
Indexing and Matching for View-Based 3-D Object

Recognition Using Shock Graphs

by

Diego Alejandro Macrini

A thesis submitted in conformity with the requirements
for the degree of Master’s in Computer Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2003 by Diego Alejandro Macrini



Abstract
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A shock graph is a shape abstraction that decomposes a shape into hierarchically or-

ganized primitive parts [55]. In this thesis, we propose a novel shock graph computation

algorithm that yields stable graphs under noise and shape deformation due to viewpoint

changes. Next, we extend the indexing and matching framework for hierarchical struc-

tures introduced by Shokoufandeh et al. [54], and apply it to the problem of matching

shock graphs representing views of 3-D objects. The indexing performance is improved

by a vote accumulation algorithm that efficiently solves a multiple one-to-one assignment

of votes. In turn, the matching algorithm is extended by ensuring the satisfaction of all

the hierarchical constraints encoded in the graphs. We show that the proposed integrated

framework is effective in recognizing object shapes and in estimating the pose of their

corresponding 3-D object models. We demonstrate the performance of the framework

with a database of 2688 object views.
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Chapter 1

Introduction

One of the most interesting features of the human visual system is its ability to quickly

recognize a stimulus from a large visual memory. What is truly remarkable is that this

efficient mechanism works even with objects that are only partly similar to objects in

memory. This function of the brain is not fully understood, but something seems to be

clear: the brain does not compare the stimuli with all the objects in the memory one at a

time, and it abstracts the information so as to only match the most meaningful features.

In this thesis, we will present a framework for recognizing three-dimensional (3-D)

objects without resorting to a linear search of all the models in the database — the

system’s visual memory. We will extend a framework for indexing and matching that

will allow us to map an abstraction of the hierarchical structure of parts of an object onto

a graph, and to utilize a low-dimensional encoding of the graph’s structure to quickly

prune the model database.

As an example of a decomposition of an object into parts, let us consider the hierar-

chical relationships among the parts of the silhouette of a person’s body: four relatively

long extremities (arms and legs) and a blob-like shape (the head) subordinated to a

trunk. In order to quickly discard non-body like shapes, the idea is to only select shapes

with body-like configuration of parts for further analysis. A hierarchy of parts can also

1



Chapter 1. Introduction 2

be driven by the level of detail that the part represents, e.g., the fingers can be regarded

as the details of a hand-like shape. In turn, dividing the information into parts can allow

us to determine whether a person wearing a hat is still similar to our abstraction of a

person’s body by identifying the hat as an accessory part of our model.

Representing Views of Objects

In order to define a 3-D object recognition framework, we first need to decide on the most

convenient way of representing all the views in which the object models are likely to be

found. Previous research in this area has taken either a 3-D model-based approach, where

complete 3-D models are stored in a model database, or a 2-D view-based approach, in

which all the expected 2-D model views are stored in the database without explicitly

representing the 3-D structure of the objects.

It can be argued that these approaches are, in fact, complementary and that a general-

purpose system would require both methods combined. On one hand, 3-D model-based

approaches need to search for the model and the geometrical transformation of it that best

explains the image. The view-based approach is simpler and does not require the trans-

formation; however, the resulting database is larger, adding to search complexity. The

advantage of the model-based approach is that in addition to a compact, object-centered

model database, having complete information of the models supports the recognition of

unseen views. This feature depends, however, on a 3-D model acquisition process that

limits the applicability of the approach. On the other hand, view-based methods do

not require complete descriptions of the models; furthermore, they provide a means for

dealing with painted and textured objects, for which pixel intensity statistics can also be

considered.

A related problem is the representation required to encode the relevant object features

and their interrelations. A common strategy in both model-based approaches and view-

based approaches has been to decompose the object’s shape into a small number of (3-D
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or 2-D) primitives forming the building blocks of all possible shapes. Unfortunately,

there is no general agreement on what constitutes the primitive parts of all shapes, and

whether there is a unique and small set of parts suitable for all objects. Several view-

based approaches, such as [30, 29, 43], look for characteristic portions or patches on the

object view. The characteristic patches can be those that contain corners, edges, etc.

However, this strategy is not sufficient to answer the more general question of how to

generalize object properties, which might require the construction of a 3-D model of the

object.

Choosing the Right Features

What object features should we use to accomplish 3-D object recognition? There is no

concise answer to this question in the literature to date, where the answer given will

depend on the kind of objects that we want to recognize, and on whether we want to

identify particular instances of objects or any object belonging to a certain class. That

is, there are some objects that have a well-defined shape and set of parts, but there are

others that are best characterized by their texture (water, trees), colour (fresh food vs.

rotten food), painted patterns (books, CD cases), or functionality (chairs, tables, cars).

In turn, we also need to agree on whether we want to recognize, say, our dog or any dog?

In this thesis, we will focus on objects that can be characterized by their shape.

Different psychophysical experiments support the idea that a large number of objects

fall into this category. Pioneering work on this subject was conducted by Biederman

[5, 7], who surveys the field in [6]. As an example of these types of experiments, we can

consider the work by Hayward et al. [26], in which the authors tested whether people

would find contour information useful for recognizing a given set of unknown objects from

novel viewpoints. They presented subjects with an initial stimulus of a shaded image,

and then a second stimulus of shaded images and silhouettes of the object. They found

that the recognition was faster for shaded images over silhouettes when the object was
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in the same viewpoint, but that there was no difference in recognition performance when

the object rotated relatively to the first. The results suggest that shading information is

not critical to identifying the objects under viewpoint changes.

Dealing with a Large Database of Objects

Regardless of the features we use, we also need to address the problem of how to efficiently

handle a potentially large database of object models. A common approach in the database

community to deal with the problem of large databases is to create indices that sort the

data according to some property. Similarly, in the case of shape matching, we can

decompose the problem into an indexing stage and a matching stage. When indexing,

the number of objects in the database that might account for the query is reduced by

some coarse features; next, in the matching (or verification) stage, a greater number

of features in the query are matched to those of the models, yielding a set of feature

correspondences and an overall similarity measure for each model.

1.1 View-based 3-D object recognition using shape

information

In the present thesis, the aim is to develop a framework to efficiently recognize a po-

tentially large number of objects over changes in viewpoint. To this end, we will use

shock graphs as our shape representation, whose topology will form the indexing feature

used to prune the model database. A shock graph is a shape abstraction that decom-

poses a shape into a set of hierarchically organized primitive parts [55]. We will propose

a novel shock graph computation algorithm that yields stable graphs under noise and

shape deformation due to viewpoint changes. This topological stability of the represen-

tation will allow us to combine shock graphs with an indexing and matching framework

for hierarchical structures originally introduced by Shokoufandeh et al. in [54]. The
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Figure 1.1: The views of 3-D objects are abstracted as graphs of hierarchically organized

primitive parts. In our experiments, each of the views in the model database is pulled

out from the database and used as the query. The topology of the query graph is used

to quickly prune the database by selecting only a few candidates for verification. Next,

the matcher computes the similarity between the query and each of the candidates, and

sorts them accordingly. The best ranked candidate is considered to be the most similar

view to the query among those in the database.

performance of the indexing component of the framework will be improved primarily by

an efficient vote accumulation algorithm that finds an optimal solution to the problem

of multiple one-to-one assignment of votes by using fixed-size buffers bounded by the

number of nodes in the query graph. We will next extend the matching algorithm by

ensuring the satisfaction of all the hierarchical constraints embedded in the graphs and

by propagating the information contained in intermediate matching results. An outline

of the interaction of all these components is depicted in Figure 1.1. Finally, it will be

shown that this framework is effective in recognizing object shapes and in estimating the

pose of their corresponding 3-D object models. We will demonstrate the performance of

the framework with a database of 21 objects and 128 views per object, giving a total of

2688 object views.
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Qualitative shape information reduces the number of views per object that need to

be stored, and provides flexibility to accomplish generic object recognition. However,

using shape information only may not be suitable for various domains in which shape

information is difficult to obtain or is not distinctive (see [32] for a discussion on the

selection of good features for a given context). For this reason, we will not only explore the

solution of using 2-D shape silhouettes for 3-D object recognition, but will also evaluate

and extend an indexing and matching framework that provides a general method to deal

with other hierarchical representations based on features that may be more appropriate

for a given domain.

1.2 Related Work

The concepts regarding each of the components of the thesis, namely the shape repre-

sentation, the indexing strategy, and the matching algorithm are, to a certain extent,

independent from each other. Thus, we prefer to include related work sections in the

chapters where each of the components are introduced. Nevertheless, there is some work

related to the thesis as a whole. Several authors have looked at the problem of indexing

and matching a large number of 2-D views of 3-D objects using shape information.

In [4], Beis and Lowe perform 3-D object recognition from shape information using

straight edges as the shape primitives, and group them together according to collinearity

and parallelism criteria. The angles and length ratios from these groups are used to form

feature vectors, which are indexed from a point database using K-D-trees — a nearest-

neighbour search technique. The nearest neighbours to the query vector are weighted

according to probability distributions learned in a training stage, and are used to generate

hypotheses. The models that receive the most votes are verified using a method for fitting

parameterized 3-D models, described in [22].

Similar to the approach followed in this thesis, Sebastian et al. [50] use shock graphs to
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represent 2-D shape silhouettes sampled from the object’s viewing sphere. The authors,

however, propose a hierarchical partitioning of the database, in which shapes are grouped

into categories. A small number of exemplars from each category are chosen to represent

the grouping, thus forming a database of prototypes used to index into the larger model

database. A problem with this approach is that it is not always possible to find shape

clusters large-enough to significantly reduce the size of the database. In addition, each

match at the prototype level implies a linear search among the shapes belonging to that

category, which should be as small as possible.

In recent work, Cyr and Kimia [14] explore the problem of how to partition the view

sphere of a 3-D object using a collection of shock graphs. However, they do not address

the shock graph indexing problem, and resort instead to a linear search of all views in

the database in order to recognize an object.

1.3 Overview

We present a framework for view-based 3-D object recognition in which a query image is

represented as a shock graph, a directed acyclic graph (DAG) encoding the hierarchical

decomposition of a 2-D shape silhouette into primitive parts. Such primitives arise from

a labelling of the singularities along the medial axis of the shape [8]. Shock graphs are

presented in detail in Chapter 2, along with a novel algorithm to compute them that

improves the topological stability of the graphs under small deformation of the shape

boundary due to noise or viewpoint changes.

Given a database of shock graphs representing views of 3-D objects, the shock-graph

indexing problem will be formulated as the selection of a small number of candidate object

views from the database that might account for the query. Chapter 3 reviews related

work on graph indexing and introduces the indexing strategy, proposed in [52], identifying

its limitations and exploring a number of extensions to overcome them. In particular, an
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efficient vote accumulation algorithm is developed in order to find an optimal solution to

the problem of multiple one-to-one assignment of votes.

In the verification step, each of the candidate shock graphs is matched to the query,

yielding a similarity measure that is used to rank the candidates. The matching problem

is posed as a best assignment problem, in which the node correspondences must satisfy

a set of constraints. For the particular case of hierarchical structures, we search for the

set of node correspondences that maximizes the shape similarity and also preserves all

hierarchical constraints. Chapter 4 discusses the matching algorithm, introduced in [52],

and proposes a number of extensions to this algorithm to guarantee that no hierarchical

constraint is violated and to avoid other types of incorrect node correspondences.

In Chapters 3 and 4, a special effort is made to present the contributions independently

of shock graphs, in order to enhance their applicability to other domains. Chapter 5,

in contrast, brings together the different parts of the thesis and evaluates the approach,

as a whole, for the specific task of view-based 3-D object recognition. To evaluate the

framework, a number of experiments are carried out on large databases of object views

by systematically pulling out views from the database, and using them as the query. In

addition, we repeat the same experiments, varying the sampling resolution of the views

and the degree of missing data in the query.

Finally, Chapter 6 reviews the results and outlines the directions for future research.

A number of ideas will be considered on improving the discriminatory power of the

indexing mechanism, and on view clustering to further reduce the number of views per

object that need to be stored in the model database.

1.4 Summary

We propose a framework in which the silhouettes of 2-D object views are decomposed into

hierarchical relationships among primitives. These primitives and their relationships are
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represented as DAGs and used for indexing and matching. The general indexing strategy

relies on a hierarchical shape description from which a stable structure under visual

transformations can be extracted. Topological indices are formed for each graph by a low-

dimensional encoding of its structure that allows us to only retrieve topologically similar

graphs from the model database. In the verification step, a matching algorithm uses

these indices, coupled with a domain-dependent node similarity function, to determine

node correspondences and rank-order the candidates.



Chapter 2

Shape Skeletons and Shock Graphs

2.1 Introduction

In this chapter, we will briefly review Blum’s shape skeleton, along with recent algorithms

to compute them which are less sensitive to noise. Next, we will discuss the shock graph,

a shape abstraction that groups skeleton points according to the local variation of a

radius function. Such a grouping will provide a decomposition of a skeleton into parts,

whose interrelation will conform to a well-defined grammar. Finally, we will propose a

shock graph computation algorithm and a node similarity function that will satisfy a set

of stability criteria.

2.2 The Medial Axis Transform

The skeleton of a shape aims to capture the shape’s part structure. One of the first

formal definitions of the skeleton is that of Blum [8], who defined the medial axis of a

shape as the locus of center points of all the maximal circles contained within the shape

boundary. Blum called the shape’s skeleton the “Medial Axis Transform” (MAT), an

example of which is shown in Figure 2.1.

Blum also gave an alternate definition in terms of a grassfire front that has become

10
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Figure 2.1: Skeleton of a 3-D object’s view.

very popular. The idea is to imagine that the shape is uniformly covered with grass

and that fire is set simultaneously to all boundary points. The fire front will start

propagating toward the center and will extinguish when meeting an opposing front. The

collision points of the fronts form the medial axis of the shape. The distance of any

skeleton point to its closest boundary points defines the time of formation of the points,

and it corresponds to the radius of the maximal inscribed circle.

In order to reconstruct the original shape from the skeleton points, we need the

information provided by the radius function, R(s), so as to map every skeleton point,

s, to the radius of the maximal inscribed circle centred at s. The original shape can be

reconstructed by the union of all disks of radius R(s) centred at s1.

The first algorithms that were proposed to compute the MAT have great difficulties in

the discrete domain of images, and tend to create skeletons that are extremely sensitive

to noise and to small deformations along the shape boundary. In order to robustly

compute the MAT, a number of researchers, including Blum himself, proposed a variety of

solutions. Thus, we can find Blum’s Generalized MAT [8], which considers only skeleton

points whose radius function is greater than some r. A number of other approaches based

on branch pruning and multiscale skeletons were also proposed [21, 45, 44], most of them

suggesting a rather ad-hoc solution to the problem.

1Note that s can be defined as a function of the Euclidean coordinates x and y in the plane.
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In [34], Kimia et al. noticed that the MAT is a special case of a well-studied curve

evolution equation from singularity theory, in which the entropy-satisfying singularities,

or shocks2, correspond to the skeleton points. More formally, the evolution in time of a

curve or wave front, C, can be described by the following partial differential equation:

∂C

∂t
= FN , (2.1)

where N is the unit inward normal at each point s at time t, i.e., N(s, t), and F = F (s)

is the speed of the front at each point. When F > 0 is a constant, and the curve at

time zero, C(s, 0), is set to the initial boundary of the shape, the singular points of the

equation correspond to that of Blum’s skeleton3.

This result gave rise to several skeletonization algorithms based on detecting the

singular points of Equation 2.1. Several of these new approaches rely on a threshold

to determine whether a given point is singular or not [40, 1, 38, 23]. It turns out that

there seems to be no such threshold that will ensure a one-pixel-thin connected skeleton

for which the union of maximal disks will exactly reconstruct the original shape. In

[15], Dimitrov et al. solve this problem by setting a conservative threshold, and then

applying a thinning algorithm that simultaneously preserves the shock connectivity and

its homotopicity with the original shape. The latter algorithm succeeds in coping with

small noise along the shape boundary. All the shape skeletons for the figures in this

chapter have been computed with this algorithm.

