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Garbled circuits are integral to secure function evaluation. A garbled circuit Ĉ for a circuit C enables

a user to compute C(x) and nothing more about C or x, when given an encoding x̂ for the input x.

Earlier, garbling schemes produced only single-use garbled circuits which did not offer security when

used to evaluate more than one input encoding. Very recently, the first reusable version of garbled

circuits was constructed by Goldwasser et al. (STOC 2013), which allowed a garbled circuit to evaluate

multiple input encodings. But, all these constructions of garbled circuits, including the single-use ones,

incur a multiplicative blowup in size i.e the size of the garbled circuit is |C| · poly(λ) for some security

parameter λ. Hence, a fundamental question about (reusable) garbled circuits is:

How small can a garbled circuit be?

The main result of this thesis is a garbling scheme which produces (reusable) garbled circuits with just

an additive overhead in size i.e with size |C|+poly(λ, dmax). Here dmax is the maximum depth of circuits

which the garbling scheme can handle. Modulo the additive poly(λ, dmax) factor which is independent

of the size of the circuit, this is the best that one could hope for.

The main technical ingredient of our work is a “fully” key-homomorphic encryption scheme; an object

that we define and construct based on learning with errors (LWE) assumption. A fully key-homomorphic

encryption scheme enables one to add/multiply ciphertexts encrypted under different (public) keys such

that the output ciphertext is the encryption under the addition/multiplication of the public keys. Start-

ing from this fully key-homomorphic encryption scheme, we also obtain an attribute-based and a (single-

key) functional encryption schemes with very short secret keys. In both these schemes, the secret key

for a circuit C consists of C itself plus poly(λ, dmax) additional bits.
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Chapter 1

Introduction

1.1 Garbled circuits

Garbling schemes are immensely powerful tools in modern cryptography. A circuit garbling scheme, first

suggested by Yao for Secure Function Evaluation, encodes a circuit C into a garbled circuit Ĉ and then

encodes an input x into x̂, so that any user given Ĉ and x̂ can obtain only C(x) and nothing more. That

is, the garbled circuits and inputs provide circuit and input privacy: an adversary given Ĉ and x̂ can

learn nothing about the circuit C or the input x, other than the information that can be obtained from

C(x). Also, we require the garbling schemes to be efficient in terms of computing the input encoding i.e

after the generation of a garbled circuit, an input encoding for that should be generated without using

the original circuit. Trivially, a garbling scheme on input C and x could output (Ĉ = φ, x̂ = C(x)).

This garbled circuit satisfies the security guarantee, but it does not satisfy the efficiency guarantee. Yao

provided the first construction of a garbling scheme which satisfies both.

1.1.1 Yao’s garbled circuit

Informally, Yao’s garbled circuit works as follows: assigns two independently randomly chosen labels

Li,0, Li,1, corresponding to the two possible values 0 and 1, to each wire of the circuit i ∈ {1, . . . , |C|}.
The input encoding x̂ is the tuple consisting of labels of the input wires corresponding to the bits

x1, . . . , x` of the input i.e {Li,xi}i∈{1,...,`}. Now, the garbled circuit Ĉ is a composition of |C| garbled

tables and a component τ , where a garbled table is provided for each gate of the circuit. The garbled

table for the gate g(u, v;w) enables the following transformation

Lu,xu , Lv,xv 7−→ Lw,xw=g(xu,xv)

The component τ = {L|C|,0||0, L|C|,1||1} i.e the two output labels together with the corresponding output

bits. This way, an evaluator who has x̂, Ĉ starts with the input labels (obtained from x̂), uses the garbled

tables (obtained from Ĉ) to obtain the labels corresponding to the wires level by level and finally obtains

the label corresponding to the output wire of the circuit. Then, using τ , he obtains the output bit C(x).

Applications

Over the years, garbled circuits and its variants have found many applications including the following:

1



Chapter 1. Introduction 2

• secure two-party computation [Yao86]: two parties with respective private inputs x, y can compute

a public function f(x, y), such that an adversary does not learn anything about x, y other than

what could be learned from f(x, y). (Also, each party involved does not learn anything about the

other party’s input other than what he could be learn from f(x, y).)

• secure multi-party computation [GMW87]: multi-party extension of secure two-party computation

• one-time programs [GKR08]: for any function f , a one-time program can be generated which

allows one to compute f on a single input x of his choice.

• key-dependent message security [BHHI10]: security is provided even when encryptions of messages

of the form f(sk) are provided.

• verifiable computation [GGP10]: allows a computationally weak client to outsource computation

of a function f on various inputs to one or more workers. Each worker returns the result and a

proof, such that the work done by the client including the verification of the proof is substantially

less than the work involved in computing the function by himself.

• homomorphic computations [GHV10]: enables computing a function f on encryptions of messages

x1, . . . , xκ, such that the resulting ciphertext is the encryption of f(x1, . . . , xκ).

Optimisations

There are two main disadvantages with Yao’s construction of garbled circuits and all its variants.

• Not reusable : All the known variants of garbled circuits (till very recently) offered only one-time

security. The security of a garbled circuit is compromised if encodings are given for more than one

input for a particular garbled circuit. In particular, for the above construction of garbled circuit,

when a user obtains encoding for two inputs, x and its complement x̄, he essentially obtains both

the labels Li,0, Li,1 corresponding to each bit i of the input. To see this, if the ith bit of x xi = 1,

then the ith bit of x̄ is 0 and hence the user obtains Li,1 from x̂ and Li,0 from ˆ̄x. Thus, with x̂ and

ˆ̄x the user can obtain the garbled input ŷ for any input vector y ∈ {0, 1}` by himself, and hence

can learn the output C(y) (having already obtained the garbled circuit Ĉ with x̂ and ˆ̄x). Thus,

the single-use nature forces the user to generate a fresh set of garbled circuit and input encoding

for each evaluation, even if the circuit to be evaluated remains the same.

• Not compact : Almost all the known constructions of garbled circuits proceed by garbling each

gate and compose the garbled tables to form the garbled circuit. Hence, these garbled circuits have

a multiplicative size blowup of poly(λ), for some security parameter λ i.e, the size of the garbled

circuit is proportional to the number of gates in the circuit.

Prior to our work, some attempts have been made to overcome these problems individually. For instance,

Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13b] provided the very first construction

of reusable garbled circuits based on the learning with errors (LWE) assumption, but they do not care

about the second problem. There are also some results which provide partial solutions to the second

problem (and ignoring the first problem). Prominent ones among these are:

• A “free XOR” optimization for one-time garbled circuits introduced by Kolesnikov and Schneider

[KS08] and further studied in [CKKZ12] and [App13]. This technique allows the size of the garbled
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circuit to depend only on the number of non-XOR gates in the circuit, and there are no garbled

tables for the XOR gates.

• Garbling of RAM programs for single use, obtained by Lu and Ostrovsky [LO13]. Here, the size

of the garbled programs grows as poly(λ) its running time, for some security parameter λ.

• Garbling (reusably) non-uniform Turing machines, shown by Goldwasser et al. [GKP+13a]. Here,

they incur a multiplicative poly(λ) overhead in the size of the non-uniformity of the machine, which

they show under a non-standard yet non-falsifiable assumption.

But in spite of all these, we do not yet know of a reusable garbled circuit without a multiplicative blowup

in size, or even a single-use garbled circuit without a multiplicative blowup in the multiplicative size of

the circuit.

1.1.2 Our Results

We provide new techniques which almost solves the second problem and at the same time we could

apply the techniques of [GKP+13b] to our scheme to solve the first problem. Our result is a circuit

garbling scheme which produces reusable garbled circuits for arbitrary depth-dmax circuits with an

additive overhead in size, namely |Ĉ| = |C| + poly(λ, dmax). We base the security of our construction

on the sub-exponential hardness of the LWE assumption [Reg09a]. Modulo the dependence on the

depth dmax of the circuit and the polynomial dependence on the security parameter λ, our construction

gives the smallest possible garbled circuit. For large and shallow circuits, such as those that arise from

database lookup, search and some machine learning applications, this gives significant bandwidth savings

over the previous methods (even in the single use setting).

Theorem 1.1.1 (Informal version of our main theorem). Assuming sub-exponential LWE, there is

a reusable garbled circuit garbling scheme that garbles a depth-dmax circuit C into a garbled circuit

Ĉ such that |Ĉ| = |C| + poly(λ, dmax), and garbles an input x into an encoded input x̂ such that

|x̂| = |x| · poly(λ, dmax).

Our compact garbled circuits construction follows along the lines of [GKP+13b]. That is, we first

construct an attribute-based encryption scheme, and then we apply the reductions in [GKP+13b] first

to get a single-key functional encryption scheme and from that, we get compact garbled circuits. The

improvement in our construction comes from our new attribute-based encryption scheme, which produces

short secret keys. The size of the secret key skC for a circuit C is independent of the size of the circuit,

and depends only on the depth of the circuit.

1.2 Attribute-based encryption

Public key encryption provides the following two aspects: data integrity and confidentiality. When

Enc(m) is transmitted to a receiver, data integrity ensures that no adversary alters the message m

during its transmission without being noticed, and confidentiality ensures that no adversary learns any

information about m. Consider an organisation XYZ Tech where there is a common channel channel for

communication to which each employee of the company has access to. If Alice, an employee, wants to

send a message m securely to another employee Bob, she can do the following:
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1. Look up Bob’s public key pkB .

2. Compute ct = EncpkB (m) and sends it to Bob.

On receiving ct, Bob can just decrypt it using his secret key skB and get back m. The correctness of m

is ensured by data integrity and the privacy is ensured by confidentiality. In the same way, Alice can se-

curely send multiple messages to multiple employees, just by sending them in an encrypted form, so that

only the intended recipient gets to decrypt the ciphertext. Now consider the scenario where Alice wants

to send a message to all the Canadian project managers who work in security related projects. With the

traditional public key encryption algorithms, it is all-or-nothing access to data. That is, only the person

who possesses the secret key can decrypt a ciphertext and all others learn nothing from that. So, Alice

has a cumbersome task of identifying the employees who satisfy all the three constraints (Canadian and

project manager and security), look up their public keys and encrypt the note individually to every one

of them . This leads to the following essential question: Does there exist an encryption scheme which

allows one to encrypt a message, such that only those who possess certain specific set of attributes can

decrypt and learn the message?

