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ABSTRACT
Automatic Language Identification (LID) in music has re-
ceived significantly less attention than LID in speech. Here,
we study the problem of LID in music videos uploaded on
YouTube. We use a “bag-of-words” approach based on state-
of-the-art content based audio-visual features and linear SVM
classifiers for automatic LID. Our system obtains 48% accu-
racy for a corpus of 25000 music videos and 25 different lan-
guages.

Index Terms— automatic language identification, LID in
music, audio-visual features

1. INTRODUCTION

Automatic Language Identification (LID) in spoken language
processing has received a lot of attention. However, there is
little work in the field of LID in songs and music videos. LID
in music is important as it enables better categorization of au-
dio and video collections. Often, the language of the audio or
video title in the collection is not the language for the video,
e.g., a song sung in Mandarin might have an English title. In
this case, analysing the contents of the audio or video can be
useful for better categorization. In this work, we focus on
automatic LID of music videos.

There is a lot of work in LID for speech - see [1, 2, 3, 4, 5]
for review and discussion of techniques used in this field. The
classical approach for LID involves tokenization combined
with phonotactic analysis [1]. Torres-Carrasquillo et al. [6]
use Gaussian Mixture Models (GMM) with Shifted Delta
Cepstral (SDC) coefficients for good performance. Another
approach introduced by Campbell et. al [4] involves Sup-
port Vector Machines (SVM) with SDC features. Campbell
et al. combine SVMs with GMM based techniques to im-
prove performance beyond GMM-only based approaches [4].
Current state-of-the-art involves using GMM supervectors
and SVM [5]. The basic idea here is to adapt a universal
background model GMM on a per utterance basis and then
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use the resulting shift in means. The stacked adapted means
form a GMM supervector, which is used for classification
with SVMs. The GMM supervector technique was initially
used for speaker recognition, but subsequently applied to
LID too for good performance [5]. Campbell improves the
performance of the GMM supervector technique in [7].

Intuitively, techniques used for LID in speech can be ap-
plied to music too. However, singing differs from speech
in many ways [8]. Some key differences include extensive
interference from background music, multiple noise sources
and atypical music lyrics. Further, there are several phono-
logical modifications in music made by singers, compared
to conventional speech. Tsai and Wang [8] tackle some of
these challenges in their early work on distinguishing be-
tween English and Mandarin songs. Tsai and Wang segment
music into vocal/non-vocal segments, train vocabularies on
spectrum-based features and use a sequence of phonologi-
cal units for classification. The authors show that manual
vocal/non-vocal segmentation improves performance com-
pared to performing no segmentation at all. The authors also
propose automatic techniques for vocal/non-vocal segmen-
tation, which, however, do not provide the improvement in
classification accuracy that manual segmentation does. A
peak accuracy of 70% is obtained with automatic segmenta-
tion for 2 language classes: English and Mandarin.

Schwenninger et al. [9] propose using Mel Frequency
Cepstrum Coefficients (MFCC) for classifying English and
German songs, and obtain 64% accuracy. Schwnninger et
al. experiment with several pre-processing techniques for
obtaining the speech portions of the music, e.g., detecting
energy in high frequency regions [10], distortion reduction
of music from drums and bass guitars [11], and azimuth dis-
crimination [12]. However, contrary to the results presented
by Tsai et al. [8], none of these pre-processing techniques
improve performance.

Jacob and Cox [13] focus on LID in videos using visual-
only features. The authors segment the video and use lip-
shape features, appearance and motion for classification.
Such an approach would work for highly structured videos
like news-clips, but not work for music videos.



In our work, we use a “bag-of-words” approach for classi-
fication with several state-of-the-art audio and visual features.
Automatic segmentation of the music video into vocal/non-
vocal is non-trivial, while manual segmentation is not feasi-
ble for large data sets. Further, based on prior work [9, 8], it
is not clear whether vocal/non-vocal segmentation helps im-
prove classification accuracy. As a result, we do not perform
any segmentation in this work. Our contributions in this work
are as follows:

• The authors in prior work [8, 9] consider only 2 lan-
guages for classification. In this work, we consider a
large-scale data set with 25000 music videos and 25
languages.