2A shock, or shock point, is the usual term that refers to a skeleton point when the algorithm used
to compute the skeleton is based on Equation 2.1. Nonetheless, it is harmless to consider this term as a
synonym of skeleton point. Other terms that have become synonyms are: MAT, (Blum’s) skeleton, and
grassfire transform, and also time of formation as referring to the value of a shock’s radius function.

3In singularity theory, F is set as a function of the curvature at each boundary point: F = (1+ ακ),
where α ≥ 0 is a regularizing parameter and κ is the curvature. Hence, for α = 0 we obtain the MAT of
the shape [34].
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2.3 Representing Shapes

The skeleton is a transformation of the shape that highlights the symmetries of the

boundary. Hence, it does not provide an abstraction of the shape, but instead, it can be

used to facilitate the task of computing such an abstraction. There are a large number

of shape representations that do not require computing the shape skeleton. The main

argument to perform this transformation is that the skeleton simplifies the decomposition

of a shape into parts which, in turn, provides a means for dealing with partial occlusion

and articulation of parts. For our particular task, we are interested in hierarchical repre-

sentations that satisfy Marr’s stability requirement [41]: local changes to the shape must

result in local differences in the representation. Our goal will then be to use the stability

of the representation and its hierarchy of elements to efficiently index and match shapes.

To this end, we will next study the shock graph: a directed acyclic graph representing

the decomposition of a skeleton into primitive parts.

2.3.1 Shock Graphs

Inspired by Blum’s original idea of using directed graphs to define equivalence classes

of shapes, Siddiqi and Kimia defined the concept of a shock graph [55]. A shock graph

is an abstraction of the skeleton of a shape onto a directed acyclic graph (DAG). The

skeleton points are first labelled according to the local variation of the radius function

at each point. Type 1 shocks form a segment of skeleton points, in which the radius

function varies monotonically, as is the case for a protrusion. A type 2 arises at a neck,

and is immediately followed by two type-1 branches flowing away from it in opposite

directions. Type 3 shocks belong to an interval of skeleton points, in which the radius

function is constant. Finally, a type 4 arises when the radius function achieves a strict

local maximum. That is, the boundary collapses to a single point. An example is shown

in Figure 2.2. Next, we will provide a formal definition of a shock graph based on that
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in [56].

The construction of the graph can be divided into three steps, each of which requires

a definition. To this end, we will consider the set of skeleton points S to be a continuous

and connected set of the medial axis points of a closed curve, as defined by Blum [8].

Two points in a set are said to be connected iff they can be joined by a continuous path

of points also in the set. In order to present the definitions based on a continuous set of

skeleton points, as it was originally done in [56], we need to translate the concept of point

adjacency from the discrete domain to the continuous domain. To this end, let N(s, ε)

be the set of shocks in S \ {s} within distance ε from s, and let N(s) be the set of the

largest connected sets of points in S \{s}. That is, respectively, the set of skeleton points

that do not include s, and the set of connected components originated by removing s

from the skeleton.

First, we will define the labelling of each point in a skeleton branch according to its

time of formation. A skeleton branch is formed by all the connected medial axis points

between two endpoints. An endpoint is a skeleton point s s.t. |N(s)| 6= 2, i.e., terminal

points and junction points4. Next, we will determine how the labelled points in a given

branch are to be grouped according to their labels and connectivity, so that each group

of same-label connected points will be stored in a graph node. One skeleton branch will

give rise to one or more nodes. Finally, we will specify how to add edges between the

nodes so as to produce a directed acyclic graph with edges directed according to the time

of formation of the shock points in each node.

Definition 1 (labelling) Let R(s) be the radius function R : S 7→ R+, and l(s) be a

shock labelling function l : S 7→ {1, 2, 3, 4}, where S is the set of continuous medial axis

points (i.e., shocks) of shape X. Then l(s) for s ∈ S is defined as:

4Junction (or bifurcation) points are considered to belong to all the branches they are connected to,
and so repetition of junction points will be allowed in the shock graph nodes.
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Type 1 shocks Type 2 shock

Type 4 shockType 3 shocks

Figure 2.2: Skeleton points labelled according to time of formation.

l(s) =































4 if ∃ε > 0 s.t. R(s) > R(s′) ∀s′ ∈ N(s, ε),

3 if ∃ε > 0 s.t. R(s) = R(s′) ∀s′ ∈ N(s, ε) 6= ∅,

2 if ∃ε > 0 s.t. R(s) < R(s′) ∀s′ ∈ N(s, ε) and N(s, ε) 6= ∅

and N(s, ε) is not connected,

1 otherwise.

(2.2)

Alternatively, this definition can be regarded as specifying how to label the skeleton

points according to their velocity dR/ds, and their acceleration d2R/ds2. To label a

skeleton point, s, we only need to look at the signs of its instantaneous velocity and

acceleration so as to determine whether R(s) is: monotonically increasing/decreasing

(type 1), a strict local minimum (type 2), constant (type 3), or a strict local maximum

(type 4).

Definition 2 (grouping) Let B1 . . . Bn be the largest groups of connected shocks in S

s.t. ∀s, s′ ∈ Bi, l(s) = l(s′) and ∀s ∈ Bi, either |N(s)| ≤ 2 or if |N(s)| > 2, then s must

be a terminal point of Bi (i.e., Bi \ {s} is connected), for 1 ≤ i ≤ n. Let the group’s

label, l(Bi), be the label of the shocks in Bi, and similarly, let the time of formation of

the group, t(Bi), be the interval [min
s

(R(s)),max
s

(R(s))] defined by the time of formation

R(s) of all s ∈ Bi.
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In other words, the shock groups are skeleton segments in which all the shocks have the

same label and belong to the same branch. Moreover, note that each bifurcation point

will belong to more than one group if the point’s label is the same than those of the

groups of points meeting at the bifurcation.

Definition 3 (Shock Graph) The shock graph of a 2-D shape is a labelled graph G =

(V,E, γ) such that:

vertices V = {0, . . . , n}, corresponding to the groups B1 . . . Bn, and 0 denoting a root
node;

edges (i, j) ∈ E ⊆ V ×V directed from vertex i to vertex j if and only if i 6= j, and i 6= 0
∧ t(Bi) ≥ t(Bj)

5 ∧ Bi∪Bj is a connected set of shocks, or i = 0 ∧ ∀k 6= 0 (k, j) /∈ E;

labels γ : V 7→ {#, 1, 2, 3, 4} s.t. γ(i) = # if i = 0 and γ = l(Bi) otherwise.

From the above definition, it can be seen that the shock branches act as the shape’s

primitive parts which, in turn, are represented as nodes in the graph. The edges are

directed according to the relative time of formation of each part such that the last shocks

to form are at the top of the hierarchy of dependencies. Thus, the central parts of the

shape will be at the top, and the smaller shape extremities will be further down in the

hierarchy.

2.3.2 The Shock Graph Grammar

One of the most appealing characteristics of shock graphs is that any shock graph can

be described by a grammar composed of an alphabet of five symbols: {# (the start

symbol), 1, 2, 3, 4, Φ (the terminal symbol)}, and ten rewrite rules: see Figure 2.3.

The grammar constrains the possible arrangement of primitive parts that form shapes

5The binary relation ≥ for the intervals t(B) can be defined in different ways. In this thesis, we
define it as t(Bi) ≥ t(Bj) ⇔ (max

s
(Ri(s)) > max

s
(Rj(s))) ∨ (max

s
(Ri(s)) = max

s
(Rj(s)) ∧min

s
(Ri(s)) ≥

min
s
(Rj(s))).
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Figure 2.3: The Shock Graph Grammar. Please refer to [56] for details.

and, furthermore, it allows for the identification of semantic equivalences among parts.

The rows in 2.3 group the sequence of symbols that are semantically equivalent into four

types: birth, protrusion, union, and death.

2.3.3 Limitations and Possible Solutions

The labelling of skeleton points or shocks is invariant to translation and rotation of the

shape. In addition, since the labelling is locally determined, it is stable under uniform

scaling and within-class part deformation. However, we can notice some limitations of the

representation when considering skeletons computed from discrete images. On one hand,

scale and viewpoint changes often originate new branches in a skeleton due to small details

on the boundary that were not identified at a lower scale or that were not visible from a

different viewpoint. These new branches can affect, to a certain extent, the structure a

shock graph. On the other hand, the shock labels depend on the pairwise difference of
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Figure 2.4: Skeletons and their shock graphs. Skeleton segments and their corresponding

nodes are labelled with the same ID. The displayed attributes of each node are ID:LABEL.

(a) A simple shape. (b) A new part is added and linked by a ligature segment (yellow).

(c) A third component is added; segment 5 acts as a neck in the new context.

the radius function at adjacent shocks (see Eq. 2.2), which requires, in practice, to define

some threshold to increase the tolerance to differences in radii. For example, we could

redefine the equality condition for type 3 in Equation 2.2 as, R(s) = R(s′)± τ . However,

the choice of τ depends on the scale and so, to output the same results at different scales,

τ must be defined as a function of the relative scale of the given skeleton segment. We

will come back to the later limitation in Section 2.5.1, in which we will propose a robust

method for labelling the skeleton points that will also accommodate small differences in

scale.

Another source of instability in shock graphs has been studied by August et al. [2].

They have shown that concave corners in the shape boundary produce skeleton segments
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where all the points are related only to the corner points at the boundary. Thus, small

changes in the positions of these corner points will cause rather big changes in the ligature

segments, which will ultimately give rise to differences in the corresponding shock graph

(see Fig. 2.4). In [2], the authors propose to eliminate the nodes in the shock graphs

caused by ligature segments and show how this simple strategy produces more stable

graphs.

Finally, on a rather implementation-related aspect, we can notice that the shock

labelling function, 2.2, defines type 2 and type 4 nodes as single points. Thus, small

noise or small variations in shape can turn these nodes into a type 3. Such label variation

is, in fact, captured in the grammar, which specifies that a type 3 acting as a neck is

semantically equivalent to a type 2 (Rule 6), and a type 3 in a birth process is equivalent

to a type 4 (Rule 1). This problem can be solved by either labelling type 3 nodes as 2

or 4 according to their local context, or by factoring in the local context of a node into

the node similarity function (next section).

2.4 Node Similarity Functions for Shock Graphs

Shock graphs define meaningful equivalence classes for shapes: two shapes abstracted by

the same graph are expected to be perceptually similar at a coarse level. This property

will allow us to index a model database to recover a set of candidate models with similar

shock graphs. The next step will then be to verify each of these candidates by evaluating

the information that we have ignored in the abstraction. With this goal in mind, a list

of attribute vectors is associated with every point s in every node in the graph. Such

vectors are 4-tuples (x, y, t, α) representing the attributes of each shock point in the node:

Euclidean coordinates (x, y), time of formation t, and direction α. The set of attributes of

each node are used to define a local measure of similarity between two nodes in different

graphs.
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Several authors have proposed different definitions of node similarity functions for

shock graphs. For instance, Pelillo et al. [46] compute a weighted sum of each of the four

components of all the attribute vectors in a given node. The terms in such a summation

correspond to the length difference and the average difference in: radius, velocity and

direction. Since the two segments being compared are likely to differ in the number of

shocks, the m shocks in the longest segment are mapped to the n shocks in the other by

ξ(i) = d in
m
e. Clearly, such a mapping of shocks may not be the one that best represents the

similarity of the segments. In contrast, Klein et al. [35] propose a dynamic programming

algorithm to find the best mapping that will maximize a comparable similarity function6.

In [56], Siddiqi et al. suggest a different approach to the problem. The idea is to choose

five equidistant points in each segment and then compute the affine transformation that

best aligns the 4-D curves. The overall dissimilarity between both curves is considered

to be the Hausdorff distance among all the 4-D points in the aligned curves.

To the best of our knowledge, there has not been a formal comparison among the

above similarity functions. A brief examination of them, however, will reveal that find-

ing the best mapping among all the points in the curves may provide the best solution as

long as scaling transformations can be ignored. Unfortunately, this algorithm has time

complexity O(|G1|
2 |G2| diameter(G1) depth(G2)

2), and so the simple approximation of

Pelillo et al. may be a better choice for certain applications. When scaling transforma-

tions are to be accounted for, none of the first two will do, and therefore computing the

best alignment of the 4-D curves becomes a reasonable alternative.

2.5 Computing Stable Shock Graphs

Recall the definition of shock graph labelling introduced by Siddiqi et al. [56] that

is presented in Section 2.3.1. In the definition, the shock labels are determined by the

6More precisely, they define a measure of dissimilarity, or cost, in which the attributes’ differences
are not, in fact, averaged or weighted.
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radius function at each point’s local neighbourhood. Unfortunately, in the case of discrete

skeletons, the location of shock points is very sensitive to the accuracy with which both

the radii and centers of the locus of the maximal inscribed circles can be computed.

Clearly, perturbations to the shape’s boundary will affect the exact pixel location of

the shock, regardless of the algorithm used to compute the skeleton. Furthermore, the

skeletonization algorithms proposed to date also suffer from instabilities, due to the

discrete nature of images. In [15], for instance, Dimitrov et al. propose a dynamic

programming algorithm to find the locations of skeleton points in neighbourhoods defined

by the singular values of equation 2.1. This method guarantees a connected skeleton,

but cannot avoid small fluctuations in the locations of the shock points within each

neighbourhood.

2.5.1 Robust Labelling

Our problem is to find a labelling of the skeleton points that is robust to small pertur-

bation of the boundary and to noise in the location of the points. A first attempt to

ameliorate these problems would be to smooth the radius function by some weighted

average of each point’s neighbourhood. Unfortunately, this solution will not eliminate

the problem completely and at the same time, will introduce new artifacts that will lead

to a new source of instabilities.

We propose instead a model selection approach to the problem, which can naturally

accommodate the instabilities of the radius function. Our method consists of finding

a small number of line segments to approximate the radius function for each skeleton

branch. Before we develop the algorithm, recall that we can think of the labelling as a

function of the instantaneous velocity, dR/ds, and acceleration, d2R/ds2, at each point.

Thus, in order to compute the derivatives of R(s), we would first need to apply a smooth-

ing filter to the data to obtain a differentiable function. However, the signs of the deriva-

tives are highly sensitive to noise in the data, and so we will follow an alternate approach.
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We will approximate the data with line segments, whose slopes will give us the velocities

of the points that they model. The line slopes will allow us to label segments of points

as either type 1 or type 3 shocks. Next, by considering the shock graph grammar, we

will infer the type 2 and type 4 points in a robust fashion.

Fitting the data with line segments instead of using segments of a higher-degree

polynomial may seem to be, at first, very limiting since it is easy to imagine, for example, a

shape part for which its radius function will be best approximated by a quadratic function.

It is rare, however, to encounter a piece of a skeleton branch whose radius function

requires higher degree polynomial segments to accurately fit it using fewer segments.

In our experiments, we have observed that most radius functions have piecewise linear

behaviour and only a few have segments with quadratic behaviour. Hence, in principle,

by using line segments to approximate a radius function, we will be forced to use extra

segments when the radii of the skeleton points change quadratically. Fortunately, this

will turn out not to be a problem for our goal of labelling the points.

We will assume that all the data points modelled by a particular line segment have

equal velocity, which is given by the slope of the line. Thus, the labelling problem reduces

to examining whether the segment’s slope is zero, positive, or negative. Since we are only

concerned with the sign change of the velocity, it should be clear that we do not need to

capture the exact shape of R(s). Rather, an approximation of R(s) by a number of line

segments will suffice. The first step in the construction of shock graphs is then to group

adjacent skeleton points with equal sign or zero slope into a graph node, and label the

node as type 1 or type 3, respectively.

Model Selection

Our model selection problem is defined as finding a small number of line segments (com-

ponents) that best describes the radius function for a given skeleton branch. To illustrate

the problem, consider the plots of the radius function for the torso and neck of the boxer
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in Figure 2.5. The first task is to find the number of line segments that we need, along

with their parameters. We will also require these model parameters to be independent of

rigid transformations of the shape, which may cause the radius function to be mirrored.

One of the main difficulties of the fitting is dealing with points at inflection locations,

where the ambiguity in the line segment ownership is more pronounced. The method

that we will propose next will find a robust solution to this problem.