This question was first addressed by Sahai and Waters [SW05]. They put forward the notion of attribute-

based encryption (ABE). Their attribute-based encryption scheme labels ciphertexts and secret keys with

a set of descriptive attributes and a user decrypts a ciphertext only if there are enough attributes in

common between his secret key and the ciphertext. This is a good first step, but this ABE scheme had

many limitations, which prevented its applicability in larger systems. One main limitation is that, this

scheme allowed collusion among users i.e a US project manager can collude with a Canadian employee

and a Mexican employee working on security related projects to decrypt a message intended for a Cana-

dian project manager working on security related projects.

Goyal, Pandey, Sahai and Waters [GPSW06] provided a concrete definition for attribute-based encryp-

tion and a more expressive attribute-based encryption scheme which enables fine-grained access control

of data. Their scheme is a key-policy1 attribute-based encryption, where each ciphertext ctx is labelled

with a set of attributes, represented by a vector x and a secret key skC is provided for a circuit C,

which defines the affiliations of the user who possesses skC . A user who possesses skC can decrypt

a ciphertext ctx if and only if C(x) = 1. Though this generalises [SW05] and handles a richer class

of functionalities, the scheme in [GPSW06] works only for a restricted class of circuits. In particu-

lar, their scheme could handle only boolean formulas which form the class of circuits with logarithmic

depth NC1. Following [GPSW06], significant progress has been made in attribute-based encryption

in increasing the efficiency and the security guarantees and in diversifying the security assumptions

[Wat09, LW10, LOS+10, CHKP12, ABB10, OT10, Boy13]. But all these schemes could handle only

log-depth circuits (NC1). To be more useful, we would like to have attribute-based encryption schemes

which could handle all functionalities computable in polynomial time.

The NC1 barrier was first overcome by Gorbunov, Vaikuntanathan and Wee [GVW13]. They proposed

an attribute-based encryption scheme based on Learning With Errors (LWE) assumption, which could

handle circuits of polynomial size and a priori bounded polynomial depth. Another attribute-based

1In a key-policy ABE, the policies represented as circuits are associated with secret keys whereas in its dual version, a
ciphertext-policy ABE, the policies are associated with ciphertexts
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encryption scheme which could handle such circuits, has been proposed by Garg, Gentry, Halevi, Sahai

and Waters [GGH+13b], but with the security based on multilinear maps [GGH13a]. But all these

constructions have a large secret key skC with their size proportional to the number of the gates in C.

Our new ABE construction facilitates short secret keys with sizes dependent only on the depth of the

circuit and independent of the size of the circuit. The security of our construction is based on the

sub-exponential hardness of the LWE assumption.

Theorem 1.2.1 (informal). Assuming sub-exponential LWE, there is a key-policy attribute based en-

cryption scheme for depth-dmax circuits C such that |skC | = |C|+ poly(λ, dmax).

We use this ABE scheme to build a single-key secure succinct functional encryption scheme with

short secret keys using the techniques of [GKP+13b].

1.3 Functional encryption

Functional encryption (FE) is a primitive which is more powerful than ABE. FE allows a user possessing

a secret key skC for a circuit C and an encryption of x to learn only C(x) and nothing more about x. An

FE scheme is also required to provide security against collusions. That is, users possessing secret keys

skC1, . . . , skCn (for any polynomial n) on colluding should not be able to get any information about x

from an encryption of x other than C1(x), . . . , Cn(x). The notion of FE was first formalised by Boneh,

Sahai and Waters [BSW11] and O’Neill [O’N10]. Some previous works [KSW08, LOS+10, AFV11]

showed that a FE scheme for inner-product function fy (which on input x outputs 1 iff 〈x,y〉 = 0) can

be constructed. Sahai and Seyalioglu [SS10] constructed an FE scheme for general functions but secu-

rity is provided only against a single secret key query. Gorbunov, Vaikuntanathan and Wee [GVW12]

constructed an FE scheme for general functions secure against bounded number of secret key queries.

In both the above schemes, the size of the ciphertext is not succinct (it is proportional to the size of the

universal circuit computing the functions allowed by the scheme2).

The first succinct (and single-key secure) FE scheme was constructed by Goldwasser et al. [GKP+13b].

They show that this variant of FE is powerful by providing interesting applications like reusable garbled

circuits. They provide a way to obtain a single key FE scheme from three ingredients:

1. an ABE scheme which handles polynomial size circuits

2. a fully-homomorphic encryption scheme

3. a one-time garbled circuit (Eg. Yao’s garbled circuit)

In this work, we follow the same procedure using from our ABE scheme to obtain a single-key succinct

FE scheme with very short secret keys.

Theorem 1.3.1 (informal). Assuming sub-exponential LWE, there is a single-key secure succinct func-

tional encryption scheme for depth-dmax circuits C such that |skC | = |C|+ poly(λ, dmax).

2In [GVW12] the size of the ciphertext is also proportional to the secret-key query bound.
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1.4 A new tool: Fully Key-homomorphic encryption

The crux of our results is the first construction of a fully key-homomorphic encryption scheme. An en-

cryption scheme is key-homomorphic if the addition/multiplication of ciphertexts under different public

keys produced by this scheme, yield a ciphertext under the addition/multiplication of the public keys.

Different variants of key-homomorphic encryption have already been used in a few works in the liter-

ature. But all the known variants provide only additive key-homomorphism, where only the addition

(and not multiplication) of ciphertexts yield a ciphertext under addition of public keys. This additive

key-homomorphism has been shown to have some useful applications:

• randomized encryption scheme secure against related-key attacks [AHI11].

• inner-product predicate functional encryption [AFV11]: an encryption of a message m under a

private label x can be decrypted by only those who have secret key sky corresponding to a label y

such that 〈x,y〉 = 0.

• ID based encryption scheme without random oracles, secure against bounded number of collusions

[GLW12].

• garbling scheme producing (single-use) garbled circuits with compact input encodings [AIKW13].

We formally define this primitive of fully key-homomorphic encryption and show how to construct

an attribute-based encryption scheme with short secret keys from this primitive. We also provide an

instantiation of a fully key-homomorphic encryption scheme based on learning with errors (LWE) as-

sumption.

Theorem 1.4.1 (informal). Assuming sub-exponential LWE, there is a fully key-homomorphic encryp-

tion scheme.

Theorem 1.4.2 (informal). Assuming the existence of a fully key-homomorphic encryption scheme,

there is a key-policy attribute-based encryption scheme for depth-dmax circuits C such that |skC | =

|C|+ poly(λ, dmax).

One can clearly see that the theorems 1.4.2 and 1.4.1 lead to Theorem 1.2.1.

Organisation of the thesis

In Chapter 2, we present the lattice preliminaries required for our work and a formal definition of

attribute-based encryption. Other preliminaries are provided in the corresponding sections.

In Chapter 3, we formally define our variant of fully key-homomorphic encryption (FKHE) and pro-

vide a construction of an attribute-based encryption scheme with short secret keys from a fully key-

homomorphic encryption scheme.

In Chapter 4, we instantiate the FKHE scheme with its security reduced to the LWE assumption and

analyse the parameters involved in this scheme. We also provide an independent description of our LWE

based ABE scheme.
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In Chapter 5, we discuss about the optimisations and extensions which are inherently provided by our

ABE construction.

In Chapter 6, we provide the construction of compact garbled circuits using our ABE scheme.

In Chapter 7, we present some other important applications of the full key-homomorphism techniques

used to build our ABE scheme.

In Chapter 8, we provide an ABE scheme with short secret keys based on the ring-LWE assumption and

analyse the parameters of this scheme.

In Chapter 9, we conclude our results and provide interesting open problems in the direction of this

work.



Chapter 2

Preliminaries

2.1 Lattice preliminaries

In this section we collect the results from the literature that we will need for our construction and the

proof of security.

2.1.1 Notations

For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent Zq as integers

in (−q/2, q/2]. We let Zn×mq denote the set of n ×m matrices with entries in Zq. We use bold capital

letters (e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote vectors. The notation AT

denotes the transpose of the matrix A.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′) matrix

formed by concatenating A1 and A2. A similar notation applies to vectors. When doing matrix-vector

multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a negligible

function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to denote

a polynomial function of n. We say an event occurs with overwhelming probability if its probability is

1− negl(n).

For any vector v, ‖v‖ refers to the euclidean norm of the vector.

‖v‖ :=

√∑
i

(v2
i )

The infinite norm for the vector v, ‖v‖∞ = maxi (vi). For any matrix A ∈ Zn×m, we refer ‖A‖ to the

operator norm of A.

‖A‖ := sup
x∈Sm−1

‖A · x‖

where Sm is the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We will also use the maximum norm ‖·‖max for a

8
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matrix where ‖A‖max = max (aij) for all i ∈ [n], j ∈ [m].

B-Bounded distributions Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called

B-bounded if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

2.1.2 Lattices

An m-dimensional lattice Λ is a discrete additive subgroup of Rm. A basis of a lattice is a set of linearly

independent vectors whose span is Λ. We usually deal with full-dimensional lattices where the basis set

has m linearly independent vectors spanning Λ, with m being the lattice dimension. Integer lattices are

those whose points have co-ordinates in Zm. The q-ary lattices are those defined as follows: for any

integer q ≥ 2 and any matrix A ∈ Zn×mq , we define

Λq(A) := {r ∈ Zm : ∃s ∈ Znq s.t. At · s = r mod q}

Here the matrix A is called the “basis” of the lattice. That is, a matrix A is a basis of a lattice Λ if

Λ = Λq(A). There can be multiple bases for the same lattice. It is usually hard to find a basis of ‘low’

norm given the lattice i.e given some arbitrary basis of the lattice.

