SVQ++: Querying for Object Interactions in Video
Streams

Daren Chao

University of Toronto
drchao@cs.toronto.edu

ABSTRACT

Deep neural nets enabled sophisticated information extrac-
tion out of images, including video frames. Recently, there
has been interest in techniques and algorithms to enable
interactive declarative query processing of objects appear-
ing on video frames and their associated interactions on the
video feed. SVQ++ is a system for declarative querying on
real-time video streams involving objects and their interac-
tions. The system utilizes a sequence of inexpensive and less
accurate models (filters), called Progressive Filters (PF), to
detect the presence of the query specified objects on frames,
and a filtering approach, called Interaction Sheave (IS), to
effectively prune frames that are not likely to contain in-
teractions. We demonstrate that this system can efficiently
identify frames in a streaming video in which an object is
interacting with another in a specific way, increasing the
frame processing rate dramatically and speed up query pro-
cessing by at least two orders of magnitude depending on
the query.

ACM Reference Format:

Daren Chao, Nick Koudas, and Ioannis Xarchakos. 2020. SVQ++:
Querying for Object Interactions in Video Streams. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD20), June 14-19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 4 pages. https:/doi.org/10.1145/3318464.3384701

1 INTRODUCTION

Recent advances in computer vision - in the form of deep
neural networks - have made it possible to query increasing
volumes of video data with high accuracy. However, deep
neural network inference is computationally expensive at
scale. There are still many limitations to apply deep neural

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3384701

Nick Koudas

University of Toronto
koudas@cs.toronto.edu

Ioannis Xarchakos
University of Toronto
xarchakos@cs.toronto.edu

models at scale in real-world scenarios imposing real-time
requirements.

To understand the visual world, a machine must not only
recognize individual object instances but also how they in-
teract. Most of the state-of-the-art video query processing
models focus on the queries about the number of classified
objects and their location relationships [5, 6, 10]. Semantic
information, such as human-object interaction information,
is often ignored. Fortunately, several state-of-the-art algo-
rithms in the fields of object detection, object classification
and object tracking in images and videos have been proposed
[2, 3,7, 9]. They provide the ability to classify objects and
detect object locations in a frame as well as track objects
from frame to frame with adequate accuracy.

Figure 1: Examples of interactions.

Video monitoring and surveillance applications are of par-
ticular interest in our system, where a static camera records
activity in its receptive range. Several recent works [5, 6, 10]
focus in these domains, to provide declarative queries based
on streaming video feeds. Our work complements and en-
hances this research line with a focus on efficiently execut-
ing interaction query primitives, i.e., capturing interactions
among query objects. Many interesting queries become pos-
sible when we can query object interactions. For example,
automatically detecting frames in which a human holds a
gun or a human breaks a window would be of great interest
in surveillance and security applications. Figure 1 presents
examples of interactions between a human and a ball (videos
from Kinetics Dataset [1]). The corresponding query in SQL
for the interaction at the frame of Figure 1(a) would be:

SELECT cameralD, frameID, C1 (F1 (HumanBox1)) AS
HumanTypel, C2 (F2 (Ballbox1)) AS BallTypel,

https://doi.org/10.1145/3318464.3384701
https://doi.org/10.1145/3318464.3384701

Operator 1

Objectl Classification Object2 Classification Interaction Sheave
Filter 1 Filter 2 Filter 3 Filter 1 Filter 2 Filter 3 Filter 1
]
» CNN L s >
CNN
CNN CNN
Operator 2

Figure 2: Example of the overall architecture.

FROM (PROCESS inputVideo PRODUCE cameralD, framelD
, HumanBox1 USING HumanDetector, BallBox1
USING BallDetector)

WHERE HumanTypel = human AND BallTypel = baseball
AND INTERACTION(HumanTypel, BallTypel) = THROW

The query employs two classifiers (C;) to detect a human and
a baseball, using features F; extracted from the frame and
checking whether the objects, once identified, are related
via a THROW interaction. Obviously, from an execution
perspective, it makes sense to invoke the INTERACTION
predicate once the operands have been identified on the
frame. We seek to automatically identify frames in a video
stream where query objects interact in a specific way. This
schema of queries can be applied to most objects.

The main emphasis of our system is, given a query in-
volving objects and their interaction on a video stream, to
deploy algorithms to efficiently determine which frames are
expected to be part of the query answer and filter out all
irrelevant frames. Therefore, we try to increase the frame
processing rate as frames that are considered irrelevant will
not be processed further but skipped quickly. Even without
filtering, the application of deep neural networks for object
and interaction detection entails false positives/negatives.
We will also show the effect that filtering has on the false
positive/negative rate of the techniques on this demo.