We will now turn to the discrete domain of images, and will assume that the skeleton

S is a discrete and connected set of points in N2, with the local neighbourhood of a

discrete point taken to be the 8-neighbourhood. We are interested in approximating the

radii of skeleton points as a function of the cumulative piecewise linear distance, di, along

a given skeleton branch with endpoints s0 and sn, where si = [xi, yi], for 0 ≤ i ≤ n. This

distance is given by di =
∑i−1

k=0 ||sk+1 − sk||2, and the radius R̂(di) of the shock point si

at distance di from s0 is equal to R(si).

The error of a given line segment fit is computed by its least-squares error. In our

case, we do not expect outliers to occur and so an unweighted least-squares method will

provide a good approximation. To compute the n + 1 indices of endpoints for n line

segments that minimise the fitting error, we define the following function:

Ê(n, i, k) =















LSF(i, k) if n = 1,

min
i<j<k

{

Ê(bn/2c, i, j) + Ê(dn/2e, j, k)
}

otherwise;

(2.3)

where LSF(i, k) is the line and its associated error that best fits, in the least-squares

sense, the data between endpoints indexed by i and k, i.e., LSF(i, k) = e(mik, bik), for

e(m, b) =
∑k

j=i(R(dj)− (mdj + b))2 and (mik, bik) = argmin
m,b∈R

{e(m, b)}. In turn, Ê(n, i, k)

is the minimum error that can be achieved when fitting points i to k with n segments.

Note that the segments are constrained to be continuous on s but not on R(s).

This function is easy to implement by dynamic programming or memoization tech-

niques, so as to avoid computing the same cases more than once. Then, we can efficiently

find the smallest value of n whose minimum error is smaller than a given threshold. That
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is, we start with n = 1, and increment n by one until the minimum error of fitting the

function with n segments is less than a threshold τe. This threshold is set so as to con-

sider small variation in wide and short branches to be less significant than that for narrow

and long ones. In other words, if we set τe as a function of the number of points in the

(connected) branch, we can capture the perceptual significance of the error7.

The choice of endpoints for the fitting segments is sensitive to small variation of the

shape’s boundary, which can cause the endpoints to fluctuate slightly. However, we will

see that the labelling of points will not be affected by the exact choice of endpoints, since

a different selection of endpoints is not expected to affect the slopes of the segments to

a large extent so as to change the qualitative labelling of the segment.

Figure 2.5 illustrates the results of the above model selection algorithm for different

branches of the boxer’s skeleton. The algorithm naturally avoids small regions that

could be labelled as changes in direction of velocity, but that are, in fact, caused by small

perturbations to the boundary or by noise from the skeleton computation. Consider,

for example, the challenge of labelling the points of branches 12 and 15. Both branches

have very unstable values that do not correspond to meaningful events on the shape

boundary. In both cases, the line segments found provide a good representation of the

radius function and more importantly, of the contours they encode.

Grouping

Now that we have a small number of line segments that approximate each skeleton

branch’s radius function, the labelling and grouping of shock points into graph nodes

becomes easy. Points modelled by adjacent segments with equal slope sign are grouped

together in a graph node. The overall algorithm to construct a robust shock graph from

7In our experiments, we set this threshold to be 1/2 of the number of shock points in the branch.
Note that the number of points in a connected skeleton is proportional to the scale of the shape, and
so this method can accommodate small changes in scale. The precise value for the threshold is not
significant, provided that it causes the desired effect and is consistent across all models.
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the skeleton of a shape can be stated as follows:

1. Given a set of points {si} ∈ N2, and a radius function R(si), with {si} thinned to

form a one-pixel-thin connected skeleton. Compute the 2-connected branches.

2. Model the skeleton radius function of each branch with a small number of line

segments, as discussed in Section 2.5.1.

3. Group shock points into graph nodes, and label them as either zero velocity (type

3), or positive/negative velocity (type 1), as specified in Section 2.5.1. Add an edge

between any two nodes whose endpoints are adjacent in the skeleton (the direction

of the edge is not important at this point).

4. For all junctions in which all the nodes meeting at the junction are type 1 and have

equal velocity sign w.r.t. the meeting point, add a single-shock node adjacent to

all of them, and label it either as type 2, if the velocity sign of the nodes is positive

w.r.t. the junction, or as type 4 otherwise.

5. Order the nodes in the graph so as to preserve their adjacency and satisfy the shock

graph grammar, while directing the edges from nodes with greater radii to those

with smaller radii (Definition 3). This step has been proven to exist and to be

unique for any closed curve [56].

6. Add a root node labelled as #. Next, add edges directed from the root node to

every other node in the graph with in-degree equal to zero, so as to obtain a single

rooted directed acyclic graph.

7. (optional) Relabel every type 3 node with only two adjacent type 1 nodes, one on

each side, as either type 2 if the radius functions of the type 1 nodes increase away

from the type 3 node, or as type 4 if the radius functions of the two nodes decrease

w.r.t. the type 3 node.
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The last step of the above algorithm is optional, mainly because it violates the defi-

nition of a shock graph, which requires type 2 and type 4 nodes to be composed of only

one shock point. However, we have found that this restriction weakens the topological

stability of the graph, for small perturbations to the shape will easily transform a one-

shock type 2 (a neck) into a type 3 if the neck becomes even one pixel longer. This

step will then improve the stability of shock graphs in terms of node labelling, leading

to similar shapes being represented by shock graphs with equal or similar topology and

node labels.

Close to Zero Velocity

Shock points modelled by line segments with zero slope are labelled as type 3. In practise,

however, it is rare to find line segments with exactly zero slope, and so we need to set

a threshold that determines when a slope can be considered to be equal to zero. When

doing this, we also want to capture the relative significance of the slope in terms of its

context. The perceived difference in the values of skeleton point radii is analogous to

the speed of a car, in which a change in speed of 15 km/h in, say, 4 seconds is more

significant if our current speed is 50 km/h than if it is 180 km/h. We account for this

simple notion as follows: given a line segment defined by the line md+ b in the interval

[d0, d1], we set a threshold, τz, on the ratio

m(d1 − d0)

m (d0+d1)
2

+ b
≤ τz,

which is the ratio of the difference of radius in the interval and the actual radius at the

center of the interval. Note that this ratio is always defined since the radius function at

every shock point is positive and so m = 0 iff b > 0.

Skeleton points modelled by a line segment with relative change in the radii at the

endpoints below threshold are labelled as type 3. The advantage of a stable identification

of zero velocity shocks is twofold. Firstly, a stable labelling of the points will allow us,

when indexing and matching, to only consider node correspondences between nodes with
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Figure 2.5: Skeleton of a view of the boxer. The plots continue on the next page.
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Figure 2.5: Each figure plots the values of the radius function corresponding to a skeleton

branch of the boxer. The data points are approximated by a few line segments, which

are shown overlaid on the points. The colouring of the skeleton shows the resulting

grouping of shock points. Note that the scaling factor is different for each plot. Branch

10, for example, is modelled by only one line since the fitting error is 6.71, which is below

threshold τe = 11, set as half of the number of points to fit. Segments with relative

change in radii below threshold τz are show in green. Endpoints that are shared by

several branches are displayed but not included when fitting.
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the same label. Secondly, it can be seen that the labelling of the points affect the structure

of the graph, and so a stable labelling leads to a structural stable shock graph.

Figure 2.7 shows an example of the structural changes related to the labelling of the

skeleton. In this figure, the slope of segment 15 is greater that τz (see also the plot of

branch 15 in Figure 2.5), which causes not only that node 15 is labelled as type 1, but

also the addition of a type 2 (node 24, a local minimum), and a type 4 (node 25, a

local maximum). In contrast, a terminating type 3, such as node 7, does not require the

addition of the type 2 and type 4 nodes8. Therefore, a labelling of the skeleton points that

is not highly sensitive to small changes on the boundary is crucial to obtain structurally

stable graphs.

Acceleration and Ligature Segments

We have mentioned that skeleton points modelled by adjacent line segments with equal

slope sign are to be grouped together. This step corresponds to the definition of shock

graphs, which states that regardless of the velocity or the acceleration, monotonically

increasing or decreasing adjacent shock points are to be labelled as type 1. However,

we have found that the endpoints of the ligature segments analysed in Section 2.3.3

are related to significant accelerations, i.e., to a large difference between the slopes of

two adjacent line segments. Ligature segments are of key importance to our task of

recognition, because they signal the attachment of shape parts. Figure 2.6 shows the

same object from different viewpoints and the corresponding deformation of shape parts

in each view due to perspective projection. At matching time, we will compare the

attributes of pairs of nodes, and will compute a measure of their similarity to obtain a

one-to-one node correspondence. Hence, detecting ligature segments and grouping them

into distinct nodes will allows us to reduce the impact of the deformations by isolating

parts that will not likely be affected in the same way.

8A type 3 segment has no strict local minimum or maximum.
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Figure 2.6: Views of the boxer labelled with the algorithm described in Section 2.5.1.

Adjacent skeleton points with the same label are coloured similarly, where each group

of same-colour adjacent points represents a single node in the shock graph of the shape.

Note how the ligature segment that attaches the front leg(s) to the torso undergoes a

different deformation than that of the segment corresponding to the leg. The ligature

segments in these images were detected by the method described in this section.

It remains only to determine when an acceleration is significant. Once more, we must

account for a relative notion of change. To this end, let m0 and m1 be the slopes of

adjacent line segments with equal sign. Then, we group together the points associated

with these segments if

|m0 −m1|

max(|m0|, |m1|)
≤ τl,

where τl is the ligature segment threshold9. The main disadvantage of this method

to detect ligature segments is that it is difficult to find a value for τl that precisely

separates ligature segments from non-ligature segments in all possible cases. We believe

that other methods based on detecting skeleton points associated with concave corners10

on the shape’s boundary might provide more stable results. Unfortunately, these methods

9Note that max(|m0|, |m1|) > 0 because in this step we are dealing only with type 1 nodes.
10The definition of a concave corner will also depend on a threshold. However, this concavity threshold

might be more naturally set than our τl.
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require mapping skeleton points to boundary points, and so they are more difficult to

implement. Furthermore, we have found that in practice, our approach behaves well for

most cases.

It should be noted that by splitting segments of equal slope sign, we are again depart-

ing from the strict definition of shock graphs. This operation violates rule 4 of the shock

graph grammar (see Section 2.3.2), which states that a type 1 node can only have two

or more type 1 nodes as its children. Our (optional) modification relaxes this constraint

and allows chains of type 1 nodes to exist. We can also think of this step as an extension

to the grammar that adds a new type (5) to label ligature nodes, i.e., nodes whose shock

points belong to a ligature segment, which are described in Section 2.3.3.

Figure 2.7 shows the resulting shock graph for one of the views of the boxer. The graph

was computed by the algorithm outlined above, including all the optional extensions to

the shock graph definition11. In this case, nodes 5 and 6 should be one node according

to the definition of shock graphs, but are split in two due to the abrupt change in

acceleration, shown in Figure 2.5 for branch 5. This is also the case in branches 15

and 19; in all cases, the pronounced acceleration change signals a ligature segment. In

addition, note that nodes that are labelled as type 3 in Figure 2.7 are those that are

modelled by a line segment with relative change in radii at the endpoints (Figure 2.5)

below threshold τz.

2.6 A Viewpoint Invariant Node Distance Function

We have shown a method for computing stable graphs in terms of their topology which,

as we will see in the following chapters, has an important global impact on both the

indexer and matcher. We now need to address the problem of node similarity in order

to solve the local domain-dependent component of the matching process. Our method

11The plots of Figure 2.5 show the line segments overlaying only the points they model, i.e., without
including the endpoints shared by junction points between segments.
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Figure 2.7: The resulting shock graph for the skeleton of the boxer. The node labels are

formed by each node’s index and type. In turn, each node represents a skeleton branch

segment, which is coloured differently from its adjacent segments and labelled according

to its corresponding node index.
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for computing shock graphs also suggests a way of computing the similarity between two

shock graph nodes.

The idea is to use the lines fitted to the shock points which model part of the nodes’

data, to measure the similarity between the nodes. We will take the line segments (the

model) of one node and compute how well they approximate the data of the other node.

This is analogous to asking, in a generative model approach, the conditional probability

of the data coming from a given model.

Our algorithm for measuring the goodness of fit of a given model and data is similar

to that with which the data is modelled. The main difference is that now we will fix the

slopes of each component of the model, and will only allow the line segments to either

shrink or grow to best fit the data. The assumption here is that changes in viewpoint

cause parts to vary their dimensions but that their pattern of velocities and acceleration

changes will remain roughly invariant.

Let M(u) be the set of line segments that model the data points in node u. We want

to compute the error of using M(u) as a model for the data points in node v. To do this,

we will fix the slopes and y-intercepts of the line segments in M(u) and will minimize the

fitting error over all combinations of inner endpoints12. That is, for the given ordering

of line segments in M(u), the first and last data points in v will determine the outer

endpoints of the model, and the remaining data points will be the inner endpoints to

consider. See Figure 2.8 for an example.

Let E(M(u), v) be the minimum error of modelling the radius function of v with

model M(u). Abusing notation, we will refer to this error as ÊM , which is given by

ÊM(ls, le, ps, pe) =































LSE(ls, ps, pe) if le − ls = 1,

min
ps+δs≤pi≤pe−δe

{

ÊM(ls, dle/2e, ps, pi) +

ÊM(dle/2e, le, pi, pe)
}

otherwise;

(2.4)

12Both model and data points are oriented such that they decrease from left to right.
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Figure 2.8: The model (2 line segments) for the skeleton segment 2 in shape a is used

to fit the radius function of segment 2 in b. The data points of a-2 are shown in red

and those of b-2 in blue. In this example, the two line segments have shrunk to best

approximate the data. Parts of the original model are shown with a thin black line.

where ls and le− 1 are the start and end indices of the chain of adjacent line segments in

M . That is, le is the index of the current last segment plus one. The number of segments

used to fit a sequence of points is given by le− ls. LSE(ls, ps, pe) is the least-square error

of fitting points between endpoints ps and pe with line ls. Finally, δs and δe require a

special explanation, which is discussed next.

We want to guarantee that all the components of the model are used to fit the data and

so, given that we allow each component to become shorter or longer, we must set some

limits to this length variation. The obvious limit is to require that all the components

be greater than zero; a better limit is to define a range for its variation. For example,

when matching object parts that have been deformed due to a viewpoint change, we can

expect parts to not vary their size by more than k times. This value will accommodate

changes in size due to perspective, such as the legs of the boxer getting shorter as we
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move from a side view to a top view. δs and δe aim to capture this idea of limits to the

variation in the number of points per component. ps + δs is the first point index after ps

that will ensure that there are enough data points to be fit by dle/2e − ls line segments.

Similarly, pe + δe is the last index point that guarantees enough data points on the right

side. Note that δs and δe will vary at each iteration of min.

Properties of the Algorithm

The combinatorial algorithms that we have presented to compute Ê and ÊM find an

optimal solution to their problems. We can afford this because of the discrete and

small nature of the solution space of both problems. We can thus provide an efficient

implementation by using a data structure that avoids computing their recursive functions

more than once with the same parameter values. In addition, the standard input of the

problems does not require a large storage size for this purpose.

It is important to note that the algorithm does not consider the absolute x-and-y

coordinates of the shock points, and so is invariant to translation and rotation of the

skeleton. Furthermore, by throwing away this information, we do not distinguish nodes

with different curvature characteristics, which we believe is an advantage for our task

of viewpoint detection and for dealing with articulating objects. Consider, for example,

the bent neck of an animal drinking water and the neck of the same animal in an alert

position. Our algorithm will consider the two necks to be very similar, provided that the

velocities and accelerations that characterize the neck remain invariant to this sort of part

articulation, and that the neck’s length does not vary significantly. In our experiments, we

have found that this is the case for a large number of cases of articulation and viewpoint

changes.



Chapter 2. Shape Skeletons and Shock Graphs 36

A Measure of Similarity

The fitting error E(M(u), v) = ÊM is a measure of the dissimilarity between the at-

tributes of nodes u and v. However, we often need a measure of similarity, as is the case

for our matching algorithm. This measure can be computed by some function that maps

the values of ÊM onto the real interval [0, 1] and is inversely proportional to ÊM . For our

experiments, we first define the non-symmetric node distance function d̂ : N2 7→ [0, 1],

and then derive a symmetric similarity measure from it. This distance is defined as

d(u, v) = ξmin

(

E(M(u), v)

δ(v)R̄(v)
, 1

)

+ (1− ξ)
|L(u)− L(v)|

max(L(u), L(v))
,

where u and v are nodes in shock graphs Q andM respectively, ξ is a convexity param-

eter, δ(w) is the number of shock points in node w, L(w) = dδ(w) is the length of the

skeleton segment, defined in terms of the distance described in Section 2.5.1, and R̄(w)

is the average radius for all the shock points in w13.

