
Using Optical Flow for Stabilizing Image Sequences

Peter O’Donovan
502425

Cmpt 400
Supervisor: Dr. Mark Eramian

April 6,2005

1 Introduction

In the summer of 1999, the small independent film The Blair Witch Project was released
to critical acclaim and massive audience turnouts. One significant feature was the
handheld camera motions which helped emphasize a disturbing realism. While films had
been shot with handheld cameras for decades, this recent release served to highlight one
of the drawbacks of the technique. Numerous audience members complained of nausea
due to incredible jitter in the movie. Even when the problem is not as acute, jitter in
image sequences remains an annoying effect, diminishing aesthetic pleasure and making
interpretation for both humans and computer vision systems increasingly difficult. This
project aims to develop a small system to correct for jitter in movies that follow some
basic assumptions. We will allow a stationary or moving camera and moving objects
within the scene. However, we will limit the motions of the camera and objects to
translation and make certain assumptions about using a visible stationary background to
stabilize the image.

2 Basic Approach

Before we go into detail, the general approach of the system will be explained
along with some complications which arise. Then we will discuss the stages in the
development of the system in finer detail. As was explained in my survey of optical flow
techniques and applications [1], optical flow is a field which describes the movement of
pixels between two frames, often used for image sequences like movies. It often forms
the lowest level for motion analysis and is used as input to higher level systems like
segmentation and tracking for interpretation. This system follows the same approach. The
optical flow field is determined for each frame of the movie and is used to segment the
frame into separate regions. These regions are fed as input to an object tracking system
which determines information about the regions in the image and matches them with
regions seen in previous frames. This allows us to track various objects through the
scene. In the current implementation, the sole reason we are tracking these objects is to
be able to dismiss these regions as not being the background. The background is vital in
image stabilization since we assume (perhaps wrongly) this reference is stationary. We
then use the movement of the background region to determine the motion of the camera.
We can analyze this movement and eliminate any extreme motions which are probably
caused by jitter.

There are complications which arise though. We assume very simple motions for
both the objects and camera. The constraints are not merely translational motion, but only
translational motion parallel to the image plane. Motions going away or towards the
camera are not dealt with. They probably would not affect the overall process greatly if
only objects were moving in such a manner. However, if the camera itself was zooming
in or out, this would seriously affect the reliability of the results.

3 Implementation Details

The implementation of the system uses the OpenCV computer vision library. The
main reason for using the library was an optimized function for hierarchical optical flow
calculation. A previous implementation in OpenGL failed partly due to the speed but
mostly because of the necessity for a hierarchical approach. In movies with fast
movements, many frames will have optical flow vectors with large displacements.
Without a hierarchical approach, these large vectors are not reliably found. Part of the
reason for using OpenCV was the complexity of such approaches, combined with the
speed of OpenCV and also the supposed reliability of the flow vectors. The optical flow
field is the lowest level input so you must trust these results to trust later interpretation.
The method used to calculate the optical flow, developed by Bouquet [2] is based on
Lucas and Kanade’s method and uses hierarchical Gaussian pyramids. However, after the
using the method for some time, certain bugs have arisen. I am not certain whether they
can be found in the OpenCV function or this project’s code. Further exploration is
required. Also, before the optical flow is determined for each frame, a simple blurring is
used to remove noise.

As was explained in the survey [1], due to the aperture problem not all optical
flow vectors are fully defined. The approach taken here is to use feature detection to find
regions of high two-dimensional gradient in the image and determine the optical flow
vectors for those points. This allows us to trust the results of the optical flow stage
without worrying about their reliability. The Moravec operator [3] finds good features in
the image by taking the autocorrelation of a pixel in 4 directions (vertical, horizontal, and
the two diagonals). The minimum of the 4 is the value returned. This value will be high
only at a point of high gradient in two directions. If the pixel is part of a homogeneous
region or an edge, the value will be low.

4 Image Stabilization

4. 1 Stationary Background

Now that we have found an optical flow field for each frame, we will consider the
simplest case for image stabilization: a stationary background and no moving objects. If
we can assume no moving objects than the entire image is a single region corresponding
to the background. If we can assume that the background should be stationary, then any
motion detected is jitter which must be compensated for. The average of all the optical
flow vectors will be the movement of the frame. Note that this doesn’t deal with the
depth disparities in images. Motion parallax will produce shorter optical flow vectors for
distant objects and longer vectors for nearer objects. However, since we are taking the
average, the value will be in the middle of the range and give acceptable results. The
average displacement is then used to simply translate the image back to its stationary
location. This will produce a black border where the image lacks information and extra
pixels will be cut off. Since this will result in a smaller image, one approach is to use
mosaicking so that pixels from previous frames can be used to fill in the black areas.