To overcome these challenges, we employ a set of algo-
rithms that dramatically increase the frame processing rate
when executing the query while maintaining high accuracy.
In particular we utilize:

e Progressive Filters. Progressive filters are a set of fil-
ters of increasing cost (i.e., an increasing number of network
layers). For a particular object type, progressive filters use
the selectivity of the filters to derive the optimal filter se-
quence. The filters should be applied to minimize the total
cost of processing the video stream.

o Triggering Re-optimization. Since we observe that
the statistical properties of certain types of objects vary over
time on a video stream, we adopt a dynamic version of the
Kolmogorov-Smirnoff test [8] that can trigger progressive
filters algorithm when the statistical properties of the filter

selectivity change. We are effectively adjusting the filter se-
quence, in anticipation of stable (predictable) object statistics,
until the next re-optimization. Such a strategy can improve
accuracy while maintaining a high frame processing rate.

e Interaction Sheave. Interaction sheave is a filtering
mechanism for object interaction queries. It can inspect the
spatial location of objects on frames and filter out frames
that although contain objects relevant to the query but not
promising to encompass the suitable interaction among the
query objects.

In this demonstration, we showcase SVQ++, which is capa-
ble of handling a wide range of interaction queries. Section
2 presents the architecture of our system. Section 3 presents
a description of this demonstration. Section 4 concludes this
demo and discusses future work in this area.

2 SYSTEM ARCHITECTURE

Deep learning filters is an extensible module that implements
our proposed filter predicates, which encompasses popular
recent deep learning algorithms for object and interaction de-
tection. These algorithms are embedded in the parsed query
representation and relayed to the query execution engine.
The execution module utilizes popular deep learning frame-
works to execute the query with the assistance of available
GPUs. Frames that pass the filters instantiated in the query
are subsequently checked with deep learning predicates and
then routed to the front end for display.

An example of the architecture of our proposed filter tech-
nologies is shown in Figure 2. There are two operators, each
consisting of a sequence of filters. In this example, the appli-
cation of progressive filters for operator 1 determined that
filters 1 and 3 are currently in use. Similarly, for operator two,
filters 2 and 3 are in use. Frames that successfully pass the
operators with a positive determination! that they contain
the objects of interest, are tested by the heave. The basic

ITake the first operator as an example, a frame may get a positive determi-
nation by filter 1; in that case, there is no need for further processing by
other filters in this operator. Filter 3 (a more accurate and expensive model
in this example) is involved only if Filter 1 is unable to make a positive or
negative determination for the frame.

observation is that the interaction (e.g., human throwing a
baseball) typically takes place at a specific spatial region of
the frame involving the first object (i.e., the human). Only
when the second object is located within a spatial region rel-
ative to the first object, the frame is relayed to an expensive
object interaction model for further processing. Thus, by pro-
cessing the objects spatially, we obtain a filtering mechanism
for interaction.

The main innovations in our system is how to order filters
within an object detection operator effectively. Typically, a
query will check for the presence of more than one object (as
in the case of the sample SQL query presented). The progres-
sive filters can derive the least cost sequence of filters given
the current selectivities of query objects, avoiding costly ob-
ject detection and localization operations, and minimizes the
cost per frame for object detection. For the filters employed,
we can maintain their selectivities up to date by observing
the result of each frame tested by the filter. For the filters
that are not part of the optimal solution, we periodically
(every few seconds) route a frame from the input sequence
through them and obtain a selectivity estimate to trigger
re-optimization. The basic idea behind re-optimization is
to treat the selectivity of filters as a statistical population
and employ a dynamic version of the popular Kolmogorov-
Smirnov test [8]. For frames that pass through the filter
sequences determined by progressive filters for each object
specified by the query, we have confidence that they contain
the required objects. These models will derive a bounding
box that encloses the location of each object as specified by
the query on the frame. We then test the frame whether it
relates the objects via the query specified interaction.

3 DEMONSTRATION SETUP

This Demo will highlight the interaction querying process
and provide various knobs for video source selection, per-
formance monitoring and query results display and compar-
isons. Our layout will allow users to express human-object
interaction queries and compare the time and accuracy per-
formance of our approach with a baseline approach that
employs an interaction detection model at each frame to
answer the query [3].

Figure 3 presents the current state of the front end. SQL
queries are defined through query definition which is shown
in the left sidebar (Area A) and enhanced with UDFs to ma-
nipulate video object primitives. The Demo provides video
clips for interaction querying. Each video clip corresponds to
a specific predicate. For the baseball video clip, for instance,
the predicate will be human THROW baseball. The Demo also
provides two modes - normal and slow mode. The normal
mode shows the real video processing speed of our system,
while it may run too fast to show the results of interaction

detection. For better presentation, it also provides a slow
mode to show the resulting video which is slower than the
real processing speed.

The generated SQL queries, which are shown on the upper
left center (Area B), are dispatched to the back end which
is responsible for parsing the query and incorporating the
supported querying predicates and progressive filters. It cur-
rently incorporates our proposed algorithms for filtering
frames (based on humans, objects classes and interaction),
allowing to express semantically meaningful video frame
queries in an interactive fashion. The impact of progressive
filters will be analyzed based on the total query process-
ing time (when compared to a query that does not make
use of the progressive filters but instead executes the query
in a brute force manner [3]) as well as the resulting frame
processing rate.