The first term in the above equation measures the fitting error as a function of the

number of points in node v assigning a distance in the interval [0, 1], which will be zero

when the model of u is a perfect model for the data in v, and one when the average error

is greater or equal than the average radius of node v. We use the average radius of the

node simply to set a bound on the fitting error proportional to the radius function of v.

The second term is inversely proportional to the lengths of the skeleton segments of each

node. As it can be seen in Figure 2.6, the variation in length of corresponding skeleton

segments between shapes can be large. However, when searching for similar views of an

object, we can assume that the lengths would not change too much and consequently

penalize nodes with large difference in length. We set ξ = 0.85 for our experiments, so

that 85% of the nodes distance corresponds to the fitting error and only 15% represents

the difference in length of the skeleton segments of u and v.

13If the number of shock points in either one of the nodes equals one, we compute the distance between

the node attributes as d(u, v) = ξ |R̄(u)−R̄(v)|

max(R̄(u),R̄(v))
+ (1− ξ) |L(u)−L(v)|

max(L(u),L(v)) .
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A symmetric function of similarity between the nodes is computed by σ(u, v) =

1 − avg(d(u, v), d(v, u)). Note that σ(u, u) = 1 only if the line segments are a perfect

model of the data points in u.

2.7 Summary

Skeletonization algorithms have evolved to the point in which small perturbations to the

shape contour do not introduce unwanted branches. In turn, skeletons can be abstracted

by shock graphs, which group skeleton points into nodes that are hierarchically related

according to time of formation. When the limitations of shock graphs are taken into

account, they become a stable shape abstraction that can guide the search for similar

shapes in a database. The additional attributes associated with every node can later be

used to refine the ranking of the matches and to compute node correspondences between

the query and every candidate. To this end, we believe that the behaviour of the radius

function is a powerful discriminating feature that provides important flexibility in terms

of viewpoint invariance and natural deformation of parts.

We have developed a shock graph computation algorithm that overcomes the sensi-

tivity of the skeleton labelling process to noise and shape deformation. The algorithm

was designed so as to represent similar views of an object captured from different view-

points by shock graphs with similar topology and node labels. We have also proposed

a node similarity function that robustly measures the distance between the attributes of

two nodes, which we believe also works well under noise and part deformation. However,

only indexing and matching experiments will be able to provide an exhaustive evaluation

of their performance.
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Indexing Hierarchical Structures

3.1 Introduction

Given a query shape, the goal of indexing is to efficiently retrieve, from a large database,

similar shapes that might account for the query, or some portion thereof (in the case of

an occluded query or a query representing a cluttered scene). These candidate models

will then be compared directly with the query, i.e., verified, to determine which candidate

model best accounts for the query.

In this chapter, we will review and extend a graph-indexing algorithm proposed by

Shokoufandeh and Dickinson [54, 52]. The main idea of this method is that of representing

features and their interrelation as directed graphs, where the edge directions capture the

hierarchical dependencies among features. The eigenvalues of the adjacency matrix of the

graphs are used to capture these structural relationships in stable and low-dimensional

vectors (structural indices). These vectors satisfy two goals: they form a new feature

vector that can be used to prune the model database and, in turn, provide structural

information that will guide the search in the verification stage (Chapter 4).

We analyzed the behaviour of the indexing algorithm on large model databases and

found that a large portion of the false positives delivered to the verification stage were

38
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due to the method for computing and accumulating the votes for the structural indices of

the models. This led us to define a new vote weighting function that favours the simplest

models that best explain the query. Furthermore, we developed a general vote accumu-

lator algorithm that outperforms the one employed in [52] in terms of its discriminatory

power.

From here on, we will refer to indexing techniques as those meant to prune a model

database in order to provide a small set of candidates to a matching (verification) stage.

Thus, the goodness of a given method will depend on: the number of candidates that

need further verification, the probability of the target not being among the candidates

(which should be close to zero), and the efficiency of the indexing technique relative to

the matching algorithm’s complexity.

3.2 Related work

Several alternatives for indexing shape features have been proposed. The most popu-

lar ones are based on decision trees, interpretation tables, hashing, nearest neighbour

searching, and model prototyping.

A decision tree [42] is a mechanism for hierarchically partitioning a database. A query

shape is matched to the root, and depending on the results of the match, the process is

applied recursively to one of its children. At each step, the space of possible models is

reduced. These methods are very sensitive to noise and occlusion, which may lead to the

descent down an incorrect path.

In turn, interpretation tables [16] are related to hashing techniques, which use a

hashing table and a hash function to map recovered image features to a list of models

that contain those features. Each feature match is used to vote for a model. A well-known

hashing technique in computer vision is geometric hashing. For instance, Lamdan et al.

[37] use geometric hashing to map affine invariant interest point coordinates, expressed
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relative to basis-triplets of three non-collinear interest points, to a set of ordered pairs of

models and basis-triplets. Thus, they simultaneously collect votes for models and for the

basis-triplets. This information is later used to find the affine transformation that best

aligns the model to the query.

In order to account for noise in the image features, the hash function is usually

required to locate similar features in the same bin. The main problem with hash tables

is that their fixed-sized bins do not efficiently represent the non-uniform distribution of

the data. This lack of adaptation gave rise to other data structures especially designed

for similarity searching and for higher-dimensional feature vectors (see Section 3.3.3.)

In recent years, nearest-neighbour (NN) techniques have become very popular for

feature-based retrieval applications. For instance, Beis and Lowe [4], use NN search

databases to store classes of feature vectors that characterize arrangements of lines. A

feature vector is formed, for example, by the angles between a set of three co-terminating

lines. Other perceptual grouping methods, as well as the number of lines considered,

define different feature classes. The number of relationships among lines encoded in

a feature vector determines how global or local the feature is. A NN search on the

corresponding index database is performed for every image feature, allowing each match

to vote for a model according to the saliency of the feature in the database.

The method proposed by Shokoufandeh and Dickinson [52], which we will cover in

depth in the following sections, also performs a NN search of object features as performed

by Beis and Lowe. However, instead of having several index databases, one for each fea-

ture grouping, the relationships among features are chosen as the characteristic property

that will help prune the database. Thus, the method provides a general technique ap-

propriate for applications in which the relationships among features are sufficiently rich

to distinguish objects in a large database.

Indexing into a database of prototypes is another technique that helps reduce the

search space. The idea is to organize the database by grouping similar objects and
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choosing a representative for each group that is similar enough to all the other members.

This idea can be recursively applied, forming a hierarchical representation of the database.

Unfortunately, it is not always possible to find clusters of similar shapes that are large-

enough to significantly reduce the size of the database. This technique is well-suited for

domains in which it is possible to cluster views into prototypes or to artificially create

prototypes to represent all the members in a given group. Good prototypes are crucial to

obtain a balanced hierarchy of small classes, which is necessary to minimize backtracking

and avoid a linear search of the database.

3.3 Spectral Characterization of Graph Structure

In [54], Shokoufandeh and Dickinson consider graphs as a means of capturing relation-

ships among features. They noticed that for certain domains, the structure of these

relationships carry enough information to quickly prune the model database, and to pro-

vide strong constraints on verification. They first proposed a method for encoding the

structure of undirected, unique rooted trees, which was later extended, in [52], to directed

acyclic graphs (DAGs).

The topological characterization of a DAG is based on the eigenvalues of the graph’s

adjacency matrix, the so-called spectrum of the graph. Such eigenvalues are related to the

branching factor, depth, and number of nodes in the graph, and so they provide a way

of encoding structural properties of the graph. Indeed, the analysis of the properties of

the spectra of graphs is a well-established area in graph theory (see the following books

for an introduction to the subject [13, 12, 11]). In [52], the stability of the spectra of

DAGs under minor perturbations in structure is studied and used to design a signature

for this type of graph. In addition to the stability of the spectrum of a DAG, the spectral

encoding of a graph’s topology is also motivated by the invariance of the eigenvalues to

permutations of subgraphs and relabellings of nodes.
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3.3.1 Graph Indexing

We will now review the spectral indexing mechanism proposed in [52], and will briefly

analyze its properties.

First, note that any graph can be represented as an antisymmetric {0, 1,−1} ad-

jacency matrix, with 1’s (-1’s) indicating a forward (backward) edge between adjacent

nodes in the graph (and 0’s on the diagonal). The goal is to map the eigenvalues of a

DAG to a point in some low-dimensional space, providing a stable, compact encoding of

structure.

Specifically, let G be a DAG rooted at node RG whose maximum branching factor

is ∆(G) and whose root degree is δ(G). Let the subgraphs rooted at the children of

RG be G1, G2, . . . , Gδ(G), as shown in Figure 3.1. For each subgraph, Gi, whose root

degree is δ(Gi), compute1 the magnitudes of the eigenvalues of Gi’s submatrix, sort

them in decreasing order, and let Si be the sum of the δ(Gi) largest magnitudes. The

sorted Si’s become the components of a d-dimensional vector assigned to RG, where

d = max
k
{∆(Gk)} is the maximum dimension of any graph in the model database. If the

number of Si’s is less than ∆(G), then the vector is padded with zeroes. The procedure

can be recursively repeated for the subgraph rooted at every non-terminal node, thus

assigning a vector to each node in the DAG. Such a vector is called the topological

signature vector (TSV), and is denoted by χ(v), where v is the root of a directed acyclic

subgraph of G. The details of the TSV transformation, the motivation for each step, and

an evaluation of its properties can be found in [52].

The above definition of the TSV has the disadvantage of ignoring some information

related to terminal nodes (leaves). The TSV of a DAG, Gv rooted at node v that has

terminal nodes {li}
n>0
i=1 as it children will be equal to that of the same graph with these

leaves removed. The reason for this is that the zero eigensum of a leaf is indistinguishable

1We use SVD to compute the magnitudes of the eigenvalues.
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Figure 3.1: Forming the graph’s signatures. Next to each node is the result of summing

the kv = δ(G) largest eigenvalues corresponding to the subgraph rooted at the node v.

The TSV of node a, χ(a), is: [3.9392, 3.2361, 1], and the other indices are: χ(b) =

[3.2361, 1, 0] and χ(c) = [1, 0, 0]. All the indices will be padded with zeros according to

the maximum branching factor in the database.

from the padded zeros of a TSV. There is a simple solution to this problem. We can

add, as an extra dimension, the eigensum Sv corresponding to Gv. Since this sum will

be greater than all the eigensums of the subgraphs rooted at the children of v, it will

always be the first dimension of the TSV, as is the case in Figure 3.1. We followed this

last procedure to compute the TSV to carry out the experiments of Chapter 5, in which

the maximum dimension of any TSV in the model database was 8.

3.3.2 Dealing with PINGs

Graph spectra do not uniquely characterize graphs. In fact, it is not uncommon to find

pairs of isospectral non-isomorphic graphs, namely PINGs, as described in [12]. Thus,

an index vector solely based on the graph’s spectrum, such as the TSV, will potentially

retrieve graphs that are very dissimilar to the query. This lack of uniqueness of the

indices is solved in [54] by computing a TSV for every non-terminal node. Now, if we



Chapter 3. Indexing Hierarchical Structures 44

describe a graph’s structure as a collection of TSV’s, the likelihood that for the subgraph

rooted at each node in one graph, there exists a co-spectral graph rooted at some node

in the second graph, is small. In addition, having multiple indices for different portions

of the graph provides a means for dealing with missing data and/or occlusion.

The indexing algorithm is as follows: compute the indices (TSVs) for all the non-

terminal model nodes in all the models and store them in a point database supporting

nearest-neighbour search. Then, given a query graph, compute the indices of all the

non-terminal nodes in the query and find their nearest neighbours (NN) in the index

database. Finally, let the retrieved points vote for their associated model graphs and

accumulate the votes as evidence, according to the following weighting function:

W (q,m) =
||χ(q)||

1 + ||χ(m)− χ(q)||
, (3.1)

where q and m are the query node and the model node, respectively, and || · || denotes

the L2-norm.

This weighting function exploits the fact that the magnitudes of the graph’s eigenval-

ues are proportional to the branching factor and number of nodes in the graph [39]. Thus,

the numerator weights the vote according to the relative size of the encoded subgraph

in the query graph, which causes both larger and more complex structures to be more

relevant than smaller or simpler ones. In turn, the weight is also inversely proportional

to the distance or dissimilarity between the indices.

3.3.3 Indexing as a Nearest-Neighbour Search

Nearest-neighbour (NN) search in high-dimensional spaces is a well-studied subject. In

the last decade, a number of techniques have evolved into a mature state. An example

of the activity in this field is the work of Hjaltson and Samet [27], in which they propose

a NN search algorithm based on an index data structure known as a quadtree, which or-

ganizes the space as a hierarchy of disjoint boxes. This work stimulated the development
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of spatial data structures, such as R-tree, R*-tree, SS-tree, and SR-tree, among oth-

ers, which more efficiently partition the space into minimum bounding hyper-rectangles

and/or hyper-spheres. This evolution ultimately led to the recent A-tree and X-tree NN

search algorithms. A complete survey of the subject can be found in [10].

The performance of the NN search techniques proposed so far is highly dependent

on the characteristics of the data distribution. With the exception of approximate ap-

proaches, we can still find datasets that will result in a particular technique being outper-

formed by a linear search. Fortunately, it is usually possible to find an indexing method

with sublinear performance for the average case for a given domain. An evaluation of

several state-of-the-art NN search algorithms can be found in [19].

For the rest of the chapter, we will assume that an appropriate selection of a NN

search technique has been made2. However, there is still one last issue to address on

this matter. When performing a NN search, we can usually retrieve either the k nearest-

neighbours (k-NN) of the query point or all the points within a fixed-size hypervolume

centered at the query point. k-NN has the advantage of fixing the retrieved number

of points regardless of their distance to the query. Unfortunately, this means that we

can potentially retrieve points that are far away from the query. In addition, k is an

arbitrary value that might lead to missing good points3. Range queries, on the other

hand, eliminate the problem of missing similar points at the cost of possibly having an

unbounded number of matches. For our indexing needs, considering points that are not

close is wasteful, and missing similar points reduces the amount of evidence available.

Therefore, from now on we will only consider range NN search queries.

2In our experiments, we have used the SR-tree technique proposed by Katayama and Satoh [33]. We
thank Norio Katayama for the use of his SR-tree implementation.

3Ties among points present an additional problem that is usually solved by returning more that k
points in case of ties with the k-th point.
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3.4 Improvements to the candidate selection scheme

3.4.1 Weighting the evidence

As the model database gets larger, it becomes frequent to find objects composed of other

objects also in the database. For example, imagine the side view of the silhouette of a

person wearing a hat and riding a horse. We might have a view similar to this one in the

database, and also similar single views of the horse, the person, and the hat. In fact, it

is reasonable to think of having parts of object views in the database so as to account for

errors due to under-segmentation of the image. Situations like these will not be handled

well by the indexer. The reason is that the vote weighting function described above,

(3.1), does not take into account how much of the query is explained by the model nor

how well the model is explained by the query. Thus, it is possible that when our query

view is simply a hat, the horse-man-hat model view will rank as high as a single view of

a hat and vice versa.

What we need is to represent an Occam’s razor-like concept into our ranking algorithm

— we want the simplest model that best accounts for the query. This can be easily

accomplished by redefining the vote weighting function, such that for a query point q

and neighbouring model point m, we would like to increase the weight of the vote for an

object model M if m represents a larger proportion of M , and similarly, we would like

to increase the weight of the vote for M if q represents a larger proportion of the query.

These two goals are in direct competition, and their relative merit is a function of the

task domain. The idea of favouring the simplest models that best explain the query can

be factored in the weighting function, which can now be specified as:

W (q,m) =
(1− ω)||χ(q)||

TQ(1 + ||χ(m)− χ(q)||)
+

ω||χ(m)||

TM(1 + ||χ(m)− χ(q)||)
(3.2)

where q and m are nodes in the query graph Q, and in the model graphM, respectively.