Also we define a kernel lattice Λ⊥q (A) for A as follows:

Λ⊥q (A) := {r ∈ Zmq : A · r = 0 mod q}

For any u admitting integral solution to A ·t = u mod q,we define a coset (or shifted) lattice of Λ⊥q (A):

Λu
q (A) := {r ∈ Zmq : A · r = u mod q} = Λ⊥q (A) + t

Gram-Schmidt orthogonalisation. The Gram-Schmidt orthogonalisation of an ordered set of vec-

tors V = {v1, . . . ,vk} ∈ Rn is Ṽ = {ṽ1, . . . , ṽk} where ṽi is the component of vi that is orthogonal to

the span of (v1, . . . ,vi−1}), for all i ∈ [k]. That is,

ṽi = vi −
i−1∑
j=1

〈vi, ṽj〉
〈ṽj , ṽj〉

· ṽj

We refer to ‖Ṽ‖ as the Gram-Schmidt norm of a matrix V.

Note: We perform all the arithmetic operations mod q. But, we make exemptions during the cal-

culation of norms and Gram-Schmidt orthogonalisation, for which it is more natural to work in the

reals.

Gaussian distributions. Let DZm,s,c be the truncated discrete Gaussian distribution over Zm with

standard deviation s and center c, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds
√
m · s. For notational convenience, we would assume c = 0 in most cases and hence abbreviate DZm,s,0
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to DZm,s.

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian. The

result follows from [MR07, Lemma 4.4], using [GPV08, Lemma 5.3] to bound the smoothing parameter.

Lemma 2.1.1. Let Λ be an n-dimensional lattice, let T be a basis for Λ, and suppose s ≥ ‖T̃‖·ω(
√

log n).

Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > s

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

Thus, the probability for a random sample from DZm,s to be 0 is negligible and hence DZm,s is
√
m · s-

bounded.

2.1.3 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [Reg09b] as a generalisation of the well-studied learning

parity with noise (LPN) problem. Informally, the LWE problem states that, for any q ≥ 2, a vector

s
$← Znq and an error value e sampled from a probability distribution χ on Zq, when an adversary is

given the tuple (a, 〈a, s〉 + e (mod q)) for any a
$← Znq , it is not possible for him to output s with

noticeable probability. Regev showed that solving it on the average is as hard as (quantumly) solving

several standard lattice problems in the worst case. We will formally define the decisional version of this

problem which we will use in the thesis.

Definition 2.1.1 (dLWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over Zq, the

decisional version of the learning with errors problem dLWEn,m,q,χ is to distinguish between the following

pairs of distributions:

{A,AT s + e} and {A,u}

where A
$← Zn×mq , s

$← Znq , e
$← χm,u

$← Zmq .

Throughout this paper, the parameter m = poly(n), in which case we will shorten the notation

slightly to dLWEn,q,χ.

Connection to lattices.

There are known quantum [Reg09b] and classical [Pei09] reductions between dLWEn,q,χ and approxi-

mating gapSVP problems in lattices in the worst case, where χ is a B-bounded (truncated) discretized

Gaussian for some appropriate B. For a lattice dimension parameter n and a number d, gapSVPγ is

the promise problem of distinguishing whether a n-dimensional lattice has a vector shorter than d or no

vector shorter than γ(n) · d. We now state a corollary of the reductions of [Reg09b, Pei09] from gapSVP

to LWE, in terms of the bound B on the distribution χ after applying the search to decision reduction

for LWE [MP12].

Theorem 2.1.2 ([Reg09b, Pei09]). Let q = q(n) ∈ N be product of powers of primes (with each distinct

prime of size poly(n)), and let B ≥ ω(log n) ·
√
n. Then there exists an efficient sampleable distribution

χ such that if there is an efficient algorithm that solves the average case dLWEn,q,χ problem, then:
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• There is a quantum algorithm that solves gapSVPÕ(nq/B) on any n-dimensional lattice.

• If q ≥ Õ(2n/2), there is an efficient classical algorithm for gapSVPÕ(nq/B) for any n-dimensional

lattice.

When the error distribution is discrete Gaussian with parameter α, the above reductions in Theorem

2.1.2 can be interpreted with αq ≥ 2B, hence with gapSVPÕ(n/α). Note that the restriction on q to be

a product of powers bounded primes is due to the reduction from dLWE to lwe. The reductions from

LWE to the lattice problems do not require this property of q.

Recently, Brakerski et al. [BLP+13] provided an improved version of [Pei09]. They have obtained a

classical reduction from LWE to gapSVP which works for polynomial modulus.

Theorem 2.1.3 (Informal theorem of [BLP+13]). Solving n-dimensional LWE with poly(n) modulus

implies an equally efficient solution to a worst-case lattice problem in dimension
√
n.

Their main result is Lemma 2.1.4, which gives a reduction from the LWE problem with exponential

modulus to the LWE problem with binary secrets and polynomial modulus. It is clear that this lemma

when combined with the classical reduction in Theorem 2.1.2, leads to Theorem 2.1.3. And this new

reduction works when the error distribution χ is a discrete Gaussian distribution with some parameter

α.

Lemma 2.1.4 ([BLP+13]). Let k, q ≥ 1 and n ≥ 1 be integers, and let ε ∈ (0, 1/2), α, δ > 0, be such

that n ≥ (k + 1) log2 q + 2 log2(1/δ), α ≥
√

ln(2n(1 + 1/ε))/π/q. There exists a transformation from

LWEk,q,α to LWEn,q′,α′ , the latter with binary secrets, for any q′ ≥ 1 and ξ > 0 where

α′ :=

(
10nα2 +

4n

πq′2
ln(2n(1 + 1/ε))

)1/2

Since the LWE problem with dimension k =
√
n and modulus q = 2k/2 is classically as hard as

√
n-

dimensional gapSVP problem, Theorem 2.1.3 follows (for some q′ as small as
√
n). The state-of-the-art

algorithms for these lattice problems (Eg. gapSVP) run in time nearly exponential in the dimension

n [AKS01, MV10]; more generally, we can get a 2k-approximation in time 2Õ(n/k).

Thus the dLWEn,q,χ assumption states that any adversary for the LWE problem with a discrete Gaussain

distribution χ = DZm,s for any s = poly(n) and q as large as 2n
ε

(for any constant 0 < ε < 1) can succeed

with only a negl(n) advantage.

2.1.4 Trapdoors for Lattices

Trapdoor of a lattice is usually a “short” basis of its kernel lattice. For the lattice Λq(A) defined by

some matrix A ∈ Zn×mq , its trapdoor is a “short” basis TA ∈ Zm×mq of its kernel lattice Λ⊥q (A) i.e

A · TA = 0. The most improved lattice trapdoor generation algorithm (which outputs a (A,TA) pair

for some A which is statistically or computationally indistinguishable from random) that is available

now, has been constructed by Micciancio and Peikert [MP12].
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Lemma 2.1.5 (Lattice Trapdoors [Ajt99, MP12]). There is an efficient randomized algorithm TrapSamp(1n, 1m, q)

that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = Ω(n log q), outputs a parity check ma-

trix A ∈ Zn×mq and a trapdoor matrix TA ∈ Zm×m such that the distribution of A is negl(n)-close to

uniform and ‖T̃A‖ ≤ O(n log q).

Here are some titbits about trapdoors. From Lemma 2.1.5, we can see that one can obtain a “ran-

dom” matrix along with its trapdoor by running the TrapSamp algorithm. But when given a matrix

A
$← Zn×mq , it is hard to obtain its trapdoor in polynomial time. Note that one can easily obtain some

basis of the kernel lattice since the equation A · T′ = 0 has multiple solutions for some T′ ∈ Zm×mq .

But it is hard to get a “short” solution. In fact getting even a single column t of low norm such that

A · t = 0 is equivalent to the SIS (Short Integer Solution) problem, which itself is assumed to be hard.

But when a trapdoor is provided along with the matrix, a lot of operations which are originally hard

can be performed easily. For instance, we will show (informally) how to solve the search version of the

LWE problem given the trapdoor in polynomial time. In the following sections we will provide other

applications of trapdoors which we will use in this work. Now lets look at the LWE problem. We are

given a tuple (A,AT s + e mod q) for some matrix A
$← Zn×mq , secret vector s

$← Znq and error vector

e
$← χm for some error distribution χ. If we are also provided with a trapdoor TA ∈ Zm×mq for the

matrix A, we can calculate TT
A · (AT s + e) = TT

Ae mod q, since TT
AAT s = (ATA)

T
s = 0. If the

parameters are chosen appropriately, since by our assumption both TA and e have low norm, all the

values of TT
Ae are small compared to q even without the (mod q) operation i.e the values of TT

Ae do not

wrap around q. Now getting e from this value is equivalent to solving m equations in m variables over

integers. This set of equations have a unique solution since the columns of TA are linearly independent.

After getting e we can subtract this from the LWE instance to get AT s from which s can be obtained

easily. Thus we can solve the LWE problem when the trapdoor is given. Note that if we try to perform

these steps with some basis T′ (not necessarily one with low norm) of the kernel lattice, we would not

be able to find the correct error vector e from T′e mod q.

Sampling algorithms

Lattice trapdoors can also be used to obtain “short” pre-images. Given a matrix A and a vector u, the

pre-image of A is a vector r of low norm such that A ·r = u mod q. There are two versions of pre-image

sampling algorithms:

1. Deterministic algorithm, where the output is of low norm.

Lemma 2.1.6 (Deterministic pre-image sampling [Bab86]). There is an efficient deterministic

algorithm Inv that on input a matrix A ∈ Zn×mq , its trapdoor TA ∈ Zm×mq , a vector u ∈ Znq ,

outputs a vector r ∈ Zmq such that A · r = u mod q and ‖r‖ ≤ 1
2

√
m · ‖T̃A‖.

We prominently use the algorithm InvB : Zn×mq → Zm×mq . InvB is a deterministic algorithm having

a matrix B ∈ Zn×mq and its trapdoor TB hardcoded in it. InvB takes as input a matrix A and

outputs a low norm matrix D such that B · D = A. This algorithm essentially runs Babai’s

algorithm Inv (Lemma 2.1.6) m times, for every column of A. Here, ‖D‖ ≤ 1
2

√
m · ‖T̃B‖.

