PermutationsΘ, window sizeK , Polyno-

mial kernel degree p, input vectorX .

Output: Sparse vector of codes C.

1. For each set of p permutations θ(i,l) 1 ≤ l < p in Θ.

(a) Permute elements ofX according to each of θ(i,l)

to getX
′

l .

(b) Initialize ith sparse code cito 0.

(c) For j = 1 to K − 1

i. Set X
′

(j) =
∏p

l=1

(

X
′

l (j)
)

.

ii. IfX
′

(j) > X
′

(ci) then ci = j.

spaces has properties related to many algorithms proposed

in the combinatorial framework presented in [8], particu-

larly if one has knowledge of the disorder constant D, it

can be use to pick the decay curve parameterK in our algo-

rithm. Small disorder constants would imply more stability

of top ranking neighbors leading to high value of K , while

large values of D would imply the opposite. Kernel-WTA

allows us to exploit these rank distances in simple LSH style

retrieval setup and by virtue of being based on a comparison

oracle enjoy the theoretical benefits described in [8, 9]. Al-

gorithms described in[9] are special cases of this framework

whereK = 2.
However this framework can support another special

class of kernels very efficiently, namely rank correlation

kernels over polynomial expansion of the feature space. We

can compute WTA code on a degree p polynomial space of

a feature vector in O(p) time, basically requiring p permu-

tations per code rather than 1 in the previous case. Algo-

rithm [2] illustrates this process. Its easy to show that this

is equivalent to computing the expanded polynomial space

and then computing WTA codes on it, since every p-degree

product is equally likely at step 1.(c).i in algorithm 2. This

means we can directly compute permutations over polyno-

mial spaces by taking products of permutations in the orig-

inal space. The extension opens up our framework to work-

ing with arbitrarily large polynomial spaces while maintain-

ing the efficiency of the coding process. Note that we have

dropped the coefficients relevant to the polynomial expan-

sion here to make feature-conjunctions more explicit, one

can easily add the polynomial kernel coefficients by keep-

ing an auxiliary hash map that counts the number of times

each variable is seen without violating the O(p) claim.

4.4. The connection to MinHash
It is also important to note that the popular MinHash

[11, 12] is a special case of WTAHash when applied to bi-

nary vectors. A simple view of MinHash is that it encodes

the index of the first 1 under random permutations of binary



vectors. It has been shown that the hash collision rate cor-

responds to the Jaccard similarity between binary vectors.

We now show that this is a special case of our method.

If the input vector X in Algorithm 1 is binary, then step

1.(c) will retain the index of the first 1 that it sees in the

given random permutation. This happens because we use

a strict > operator in step 1.(c).i in Algorithm 1, so when

the first 1 is encountered ci is set to that index, following

1s don’t change ci because of the strict inequality. For the
equivalence to hold we must setK = n so that we avoid the

case of having all 0 values in the permutation (although one

can think of a “clipping” version of MinHash where this is

allowed with a small probability and is encoded by code 0).
Note that K = n for binary vectors has a different effect

than that on numeric vectors because binary vectors have

several global max indices with value 1.
In this context Algorithm 2 contributes an efficient

method to compute MinHash on pth- order conjunctions of

binary vectors. The product terms in 1.(c).i are conjunctions

when dealing with binary vectors. This is a very powerful

result, since it allows us to compute MinHash over a com-

binatorial space of binary hypercubes in logarithmic time

(where the conjunction order p is the log of the size of re-

sulting space).

4.5. Implementation
Given a permutation vector theta. Each individual code

can be computed in MATLAB with the 1-liner below:

theta = randperm(n);

[max_val, c(i)] = max(X(i,theta(1:K)));

One can as easily compute multiple codes by packing

multiple permutations in a matrix Theta and computingmax

over all of them simultaneously. In C++ this would imply

two for loops, with retaining the maximum index, which

can also be done in less than 10 lines.