The weight is normalized by the sums of the TSV norms of the entire query and model

graphs, i.e., TG(V,E) =
∑

v∈V ||χ(v)||. The convexity parameter ω, 0 ≤ ω ≤ 1, is the
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weighting affecting the roles of the opposing goals described above. The first term favours

models that cover a larger proportion of the query, while the second favours models with

more nodes accounted for. By normalizing by TQ and TM, we obtain vote weights whose

sum is in the interval [0, 1] for a one-to-one vote correspondence between query nodes

and model nodes. When w = 1/2, for example, the sum of all the one-to-one votes for a

given model will be equal to one when all the nodes in the query and in the models are

mapped, and their TSV’s are equal.

In order to choose an appropriate value for ω, we can use some knowledge about the

intended domain. For example, it is usually the case that the model views in the database

are not occluded while, on the other hand, the query is likely to be occluded. For such

cases, we can set ω = 3/4 and so, 75% of the vote weight will correspond to how well the

entire model is explained by the query, while 25% thereof would account for the relative

number of matched nodes in the possibly occluded query.

3.4.2 Fair Counting of Votes

We are now ready to count the votes, which might seem, in principle, a trivial task: let

every point in the index database vote for several model points and then select the models

with the most votes. However, in order to have a fair, or truly democratic, voting process,

we must ensure that no query point votes for more than one point in the same model,

and that no model point receives more than one vote from the query points. In other

words, given a large number of models, we want to find the best one-to-one assignment

of votes from query points to model points for each candidate model.

Several approaches that rely on voting schemes, such as those in [54, 4], allow a

many-to-many assignment of votes, supposedly under the implicit assumption that the

number of false positives due to the relaxation of such a constraint will not be significant.

Unfortunately, as the model database increases in size, more models that should be

discarded may receive several unfair votes and will be sent to the verification stage,
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Figure 3.2: A query graph and a database with only three models. For simplicity, votes

are not normalized, and consequently they do not add up to 1. Here W(q,m) represents

index similarity, where perfect similarity equals 1 and total dissimilarity equals 0.
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affecting the performance of the system.

3.4.3 An Example

Figure 3.2 depicts an example where a one-to-one assignment of votes would make an

important difference in the selection of candidates. The task in this example is to rank

the models according to the similarity of their nodes to those of the query. Here, the

subgraph G rooted at q2 is “similar” to that rooted at q3. Imagine also that in addition

to the models shown in the figure, there is a third model, M3, isomorphic to the query

graph. Note that just for this example, and in order to make the meaning of votes

more intuitive, we do not normalize the votes by TQ and TMi
as shown in Equation

3.2 4. Thus, by performing a many-to-many vote accumulation, we obtain the ranking:

{M2 = 6.5,M3 = 4.4,M1 = 2.1}, which incorrectly orders the models. The model graph

M3 is isomorphic to the query and so we would expect it to lead the ranking. Moreover,

the model graphs M2 receives several votes due to its large size, which allows the model

to collect more votes than an isomorphic graph to the query.

This particular assignment of votes is a simple case that demonstrates how misleading

a trivial counting of votes can be. The reason is that a query graph may have several

similar subgraphs in it, but each of these subgraphs can only explain at most one subgraph

in a model graph, and vice versa. A one-to-one assignment of votes will turn out to

be fundamental for the kind of objects we used in our experiments (see Figure 5.1).

Our model database is composed of simple models represented by small graphs and by

complex models that will include the graphs of the simpler models several times among

their subgraphs.

4For simplicity and without loss of generality, we only compute the indices of the graphs’ roots and
their immediate children. Up to now, we have computed the indices of all the non-terminal nodes, so as
to minimize the occurrence of PINGs. However, for a given domain (with minimal occlusion), it might
be sufficient to consider only the indices of the nodes up to a certain level in the hierarchy, as shown in
the example.
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3.4.4 Small Bounded Buffers to Accumulate Votes

A simple way of obtaining a maximal one-to-one assignment of votes is to accumulate all

the votes received for each candidate in a list of model graphs Mk. Each of the elements

in this list is, in turn, another list of all the (qi,mj) pairs of votes, for qi ∈ Q andmj ∈M .

We can then compute a maximum weight bipartite matching (MWBM) per model graph

list, which will give us a one-to-one assignment of votes per model and ultimately the

overall vote for each model.

There is one important problem with this approach. Namely, regardless of whether or

not there are many-to-many assignments of votes, we will have to compute k maximum

matchings, where k is the number of models that receive at least one vote, resulting in

a matching complexity of order proportional in the number of votes and the number

of nodes in the models, which is potentially large. It is clear, then, that the gain in

performance of finding the optimal one-to-one assignment of votes will probably not be

enough to justify the increase in time complexity of the indexing stage.

Instead, we will propose an algorithm that finds the optimal solution with a small

overhead, and only for those queries that will benefit from a careful counting of votes.

We will prove the optimality of the solution, and will convince ourselves that the price

paid to obtain this solution is justified in terms of the gain at the verification stage.

The idea is to compute the distances between all query nodes’ TSVs, and use these

distances to determine which nodes might vote for two (or more) different nodes in the

same model so as to prevent them to vote twice. Given the range for the NN search,

we know that query points within this range from each other are potential competitors.

Thus, we can give a special treatment to the sets of query nodes that are likely to

produce a many-to-many mapping to model nodes. In principle, we can store all the

votes corresponding to the nodes in these sets and then compute a maximum matching

for each set. Since the sets are small, we are gaining something; however, we must still

store all the correspondences between the nodes in the set and all the models’ nodes. We
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Figure 3.3: An example of overlapping index ranges for a TSV space of dimension d =

max(∆(Q),max
i
{∆(Mi)}) = 2. Each point v represents the 2-D TSV χ(v) of node v. In

this example, the range query of nodes q2 and q3 is determined by a weighted L2-norm,

while that of q1 is given by a weighted L∞-norm. In general, a weighted Ls-norm is used

to allow more variation on one dimension than on the other. The range queries for nodes

q4 and q5, on the contrary, are specified by an unweighted L2-norm that treats every

dimension equally. The TSVs of nodes q2 and q3, along with those of q4 and q5, are said

to overlap for their given range queries.

can do better by keeping only the fewest number of votes that will allow us to find the

optimal solution, as we will see next.

3.4.5 Multiple One-to-One Vote Correspondence (MOOVC) Al-

gorithm

Before we present the MOOVC algorithm, we need to define a few data structures. Let

P1, . . . , Pn, be a partition of the query points’ topological indices χ(q) 6= ~0 ∀q ∈ Q, such

that two indices that overlap belong to the same partition. Given the range queries5

~r1 and ~r2 for two subgraphs rooted at q1, q2 ∈ Q, the indices χ(q1) and χ(q2) are said

5A range query is usually defined by a weighted Ls distance. Given two n-dimensional vectors ~x and

~y, the Ls distance between them is defined as Ls(~x, ~y) = (
∑n

i=1 wi|~xi − ~yi|
s)

1/s
. In our experiments, we

use the weighted maximum distance (L∞) for all the range queries, i.e., L∞(~x, ~y) = max{wi|~xi − ~yi|}.
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Figure 3.4: Intermediate steps of the MOOVC algorithm for the example in Figure

3.2. In the example, the range queries induce the partitions P1 = {χ(q1)} and P2 =

{χ(q2), χ(q3)}. The results, Si, of the range queries for each query node i are S1 =
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to overlap if the d-dimensional hypervolume centred at χ(q1) and χ(q2) with dimensions

defined by ~r1 and ~r2 intersect one another (see Figure 3.3). Let Sj,1, . . . , Sj,k be the sets

of nearest-neighbour points in the database that are within range {~rl}
k

l=1 of the query

node indices {χ(ql)}
k

l=1 in the same partition Pj, for k = |Pj| and 1 ≤ j ≤ n. Finally,

let Vi,j be a k-by-k matrix containing in each column q the best k votes for the object

model graph Mi received from every index χ(q) ∈ Pj. See Figure 3.4 for an example of

these matrices, which we will use to buffer the votes for each model, and for each set of

overlapping indices.

We can now define the evidence accumulation algorithm. For every partition set Pj,

1 ≤ j ≤ n, perform k = |Pj| NN searches to find the sets of model node indices S1, · · · , Sk

corresponding to the points in Pj. Then, for every point χ(m) ∈ Sl, where 1 ≤ l ≤ k,

compute the votes W (q,m) for all indices χ(q) ∈ Pj. For each vote, update the matrix

Vi,j ifW (q,m) is greater than the smallest vote in column q of Vi,j
6. Once all the nearest

6This sorted matrix can be implemented by k sorted lists, one for each query point. The list need
not be longer that k, so whenever we are about to exceed this limit, we can safely eliminate the smallest
(first) element of the list and insert the new one in the right-most position according to its value.
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neighbours of the indices in Pj have been processed, compute a MWBM for each matrix

Vi,j so as to obtain the best one-to-one assignment of votes {(q,m)}
k′≤|Pj |
v=1 from query

nodes in Pj to model nodes. Finally, sum over the resulting k′-mapping of votes,

Ti,j =
k′
∑

v=1

W (MWBM(Vi,j)v),

and tally a vote Ti,j for each object model Mi from the partition Pj
7. This vote is the

largest sum that can be obtained by a one-to-one assignment of votes from query nodes

in the partition j to the nodes in the model graph i.

After the evidence accumulation is complete, those models whose support is suffi-

ciently high are selected as candidates for verification. The bins containing the overall

votes for every modelMi and the vote buffer matrices Vi,j can, in effect, be organized in

a heap, requiring a maximum of O(log n) operations to maintain the heap when evidence

is added, where n is the number of non-zero object accumulators.

Complexity Analysis of the Algorithm

A MWBM can be computed in O(n2.5) [28], where n is the number of overlapping indices

in a given object model. The computations of MWBMs are performed only when we

encounter query nodes with similar indices. Therefore, the overhead incurred to obtain an

optimal solution for all the models, compared to the suboptimal algorithm in [54], is n(n−1)
2

distance comparisons against ~r to create the partition sets, Pj, plus the computation of

the small MWBMs when more than one query nodes compete to vote for the same model

node. That is, the time complexity of the overhead is O(m∗k2.5), where m is the number

of models with at least one node receiving a vote from several nodes in the same partition,

and k = max(|Pj|). In other words, m and k are directly proportional to the number

of false positives generated by the previous method for counting votes. Hence, for little

7If memory requirements allow the retrieval of all the NN’s of the nodes in a given partition, the votes
can be efficiently computed by first sorting the retrieved points by model. This allows the matrices, Vi,j ,
to be processed sequentially, reducing both the storage and the heap-search requirements.
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extra time spent when accumulating the evidence, we get a much larger reduction of

workload in the verification stage, which is O(n3) per candidate.

Proof of the Optimality of the Solution

Proof of the optimality of the solution. By the definition of MWBM, we know that its

solution is the one-to-one assignment of votes that maximizes the overall vote for the

model. Then, in order to prove that the above algorithm provides an optimal solution, we

just need to show that for a given model, it finds the same solution as that of computing

a MWBM over the set of all the votes for the model. The competition for which model

node gets a query node’s vote arises only when either several model node indices {χ(m)}

from the same model graph receive a vote from the same query index χ(q), or vice versa.

By construction of the node partitions Pj, this can only happen among the indices in the

same partition. Since we compute a MWBM for the retrieved weighted votes for all the

indices in a given partition, we just need to show that it is enough to consider only the

set of k = |Pj| best votes for every node in Pj.

It is easy to prove this by contradiction. Let Ti,j =
∑k

v=1MWBM(Vi,j)v be the overall

vote computed from the matrix Vi,j . Let us assume that there exists a vote W (q,m′),

for some q ∈ Pj, that was left out of column q of Vi,j , but had it been included by using

a larger buffer V ′i,j, it would have caused a rearrangement of one-to-one correspondences

with a greater overall sum, T ′i,j =
∑k

v=1MWBM(V ′i,j)v.

Since there is a rearrangement in the assignment of votes due to the addition of m′,

it must be the case that now q is mapped to m′ instead of some other m∗ in column q

of Vi,j . Moreover, we know that among the k model nodes originally in column q of Vi,j ,

there is at least one model node m that will not receive a vote in the final one-to-one

assignment of votes, since there are only k−1 query nodes other than q, which is already

associated to m′. The fact that we obtain T ′i,j without mapping m tells us that in the

original vote mapping, MWBM(Vi,j), no query node q′ other than, possibly q, can be
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mapped to m with a vote W (q′,m) > W (q′,m′′), for (q′,m′′) ∈ MWBM(V ′i,j). Thus,

since mapping q to m′ results in a T ′i,j > Ti,j that was not possible before, it must be

the case that W (q,m′) > W (q,m). Therefore there is a vote greater than W (q,m) ∈ Vi,j

that is not in Vi,j , which contradicts the definition of Vi,j .

It is easy to find an example to show that buffering fewer votes than the best k for

every q ∈ Pj and k = |Pj| can lead to a suboptimal solution. Hence, we know that we

are retaining the fewest number of votes that are needed to achieve the optimal solution

to the multiple bipartite matching problems.

3.4.6 The Algorithm Applied to the Voting Example

The new vote accumulator algorithm is applied to the query and models in Figure 3.2.

Let {~ri}
3
i=1 be the vectors of range values for the NN searching algorithm that induce

the partitions P1 = {χ(q1)} and P2 = {χ(q2), χ(q3)}. Note that M3 is a model in the

database that is isomorphic to Q. By performing a many-to-many vote accumulation

we obtain the ranking: {M2 = 6.5,M3 = 4.4,M1 = 2.1}, which incorrectly orders the

models. The results of our one-to-one accumulator algorithm are, as expected: {M3 =

3,M2 = 2.9,M1 = 1.4} 8. The algorithm’s intermediate computations are shown in

Figure 3.4, where it is easy to see that the size of the vote-buffer matrices is bounded by

the number of overlapping indices in the query graph.

3.4.7 Improving the TSV’s Discriminatory Power

The discriminatory power of the indexing algorithm can be further improved by inves-

tigating new alternatives to the construction of the signature vectors. For example, up

until now we have considered the edge weights in the graphs to be all equal to 1. How-

ever, we could instead use real values in the partly open interval (0, 1] to express the

8When using normalized votes (Eq. 3.2), M2 can be further penalized for having unmatched nodes.
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strength of the link between nodes, where the weights are a function of domain-specific

or domain independent properties. To this end, the relative distances of the nodes to

their subgraph’s root can be used, for example, to have an inverse numerical influence

in the spectrum, so that noise further down in the hierarchy will contribute less to the

graph’s eigenvalues. This would penalize less the noise that occurs at lower levels of the

hierarchy than noise higher up, where extra/missing nodes are less likely. In addition,

geometrical information could also be incorporated as edge weights or as extra dimen-

sions in the signature vectors so as to further constrain the votes. In [53], for example,

the TSV is extended to incorporate contextual information specific to the domain. An

extensive evaluation of such alternatives is left as future work.

3.5 Summary

The structure of a directed acyclic graph rooted at a single node can be characterized

by the spectrum of the graph which, in turn, can be used to index the graph into a

database. A TSV is an encoding of the spectrum that reduces the dimensionality of the

graph according to the maximum out-degree in the model database. The dimensionality

reduction is stable under small perturbations of the graph, but increases the ambiguity

of the signature (index). Thus, the TSVs for every node are computed and used for

indexing so as to account for the ambiguity of the indices while allowing partial occlusion

of graph structure.

We extended the above graph indexing technique so as to penalize unmatched nodes

in the models and in the query. Furthermore, we proposed a vote accumulation algorithm

that efficiently finds the optimal one-to-one vote assignment, thus reducing the number

of false positives delivered to the verification stage.

The discriminatory power of the indexing algorithm can be further improved by in-

vestigating new alternatives to the construction of the indices. For example, the relative
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distances of the nodes to the subgraphs’ roots could be used to reduce the influence

of a node in the spectrum, favouring stability higher up in the hierarchy. In addition,

geometrical information could be incorporated as edge weights to further constrain the

votes. An extensive evaluation of the signal-to-noise ratio of such alternatives and others

is left as future work.