2. Randomised algorithm, where the output is a random sample from a discrete Gaussian distribution.
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Lemma 2.1.7 (Randomised pre-image sampling [GPV08, MP12]). There is an efficient algorithm

SampleD(A,TA,u, s) that with overwhelming probability over all random choices, does the follow-

ing: For any u ∈ Znq , and large enough s = ‖T̃A‖ · ω(
√

logm), the randomized algorithm SampleD

outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤ s
√
n (with probability 1). Furthermore, the

following distributions of the tuple (A,TA,U,R) are within negl(n) statistical distance of each

other for any polynomial k ∈ N:

• (A,TA)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,TA,U, s).

• (A,TA)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

Other Sampling algorithms

We will use the following algorithms to sample short vectors from specific lattices. Looking ahead

the algorithm SampleLeft [ABB10, CHKP12] will be used to sample keys in the real system, while the

algorithm SampleRight [ABB10] will be used to sample keys in the simulation.

Algorithm SampleLeft(A,B,TA,u, α):

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of Λ⊥q (A),

a matrix B in Zn×m1
q , a vector u ∈ Znq , and a Gaussian parameter α. (2.1)

Output: Let F := (A ‖B). The algorithm outputs a vector r ∈ Zm+m1

in the coset Λu
q (F).

Theorem 2.1.8 ([ABB10, Theorem 17], [CHKP12, Lemma 3.2]). Let q > 2, m > n and α > ‖T̃A‖ ·
ω(
√

log(m+m1)). Then SampleLeft(A,B,TA,u, α) taking inputs as in (2.1) outputs a vector r ∈
Zm+m1 distributed statistically close to DΛu

q (F),α, where F := (A ‖ B).

Proof. We would like to output a vector r
$← DZm+m1 ,α such that F · r = u. We do this as follows:

• Sample a random vector r2
$← DZm1 ,α.

• Compute the vector y = u−B · r2.

• Run SampleD(A,TA,y, α) and obtain a random vector r1. This is a random sample from DZm,α

by the correctness of the SampleD algorithm, since α > ‖T̃A‖ · ω(
√

log(m+m1)).

• Output r =

[
r1

r2

]
.

Thus, r ∈ Zm+m1 is a distributed statistically close to DΛu
q (F),α.

Algorithm SampleRight(A,B,R,TB,u, α):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix B in

Zn×mq , a “short” basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian

parameter α.

(2.2)

Output: Let F := (A ‖ AR + B). The algorithm outputs a vector

r ∈ Zk+m in the coset Λu
q (F).
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Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m.

Theorem 2.1.9 ([ABB10, Theorem 19]). Let q > 2,m > n and α > ‖T̃B‖ · ‖R‖ · ω(
√

logm). Then

SampleRight(A,B,R,TB,u, α) taking inputs as in (2.2) outputs a vector r ∈ Zk+m distributed statisti-

cally close to DΛu
q (F),α, where F := (A ‖ AR + B).

Proof. We would like to output a vector r
$← DZk+m,α such that F · r = u.

• First, we find k + m linearly independent vectors ti ∈ Λ⊥q (F), when given a trapdoor TB =

{b1, . . . ,bm} ∈ Zm×m for B, such that ‖T̃F‖ ≤ ‖T̃B‖ · (‖R‖+ 1).

• Then we use Lemma 7.1 of [MG02] to convert this set TF into a basis T′F for Λ⊥q (F) with the same

Gram-Schmidt norm.

• Now, we can run SampleD(F,T′F,u, α) to obtain r ∈ DΛu
q (F),α, because α > ‖T̃′F‖ · ω(logm).

Now we explain the first step of obtaining k + m linearly independent vectors ti ∈ Λ⊥q (F), with

‖T̃F‖ ≤ ‖T̃B‖ · (‖R‖+ 1) in detail. We are provided with a trapdoor TB = {b1, . . . ,bm} ∈ Zm×m for

B.

• For i = {1, . . . ,m}, set ti =

[
−Rbi

bi

]
∈ Zk+m. Clearly, F · ti = −ARbi + ARbi + Bbi = 0

mod q.

• For i = {1, . . . , k}, consider wi to be the ith column of the identity matrix Ik and ui to be an

arbitrary vector in Zm satisfying Awi+Bui = 0 mod q. This ui exists since rank of B is n. Now,

set

ti+m =

[
wi −Rui

ui

]
Here, F · ti+m = Awi −ARui + ARui + Bui = Awi + Bui = 0 mod q. Hence, ti+m ∈ Λ⊥q (F).

We still have to show that all these k + m vectors are linearly independent and that ‖T̃F‖ ≤ ‖T̃B‖ ·
(‖R‖+ 1). The linear independence of the vectors follows from the following discussion:

• The first m vectors span the linear space V of vectors of the form

[
−Rxi

bi

]
, where the vectors bi

are linearly independent. Hence, t1, . . . , tm are linearly independent.

• For i ∈ {m, . . . ,m + k}, each vector ti is the sum of a unit vector

[
wi

0m

]
plus some vector in V.

These vectors are clearly linearly independent (within themselves and with the first m vectors),

since wi are the rows of an identity matrix.

The bound in the Gram-Schmidt norm of r can be shown as follows:

• For i > m, since the vectors are of the form

[
wi

0m

]
plus a vector in V, the corresponding Gram-

Schmidt vectors will be

[
wi

0m

]
. Hence, the norm of these vectors are bounded by 1.
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• We apply Lemma 6 in [ABB10] to bound the Gram-Schmidt norm of the vectors for i ∈ {1, . . . ,m}
and hence for ‖T̃F‖. According to that lemma, for any R ∈ Rk×m, for any linearly independent

set of vectors TB = {b1, . . . ,bm} ∈ Rm×m′ ,

‖R̃TB‖ ≤ max
1≤i≤m′

‖Rb̃i‖

Since the trapdoor TB is a basis for Λ⊥q (B), we can apply this lemma to get an upper bound for

‖T̃F‖. Let R′ =

[
−R

Im

]
∈ Z(k+m)×m. Then,

‖T̃F‖ ≤ max
1≤i≤m

‖R′b̃i‖ ≤ max
1≤i≤m

‖Rb̃i‖+ ‖b̃i‖ ≤ max
1≤i≤m

‖R‖‖b̃i‖+ ‖b̃i‖

≤ max
1≤i≤m

‖b̃i‖ · (‖R‖+ 1) ≤ ‖T̃B‖ · (‖R‖+ 1)

Thus, TF is a set of k + m linearly independent vectors in Λ⊥q (F) with its Gram-Schmidt norm upper

bounded by ‖T̃B‖ · (‖R‖ + 1). We can now perform the next two steps to obtain a random vector

r ∈ DΛu
q (F),α.

Primitive matrices

A matrix is termed as a primitive matrix, if its columns generate all of Znq . As shown in [MP12], there

exists primitive matrices which define lattices with excellent properties. One such use is that, one can

easily find its trapdoor, which is a short basis for its kernel matrix.

Here, for instance, consider the following matrix,

G = Powersof2(In) =


g

g

. . .

g

 ∈ Zn×nyq

where g = Powersof2(1) =
[
1 2 . . . 2y−1

]
∈ Z1×y

q . This matrix G satisfies the properties of a primitive

matrix. Its trapdoor is

TG =


Tt

Tt

. . .

Tt

 ∈ Zny×nyq
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where each Tt =



2 q0

−1 2 q1

−1 q2

. . .
...

2 qy−2

−1 qy−1


∈ Zy×yq .

We summarise the properties that we require of the primitive matrices in the following theorem.

Theorem 2.1.10 ([MP12], Theorem 4.1). For any integers q ≥ 2, n ≥ 1, y = blog qc + 1 and m = ny,

there is a primitive matrix G ∈ Zn×mq such that the lattice Λ⊥q (G) has a known basis TG ∈ Zm×m with

‖T̃G‖ ≤
√

5 and ‖TG‖ ≤ max{
√

5,
√
y}. If q = 2y, we have ‖TG‖ =

√
5 and T̃G = 2Im and hence

‖T̃G‖ = 2.

Also, for m > ny, we can append columns of zeros (0n) to obtain primitive matrices B ∈ Zn×mq .

Note that, the Gram-Schmidt norms of the trapdoors of these matrices are still upper bounded by
√

5

i.e ‖T̃B‖ ≤
√

5.

2.2 Attribute-Based Encryption

We define attribute-based encryption, following [GPSW06]. An attribute-based encryption scheme ABE
for a class of boolean predicate circuits C1 consists of four polynomial time algorithms (Setup,Enc,Keygen,Dec).

For some security parameter λ, for some input length ` = poly(λ) for circuits in C, for some bounded

depth dmax for circuits in C, the ABE algorithms are defined as follows:

Setup(1λ, 1dmax , 1`)→ (pp,mpk,msk) : The probabilistic setup algorithm gets as input λ, dmax, ` and

outputs the public parameters pp, the master public key mpk, and the master key msk. pp is

implicitly given to all the other algorithms of the scheme.

Enc(mpk, x, µ)→ ctx : The probabilistic encryption algorithm gets as input mpk, an attribute vector

x ∈ {0, 1}` and a message µ ∈ {0, 1}. It outputs a ciphertext ctx.

Keygen(msk, C)→ skC : The probabilistic key generation algorithm gets as input msk and a predicate

specified by C ∈ C. It outputs a secret key skC .

Dec(skC , ctx)→ µ : The deterministic decryption algorithm gets as input ctx and skC , and outputs

either ⊥ or a message µ ∈ {0, 1}.

Definition 2.2.1 (Correctness). We require that for all λ, for all circuits C ∈ C of bounded depth

dmax and input length `, for all x ∈ {0, 1}` and for all µ ∈ {0, 1}, if C(x) = 1 we have Pr[ctx ←
Enc(mpk,x, µ); Dec(skC , ctx) = µ)] = 1 where the probability is taken over (pp,mpk,msk)← Setup(1λ, 1dmax1`)

and the coins of all the algorithms in the expression above.

1Predicate circuits are those with single bit outputs.
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2.2.1 Security of Attribute-based Encryption

Informally, the security of attribute-based encryption ensures the following. When an adversary is

provided with a ciphertext ctx, corresponding to a vector x, it cannot learn anything about the message

µ encrypted in ctx, unless it has the secret key skC for a circuit C such that C(x) = 1. We provide

an indistinguishability based definition which ensures that the adversary cannot distinguish between

encryptions of µ0 and µ1, without having an appropriate secret key.