5. Similarity Search in High Dimensions

5.1. Image retrieval on LabelMe

We begin by demonstrating the performance of WTA

codes on the exact experiment described in [20, 19]. As in

[19], ground truth similarity is obtained by thresholding the

L2 distance between these Gist vectors. Although the full

rank ordering produced by Euclidean distance on Gist is un-

likely to agree with ground truth semantic similarity, the top

ranked vectors do represent a labeled set in which we can

be reasonably confident. The experimental dataset, used in

[19], consists of approximately 13,500 image thumbnails

from the LabelMe dataset. Each image is represented using

a 512-dimensional Gist feature vector. The dataset was di-

vided into a training set containing 80% of the samples, and

a test set containing the remainder. For each test sample,

the nearest neighbors (based on Hamming distance between

codes) were found from amongst the training samples, and

performance was evaluated by measuring the precision and

recall. Figure 3 compares WTA codes generated from Al-
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Figure 4: WTA applied to image patches at interest points

for similarity search.
gorithm 2 with p = 4 andK = 4 (values for p andK were

picked by line search along K followed by p in log scale

on a hold out set). Even for small codes starting from 64

bits, WTA codes outperform Spectral Hashing (and by tran-

sitivity, Restricted Boltzmann Machines and Boosting) [19]

as well as PCA Hash codes[22, 23] but are slightly worse

than SPEC codes from [20]. With more bits WTA clearly

performs better than the competitors.

Real large scale systems can be required to index billions

of items. This necessitates an increase in the code length,

to preserve precision, as well as a matching strategy such

as LSH that is more efficient than pairwise comparison. To

estimate performance on a LSH retrieval task we use each

byte of the hash code as an inverted index table. This allows

us to reduce database search by 1
256 in the best case. Typi-

cally each inverted index table would have a key consisting

of several bytes, but since the number of images here has a

small number of true near neighbors the performance will

be representative. Each probe is queried in multiple tables

and the resulting lists are “joined” to count the number of

band hits for scoring each retrieved pair. Figure 3 illustrates

the performance of the above methods on this task.

5.2. Matching local feature descriptors

We consider WTA’s performance on the descriptor

matching task described in [24]. In this task, we are given

5,000 pairs of matching image patches and 5,000 pairs of

mismatched image patches, where each patch is 64 x 64

pixels. The goal is to compute an image descriptor from the

patches that gives the best false match rate at 95% recall.

Specifically, we look at [24]’s Liberty dataset, which is the

harder of the two datasets they present (Liberty and Notre

Dame).

We use the raw image pixels (642 = 4096 dimensions),

SIFT [21] (128 dimensions) and DAISY [26, 27] as base-

line descriptors, each with the Euclidean distance. These

give 68.0% , 36.2% and 32.4% false matches at 95% true

matches, respectively. As WTA descriptors, we use 10,000

codes computed from the raw image pixel or SIFT and

DAISY descriptors1, with the Hamming distance, we set

1Since the DAISY descriptors integrate over log-polar sampling of the
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(b) 256 bit codes
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(c) 512 bit codes
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(d) 64 bit codes - 8 1B tables
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(e) 256 bit codes - 32 1B tables
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(f) 512 bit codes - 64 1B tables

Figure 3: (a)-(c) show pairwise comparison performance of WTA codes on LabelMe dataset with p = 4 and K = 4. (d)-(f)
show LSH lookup performance of WTA codes on LabelMe dataset with p = 4 andK = 16.

K = 2. The raw image pixel WTA descriptors give 56.4%

false matches at 95% true matches, beating the raw image

descriptor by 11.6%. [24] reports 35.1 for SIFT on Liberty

in Table 1; our WTA hash applied to SIFT descriptors gives

24.7% false matches at 95% true matches, beating SIFT

alone by 10.4%. When applied to the DAISY descriptor we

get 21% leading to a gain of 11.2% from baseline. Figure

4 is similar Figure 6 in [24] (which reports for Notre Dame

rather than Liberty), and shows the performance of SIFT,

DAISY, WTA SIFT and WTA DAISY over a false positive,

true positive range where their performance curves are vi-

sually distinguishable. Note that higher order polynomials

were not tried for this experiment.