Chapter 4

Matching Hierarchical Structures

4.1 Introduction

Hierarchical shape representations, such as coarse-to-fine decompositions, part-whole re-

lationships, and multiscale descriptions, are frequently encoded as rooted trees or directed

acyclic graphs (DAG). For our purposes, DAGs are more expressive than rooted trees

because they allow nodes to have multiple parents and also make explicit the direction of

the hierarchical relationships. In this chapter, we shall focus on measuring the similarity

between two hierarchical structures encoded as DAGs, and on computing their node cor-

respondences. In order to emphasize the role of these graphs in our framework, we shall

refer to one of them as the query graph, Q, and the other as the model graph, M.

4.2 Related work

Previous work on matching hierarchical structures has assumed different constraints on

the type of graphs they can handle and on the characteristics of the node correspondences.

For instance, in [57], Umeyama matches same-size, weighted graphs by an eigendecom-

position method that finds the permutation matrix that minimizes the difference of the

graphs’ arcs’ weights. In [20], Gold and Rangarajan use a graduated assignment approach

58
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to match attributed graphs without guaranteeing that all the hierarchical dependencies

among nodes are preserved. In general, there are a great number of graph matching

algorithms that are too restrictive to be useful in vision applications where we need to

measure the similarity among attributed graphs that may not be isomorphic and may

have different numbers of nodes due to noise and/or occlusion.

When considering a domain in which occlusion is non-existent and shape segmenta-

tion is exact, we still need to deal with the stability of the shape representation, i.e.,

perceptually similar shapes should have identical or at least very similar representations.

Thus, relying on graph isomorphism for matching demands a stable representation or a

very dense sampling of the object’s viewing sphere to accommodate the instabilities of

the representation. The complexity of the problem increases rapidly if part articulation

also causes changes in the representation of the shape.

We can relax the requirements on representational stability if we allow for some degree

of misleading information in the graphs such as spurious noise, clutter, occlusion and part

articulation, and look for the largest isomorphic subgraphs that satisfy all the hierarchical

constraints. To this end, Pelillo et al. [46, 47] cast the attributed tree matching problem

as a maximum weight clique problem based on an auxiliary association graph by following

an approach first introduced in [3, 36]. The algorithm looks for the set of nodes in the

query and in the model graphs that preserve the hierarchical constraints imposed by the

representation, and maximize cumulative pairwise node similarities among the nodes.

The best model from a set of candidate model graphs is then selected by rank ordering

the models according to the weights produced by their largest isomorphic subgraph with

the query, scaled by the relative mass of this subgraph with respect to the mass of the

model. One problem with this approach is that by only considering the largest isomorphic

subgraph, small noise in the graph can largely affect the similarity value obtained.

In [49], Sebastian et al. address the problems of noise, articulation and deformation

of parts, and occlusion for unrooted trees by computing the graph edit-distance. The
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edit-distance is defined as the minimum cost of the deformation path that brings two

shapes to a simpler common shape. Four edit operations are defined to deform a shape

into another, three of which are in the graph domain and allow different types of merges

and deletions of nodes. The fourth operation permits altering the nodes’ attributes,

thereby producing a geometrical deformation rather than a structural one. The main

disadvantage of this technique is that an occluded query will dramatically slow down the

algorithm for it will spend much time editing out extraneous nodes.

In order to deal with inexact graph matching, several authors have analysed the

properties of the eigenvalues and eigenvectors of the adjacency matrix of a graph [51,

57, 54, 9]. The approaches proposed in [51] and [57] both have the main disadvantage of

being unable to match graphs of different size. In contrast, Luo and Hancock [9] allow

different-size graphs to be matched by posing the search for node correspondences as a

maximum likelihood problem, in which the query graph is the observed data and the

node correspondences are the hidden variables. Finally, Shokoufandeh et al. [52] propose

a recursive bipartite matching algorithm, which we will analyse in detail in the following

section.

4.3 DAG Matching

In [52], Shokoufandeh et al. develop an algorithm to deal with noisy DAGs under the

presence of occlusion and articulation of parts. Such a method is a modified version

of Reyner’s algorithm [48, 58] for finding the largest common subtree. The main idea

of the algorithm is to cast the structural matching problem as a set of bipartite graph

matching problems. A similarity matrix for the graphs is computed, in which each entry

of the matrix is the result of a domain-dependent node similarity, σ(u, v), and a measure

of the nodes’ topological similarity. Hence, the node similarity function measures the

pairwise similarity between the node’s attributes and the structure of the DAG rooted at
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that node. The best pairwise node correspondence obtained after a maximum cardinality

maximum weight (MCMW) bipartite matching is used to split the graph in two. The

split yields two pairs of smaller DAGs to match, and so the algorithm recursively proceeds

thereafter in a greedy search fashion. The steps of the algorithm are sketched in Figure

4.1.

The key idea in casting a graph-matching problem as a number of MCMW bipartite

matching problems is to use the topological signature vectors (TSV), computed for in-

dexing, to penalize nodes with different underlying graph structure. Recall that the TSV

of node v, denoted by χ(v), is a spectral encoding of the topology of the DAG rooted at

v, and is covered in detail in Section 3.3 when investigating the indexing of hierarchical

structures. The advantage of using the TSV to enforce structural similarity is that these

vectors can be compared to obtain a bounded measure of similarity, which allows the

matching of subgraphs with small structural differences.

We implemented Shokoufandeh et al.’s matching algorithm and evaluated it on a large

database of shapes. The experiments revealed a number of problems with the approach,

which we will study in the following sections, along with our proposed solutions.

4.3.1 Definitions and Notation

First, let us define the matching algorithm and its components. Let Q = (VQ, EQ) and

M = (VM, EM) be the two DAGs to be matched, with |VQ| = nQ and |VM| = nM. Define

d to be the maximum degree of any vertex in Q andM, i.e., d = max(δ(Q), δ(M)). For

each vertex v, let χ(v) ∈ Rd be the unique topological signature vector (TSV), introduced

in Section 3.3. The bipartite edge weighted graph G(VQ, VM, EG) is represented as a

nQ × nM matrix W whose (q,m)-th entry has the value:

Wq,m = α σ(q,m) + (1− α) (||χ(q)− χ(m)||) , (4.1)
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where σ(q,m) denotes the domain-dependent node similarity between nodes q ∈ Q and

m ∈M, and α is a convexity parameters that weights the relevance of each term. Using

the scaling algorithm of Gabow and Tarjan [18], we can efficiently compute the maximum

cardinality, maximum weight matching in G with complexity O(|V ||E|), resulting in

a list of node correspondences between Q and M, called L, that can be ranked in

decreasing order of similarity. This set of node correspondences maximizes the sum of

node similarities, but does not enforce any hierarchical constraints other than the implicit

ones encoded in (||χ(q)− χ(m)||). Thus, instead of using all the node correspondences,

we take a greedy approach and assume that only the first one is correct, and remove

the subgraphs rooted at the selected matched pair of nodes. We now have two smaller

problems of graph matching, one for the pair of removed subgraphs, and another for the

two remainders of the original graphs. Both subproblems can, in turn, be solved by a

recursive call of the above algorithm. The complexity of such a recursive algorithm is

O(n3). Additional details and examples can be found in [52].

4.4 Problems with this approach

It turns out that splitting subgraphs at nodes with high confidence of being a good

correspondence is not a strong enough constraint to guarantee that all the hierarchical

relations are satisfied. Consider, for example, the graphs in Figure 4.2. After the first

iteration of the matching algorithm, nodes (q5,m5) will be matched since their similarity

is the highest one in L1. In the next iteration, the subgraph rooted at q5, Q
∗, and

the subgraph rooted at m5, M
∗, as well as their corresponding complement graphs Qc

and Mc, will be recursively evaluated1. When matching Qc against Mc, the best node

correspondence according to the outlined algorithm will be (q4,m3). It is easy to see that

this match violates the hierarchical constraints among nodes because the siblings q4 and

1In the recursive call for Q∗ and M∗, nodes q5 and m5 will be in the solution set, and so they will
not be evaluated again.
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(a) (b)

(d) (e)

(c)

Figure 4.1: The DAG matching algorithm. (a) Given a query graph and a model graph,

(b) form bipartite graph in which the edge weights are the pair-wise node similarities.

Then, (c) compute a maximum matching and add the best edge to the solution set.

Finally, (d) split the graphs at the matched nodes and (e) recursively descend.

q5 are mapped to m3 and m5, respectively, with m3 a parent of m5.

Another constraint that arises in several domains is that of preserving sibling rela-

tionships. We would like that nodes with the same parent are mapped to nodes that also

share the same parent (see Fig. 4.3.) Note that this constraint is not, strictly speaking, a

hierarchical constraint, since there are no hierarchical dependencies among sibling nodes.

It is tempting to move ahead and enforce this constraint when matching, but it turns

out that there is a possibility that a sibling’s relation is genuinely broken by an occluder.

In such a case, we may not want to enforce this constraint or else we will be unable to

find meaningful matching subgraphs. A compromise solution would be to penalize the

matches that break a sibling relationship so as to favour those that provide a good set of

correspondences while maintaining these relationships intact.
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Figure 4.2: A case in which the hierarchical constraints between query nodes and model

nodes will be violated after two iterations of the algorithm. Note that only non-zero

Wq,m values are shown.

Figure 4.4 illustrates a situation in which the correspondence (q4,m5) would be the

second best match. To avoid this, we can propagate the information provided by the

previous best match, (q5,m4). This information is used to favour q4’s sibling, so that

(q4,m3) can be chosen instead. Since we do not want to become too sensitive to noise

in the graph, we shall consider preserving the sibling-or-sibling-descendent relationships

instead of the stricter sibling relationship. We will refer to this asymmetric relation

between nodes as the SSD relation2. Note that due to the asymmetry of the relation,

the desired propagation of information will occur only whenever the algorithm proceeds

in a top-down fashion. In the next section, we will see how to promote a top-down node

matching.

Before continuing, let us define the rather intuitive node relationships that we will be

working with. Let G(V,E) be a DAG and let u, v be two nodes in V . We say that u is

a parent of v if there is an edge from u to v. Furthermore, let u be the ancestor of v if

2Note that while the sibling relationship is symmetric, the SSD relationship is not, i.e., if u is the
“nephew” of v, then SSD(u,v) is true, but SSD(v,u) is false.
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Query shape

Model shape
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Figure 4.3: Example of the importance of the sibling relation information among nodes.

Here, the left-front leg of a query view of a dog was matched to that of a similar model.

When matching the right-front leg, there are two equally good candidate parts in the

model: the remaining front leg and the visible back leg. In a case like this, we can use

the information provided by the previous match and promote the association of parts

that are locally related, i.e., share a common parent in the graph.
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Figure 4.4: Preserving sibling relationships by propagating the information from the

previous best match. The matching pair (q4,m3) is chosen over the slightly better match

(q4,m5), because it results in two siblings in the query being matched to two siblings in

the model.



Chapter 4. Matching Hierarchical Structures 66

and only if there is a path from u to v. Similarly, let u be a SSD of v if and only if there

exists a parent of u that is also an ancestor of v.

The relations defined above will allow us to express the desired constraints. However,

we first need to determine how to make this information explicit, for it is not immediately

available from the adjacency matrices of the graphs. A simple method is to compute

the transitive closure graphs of our graphs. The transitive closure of a directed graph

G = (V,E) is a graph H = (V, F ), with (v, w) in F if and only if there is a path from v

to w in G. The transitive closure can be computed in linear time in the size of the graph

O(|V | |E|)[24].

From the above definition, it is easy to see that the transitive closure of a graph is

nothing else than the ancestor relation. Computing the SSD relation, on the contrary,

requires a bit of extra work. Let AG be the adjacency matrix of the DAG, G(V,E), and

let TG be the adjacency matrix of the transitive closure graph of G. By means of these

two matrices, we can now compute the non-symmetric SSD relation by defining SG as

the |V | × |V | matrix, where

SG(u, v) =















1 if ∃w∈V {AG(w, v) = 1 ∧TG(w, u) = 1},

0 otherwise.

(4.2)

Armed with our new matrices TQ,TM,SQ, and SM, we can update the similarity

matrix, W, at each iteration of the algorithm, so as to preserve the ancestor relations

and to discourage breaking SSD relations. At the first iteration, n = 0, we start with

W0 = W. Next, let (q′,m′) be the best node correspondence selected at the n-th

iteration of the algorithm, for n ≥ 0. The new weights for each entry Wn+1
q,m of the

similarity matrix, which will be used as edge weights in the bipartite graph at iteration
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n+ 1, are updated according to:

Wn+1
q,m =































0 if TQ(q, q
′) 6= TM(m,m′),

β Wn
q,m else if SQ(q, q

′) 6= SM(m,m′),

Wn
q,m otherwise;

(4.3)

where 0 ≤ β ≤ 1 is a term that penalizes a pair of sibling nodes in the query being

matched to a pair of non-sibling nodes in the model. It is sufficient to apply a small

penalty to these cases, since the goal is simply to favour siblings over non-siblings when

the similarities of the others are comparable to that of the siblings. An example of this

can be seen in Figure 4.3, in which the dog’s back leg and its right-front leg are equally

similar to an unmatched leg in the query. The extra information we need to solve this

competition is given by the sibling relationship of the dog’s front legs.

It is clear that when q′ and m′ are the roots of the subgraphs to match, the ancestor

and SSD relations will be true for all the nodes in the DAG. Thus, in practice, when

matching the q′-rooted and m′-rooted DAGs, we can avoid evaluating the conditions

above. In addition, we know that only a few weights will change as the result of new

node correspondence, and so we only need to update those entries of the matrix. This

can be done efficiently by designing a data structure that simplifies the access to the

weights that are to be updated. Alternatively, the update step can also be efficiently

implemented with matrices by noticing that the column of AG corresponding to node u

tells us all the parents of u, while the row of TG corresponding to node v give us all the

descendants of v. Thus, given a node pair (q′,m′) and their corresponding AQ, TQ, AM,

and TM, it is straightforward to select and modify only those entries of Wn
q,m that need

to be updated at each iteration of the algorithm.
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4.4.1 Encouraging top-down matching

A careful look at the algorithm as it has been stated so far will reveal that, in general, the

first node correspondences found will be those among lower-level nodes in the hierarchy.

We can expect this bottom-up behaviour of the algorithm because the lower-level nodes

carry less structural information and so their weight will be less affected by the structural

difference of the graphs rooted at them. Therefore, nodes at the bottom of the hierarchy

will tend to have high similarity values and consequently, they will be chosen to split the

graphs, creating small DAG’s with few constraints on the nodes.

A solution to this problem is to redefine the way we choose the best edge from the

bipartite matching. Instead of simply choosing the edge with greatest weight, we will

also consider the order3 of the DAG rooted at the matched nodes to select the pair of

nodes that have a large similarity weight and are also roots of large subgraphs. We define

the mass, m(v), of node v as the order, n(T ), of the DAG rooted at v. For a given graph

G(V,E), the |V |-dimensional mass vector, MG, in which each of its dimensions is the

mass m(v) of a distinct v ∈ V , can be computed from the transitive closure matrix, TG,

of the graph by MG = TG ×~1, where ~1 is the |V |-dimensional vector whose elements are

all equal to 1. Thus, MG is a vector in which each element MG(v), for v ∈ V , is the

number of nodes in the DAG rooted at v.

Unfortunately, the mass does not give us enough information about the depth of the

subgraph rooted at a node since, for example, the path of n nodes has the same mass

as the star of n nodes. A better idea is to consider the cumulative mass, m̂. Let m̂(v)

be defined as the sum of all the masses of the nodes of the DAG rooted at v. Thus, the

cumulative mass vector will be given by M̂G = TG ×MG, which can also be written as

M̂G = T2G × ~1. This vector can then be used to obtain a relative measure of how tall

and wide the rooted subgraphs are with respect to the graph they belong to, by simply

3Here we follow the convention in the Graph Theory literature that considers the order of a graph to
be the number of nodes in the graph, and the size of the graph to be the number of edges in the graph.
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normalizing the masses. Let M̃G be the normalized cumulative mass vector given by

M̃G =
M̂G

argmax
v∈V

{

M̂G(v)
} , (4.4)

where the normalizing factor will correspond to the cumulative mass of the node whose

in-degree is zero —a root— and has the greatest cumulative mass in G.