Definition 2.2.2 (Fully Secure ABE). For a stateful adversary A, we define the advantage function

AdvABE
A (λ) to be

Pr


b = b′ :

(dmax, `)← A(λ);

(pp,mpk,msk)← Setup(1λ, 1dmax , 1`);

x← AKeygen(msk,·)(mpk);

b
$← {0, 1};

ctx ← Enc(mpk,x, b);

b′ ← AKeygen(msk,·)(ctx)


− 1

2

with the restriction that all the secret key queries that A makes to Keygen(msk, ·) for circuits C are of

depth bounded by dmax, input length ` and satisfy C(x) = 0 (that is, skC does not decrypt ctx). We call

an attribute-based encryption scheme fully secure if for all PPT adversaries A, the advantage AdvABE
A (λ)

is a negligible function in λ.

We will use a weaker version of security called “selective” security. Here, the adversary should provide

the challenge attribute vector x∗ at the beginning of the experiment. The Setup algorithm produces the

keys based on the challenge attribute vector x∗.

Definition 2.2.3 (Selectively Secure ABE). For a stateful adversary A, we define the advantage function

AdvABE
A (λ) to be

Pr


b = b′ :

(x∗, dmax, `)← A(1λ);

(pp,mpk,msk)← Setup(1λ, 1dmax , 1`,x∗);

AKeygen(msk,·)(mpk);

b
$← {0, 1};

ctx∗ ← Enc(mpk,x∗, b);

b′ ← AKeygen(msk,·)(ctx∗)


− 1

2

with the same restriction that all the secret key queries that A makes to Keygen(msk, ·) for circuits C

are of depth bounded by dmax, input length ` and satisfy C(x∗) = 0 (that is, skC does not decrypt ctx∗).

Here, x∗ ∈ {0, 1}`. An attribute-based encryption scheme is selectively secure if for all PPT adversaries

A, the advantage AdvABE
A (λ) is a negligible function in λ.

Note: Our results can be easily extended to a more general message space {0, 1}poly(λ).

Any selectively secure ABE can be made adaptively secure by a standard complexity leveraging

argument as in [BB11] who give one such transformation for ID-based encryption schemes.
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Theorem 2.2.1. Any selectively secure attribute-based encryption scheme with advantage ε is also adap-

tively secure with advantage 2`ε, where ` is the length of the attribute vector

Proof. This proof closely follows the proof of [BB11]. First, assume the existence of an adversary A
which has an advantage of atleast 2`ε in the full security game of an ABE scheme. We will construct an

adversary B using A for the selective security game of the same ABE scheme which has an advantage

of atleast ε. B acts as the challenger to A in the adaptive security game.

• B chooses an attribute vector x∗
$← {0, 1}` and gives it to its challenger as its challenge attribute

vector. B then receives public parameters of the scheme from its challenger. Note that the distri-

bution of the public parameters is independent of the challenge attribute vector x∗. B forwards

these public parameters to A.

• During the training phase I, whenever A queries the Keygen oracle, B answers them by querying

its Keygen oracle except when A queries for circuits C such that C(x∗) = 1. When A queries for

such circuits, B aborts the game, and outputs b′ at random.

• During the challenge phase, A outputs a challenge attribute vector x∗A and a pair of messages

µ0, µ1. If x∗A 6= x∗, then B aborts again outputting b′ at random.

• If x∗A = x∗, B gives the messages µ0, µ1 to its challenger and proceeds to the training phase II. B
answers A’s Keygen queries as before by forwarding the queries to its challenger. Note that there

will be no abort during this stage since all queries of A will be such that C(x∗A) = C(x∗) = 0.

• Finally, A outputs its guess b′A ∈ {0, 1}. B outputs the same bit as its guess b′.

We now analyse the advantage of B in the above selective security game i.e B’s chances of outputting

the correct bit b′ = b. Let q ≤ qA < 2` be the number of distinct Keygen queries that A makes during

the training phase I. Let X1 ⊆ {0, 1}` be the set of x ∈ {0, 1}` such that C1(x) = 0 for A’s first query

C1. Thus the probability for not aborting after the first query is α
2`

, where α1 = |X1|. Now, for any

i ∈ [2, q], let Xi ⊆ Xi−1 be the set of x ∈ {0, 1}` for which Cj(x) = 0 for all j ∈ [1, i]. If Si is the event

that there is no abort after i queries, then the probability Pr[Si|Si−1] = αi
αi−1

, where αi = |Xi|. Thus,

the probability that there is no abort in the training phase I is Pr[Sq] where

Pr[Sq] = Pr[Sq|Sq−1] · Pr[Sq−1]

= Pr[Sq|Sq−1] · Pr[Sq−1|Sq−2] · · ·Pr[S2|S1] · Pr[S1]

=
αq
αq−1

· αq−1

αq−2
· · · α2

α1
· α1

2`

=
αq
2`

Note that αq ≥ 1 because the challenge attribute vector x∗A given by A should be such that Ci(x
∗
A) = 0

for all i ∈ [1, q]. Therefore, the probability for no abort during the above game is

Pr[NA] = Pr[Sq ∩ (x∗A = x∗)] = Pr[Sq] · Pr[x∗A = x∗|Sq] =
αq
2`
· 1

αq
=

1

2`

When no abort happens during the above game, the view of A is identical to the view in the real security

game. And, by our assumption Pr[b′ = b|NA]− 1
2 ≥ 2`ε. When abort happens during the above game,
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B always chooses b′ at random. Hence, Pr[b′ = b|NA] = 1
2 . Thus, the advantage of B in the selective

security game is given by

∣∣Pr[b′ = b]− 1

2

∣∣ =
∣∣Pr[b′ = b|NA] · Pr[NA]

∣∣+ Pr[b′ = b|NA] · Pr[NA]− 1

2

∣∣
=
∣∣Pr[b′ = b|NA] · 1

2`
+

1

2
· (1− 1

2`
)− 1

2

∣∣
=
∣∣Pr[b′ = b|NA]− 1

2

∣∣ · 1

2`

≥ ε



Chapter 3

Fully Key homomorphic encryption

In this chapter, we present a formal definition of our variant of fully key homomorphic encryption

(FKHE) scheme. We then use it to build an ABE scheme with short secret keys. We define our variant

in such a way that it would be easy to build the ABE scheme using the FKHE algorithms as black boxes.

A naive, informal definition of key homomorphism would be: anyone can transform an encryption under

a vector of ` public keys x ∈ X ` into an encryption under the public key C(x) for some arbitrary circuit

C. In other words, if cx is an encryption of message µ under a public key vector x ∈ X `, with key-

homomorphism we would expect to have a public evaluation algorithm Evalct(C,x, cx)→ cC such that

the output (evaluated) ciphertext cC is an encryption of µ under the public key C(x) ∈ Y1. But when

one tries to build an ABE system from this key homomorphic encryption scheme as such, it becomes

insecure. To see this, consider the scenario where a user, with a policy represented by circuit C, has

been given a secret key corresponding to the public key y ∈ Y. When given a ciphertext cx under the

public key vector x, he can run the Evalct algorithm and then use the secret key to decrypt the evaluated

ciphertext cC if C(x) = y. Hence, correctness holds. But, even when C(x) 6= y, he can pick any other

circuit C ′ such that C ′(x) = y and run Evalct(C
′,x, cx) to get cC′ and use the secret key to decrypt

cC′ to get the message. He can do this because cC′ is also a valid encryption under the public key y.

The problem here is that the secret key is bound only to the evaluated pubic key C(x) = y and not to

the circuit C. Hence, to construct a secure ABE we slightly extend the basic key homomorphism idea

to include C in the (evaluated) public key. Thus, a ‘base’ encryption public key is a vector x ∈ X ` as

before, however Evalct produces ciphertexts encrypted under the (evaluated) public key (C(x), C) where

C(x) ∈ Y. To be a bit more precise we define our FKHE variant such that the vector x is not the

actual public key vector. Instead we use each xi to choose a public key pki,xi from the master public key

mpkFKHE. And the key-homomorphism property ensures the following: for any two wires i, j ∈ [1, |C|]
having the public keys pki,xi and pkj,xj allows one to compute pkk,xk without requiring any secret com-

ponents. Here xk = xi�xj for some boolean gate � with input wires i, j and output wire k. Thus there

is a deterministic way to publicly determine the (evaluated) public key corresponding to (C(x), C) from

the public keys determined by x.

1It is convenient to group the ciphertexts under a public key vector together, because to achieve key homomorphism and
maintain semantic security simultaneously, the individual ciphertexts have to be encrypted using “correlated” randomness.
Also, it is more appropriate to denote the evaluated ciphertext as cx,C or cy,C . But we will simplify the notation and use
cC .

20
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Our variant of key homomorphism can now described as follows. Suppose cx is an encryption of µ under

the vector of public keys determined by x ∈ X `, anyone can transform cx to an encryption of µ under the

public-key determined by (C(x), C). Transforming the ciphertext cx from the public keys determined

by x to that determined by (C(x), C) is done using algorithm Evalct(C,x, cx) → cC . Now, in order to

decrypt, we give the user the secret key for the public key corresponding to (y, C), ensuring that the

user with sky,C can decrypt cC only when C(x) = y.

Now, to build an ABE from this key homomorphic encryption scheme, we simply publish the pa-

rameters of the key homomorphic system. We can encrypt a message µ under the attribute vector

x = (x1, . . . , x`) ∈ X ` that determines the ‘base’ public keys and obtain the ciphertext cx. Now a user

with his policy represented by a circuit C can transform cx into an encryption cC of µ under the public

key determined by (C(x), C) using the Evalct algorithm. The point is that now the secret key for the

circuit C can simply be the decryption key for the public key determined by (1, C). This key enables

the decryption of cC when C(x) = 1.

In our construction we deal with the class C of predicate boolean circuits with ` input wires. Hence we

set X = {0, 1} and Y = {0, 1}. This can be trivially extended to a construction with X = Y = Zp for

any bounded p and hence C would be the set of arithmetic circuits with ` input wires.