The filters’ ordering per batch is presented on the upper
right corner (Area C). It will be updated at the end of each
batch. The three boxes with different colors represent dif-
ferent operators and a node in a box represents a filter in
the operator. As introduced in section 2, the application of
algorithm progressive filters may employ a subset of filters.
The links represent the ordering of filters that are used for
the current batch. For the filters that are not part of the opti-
mal solution, we periodically route a frame from the input
sequence through them and obtain a selectivity estimate as
well. The links will be bold if they have been changed from
the previous batch to the current. Figure 4 presents the filters
ordering module. The red box and nodes represent human
operators, whose Filter 1, 3, 4 and 6 are used. Similarly, the
yellow and blue represent the object operator and interaction
sheave respectively.

By clicking on the Optimization button, our approach will
be invoked, while by clicking the Brute Force button, state of
the art object detectors [4] and action recognition [3] mod-
els will evaluate the respective input video. The videos of
both our approach and full model’s approach will produce
bounding boxes for humans and objects which participate in
an interaction. Additionally, a heat-map on frames where a
specific interaction exists between the human and the object
will be displayed. Areas D and G present the actual query
results for our proposed techniques and brute force respec-
tively. F1 score and precision/recall results are reported in
Areas E (for our algorithms) and H (for brute force), comple-
mented with detailed performance numbers (response times
and frame rates) in areas F and I respectively.

4 CONCLUSION AND FUTURE WORK

SVQ++ showcases our ongoing work on querying for object
interactions on streaming videos. The system we proposed
constitutes a robust approach to process video streams for

SVQ++: Interaction SQL Query

SELECT canerald, franelD, CI(Fi(HumanBox1)) AS

B Model Architecture C

H HunanTypel, C2(F2(8allBox1)) AS BallTypel FROM) Filter1 Filter3 FilterS Filter1 Filter3 Filters
Queries Demo O Inteaction heave ° .

HumanBox1 USING HumanDetector, BallBox1 USING
BallDetector) WHERE HumanTypel = human AND BallTypel
= tennis AND INTERACTION(HumanTypel, BallType1) =

Dashboard L 4

Architecture

Query Definition

A

1. Select Video Source

© Tennis Baseball
Surfing Skate
2. Select Mode
© Normal Mode Slow Mode

3. Select Predicate

© Interaction

Filter2 Fi Filters Filter2 Flkerd Filter6 °
m d s e
Human Operator Sheave

645 fps F

732 fps

55 fps
4.5 sec
F1 TPR FPR PRE

55 fps

(%1 UNIVERSITY OF

© TORONTO

Get in touch
Link to SVQ

0.976
0864

0541

Figure 3: Front end of the SVQ++.

Filterl Filter3 Filter5 Filter1

Filter4

Filter2

Human Operator

Filterz

Filter3 Filter5

Filter4 Filter6

Figure 4: Example of the filters ordering module.

query specified object interactions, achieving a very high
frame processing rate. This work sheds light on the declara-
tive query process for video streams. New query types involv-
ing spatial and temporal predicates require intensive future
research. The extension of the filters for crowd counting and
estimation scenarios is also in our future plans.

REFERENCES

[1] Jodo Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman.

2019. A Short Note on the Kinetics-700 Human Action Dataset. CoRR

abs/1907.06987 (2019). arXiv:1907.06987 http://arxiv.org/abs/1907.

06987

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014.

Rich feature hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition. 580-587.

[3] Georgia Gkioxari, Ross Girshick, Piotr Dollar, and Kaiming He. 2018.
Detecting and recognizing human-object interactions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
8359-8367.

—
Do
—

(4]

[5

—

(6

—

[7

—

8

—

[10]

K. He, G. Gkioxari, P. Dollar, and R. Girshick. 2017. Mask R-CNN. In
2017 IEEE International Conference on Computer Vision (ICCV). 2980-
2988.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. Noscope: optimizing neural network queries over video
at scale. Proceedings of the VLDB Endowment 10, 11 (2017), 1586-1597.
Nick Koudas, Raymond Li, and Ioannis Xarchakos. 2020. Video Moni-
toring Queries. Proceedings of IEEE ICDE (2020).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097-1105.

Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness
of fit. Journal of the American statistical Association 46, 253 (1951),
68-78.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. In 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. http:
//arxiv.org/abs/1409.1556

Toannis Xarchakos and Nick Koudas. 2019. SVQ: Streaming Video
Queries. In Proceedings of the 2019 International Conference on Man-
agement of Data (SIGMOD °’19). 2013-2016.

http://arxiv.org/abs/1907.06987
http://arxiv.org/abs/1907.06987
http://arxiv.org/abs/1907.06987
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	Abstract
	1 Introduction
	2 System Architecture
	3 Demonstration Setup
	4 Conclusion and Future Work
	References