The cumulative mass is exactly the piece of information we need, since it should be

easy to see that for all the trees with n nodes, the star is the one with smallest cumulative

mass, while the path is the one with the greatest. Hence, the cumulative mass, m̂, for

the root of a tree of order n satisfies 2n − 1 ≤ m̂ ≤ 1
2
n(n + 1). This measure is a good

indicator of how deep and wide a subtree is, and so provides a means to find a compromise

between the node similarities and their positions in the graph.

We can then promote a top-down behaviour in the algorithm by selecting the match

(q,m)+ from the list, L, returned by each MCMW bipartite matching, with the maximum

convex sum of the similarity and the relative mass of the matched nodes,

(q,m)+ = argmax
(q,m)∈L

{

γWq,m + (1− γ)max(M̃Q(q), M̃M(m))
}

, (4.5)

where 0 ≤ γ ≤ 1 is a real value that controls the influence of the relative cumulative

mass in selecting the best match. Since we want to promote a top-down association of

nodes without distorting the actual node similarities, we suggest γ to be in the interval

[0.7, 0.9].

In Figure 4.5, we compare the sequences of graph splits using different values for γ.

When γ = 1, we obtain the original equation in [52] that, as can be seen in the figure,

tends to produce a bottom-up behaviour of the algorithm.

4.5 Selecting the best model

Given the set of node correspondences between two graphs, the final step is to compute

an overall measure of graph similarity. The similarity of the query graph to the model
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Figure 4.5: An example in which γ < 1 can promote a top-down behaviour in the algo-

rithm. The cumulative mass of each node is shown in blue. Edge weights are computed

according to Equation 4.5, for γ = 1 and γ = 0.7. For the given set of node similarities

and γ = 1, the best node correspondence at this iteration is the pair of leaves (q6,m4),

whereas for γ = 0.7, the best node correspondence is the pair of non-terminal nodes

(q4,m2).

graph is given by

σΦ(Q,M) =
(nQ + nM)

∑

(q,m)+∈ΦWq,m

2nQnM
, (4.6)

where nQ and nM are the orders of the query graph and the model graph respectively.

The graph similarity is given by a weighted average of the number of matched nodes

in the query and in the model, where the weights are given by the node similarity of

each matched node pair. If all the query nodes are matched with similarity 1, i.e., their

attributes are identical, we have
∑

(q,m)+∈ΦWq,m = nQ, and so σΦ(Q,M) = 1
2
( nQ

nM
+ 1).

Since all query nodes have been matched, we know that nM ≥ nQ, and so σΦ(Q,M) will

be one when all the model nodes are mapped, and less than one otherwise. Therefore,

the graph similarity is proportional to the quality of each pair of node correspondences,
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procedure isomorphism(Q,M)
Φ(Q,M)← ∅ ;solution set
compute the nQ × nM weight matrix W0 from Eq. 4.1
TQ = compute transitive closure matrix from AQ

TM = compute transitive closure matrix from AM

SQ = compute SSD matrix from AQ and TQ

SM = compute SSD matrix from AM and TM

;the TSV at each node were already computed at indexing time
unmark all nodes in Q and inM
call match(root(Q),root(M))
return(σΦ(Q,M)) (see Section 4.5)

end

procedure match(u,v)
do

{
let Qu ← u rooted unmarked subgraph of Q
letMv ← v rooted unmarked subgraph ofM
L← max cardinality, max weight bipartite matching between

unmarked nodes in G(VQu
, VMv

) with weights from Wn+1 (see [18])
(u′, v′)← choose max weight pair in L from Eq. 4.5
Φ(Q,M)← Φ(Q,M) ∪ {(u′, v′)}
update the similarity matrix Wn+1 according to Eq. 4.3
mark u′

mark v′

call match(u′,v′)
call match(u,v)
}

while (Qu 6= ∅ andMv 6= ∅)

Figure 4.6: Algorithm for Matching Two Hierarchical Structures

and inversely proportional to the number of unmatched nodes, both in the query and in

the model. Hence, a model that contains the query as a relatively small subgraph is not

as good a match as a model for which most of nodes match those of the query graph,

and vice versa.

4.6 Complexity Analysis

The final algorithm is shown in Figure 4.6. The first step of the algorithm is to compute

a node similarity matrix, the transitive closure matrices, and the sibling matrices for

both graphs. Assuming a linear algorithm for the pairwise node similarities, the former

matrix can be computed in O(n3). The other matrices can, in turn, be obtained in

linear time and in quadratic time, respectively. At each iteration of the algorithm, we

have to compute a MCMW bipartite matching, sort its output, and update the similarity
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matrix. The complexity at each step is then determined by that of the bipartite matching

algorithm, O(|V ||E|), since it is the most complex operation of the three. The number

of iterations is bounded by min(nQ, nM), and so the overall complexity of the algorithm

is O(n3). Hence, we have provided the algorithm with important properties for the

matching process while maintaining its original complexity.

4.7 Summary

We have extended the DAG matching algorithm introduced in [52] by eliminating the

possibility of hierarchical inversions in the node correspondences and by propagating

information to preserve the relationship among sibling nodes. In addition, we extended

the algorithm by encouraging a top-down selection of correspondences, which increases

the number of hierarchical constraints available at each iteration of the algorithm. The

combination of all these extensions, coupled with our measure of graph similarity, will

allow us to accurately rank the candidate graphs delivered by the indexing mechanism.

It should be noted that the presented algorithm can handle graphs of different sizes that

are only partly similar to that of the query.
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Experiments and Results

5.1 Experiments Set-up

We have systematically tested our integrated framework using both occluded and un-

occluded queries. With a large number of trials on a database of 2688 graphs, this

represents one of the most comprehensive set of shock graph experiments to date. Our

database consists of views computed from 3-D graphics models obtained from the public

domain. Each model is centered in a uniformly tessellated view sphere1, and a silhouette

is generated for each cell in the tessellation. A shape skeleton is computed for each sil-

houette with the algorithm proposed in [15], and its shock graph is generated as discussed

in Section 2.5. Then, each graph is added to the model database, while the signature

vectors of its nodes are added to the index database, as described in Section 3.3. The

3-D models that give rise to the views in the database are shown in Figure 5.1.

In the first set of experiments, we evaluate the performance of the system on a set

of unoccluded queries to an object view database. The database contains 2688 views

describing 21 objects (128 uniformly sampled views per object). We then remove each

view from the database and use it as a query to the remaining views. For each node of

1We compute a perspective projection of the 3-D object onto the image plane corresponding to each
viewpoint on the sphere.

73
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Figure 5.1: The twenty-one 3-D models use to generate a database of 2688 views. The

objects are chosen so as to present a large variation in terms of shape complexity. Simple

objects will be represented by small graphs that will also be subgraphs of larger graphs

in the database.

the query DAG, the indexing module (see Section 3.3) will return all the TSV’s within a

radius of 40% of each dimension of the query node’s TSV. This parameter determines the

range, ~r, discussed in Section 3.3.3, and is set so as to allow small structural differences

between the query and the models.

Evidence for models is then accumulated by an efficient one-to-one mapping, as de-

scribed in Section 3.4.2, and weighted according to Equation 3.2, with ω = 0.5. The

indexer will return at most the highest scoring K candidates, which will be next matched

to the query and sorted according to similarity using the matching algorithm described

in Section 4.3. The parameters for the matcher are set as follows. The node similarity

weight mixing term: α = 0.7, the penalty term for breaking SSD relations: β = 0.8,

and the influence term of the nodes’ cumulative masses that promotes a top-down node

matching: γ = 0.7. We verified that the overall results were not sensitive to the precise

choice of these parameters.
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5.1.1 Evaluation Scheme

Our goal is to evaluate the framework for the tasks of object recognition and pose esti-

mation. In addition, we want to find empirically, K, the number of candidates returned

by the indexer to be considered, so as to achieve a good compromise between recognition

performance and matching efficiency. The success of the object recognition task is mea-

sured as follows. If the query object (from which the query view was drawn) is the same

as the model object (from which the most similar candidate view is drawn), recognition

is said to be successful, i.e., the object label is correct for the first ranked view after

matching K candidate views2.

Evaluating the success of the pose estimation task is more complicated. Although we

sample the entire viewing sphere, views on one side of the viewing sphere are similar to

views on the other side. This similarity is more pronounced as the viewing distance grows

with respect to the object’s depth, i.e., the camera geometry approaches orthographic

projection. Moreover, additional object planes of reflective symmetry or axes of rotational

symmetry introduce additional ambiguous views with respect to pose. Therefore, the

obvious method of evaluating pose estimation success by checking that the top-ranked

candidate is one of the query’s nine neighbours (see Figure 5.2) is somewhat harsh. Even

without symmetry planes or axes, the nine neighbours of the query’s counterpart on

the other side of the sphere (which is not removed), will be similar, with the query’s

counterpart possibly being more similar to the query than the query’s own immediate

neighbours.

Properly evaluating the pose estimation requires knowing exactly which views are

ambiguous due to symmetry, a costly ground-truth exercise. We therefore define a slightly

weaker measure of success and require only that at least one of the 9 closest neighbours of

the query on the viewing sphere is ranked before any other object’s view. The assumption

2Note that if multiple views (perhaps from different objects) are tied for first place (i.e., “most
similar”), then each can be considered to be “most similar.”
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Figure 5.2: Configuration of the 9 closest neighbours of Q on the view sphere.

here is that any of the query view’s non-neighbouring views (of the same object) that

rank higher than the closest of the query view’s nine neighbours are similar and are due

to object or viewing symmetry. We will see later on that when we plot the rank of the

closest neighbour among the ranked candidates, the closest neighbour scores consistently

high, reflecting high pose estimation accuracy.

An alternative to the above scheme to deal with the effect of symmetries would be

to remove from the database the redundant views of each object related to symmetry.

However, this would require a manual intervention to decide what views to discard for

each particular object. In contrast, by making no assumptions about the object views, we

can test that the framework behaves as expected, and then decide on the most convenient

view clustering technique that will not only provide a good solution to the issue of

symmetry, but will also largely reduce the degree of ambiguity in the database which, in

turn, will improve the indexing results.

5.1.2 Node correspondences

An automatic way of evaluating node correspondences has yet to be devised, and so

we have not evaluated this task exhaustively. As a brief analysis and demonstration, we

present in Figure 5.4 a set of cases in which the system has succeeded and others in which
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(a) (b) (c)

(d)

(e)

Figure 5.3: (a) viewing sphere of the eagle. (b) close-up of the sphere. (c) view #7 of

the eagle, used as query. (d) the 9 closest neighbours of view #7 in the viewing sphere,

views 6, 5, 8, 80, 64, 10, 61, 9, 78. (e) The top 9 best matches returned by the matcher,

views 63, 62, 111, 87, 112, 89, 105, 86, 24.
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it has failed. These examples show the ability of the framework to deal with rotated,

deformed, and self-occluded shapes. Note, for instance, that all the figures among the

examples have parts that have disappeared, shrunk, or enlarged. The last two cases

at the bottom of the page are failures. The first one shows the top-front view of the

dinosaur with self-occluded neck and head being matched to a side-view of the dog. In

the second case, the lack of constraints in terms of skeleton curvature similarity and

relative orientation of parts allows the top view of the dinosaur to match a top-left view

of the seahorse.

Some of the correct object identifications in Figure 5.4 also have a few incorrect

mappings of parts. For example, the front leg of the dog is matched to its back leg due

to the large deformation suffered by all its legs. In the case of the guitar, we can see that

a missing branch in the skeleton led to a twist in the correspondences. It is particularly

interesting to note the case of the bull, in which one of the front legs is matched to the

bull’s tail. It is clear that the largely deformed tail is very similar to the leg. Probably

the only solution to these types of incorrect mappings is to factor in both ordering and

relative orientation of the parts in the matching process and in the shape representation.

In general, we have found that most of the node correspondences are assigned correctly,

which allows, for example, a post-matching verification stage to exploit part order to

eliminate views that are rotated or mirrored with respect to the query.

5.1.3 Limitations

Shock graphs, in principle, are scale invariant. However, the sensitivity to variation in the

scale of a shape has not been thoroughly studied in the literature to date. Furthermore,

significant scale differences may cause skeleton branches to emerge or disappear. To avoid

introducing these kinds of problems in the experiments, we have fixed the scale of the

images so that all the objects’ views are generated such that they fit an image size of 300

by 300 pixels.
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Figure 5.4: Some examples of node correspondences found by the matcher. The line

colours encode the node similarity computed according to Equation 4.1, where: green

= 1, blue ≥ .9, red ≥ .8, violet ≥ .7, black ≥ .6, dark grey ≥ .5, medium grey ≥ .4, light

grey ≥ .3, pink ≥ .2, yellow ≥ .1
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Figure 5.5: Recognition Performance: (a) Object recognition performance as a function

of K; (b) Pose estimation performance as a function of K. When K = 2688, i.e.,

no indexing mechanism, the object recognition performance is 97.1726 and the pose

estimation performance is 87.7604.

5.2 Object Recognition and Pose Estimation

Figure 5.5 (a) plots recognition performance as a function of increasing number of can-

didates returned by the indexer, while (b) plots this same comparison for the task of

pose estimation. Recognition performance is very high, with better than 95% success

even when we only analyze 50 candidates, thus saving 2638 matching operations. The

performance on the more difficult task of pose estimation3 is also very good. For this

case, we can see that considering only 200 candidates results in a good compromise be-

tween accuracy and efficiency. The accuracy of the pose estimation is high, especially

if we consider that, in general, every object has some number of degenerate views4, and

many objects have reflectional or rotational symmetry. The remaining experiments in

3Pose estimation often involves matching views with a large degree of deformation and self-occlusion
of parts.

4A degenerate view is one that has no similar neighbours on the viewing sphere.
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Figure 5.6: Distribution of ranking positions for the best-ranked neighbouring view of

each of the 2688 query views. All the views that rank better than the best-ranked

neighbouring view belong to the same object as that of the query.

this chapter were carried out with K = 200.

Figures 5.6 (a) and (b) plot the distribution of ranking positions for the successfully

matched, best-ranked neighbouring view of each query, for K = 200 and K = 2688,

respectively. As we described in Section 5.1.1, a neighbouring view is considered to

match the query view successfully if it ranks before any view of an incorrect object.

Since shock graphs are meant to be invariant to permutations of their subgraphs, views

at opposing sides of a plane of symmetry of the object may be more similar than the

immediate neighbours of each view and the neighbours of a symmetric view might be as

similar to the query view as the query’s true neighbours5. The results confirm that only

a few neighbouring views are not at the top of the ranking, which would correspond to

objects that have rotational symmetry (the baseball bat and the lamp) or other types of

symmetries.

5For example, the view at the opposing side on the viewing sphere to that of the query, plus its 9
neighbouring views, could potentially lead the ranking.
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Figure 5.7: Recognition Performance: (a) Object recognition errors per object; (b) Pose

estimation errors per object. Each column corresponds to an object and is ordered by

the rows in Figure 5.1

Errors per Object

In an effort to understand the performance, we plot in Figures 5.7 (a) and (b) the

distribution of recognition and pose estimation errors across objects. It is clear from the

plots that the errors are not uniformly distributed and so, in order to focus our efforts

to improve performance, we need to study the cases that accumulate most of the errors.

Upon examining the results, we found, for example, that most of the object recog-

nition errors (for K = 200) for the horse (object 7) and the bull (3), which both lack a

plane of symmetry, were due to their query views being incorrectly matched to views of

different four legged animals, such as the camel (20), the dog (11), and the dinosaur (15).

In terms of pose estimation errors, objects such as the kangaroo (4), which suffered from

self-occlusion of parts under small variations of viewpoint, were highly affected. Figure

5.8 shows some examples.



Chapter 5. Experiments and Results 83

Figure 5.8: The first two images show views of the horse that failed the object recog-

nition test. The last figure is a view of the kangaroo that failed in the pose estimation

experiment.

5.3 Comparison Against Previous Approach

The results we have obtained so far allow us to evaluate the extended indexing and

matching framework with respect to the original framework proposed in [54]. Figure

5.9 shows a comparison table for each of the most relevant extensions to the framework

proposed in this thesis. In column a, the indexing votes are weighted according to Eq.