Remark: We have defined this notion of FKHE to abstract the techniques that we used for building

ABE with short keys so that more applications could be found for our techniques or in general, full

key-homomorphism. We leave it to future work to study the notion of full key-homomorphism and its

applications in more detail.

3.1 Definition

Now, we give a formal definition of our fully key homomorphic encryption (FKHE) system.

Let C be a class of boolean predicate circuits, namely C = {C : {0, 1}` → {0, 1}} for some ` > 0. Public

keys in an FKHE scheme are pairs (y, C) ∈ {0, 1} × C. We call y the “value” and C the associated

circuit. All such pairs are valid public keys. We also allow tuples x ∈ {0, 1}` to function as public keys.

Now, an FKHE scheme for C consists of five PPT algorithms:

SetupFKHE(1λ, 1`)→ (mpkFKHE,mskFKHE) : The probabilistic Setup algorithm on input the security pa-

rameter λ and input length of circuits `, outputs a master secret key mskFKHE and public parameters

mpkFKHE.

KeyGenFKHE

(
mskFKHE, (y, C)

)
→ sky,C : The probabilistic key generation algorithm on input a value,

circuit pair (y, C) ∈ {0, 1} × C outputs a decryption key sky,C for the public key determined by

(y, C). Note that sky,C contains (y, C).

EFKHE

(
mpkFKHE, x, µ

)
−→ cx : The randomised encryption algorithm on input a vector x ∈ {0, 1}`

and a message µ ∈ {0, 1}, creates a ciphertext cx which is an encryption of µ under the public

keys determined by x. Note that cx contains x.
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Evalct
(
C, x, cx

)
−→ cC

2 : A deterministic evaluation algorithm that implements key-homomorphism.

Let cx be an encryption of message µ under the public keys determined by x ∈ {0, 1}`. For a

circuit C the algorithm outputs the evaluated ciphertext cC where if y = C(x1, . . . , x`) then cC is

an encryption of message µ under the (evaluated) public-key determined by (y, C).

DFKHE(sky,C , cC′) : The decryption algorithm on input a ciphertext cC′ with a secret key sky,C and

outputs a message µ ∈ {0, 1} or ⊥.

Algorithm Evalct captures the key-homomorphic property of the system: ciphertext cx encrypted with

the public keys determined by x = (x1, . . . , x`) is transformed to a ciphertext cC encrypted under the

public key determined by
(
C(x1, . . . , x`), C

)
.

Correctness. The key-homomorphic property is stated formally in the following requirement: For

all (mpkFKHE,mskFKHE) output by SetupFKHE(1λ, 1`), all messages µ ∈ {0, 1}, all C ∈ C, and x =

(x1, . . . , x`) ∈ {0, 1}` where ` is the input length of C:

If cx ← EFKHE

(
mpkFKHE, x, µ

)
, y = C(x1, . . . , x`),

cC = Evalct

(
C, x, cx

)
, sky,C ← KeyGenFKHE(mskFKHE, (y, C))

Then DFKHE(sky,C , cC) = µ.

Another version of FKHE definition

The above definition is more general for an FKHE scheme, but we can obtain a construction which works

only for a variant of the above version. In particular, similar to our definition of ABE, we introduce a

depth bound. The SetupFKHE algortihm can be modified as follows to accommodate this. We will use

this version for our construction.

SetupFKHE(1λ, 1dmax , 1`)→ (mpkFKHE,mskFKHE) : The probabilistic Setup algorithm on input the security

parameter λ, the input length ` and the depth bound dmax of the circuits in C, outputs a master

secret key mskFKHE and public parameters mpkFKHE.

All the other algorithms are the same as in the above definition.

3.2 ABE from FKHE

A FKHE for a family of predicate boolean circuits C immediately gives a key-policy ABE scheme for

the same family of circuits. Attribute vectors for the ABE are `-tuples over {0, 1} and the supported

key-policies are circuits in C. Note that there is no apriori depth bound dmax unless the FKHE scheme

has similar constraints on the circuits that it can support. The ABE system works as follows:

• Setup(1λ, 1dmax , 1`):

1. Run SetupFKHE(1λ, 1dmax , 1`) to get public parameters mpkFKHE and master secret mskFKHE.

2. These respectively function as the ABE master public key mpk and the master secret key

msk.
2We use a subscript of ct with Evalct because later we are going to use two more evaluation algorithms as a part of our

FKHE construction, to improve the presentation of the construction.
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• Enc(mpk, x, µ):

1. Run the EFKHE(mpkFKHE, x, µ
)

algorithm to get the ciphertext cx under the attribute vector

x (which is used to determine the public keys for the FKHE encryption).

2. Output ctx = cx.

• Keygen(msk, C):

1. Run the KeyGenFKHE

(
mskFKHE, (1, C)

)
algorithm to get the secret key sk1,C . This is the

secret key skC of the ABE scheme for the circuit C since by our definition of ABE we allow

decryption only when C(x) = 1. Output skC .

2. Jumping ahead, we remark that in our FKHE instantiation, the size of skC does not depend

on the size of C. (Actually our FKHE implementation will also need an apriori depth bound

dmax, and hence the size of secret key will depend only on the (max) depth but not on the

size of the circuit.)

• Dec
(
ctx, skC

)
:

1. If C(x) = 0, output ⊥.

2. If C(x) = 1, proceed as follows: run the Evalct

(
C, x, ctx

)
to get the (evaluated) ciphertext

cC .

3. Now run the decryption algorithm DFKHE(skC , cC) and output the decrypted answer.

4. Note that cC is the encryption of the message under the public key determined by (C(x), C).

Since skC is the decryption key for the public key determined by (1, C), decryption will succeed

whenever C(x) = 1 as required.

Lemma 3.2.1. The above ABE scheme is correct, given that the FKHE scheme is correct.

Proof. The public parameters and the master secret key of the ABE system are those of the underlying

FKHE system. Now we need to show that for all ciphertexts ctx encrypted under an attribute vector x,

any secret key skC such that C(x) = 1 should be able to decrypt ctx. This follows from the correctness of

the FKHE scheme since the secret key skC is the secret key sk1,C corresponding to the evaluated public

key determined by (1, C) and this decrypts any ciphertext under the set of public keys determined by x

such that C(x) = 1.

3.3 Security of FKHE systems

Our security definition of FKHE is as follows:

Definition 3.3.1 (Selectively-secure FKHE). For a stateful adversary A we define the advantage func-

tion for a fully key homomorphic encryption scheme FKHE = (SetupFKHE,KeyGenFKHE,EFKHE,Evalct)
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for a class of circuits C = {C : {0, 1}` → {0, 1}} we define the advantage function AdvFKHE

A (λ) as follows:

Pr


b = b′ :

x∗ ← A(λ, 1dmax , 1`)

(mpkFKHE,mskFKHE)← SetupFKHE(λ)

AKGKH(mskFKHE,x
∗,·,·)(mpkFKHE)

b
$← {0, 1};

cx∗ ← EFKHE(mpkFKHE, x∗, b)

b′ ← AKGKH(mskFKHE,x
∗,·,·)(cx∗)


− 1

2

where x∗ ∈ {0, 1}` and KGKH(mskFKHE, x
∗, y, C) is an oracle that on input C ∈ C and y ∈ {0, 1},

returns ⊥ whenever C(x∗) = y, and otherwise returns KeyGenFKHE

(
mskFKHE, (y, C)

)
. The FKHE scheme

FKHE is selectively secure if for all PPT adversaries A, AdvFKHE

A (λ) is a negligible function in λ.

With Definition 3.3.1 the following theorem is now immediate.

Theorem 3.3.1. The ABE system above is selectively secure provided the underlying FKHE is selectively

secure.

Proof. Assume that we have an adversary A which breaks the selectively security of the ABE system

with advantage ε. We will then build an adversary B who would have the same advantage during the

selective security game for the FKHE scheme.

• A gives its challenge attribute vector x∗ to B and B forwards this to its challenger.

• B gets the public parameters of the FKHE scheme from its challenger. B forwards these as the

public parameters of the ABE scheme to A.

• Whenever A asks for secret key queries for any circuit C, B answers by querying the KGKH with

the evaluated public key (1, C). B could always do this because it is allowed to discard the queries

of A whenever C(x∗) = 1.

• B continues answering A’s Keygen queries in the same way as before.

• When B gets its challenge ciphertext, it forwards it to A.

• Finally, when A outputs its guess b′, B outputs the same bit b′ as its guess.

From the game, it is obvious that if A breaks the selective security of ABE with advantage ε, B has the

same advantage ε in breaking the selective security of the FKHE scheme.
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An FKHE scheme under LWE

assumption

We now instantiate our FKHE system using the LWE assumption. Recall that the (decisional) LWE

assumption states that the vector As + e (mod q) for a matrix A
$← Zn×mq , a secret s

$← Znq , an error

e
$← χm is indistinguishable from a randomly chosen vector in Zmq . We will first give an overview of our

techniques before giving a complete description of the FKHE algorithms.

Fix some n ∈ Z+, prime q, and m = Θ(n log q). Let A,A1, . . . ,A` be matrices sampled from Zn×mq and

let B be a matrix again chosen from Zn×mq but with an additional property that we also need to know

its trapdoor. Recall that when we choose B to be a primitive matrix as defined in Theorem 2.1.10 (and

appropriately append columns of 0n), we can trivially get its trapdoor1. These ` + 2 matrices will be

part of the system parameters. To encrypt a message µ under the public key x = (x1, . . . , x`) ∈ {0, 1}`

we use a variant of dual Regev encryption (MATT s + e, for some secret s, error e) using the following

matrix as the public key MAT for the dual Regev system:

(
A | A1 + x1 ·B | · · · | A` + x` ·B

)
∈ Zn×(`+1)m

q (4.1)

A similar variant was used by Agrawal, Boneh and Boyen [ABB10] to get hierarchical IBE and by

Agrawal, Freeman and Vaikuntanathan [AFV11] to get inner-product predicate functional encryption.