4.2 Moving Background

The second case we consider is a moving background and no moving objects.
This corresponds to a camera moving in the environment, although only with our simple
motion assumptions. We use the same average displacement as the first case but now we
must perform further analysis. We must isolate intentional motions from jitter. We use
Kalman filters to help us analyze the information. For a detailed explanation of Kalman
filters see Welsh and Bishop [1]. However, for this paper we will limit ourselves to a
brief explanation.

 Welsh and Bishop define the Kalman filter as “a set of mathematical equations
that provides an efficient computational (recursive) means to estimate the state of a
process, in a way that minimizes the mean of the squared error.” The Kalman filter
provides predictions of the state of a model for the past, present and future, based on the
previous states of the model. The equations for the Kalman filter are grouped into two
sections: prediction and update. The prediction equations allow you to guess the model
for future states. The update equations are used to correct the Kalman prediction once a
measurement of the system has been made.

Kalman Prediction/Update Cycle

 This Kalman cycle applies perfectly to the measurements and stabilization we
make for our image sequences. The Kalman filter keeps a model of the movement in the
X and Y dimensions. We use the equations to predict how much displacement will occur
in either of the dimensions. Then we take the measurement of the displacement and
update the Kalman filter.

Kalman predictions and actual measurements for a movie. The X-axis is time and
the Y-axis is displacement.

As the graphs show, we use two one-dimensional Kalman filters to describe the
movement in the X and Y directions. For each position in time, the Kalman filter predicts
the current displacement in that direction. This prediction is compared to the actual
displacement measured from the image. The difference between the two is considered the
error or jitter. We will shift the image back according to this difference. As we can see in
the graph, because the camera is panning left, the values oscillate around +5. After a few
frames, the Kalman filter begins predicting this higher displacement. The values greater
or lower than +5 are treated as jitter. There is little intentional movement in the Y-
dimension so the Kalman filter stays around 0, so all the displacements are seen as jitter.

4.3 Moving Background and Objects

The last case we consider is a moving camera combined with moving objects. Now,
certain regions in the image will correspond to objects moving independently of the
camera, although again only with our simple translational motion assumptions. The first
step is to segment the image into separate regions. To do this we use a very simple
segmentation algorithm:

1. Get optical flow vector list
2. Normalize all vectors
3. Discretize all vectors
4. Get max of the number of vectors for each discretized area
5. If max > threshold

• Create new region x

-25

-20

-15

-10

-5

0

5

10

15

20

25

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109

Avg X Flow

Kalman X Prediction

-30

-20

-10

0

10

20

30

40

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109

Avg Y Flow

Kalman Y Prediction

• For each optical flow vector
– If within error threshold of max then assign to region x
 and remove vector from list

• Goto 4

While this algorithm may be simple to implement, it has drawbacks. It only
captures translational motion parallel to the image place. Objects or a camera moving
towards or away from the camera is unconsidered. Rotation is also not captured. The
choice of thresholds is also a sensitive issue.

Normalized and discretized flow vectors

As we can see in the previous image, there appear to be 2 or possibly 3 regions in the
image which are moving with distinct motions. To segment this, we would take the
maximum point and, if within a threshold, assign all vectors within some error to that
region. We would continue doing this until the maximum point was lower than another
threshold.

Once we have segmented the image into regions, we must track them over a sequence
of frames. To do this we begin by finding information about each region. For this project,
only a few pieces of information were used:

1. The center of the region
2. The average distance to the center point, i.e. density
3. The direction of motion
4. The last frame seen
5. The total frames seen

We keep a list of regions seen over the course of the movie. For each new frame, we
use the information for each region to try and match with a previous region. If a match is

found within a threshold, we assign this region to previous one and update the
information with a simple update equation.
X = α(Xnew) + (1-α)(Xold)
If no matched was found, the region is added to the list.

 Now that we have a list of tracked regions, the next task is background
determination. Remember, for image stabilization, tracking the background is of primary
importance. Tracking other regions can be useful but is secondary. There is a problem
however with initially finding the background of the image. For this project, we make the
assumption that for the first second of video, there are no moving regions and the
background takes up the entire image. This initial time is used to lock onto the
background for later tracking. Once regions begin moving independently of the
background, we will compare each region with our special background region from the
first second.

5 Results

The results using this technique are quite promising. The stabilized movie
produced using the first two cases contain significantly less jitter. There are three videos
which should accompany this document. The first contains an example of jitter correction
in the second case where the camera is panning left. This movie, 1.m1v, shows the
original image on the left and the stabilized image on the right. Again, the large black
borders are caused by shifting the frames to line up correctly.