3.1 instead of Eq. 3.2, while requiring a one-to-one correspondence for the nodes in each

model graph. Column b shows the performance when a one-to-one vote correspondence

is not enforced and the votes are weighted according to the improved function, Eq. 3.2.

Column c shows the performance of the indexing algorithm without either component,

i.e., a many-to-many assignment of votes is allowed, and each vote is weighted by Eq.

3.1, as was originally proposed in [54]. These results reveal that a one-to-one vote corre-

spondence produces much better indexing performance, and that Eq. 3.2 is particularly

important if a one-to-one vote correspondence is not ensured.

In Section 4.4, a number of extensions to the matching algorithm were proposed with

the main goal of eliminating violations of the hierarchical constraints from the node

correspondences delivered by the matcher. By adding such extensions, we expect to

eliminate the inversions while maintaining or, in the best case, improving the matching
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c.
Both a

and b

d.
Anc.
Rel.
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SSD R.

f.
Top-
down

g.
All d

to f

Obj. Rec. 96.80 92.63 73.47 96.28 96.24 96.76 96.73

Pose Est. 84.11 72.84 53.53 84.19 83.85 85.71 84.90

Figure 5.9: Comparison table for each new feature in the indexer and in the matcher.

Each column shows the performance of the extended framework without one or more of

the proposed extensions, so as to isolate the individual contribution of each feature. The

performance of the algorithm when all the new features are used for K = 200 is 96.76

for object recognition and 85.08 for pose estimation.

performance. Columns d-g evaluate the performance of the matcher when these exten-

sions are not used. The numbers in these columns tell us that the freedom to violate the

ancestor relation (col. d), the lack of encouragement to preserve the SSD relations (col.

e) coupled with the freedom to violate ancestor relations, and the promotion of a top-

down matching behaviour (col. f), do not significantly affect the matching performance.

Column g shows that when none of the three extensions to eliminate inversions are used,

the qualitative ranking of candidates remains the same. A comparison of the improved

accuracy of node correspondences due to these extensions is left as future work.

The algorithm for computing shock graphs as well as the node similarity function

presented in Section 2.5 also deserve their own comparison against previous approaches.

Unfortunately, the algorithms used to compute shock graphs in the related work are not

well documented and so we are unable to make a significant comparison. We leave as

future work a comprehensive comparison of the node similarity functions in the literature.
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5.4 Performance under varying sampling resolution

We examine performance as a function of sampling resolution of the viewing sphere by

subsampling the database so as to eliminate 25%, 50%, and 75% of the views. This

experiment is meant to estimate a worst-case performance for the tasks of object recog-

nition and pose estimation having fewer views per object in the model database. The

subsampling is done using a simple strategy. For each object, we generated subsampled

view sets of size 96, 64, and 32 by randomly eliminating views on the object’s viewing

sphere. Then, we use every view in the original database with 128 views per object as

a query6 against each subsampled database. We conducted four trials of the experiment

and computed the average performance. It should be noted that a random strategy for

subsampling is clearly inefficient since it does not focus on eliminating redundant views

from the database. A clustering technique, on the other hand, could use the proposed

shock graph similarity function to perform a more clever subsampling of an object’s

viewing sphere.

Figures 5.10 (a) and (b) plot recognition performance as a function of sampling reso-

lution. We can see that the performance on recognition and pose estimation is still good

when sampling resolution drops to 64 views per object (over the entire view sphere). Fur-

thermore, when the resolution drops to 32 views per object, the decrease of performance

is more pronounced but still degrades gradually, showing the stability of the approach.

The experiment demonstrates both the efficacy of the recognition framework and the

viewpoint invariance of the shock graph, respectively.

5.5 Performance under varying numbers of objects

Starting with our database of 21 objects, we gradually reduced the number of objects in

the database by removing pairs of objects. We started with the alien and the baseball

6The query view is also removed from the subsampled model database if it is still present.
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Figure 5.10: Recognition Performance: (a) Object recognition performance as a func-

tion of sampling resolution; (b) Pose estimation performance as a function of sampling

resolution.
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Figure 5.11: Recognition Performance: (a) Object recognition performance as a function

of number of objects and K; (b) Pose estimation performance as a function of number

of objects and K. The non-smooth behaviour of the performance is due to the uneven

distributions of error among the objects.
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bat and continued eliminating object pairs, according to the order of figure 5.1, up to the

seahorse and the guitar. Figures 5.11 (a) and (b) plot recognition and pose estimation

performance for each database and for different values of K.

Ideally, we would want the performance to be independent of the number of objects

in the database. The experiment shows that although this is not the case, as we increase

the database size from 7 to 21 objects, the performance of object recognition and pose

estimation, for k = 200, drops by only 2.78% and 9.28%, respectively. This decrease in

performance can be explained, to a certain extent, by the ambiguity that each object

adds to the database. In general, each object has a number of views with little shape

information due to the self-occlusion of parts from a given view. As we increase the

number of objects, these views become less informative and start competing with each

other. Consider, for example, the top-front view of the dinosaur, shown in Figure 5.4, in

which its neck and head are self-occluded. As we add more four-legged objects, this view

becomes more ambiguous. Hence, the results suggest that to maintain the performance

under an increasing number of objects, we must not only explore strategies to reduce the

number of redundant and ambiguous views in the database, but to add shape information

to the index.

5.6 Occlusion by Missing Data

In the final experiment, shown in Figure 5.12, we plot recognition performance as a

function of degree of occlusion (for the entire database) for occluded queries. To generate

an occluded query, we randomly choose a node in the query DAG and delete the subgraph

rooted at that node, provided that the order of the graph does not drop by more than

50%. We repeated the experiments 6 times, to accumulate a total of 16,128 trials.

Performance decreases gradually as a function of occluder size (or, more accurately, the

amount of “missing data”), reflecting the framework’s ability to recognize partially visible
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Figure 5.12: Recognition performance as a function of degree of occlusion, accumulated

at fixed intervals of 5 degrees.

objects. Since an increasing amount of missing data does not have a dramatic impact on

the performance, we can conclude that the framework satisfies this important property

of stability. Experiments with other types of occlusion, in particular, under- and over-

segmented shapes, are left as future work.
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Conclusions

Our shock labelling algorithm computes shock graphs that satisfy the necessary condition

of structural stability required by the indexer and the matcher: shapes that suffer small

deformations due to viewpoint changes are represented by shock graphs with similar

structure. The stable labelling is obtained by first modelling the shock points in each

skeleton branch by line segments. To this end, we proposed an efficient combinatorial

algorithm that finds the minimum number of line segments that fits the data within a

given threshold, which is set according to the number of points in the branch. We have

also proposed a number of variations to the definition of shock graphs that lead to a more

robust shape representation. In particular, we suggested that branch segments acting as

ligature between shape parts should be encoded in single nodes1. This modification

implies a small change to the shock graph grammar so as to allow chains of type 1 nodes.

We believe that this simple modification has a large positive effect on the robustness of

the graphs under viewpoint variations, where shape parts suffer large deformations due

to perspective projection.

The above algorithm also suggested a node similarity measure with similar properties

in terms of robustness to viewpoint changes. The key idea of this measure is to realise

1As we mentioned in Section 2.3.3, the original analysis of ligature nodes is due to August et al. In
[2], the authors propose, in contrast to our approach, to eliminate the ligature nodes from the graph.

89
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that the radius of shock points, and the parameters of their velocity and acceleration

functions, yield a powerful feature that characterizes a node. Furthermore, by solely

considering the nodes’ radius function (i.e., effectively ignoring their absolute spatial

information) we can gain a desirable flexibility in terms of deformation and articulation

of parts, which is important to our task of object recognition.

Robust shock graphs are the right type of input for the indexing mechanism, since the

indexing is based on accumulating votes for models with similar graph structure to that

of the query. In turn, an optimal and efficient algorithm for counting votes is one of the

contributions of the thesis. In the original formulation of the indexing, a query node was

allowed to vote several times for different nodes in the same model. Conversely, a model’s

node was able to receive votes from more than one query node. In spite of the fact that

an unconstrained assignment of votes from nearest-neighbour search results is likely to

provide misleading information, it is sometimes tolerated due to the extra complexity

that a bipartite-matching solution per query-model pair 2 would add to an algorithm that

is designed, in principle, to provide a fast pruning of the database.

We solved the problem of an optimal accumulation of votes by an algorithm that

adapts to the topology of the query graph and creates the minimum, fixed-size buffers that

are necessary to compute an optimal one-to-one assignment of votes. Furthermore, the

buffer size is independent of the number of models in the database, since it is determined

by the number of overlapping signature vectors of the query with respect to a given range

for the nearest-neighbour search. A second improvement to the discriminatory power of

the indexer was obtained by using the signature vectors to reformulate the vote weighting

function so as to favour models with more matched nodes and fewer unmatched nodes.

Our experiments show that the indexer is effective in reducing the number of candi-

dates to be less than 10% of the model database. Furthermore, the matching performance

2Note that there is a potentially large number of models and so, when indexing we must avoid an
expensive function that depends on this number.
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is good even when the number of candidates is set to be 2% of the database. Since the in-

dexing mechanism depends on the stability of the graphs under viewpoint changes, these

results also suggest that shock graphs, computed as described in Section 2.5, successfully

meet the viewpoint insensitivity condition.

Finally, we considered a number of extensions to the matching algorithm. The results

of this algorithm originally suffered from inversions in the assignment of node correspon-

dences that would also affect the overall similarity computed for a given pair of graphs

—regardless of the particular domain. The inversions were due, in most cases, to the al-

gorithm not being effective in guaranteeing that all the hierarchical constraints encoded

in the DAGs were satisfied. Nevertheless, this algorithm had the advantage of a low

complexity, O(n3), which was obtained, to a certain extent, by taking advantage of the

signature vectors that were already computed for indexing. The goal was then to elim-

inate the problem of inversions while maintaining the low complexity of the algorithm.

We proposed a method to update the similarity matrix at each iteration of the matching

algorithm that not only eliminates the violation of hierarchical constraints, but also prop-

agates information that promotes matching sibling nodes in the query to sibling nodes in

the model. As shown in Section 4.4, this is important for structures (e.g., shapes) with

repeated parts. In addition, a simple strategy was suggested for helping the algorithm

proceed in a top-down fashion without compromising its ability to handle noisy graphs.

The results on object recognition and pose estimation show the matcher’s ability to

deal with non-isomorphic graphs, while the occlusion results confirm its robustness to

increasing amounts of missing data. These properties are necessary conditions to handle

shapes returned by a segmentation algorithm, which are likely to be either under- or over-

segmented. Last but not least, the good performance results of these experiments validate

the stability of the node similarity function to accommodate minor shape deformation

due to viewpoint changes.

In conclusion, we have demonstrated an integrated framework for view-based 3-D
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object recognition using shape information. The framework is effective in dealing with

large databases of shapes without requiring a particular organization of its contents, such

as prototypes, classes, or any other type of hierarchy. Hence, the indexing technique is a

tool that can, in turn, be combined with different types of hierarchical databases. Both

indexing and matching are general techniques applicable to domains where the patterns

of interest can be embodied in stable, directed acyclic graphs. Finally, we have shown

that our method for computing shock graphs satisfies this requirement of stability and,

consequently, that shock graphs can be used for efficient shape matching.

6.1 Directions for Future Research

In order to effectively apply the framework to larger databases of objects, we must reduce

the number of ambiguous views in the database, for as a database becomes larger, the

negative effects of these views will become more noticeable. One form of view ambiguity

is related to objects that look similar from different viewpoints, such as the case of the

sphere, whose views are identical circles, or the case of a pawn (used in the experiments),

whose side views are identical. That is, given one of these views, we cannot determine

the exact viewpoint from where it was taken. Another form of ambiguity can be found in

non-ambiguous views of an object that are shared by other objects in the database. The

top view of the pawn and the lamp in Chapter 5, for instance, are undistinguishable.

By storing ambiguous views in the database, we increase the amount of redundant

information, degrading the performance of the indexer, which will return many unneces-

sary candidates, and that of the matcher, which will have to evaluate and rank them. We

can eliminate the former form of redundant views by grouping them according to their

similarity and selecting a prototype to represent them all. Thus, in our framework, the

similarity yielded by the matcher can be combined with a clustering technique to control

the level of redundancy in the database. The later form of ambiguity (across objects)
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requires that we explore other alternatives, such as assigning probabilities of occurrence

to the views and to the objects [17]. In future work, we plan to evaluate the performance

of the framework as a function of increasing numbers of objects using these ideas.

View clustering will reduce view ambiguity in the database. However, the indexing

process introduces its own form of ambiguity through the use of the TSV. Recall that

the TSV of a graph (subgraph) is not unique, and that the different graphs may share

the same TSV. Moreover, the TSV encodes only the graph structure and not the shape

information stored in the nodes. In Section 3.4.7, we considered a number of possible

extensions to the indexer to overcome these issues. In particular, we suggested that

large databases of objects will require signature vectors that also encode geometrical

constraints. The geometrical constraints range from the individual labels and other

attributes of the nodes to global properties, such as the relative position and size of

the parts. This extra information can be encoded in the signature vectors as additional

dimensions, or as edge weights in the graphs. Clearly, there are a number of features

that we could consider at indexing time as well as a number of ways of doing so. The

study of the signal-to-noise ratio of these different options is left as future work.

As a final point, we believe that the stability of shock graphs under articulation and

occlusion of parts can be further extended by investigating the ligature segments and

their role in the shock graph grammar. We envision a grammar that accounts for the

process of part ligature so as to robustly represent articulating objects and the occlusion

of parts. Ligature information can be used both as an indication of the birth process of

parts, and as a measure of saliency for the nodes, for the information encoded in ligature

nodes tends to be more unstable and less significant for matching. Shock graphs with

well-identified parts and node saliency information will improve the performance of the

matching process.
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[10] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-

dimensional spaces: Index structures for improving the performance of multimedia

databases. ACM Computing Surveys (CSUR), 33(3):322–373, 2001.

[11] Dragos Cvetkovic. Spectra of Graphs: Theory and Applications. Academic Press

(San Diego), November 1997.

[12] Dragos Cvetkovic, Peter Rowlinson, and Slobodan Simic. Eigenspaces of Graphs.

Cambridge University Press, January 1997.

[13] M. Cvetkovic D.M, Doob and H. Sachs. Spectra of Graphs. Academic Press, 1980.

[14] Christopher M. Cyr and Benjamin B. Kimia. 3d object recognition using shape

similarity-based aspect graph. In IEEE International Conference on Computer Vi-

sion, pages 254–261, 2001.

[15] P. Dimitrov, C.Phillips, and K. Siddiqi. Robust and efficient skeletal graphs. In

IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC,

June 2000.

[16] Patrick J. Flynn and Anil K. Jain. 3d object recognition using invariant feature

indexing of interpretation tables. CVGIP: Image Understanding, 55(2):119–129,

1992.

[17] W. T. Freeman. The generic viewpoint assumption in a framework for visual per-

ception. Nature, 368:542–545, April 1994.

[18] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph matching

problems. Journal of the ACM, 38:815–853, 1991.



Bibliography 96

[19] Christian Garcia-Arellano. Quantization techniques for similarity search in high-

dimensional data spaces. Master’s thesis, University of Toronto, 2002.

[20] Steven Gold and Anand Rangarajan. A graduated assignment algorithm for

graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(4):377–388, 1996.

[21] J. A. Goldak, X. Yu, and A. K. Lingxian Dong. Constructing discrete medial axis of

3-d objects. In Int. Journal of Computational Geometry and Applications, volume 3,

pages 327–339, 1991.

[22] Robert R. Goldberg and David G. Lowe. Verification of 3-d parametric models

in 2-d image data. Proc. of IEEE Workshop on Computer Vision, pages 255–257,

November 1987.

[23] J. Gomez and O. Faugeras. Reconciling distance functions and level sets. Technical

Report Technical Report TR3666, INRIA, April 1999.

[24] A. Goralcikova and V. Konbek. A reduct and closure algorithm for graphs. Math-

ematical Foundations of Computer Science, Lecture Notes in Computer Science

74:301–307, 1979.
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