Both of them choose B randomly from Zn×mq . [AFV11] use the additive key homomorphism property of

this to construct their inner-product predicate encryption scheme. One of the main contributions of our

work is a novel method of multiplying the dual Regev public key matrices. We achieve this by picking

B so that we know its trapdoor (and not from a uniform distribution in Zn×mq ). We also observe that

the above variant of dual Regev encryption is secure as long as B is a matrix with rank n.

First, we obtain a ciphertext cx with the above matrix as the public key of Regev’s encryption. We

show that, this system is key homomorphic: given a circuit C, anyone can transform the ciphertext cx

1We can also run TrapSamp algorithm to get B along with its trapdoor and then publish both of them in the master
public key. But choosing B to be the primitive matrix yields more efficient parameters for our scheme.

25
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into a dual Regev encryption for the (evaluated) public-key matrix

(
A | AC + C(x) ·B

)
∈ Zn×2m

q

where the matrix AC ∈ Zn×mq serves as the encoding of the circuit C. This way, we are also able to

achieve the crucial properties (required for ABE) that:

• AC is uniquely determined by C and A1, . . . ,A`.

• AC can be constructed without the knowledge of x.

We illustrate the key homomorphism in the above dual Regev variant as follows. Assume that we

have the ciphertext under the public key x = (x1x2): cx = (c0 | cx1
| cx2

) where c0 = AT s + e,

cx1
= (A1 +x1 ·B)T s+e1 and cx2

= (A2 +x2 ·B)T s+e2. We present here a way to perform the NAND

operation (which can also be seen as a circuit with a single NAND gate). To compute the ciphertext

under the public key (1− x1x2, NAND), we first compute a low norm matrix D1 ∈ Zm×mq , by running

InvB(A1). With this in mind we compute

DT
1 cx2

= DT
1 ·
[
(A2 + x2 ·B)T s + e2

]
≈ (x2 ·A1 + A2D1)T s

x2 · cx1
= x2

[
(A1 + x1 ·B)T s + e1

]
≈ (x2 ·A1 + x1x2 ·B)T s

Subtracting the second expression above from the first gives us

(
(A2D1 −B) + (1− x1x2) ·B

)T
s + noise

=
(
ANAND + (x1NANDx2) ·B

)T
s + noise

which is a ciphertext under the public key (x1x2, ANAND) where ANAND = A2D1 −B. Note that per-

forming this operation requires that we know x2. This is reason why this method gives just an ABE and

not (private index) predicate encryption.

This key-homomorphism gives us an ABE for circuits since any boolean circuit can be converted into a

circuit with NAND gates alone. A decryption key skC for a circuit C is a decryption key for the dual

Regev ciphertext with public key matrix (A||AC + 1 ·B) = (A||AC + B). This key enables decryption

whenever C(x) = 1. The key skC can be easily generated using the trapdoor TA for the matrix A which

is a short basis for the lattice Λ⊥q (A). TA serves as the master secret key. We prove selective security

from the learning with errors problem (LWE) by using another homomorphic property of the system

implemented in an algorithm called EvalSIM. Using EvalSIM the simulator responds to the adversary’s

private key queries and then solves the given LWE challenge.

4.1 Construction

We now present the instantiation of FKHE algorithms in Section 3.1 under the LWE assumption building

on the ideas presented above. We first assume the existence of the following three deterministic evaluation

algorithms2 and instantiate them after describing the other algorithms.

2In addition to Evalct, we define two new algorithms Evalpk and EvalSIM which help to improve the presentation of the
LWE instantiation.
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• Evalpk(C, {Ai}i∈[`])→ AC : The evaluation algorithm for the public keys of dual Regev encryption.

Inputs are ` matrices Ai
$← Zn×mq along with a circuit C ∈ C. Output is the evaluated matrix

AC ∈ Zn×mq .

• Evalct(C, {xi,Ai, ci}i∈[`]) → cC : The ciphertext evaluation algorithm as defined in the FKHE

definition with a circuit C ∈ C, a vector x ∈ {0, 1}` and a set of ciphertexts cx = (ci)i∈[`]. The

third component, a set of matrices (Ai)i∈[`] comes from the master public key mpk. These matrices

form the public keys for encryption The output is the evaluated ciphertext cC under (C(x), C)

which is used to determine the evaluated public key. cC can thus be viewed as a dual Regev

ciphertext under the public key matrix AC + C(x) ·B.

• EvalSIM(C, {x∗i ,Ri}i∈[`],A) → RC : This algorithm is used during simulation. On input a circuit

C ∈ C, matrices Ri ∈ {−1, 1}m×m and a challenge public key vector x∗ = (x∗1, . . . , x
∗
` ), this

algorithm outputs a low-norm matrix RC such that

ARC − C(x∗) ·B = AC , where AC = Evalpk(C, {ARi − x∗i ·B}i∈[`])

Now, assuming the existence of the evaluation algorithms Evalpk,Evalct,EvalSIM for a family C of

boolean predicate circuits with depth atmost dmax, we first present the algorithms

Params,SetupFKHE,KeyGenFKHE,EFKHE,DFKHE of our FKHE scheme FKHE for the same family of circuits.

• Params(1λ, dmax): Let n = n(λ, dmax), q = q(n, dmax) and m = m(n, dmax). Set the error dis-

tribution χ = χ(n) and the error bound B = B(n). We also additionally choose two Gaussian

parameters: a “small” Gaussian parameter s = s(n) (which the reader should think of as polynomi-

ally bounded) and a “large” Gaussian parameter α = α(n, dmax) (which the reader should think of

as growing exponentially in dmax). Output the global public parameters pp = (n, χ,B, q,m, s, α).

This is implicitly given to all of the algorithms defined below3.

• SetupFKHE(1`):

1. Run an instance of the trapdoor generation algorithm TrapSamp(1n, 1m, q) to obtain (A,TA).

2. Let the matrix B ∈ Zn×mq be obtained by appending columns of zeros (0n) to the primitive

matrix G ∈ Zn×n(blog qc+1)
q defined in Theorem 2.1.10. Let its trapdoor be TB.

3. Choose ` matrices {Ai}i∈[`] at random from Zn×mq .

4. Choose a vector u at random from Znq .

5. Run the InvB algorithm ` times for each Ai to obtain Di such that B ·Di = Ai.

6. Define and output the master public key as

mpk :=
(
A, {Ai,Di}i∈[`],B,u

)
and the master secret key as msk := (TA).

• KeyGenFKHE(mskFKHE, (y, C)):

1. Let AC = Evalpk(C, (A1, . . . ,A`)).

3See Sections 4.2 and 4.4 for concrete instantiation of the parameters.
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2. Define F = [A||(AC + y · B)] ∈ Zn×2m
q where y ∈ {0, 1}. Compute rout ∈ Z2m

q by running

SampleLeft(A, (AC + y ·B),TA,u, α), satisfying F · rout = u.

3. Output the secret key for the public key (y, C), sky,C := (C, rout).

• EFKHE(mpkFKHE,x = (x1, . . . , x`), µ): For encrypting a message µ ∈ {0, 1}, do the following:

1. Choose a vector s ∈ Znq at random.

2. Choose a noise term e0 ← χm and compute c0 = AT s + e0.

3. Choose ` random matrices Ri ← {−1, 1}m×m for all i ∈ [`].

4. Set H ∈ Zn×(`+1)
q and e ∈ Z(`+1)m

q as

H := [A||(A1 + x1 ·B)|| · · · ||(A` + x` ·B)]

e := [Im||R1|| · · · ||R`]

5. Compute c = (HT s + e, τ = us + e+ bq/2cµ), where e
$← χ.

6. Output the ciphertext as cx.

• DFKHE(sky,C , c):

1. Let c be an (evaluated) encryption of µ under the (evaluated) public key (y′, C ′). If y′ 6= y,

or if C and C ′ are not identical circuits, output ⊥.

2. Otherwise, let c = (c0||c1|| · · · ||c`, τ). Calculate cC = Evalct(C, {(xi,Ai, ci)}i∈[`]).

3. Compute β = rTout · [c0||cC ], where β ≈ uT s (mod q) (by Lemma 4.2.1).

4. Output µ = 0 if |τ − β| < q/4 and µ = 1 otherwise.

To complete the description of the scheme, we now instantiate the three evaluation algorithms.

• Evalpk(C, {Ai}i∈[`])→ AC : The matrices Ai for each input wire i ∈ [`] are given as input and we

need to calculate the (evaluated) matrix AC for the output wire for the given circuit C.

1. Inductively, from input to output, consider a gate g = (u, v;w). Without loss of generality

assume g is a binary NAND gate, since any boolean operation can be computed by a set of

NAND gates.

2. The matrices for the input wires (u, v) are fixed as Au,Av by induction and the matrix for

the output wire w is assigned the value

Aw = Av ·Du −B

3. Finally, let AC be the matrix obtained at the output wire by this process. Output this matrix

AC .

• Evalct(C, {xi,Ai, ci}i∈[`]) → cC : The components ci,∀i ∈ [`] of the ciphertext c under the public

key vector x are given as input along with x and the matrices Ai,∀i ∈ [`] (where Ai acts as the

public key when ci is viewed as a dual Regev ciphertext). We need to calculate the (evaluated)

ciphertext cC for the given circuit C.
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1. We again proceed inductively from the input level to the output level of C. Consider a NAND

gate g = (u, v;w) carrying input values xu, xv and hence output value xw = xu NAND xv =

1− xuxv.

2. Assume by induction, the user holds cu = (Au+xu ·B)T s+eu and cv = (Av +xv ·B)T s+ev

(for some error vectors eu and ev).

3. Compute cw as follows:

cw = DT
u cv − xvcu

As we show below (in Claim 4.2.1), this new ciphertext has the form
(
Aw + xwB

)T
s + ew

(for a small enough noise term ew).

4. Proceeding this way, at the output gate we obtain cC = (AC + C(x) · B)T s + eC , where

AC ← Evalpk(C, {Ai}i∈[`]) and eC is some bounded error (as proved in Claim 4.2.1). Output

cC .

• EvalSIM(C, {x∗i ,Ri}i∈[`],A) → RC : On input a set of matrices Ri,∀i ∈ [`] and A such that

Ai := ARi−x∗i ·B, we need to calculate a low norm matrix RC such that AC = ARC−C(x∗) ·B.