Output from a stabilized movie with intentional motion

An example of the first case was not included since the previous video obviously
shows the system works well with our basic assumptions of a single background region
for the entire image. The times where the background isn’t moving is a subset of the
second case and would be treated similarly. During testing, stationary background movies
were used and the jitter was compensated for nicely.

The third case of moving regions is also perceptively more stable, but less so than
the previous two cases. The additional complexity of region segmentation, tracking,

background determination, and recovery all diminish the quality of the resulting
stabilized image. There are two included videos for this case, 2-1.m1v and 2-2.m1v.
The upper left quadrant shows the original image. The lower left image shows the
normalized and discretized flow vectors for the frame. This circular counter is used to
segment the image into the various regions. The upper right image shows the regions of
the image. It was difficult to represent the regions in these test movies. I decided
eventually to mark the features from the background region as white and all features from
other regions as black. I also included a large white dot to show the center of the region.
From watching the movies, one can see how the background is often lost, which
corresponds to only seeing small black dots. The lower right image is the stabilized
output image.

Output from a stabilized movie with intentional motion and moving objects

6 Problems and Further Work

One major problem with the system so far is background recovery. If the
background is lost because of occlusion from another object there are no methods to
recover it. As long as during the loss, the background region doesn’t change drastically,
the system can recover when the background reappears. It merely feeds the Kalman
filter’s prediction back into itself as the measurement, keeping the movement of the
camera along the same path as previously estimated. If the background moves
significantly when lost, when it reattaches there will be a significant jerk to compensate
for the updating of the Kalman filter. Also, if the background reappears in a different part
of the screen, the system is not intelligent enough to recover. For example, consider a
large van moving right in front of the camera. The background will be pushed to the right

hand side of the image while the van moves by the camera. As the van leaves, the
background will reappear on the left side of the image. The current system cannot handle
this difficulty.

There are further limitations and problems with the current system. Firstly, the
tracking of regions is quite poor. Often objects moving are not properly tracked and many
extraneous regions are created during an object’s motion. Our only salvation is that we
don’t really use the information from these tracked regions other than the background.
These other moving regions are simply dismissed. Their flow vectors are ignored for the
final displacement measurement given to the Kalman filter. Only the background region
is used for this measurement and often the background is large enough to compensate for
the errors in the tracking. However, if more robust intelligence was put into the system,
i.e., background recovery or analysis of object’s motion, then a more robust tracking
system would also need to be developed.

As was previously mentioned, a significant drawback of the system is the simple
translational motion assumptions for both camera and objects. This is a fairly complex
problem to deal with. While many systems utilize more complex motion parameters, in
general, this is a difficult problem since there are many ambiguous motions. The optical
flow calculation should also be improved upon. There are many instances where odd
bugs seemed to occur in the optical flow field, perhaps cause by the OpenCV function.
With more time, this function should be re-implemented.

Another area that could be improved upon is using mosaicking to fill in the region
of the image with black bars. Since we are shifting the image over, these areas are
unavoidable. However, we have information for this area from previous frames. By
combining this information from separate frames, we can remove the black bars. The last
area which could be explored is using the previous segmentation and region information
to make more informed segmentation of the following frames. Though a much more
general issue than this project entails, the problem is definitely an interesting area worth
further exploration.

Conclusions

This project has developed a system for compensation of jittery camera motion. The
problem was divided into 3 general cases: stationary background, intentional camera
motion with no moving regions, and intentional camera motion with moving regions.
Kalman filters are used to model the movement of the camera and decide which motions
are intentional and which are jitter. Moving regions are segmented and then tracked
between frames. There are many complications and assumptions that have been made in
this implementation. We assume a subset of translational motion, no moving regions in
the first second and background regions which do not jump between areas of the image.
Within these assumptions though, the results are quite promising. Movies are
significantly less jittery and with further work could be improved upon immensely.

References

[1] Peter O’Donovan. Optical Flow: Techniques and Applications. 2005.

[2] Jean-Yves Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm”, Intel Corporation, Microprocessor
Research Labs, OpenCV Documents, 1999.

[3] H.P. Moravec, Towards automatic visual obstacle avoidance, Proc. 5th Int. Joint
Conf. Arti¯cialIntell. (1977), 584.

[3] Greg Welch, Gary Bishop. An Introduction to the Kalman Filter. Technical
Report TR95-041, University of North Carolina at Chapel Hill, 1995.
Online version is available at
http://www.cs.unc.edu/~welch/kalman/kalman_filter/kalman.html

http://www.cs.unc.edu/~welch/kalman/kalman_filter/kalman.html