• Prior work deals only with songs. Here, we consider
songs along with their videos for classification.

• We combine both audio and visual features for classi-
fication, and show that it improves classification accu-
racy.

In Section 2, we describe our approach, and in Section 3,
we discuss the experimental setup, training phase and test re-
sults. Finally, we discuss directions for future work to im-
prove LID in music videos.

2. APPROACH

In this section, we describe the audio and visual features
extracted on each video. Specifically, we consider user-
generated playlists with titles of the format “Language songs”
e.g. “English songs”, ”Arabic songs”, etc. These are used to
obtain a corpus of 25000 videos for 25 different languages,
1000 videos per language. The languages represented are:
Arabic, Bangla, Chinese, English, French, German, Greek,
Hindi, Irish, Italian, Japanese, Khmer, Korean, Malay, Malay-
alam, Nepali, Pashto, Punjabi, Russian, Sinhala, Spanish,
Tagalog, Tamil, Telugu and Thai.

Song videos typically vary in length. For each video, we
wish to create a feature of fixed size regardless of its length.
One effective technique [14] is to generate a descriptor for
each frame and map the set of descriptors to a histogram. We
generate codebooks offline with training data using k means
vector quantization, and each descriptor is quantized to the
nearest codeword. Each histogram is normalized so that the
sum of values in all bins is 1. The final feature vector is ob-
tained by concatenating the histograms of each feature de-
scriptor. Next, we discuss the audio and visual descriptors
computed for each video. The size of codebooks for different
features is listed in Tab. 1.

Audio Spectrogram and Volume: For audio features, the
frame rate is set to 100 frames per second. For each audio
frame, we compute a 32-bin audio spectrogram. In addition,
we compute the volume of the audio stream, which is repre-
sented as a single floating point value.

Feature Size of codebook
Audio Volume 64
Spectrogram 1024

MFCC 2000
SAI 28×256

Global Visual 1858
Motion cuboids - Pixel PCA 512

Motion cuboids - HoG 647

Table 1. Size of codebook for each feature.

Mel-Frequency Cepstral Coefficients (MFCC): For
each audio frame, we generate the standard set of MFCC
coefficients.

Stabilized Auditory Images (SAI): The auditory fea-
tures that we use are based on models of the mammalian
auditory system. Specifically, we use a cochlear-model filter-
bank followed by a correlation process that makes a stabilized
auditory image (SAI) [15]. Computing the SAI starts with
a set of band-pass filters, followed by an autocorrelation of
each channel. This data is then vector-quantized at different
scales to create a histogram. The histogram implicitly char-
acterizes several aspects of music and speech of the audio
track. For a detailed description of the features, please refer
to the work by Lyon et. al. [15] which uses these features
for ranking and retrieval of sound files. Since the SAI is
very high dimensional, we divide the feature into 28 smaller
blocks (see Tab. 1) and perform vector quantization on each
one.

Global Visual Features: We list the set of global visual
features computed on videos. An important visual feature is
an 8x8 hue–saturation histogram. This captures how colors
vary over the duration of the video, and act as a relatively
strong contextual prior for the classifiers when combined with
other local visual features. Another feature we compute is
the output of a face detector. We compute several statistics
based on it: the ratio of the largest face to the area of the
image, number of faces, and various statistics based on the
skin pixels. In addition, we compute textons for each video
frame. For more details of global visual features, readers are
referred to [16].

Motion Cuboids: For characterising motion in the video,
we first compute spatio-temporal interest points using the de-
tector proposed by Dollar et al. [17]. Next, we extract raw
pixel 13×13×19 “cuboids” around spatial-temporal interest
points. We compute two descriptors around these interest
points: (1) We take the raw cuboid pixels and reduce the
dimensionality using Principal Component Analysis (PCA)
to 256. (2) At every image pixel in the cuboid, we extract
an 1800-dimensional descriptor made up of 100 overlapping
Histograms of Oriented Gradients (HOG) [18]. The descrip-
tors are quantized into a bag-of-words representation using
fast randomized decision trees [19].