6. Nonlinear transformation for classification
We consider WTA codes for classifying PASCAL VOC

2010 images. VOC 2010 contains images from 20 classes,

including people, animals (e.g. bird), vehicles (e.g. aero-

plane), and indoor objects (e.g. chair), and are considered

natural, difficult images for classification.

In the VOC 2007 and 2008 competitions, [30] achieved

the state-of-the-art using multiple histogram types (e.g.,

SIFT bags-of-words quantized using hierarchical k-means,

color histograms), an SPMK-like spatial breakdown of the

image, and a nonlinear chi-squared SVM. In VOC 2009,

[29] won with more sophisticated coding of SIFT descrip-

image patch, it has scale bias across its dimensions. We pre-process the

descriptor by substracting the mean and dividing by the variance along

each direction to make the scales more uniform before applying WTA.

tors (e.g., local coordinate coding) and a simpler linear

SVM. We don’t compare directly to those methods here.

Instead, we apply our hash to a baseline method (a whole-

image bag-of-words of local descriptors passed to a linear

SVM), showing that it can give a strong relative improve-

ment in some classification applications.

From each of these bag-of-words, we create WTA fea-

ture vectors including 100.5, 101, 101.5, ..., 105 codes. We

used K = 4, which we found to work well for in some

initial experiments. To create the bags-of-words we extract

local descriptors on a dense grid over the image and quan-

tize them using hierarchical k-means [25]. Our local de-

scriptors measure Gabor wavelet responses at 4 orientations
and 27 positions relative to the descriptor center, for a total

of 108 dimensions. The 27 positions (including scale and

spatial offset) are a log-polar configuration similar to the

DAISY descriptor’s [26, 27]. We consider bags-of-words

with 36, 100, 1000 and 10000 bins.

For each bag-of-words and WTA feature vector we train

a linear classifier for each of the 20 VOC classes using lib-

linear [28] and the VOC 2010 training set. Prior to training

on the full training set we find a best SVM C parameter

using 10-fold cross-validation. We evaluate the resulting

classifiers on the VOC 2010 validation set. This approach

is consistent with the “best practices” on the VOC web-

site, which suggest cross-validation over the training set for

VOC 2010 dataset when reporting results for a range of pa-

rameter choices.
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Figure 5: Median Average Precision for VOC 2010. The

four horizontal lines from low to high are baselines for each

of the 36-10000 bag of words features respectively.

The results are summarized in Figure 5, which shows

the median average precision over the 20 classes for each

of the feature vectors. The median average precision for the

four bags-of-words are shown by the horizontal lines. The

median average precision for each WTA feature vector are

shown by the curves. Performance increases both as a func-

tion of the original bag-of-words dimension and the number

of codes, with WTA significantly beating the bag-of-words

in each case. Further, WTA from bags-of-words with X

bins beats the bag-of-words with 10X bins for a sufficiently

large number of hashes. Note that we gain 8-13% absolute

over the baseline with a simple feature space transforma-

tion without any change to the underlying machine learning

setup. An SVM with a chi-squared kernel performs at ap-

proximately 40.1% median average precision, for a 1000

bag-of-words model. In comparison, using WTA plus a

simple linear classifier, the performance of our system is

approximately 2% higher.

7. Conclusion

We make the case for feature representations that encode

relative orderings of feature dimensions. We showed that

these embeddings enjoy all the theoretical benefits of com-

parative (rank correlation) methods, are stable to perturba-

tions and outperform several state-of-the art machine learn-

ing methods while being training-free. We emphasized that

these representations are highly nonlinear and can be com-

bined with simple linear classifiers to get state-of-the-art re-

sults. On similarity search tasks WTA outperforms well-

tuned machine learning systems and hand crafted descrip-

tors. We believe that several other advancements are pos-

sible within this framework, which essentially operates on

comparisons rather than absolute values.
In future work we hope to analyze other classes of

hash functions arising out of the partial ordering frame-
work.
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