Feature Accuracy (%)
Baseline (random) 4.0
Audio spectrogram 19.6

MFCC 26.1
SAI 37.7

All audio 44.7
All video 14.3

All audio + video 47.8

Table 2. Classification accuracy for different features. We
obtain a peak accuracy of 47.8% with all audio and visual
features. Adding visual features improves performance by
3.1% compared to using just audio features.

Final feature vector: The final feature vector is obtained
by concatenating all the histograms of audio-visual features
described in this section.

3. EXPERIMENTAL RESULTS

We divide the corpus of 25000 music videos into training and
test sets of 18750 and 6250 respectively. We train a set of
“one-vs-all” linear SVMs for each language category. Each
classifier learns to separate videos that belong to a certain lan-
guage category from those that don’t. The classifier with the
highest score is treated as the output category for a video. The
classification accuracy stated in Tab. 2 is obtained by consid-
ering the sum of all diagonal elements of the confusion ma-
trix, divided by the sum of all elements.

First, we list the accuracy for different feature sets in
Tab. 2 averaged across all languages. We note that we can
achieve close to 50% classification accuracy for the 25 differ-
ent language categories—a number much higher than chance.
Using audio-only features, we achieve 44.7% accuracy. The
SAI feature provides the highest accuracy amongst the dif-
ferent audio features, if considered individually. There’s a
significant gap between SAI, and conventional audio features
like MFCCs for music LID. Adding visual features improves
the accuracy by ∼3% averaged across all languages, resulting
in a net accuracy of 47.8%. Thus, visual features help in LID
as hypothesized.

Next, we provide a breakdown of classification accuracy
for different languages in Tab. 3, using all audio and visual
features. The languages are sorted in the increasing order of
classification accuracy, from lowest to highest. The Pashto
language performs the best, with the peak classification accu-
racy of 79%.

Finally, in Tab. 4, we present the improvement in classi-
fication accuracy using visual features over using audio-only
features for different languages. The highest improvement is
observed for Thai, with an increase of 10% accuracy using
visual features.

CA (%) Languages
<30 English, French, German, Tamil

30-40 Spanish, Hindi, Italian, Russian
40-50 Chinese, Bangla, Tagalog, Greek
50-60 Telugu, Sinhala, Punjabi, Korean

Malay, Irish, Thai, Japanese
60-80 Nepali, Malayalam, Arabic, Khmer, Pashto

Table 3. Classification Accuracy (CA) for different lan-
guages. The languages are sorted in the order of increasing
classification accuracy.

Increase in CA (%) Languages
<1 Spanish, Malay, German, Arabic

Khmer, Pashto, Telugu, Tamil
1-2 Irish, Punjabi
2-4 Russian, Sinhala, Italian, Korean
4-5 Bangla, Japanese, Hindi, Tagalog
>5 English, Malayalam, Greek, Nepali

French, Chinese, Thai

Table 4. Increase in Classification Accuracy (CA) for differ-
ent languages using visual features.

The results presented here are promising, as a peak ac-
curacy of close to 50% is achieved for 25 different language
categories. However, these results are still preliminary and a
lot more can be done to improve performance. In future work,
we plan to

• Explore pre-processing techniques like segmentation of
music videos into vocal/non-vocal segments and distor-
tion reduction of background music.

• After vocal/non-vocal segmentation and distortion re-
duction, apply state-of-the-art GMM techniques from
speech-LID and compare its performance to current
“bag-of-words” approach.

• Combine techniques from state-of-the-art speech-LID
and current “bag-of-words” approach.

• Build higher level grammatical models from low level
features to improve performance of music-LID.

• Learn language models in a hierarchical fashion, i.e.,
divide languages into high-level groups like Romanic,
Slavic, etc., and then build models for each sub-group.
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5. CONCLUSION

We present preliminary results for automatic LID for a large
set of music videos uploaded on Youtube. We use a “bag-
of-words” approach based on state-of-the-art content based
audio-visual features and linear SVM classifiers for automatic
music-LID. Our system obtains 48% accuracy for a large
corpus of 25000 music videos and 25 different languages
(compared to 4% for chance). We observe that SAI features
and visual features provide a significant improvement in per-
formance over using conventional audio spectrograms and
MFCCs. Future work will focus on combining techniques
from speech-LID and music-LID for improving performance.
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