1. This algorithm proceeds very similar to Evalct. First consider a NAND gate g = (u, v;w) with

input wires u, v carrying values C(x∗)u, C(x∗)v respectively. Here, C(x∗)u is the value which

passes through the wire u of C when C is evaluated with x∗ as input.

2. Let the ‘R’ matrices corresponding to the incoming wires (u, v) be Ru,Rv by induction. The

matrix Rw for the output wire w is assigned the value

Rw = Rv ·Du − C(x∗)vRu

3. Finally, let RC be the matrix obtained at the outgoing wire by this process. Output this

matrix RC which has low norm as proved in Claim 4.4.1.

This completes the full description of our FKHE scheme based on the LWE assumption.

Note: This scheme can be easily generalised to work for any message spaceM = {0, 1}v for a bounded

message length v = poly(λ) by working with a matrix U
$← Zn×vq instead of the vector u ∈ Znq . Here

the size of the secret keys will increase multiplicatively with v.

4.2 Correctness and Compactness

Lemma 4.2.1 (Correctness). Let C be a family of boolean predicate circuits with their depth bounded by

dmax and let FKHE = (Params,SetupFKHE,KeyGenFKHE,EFKHE,Evalct,DFKHE) be our fully key-homomorphic

encryption scheme. Assuming that, for a LWE dimension n = n(λ, dmax), the parameters for FKHE
are instantiated as follows:

χ = DZ,
√
n B = O(n)

q = Õ(ndmax)O(dmax)n s = O(
√
n log q)

m = O(n log q) α = O(n log q)O(dmax)
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then the scheme FKHE is correct, according to the definition in Section 3.1.

Proof. Let us consider a circuit C ∈ C of depth atmost dmax, such that C(x) = 1. First we show the

correctness of the Evalct algorithm.

Claim 4.2.1. On input
(
C, {xi,Ai, ci}i∈[`]

)
, Evalct outputs cC which is a ciphertext of the form (AC +

C(x) ·B)T s + eC , where AC ← Evalpk(C, {Ai}i∈[`]) and eC ∈ DZ,α.

Proof. First, we show that for each ciphertext cu for wire u at level j, the user holds (Au+xuB)T s+eu,

where ||eu||∞ ≤ B · (
√

5
2 )j(m1.5j+1) and Au is the output of Evalpk for the part of C which has u as its

output wire. Note that when e0 ← χm, ||e0||∞ ≤ B by the definition of χ and B. Hence, for the noise

term ei = RT
i e0, ||ei||∞ ≤ mB since Ri ∈ {−1, 1}m×m. Thus, the base case for the input ciphertext

components holds.

• Now, consider a NAND gate g = (u, v, w) and any two ciphertext components cu = (Au+xuB)T s+

eu, cv = (Av + xvB)T s + ev at depths j0, j1 respectively, where ||eu||∞ ≤ B · (
√

5
2 )j(m1.5j0+1) and

||e1||∞ ≤ B · (
√

5
2 )j(m1.5j1+1). Then, the evaluated ciphertext cw for the gate g is computed as

follows:

cw = DT
u cv − xvcu

=
(
Av ·Du + xv ·B ·Du

)T
s + DT

uev − xv
((

Au + xuB
)T

s + eu

)
=

(
Av ·Du + xv ·Au

)T
s + DT

uev − xv
((

Au + xuB
)T

s + eu

)
=

(
Aw + (1− xuxv) ·B

)T
s + ew

where the last equation is because Aw = Av ·Du −B. Also, we define ew := DT
uev − xveu.

• Thus,

||ew||∞ ≤ m · ‖Du‖max · ||eu||∞ + ||ev||∞

≤ m ·
(
(
1

2

√
5m) · (B ·O(m1.5j0+1)) +B ·O(m1.5j1+1)

)
≤ B · ((

√
5

2
)(m1.5) · (

√
5

2
)j(m1.5j0+1) +m · (

√
5

2
)j(m1.5j1+1))

≤ B · (
√

5

2
)max(j0,j1)+1(m1.5

(
max(j0,j1)+1

)
+1)

as claimed (the second inequality is because ‖Du‖max ≤ 1
2

√
m · ‖T̃B‖ ≤ 1

2

√
5m).

Thus, if C(x) = 1, the user obtains cC = (AC + C(x) · B)T s + eC = (AC + B)T s + eC , where

‖eC‖∞ ≤ B · (
√

5
2 )dmax(m1.5dmax+1).

Now to complete the proof of this lemma, we need to show that the decryption proceeds correctly. That

is, we need to show that the LWE error obtained during the calculation of β is bound by q/4. The user

obtains β as β := rTout[c0||cC ] = uT s+ef , where ef = [eT0 ||eTC ]rout. Here, rout is the output of SampleLeft

algorithm (Algorithm 2.1. Hence, it has an infinite norm ‖rout‖∞ ≤ α
√
m ≤ O(n log q)O(dmax). Thus,

‖ef‖∞ ≤ m · (‖e0‖∞ + ‖eC‖∞) · ‖rC‖∞ ≤ O(B ·O(n log q)O(dmax))



Chapter 4. An FKHE scheme under LWE assumption 31

Also, ciphertext component τ is computed using noise term ||e||∞ ≤ B. Hence,

||ef − e||∞ ≤ O(B ·O(n log q)O(dmax)) < q/4,

which holds given the above setting of the parameters.Thus, when c and c′ are “close”, message µ ∈ {0, 1}
is decoded correctly as required.

Corollary 4.2.2. For any depth dmax family of circuits C and y ∈ {0, 1}, the secret key size for an

evaluated public key (y, C) in our FKHE is O(n log q) = poly(dmax, λ).

4.3 Security Proof

Theorem 4.3.1 (Selective security). For all ` and polynomial dmax = dmax(`), there exists a selectively-

secure fully key-homomorphic encryption for any family of polynomial-size circuits with ` inputs and

depth at most dmax with constant secret key size (independent on the number of gates in the circuits), as-

suming hardness of dLWEn,q,χ for sufficiently large n = poly(λ, dmax), q = nO(dmax) and poly(n) bounded

error distribution χ.

Proof. We follow the security strategy of [ABB10, AFV11] to prove the security of our construction.

In particular, we define a series of hybrid games, where the first and last games correspond to the real

experiments encrypting messages µ0, µ1, respectively. We show that these games are indistinguishable.

Recall that in the selective security game, the challenge x∗ is declared before the SetupFKHE algorithm

and all secret key queries (y, C) must be such that C(x∗) 6= y for some y ∈ {0, 1}. Now, consider the

following simulated ABE algorithms:

• Setup∗FKHE
(
1λ,x∗ = (x∗1, . . . , x

∗
` )
)
: Takes as input the challenge x∗ and does the following:

1. Choose a random matrix A ∈ Zn×mp and a random vector u ∈ Znp .

2. Let the matrix B ∈ Zn×mq be obtained by appending columns of zeros (0n) to the primitive

matrix G ∈ Zn×n(blog qc+1)
q as defined in 2.1.10. Let its trapdoor be TB.

3. For all i ∈ [`], sample a short matrix Ri ∈ {−1, 1}m×m at random and let Ai = ARi − x∗iB.

4. Run the InvB algorithm ` times for each Ai to obtain Di such that B ·Di = Ai.

5. Define and output the master public key as

mpk :=
(
A, {Ai,Di)}i∈[`],B,u

)
• KeyGen∗FKHE((1, C), {Ri}i∈[`]): If C(x∗) = y, return ⊥. Else, proceed as follows:

1. The challenger runs EvalSIM(C, {x∗i ,Ri}i∈[`],A) and obtains RC . By the correctness of

EvalSIM, we have ARC − C(x∗) ·B = AC .

2. Let F = [A||(AC+C(x∗)·B)] = [A||ARC ]. Compute rout ∈ Z2m by running SampleRight(A,B,RC ,TB,u, α),

satisfying F · rout = u.

3. The secret key for the evaluated public key (y, C) is sky,C := (C, rout).

• E∗FKHE
(
mpk, x∗ = (x∗1, . . . , x

∗
` ), µ)

)
: For encrypting a message µ ∈ {0, 1}, do the following:
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1. Choose a vector s ∈ Znq at random.

2. Choose a noise term e0 ← χm and compute c∗ = (A)T s + e0.

3. Choose ` random matrices Ri ← {−1, 1}m×m for all i ∈ [`].

4. Set H ∈ Zn×(`+1)
q and e ∈ Z(`+1)m

q where

H := [A||(A1 + x∗1 ·B)|| · · · ||(A` + x∗` ·B)]

e := [Im||R1|| · · · ||R`]

Note that H = [A||AR1|| · · · ||AR`].

5. Compute c = (HT s + e, τ = us + e+ bq/2cµ), where e
$← χ.

6. Output the ciphertext as cx∗ .

Game Sequence We now define a series of games and then prove that all games Game i and Game

i+1 are either statistically or computationally indistinguishable.

• Game 0: The challenger runs the real FKHE algorithms and encrypts message µ0 for the challenge

index x∗.

• Game 1: The challenger runs the simulated FKHE algorithms Setup∗FKHE,KeyGen∗FKHE,E
∗
FKHE and

encrypts message µ0 for the challenge index x∗.

• Game 2: The challenger runs the simulated FKHE algorithms Setup∗FKHE,KeyGen∗FKHE, but chooses

a uniformly random element of the ciphertext space for challenge index x∗.

• Game 3: The challenger runs the simulated FKHE algorithms Setup∗FKHE,KeyGen∗FKHE,E
∗
FKHE and

encrypts message µ1 for the challenge index x∗.

• Game 4: The challenger runs the real FKHE algorithms and encrypts message µ1 for the challenge

index x∗.

Lemma 4.3.2. The view of an adversary in Game 0 is statistically indistinguishable from Game 1.

Similarly, the view of an adversary in Game 4 is statistically indistinguishable from Game 3.

Proof. We prove for the case of Game 0 and Game 1, as the other case is identical. First, note the

differences between the games:

• In Game 0, matrix A is sampled using TrapSamp algorithm and matrices Ai ∈ Zm×mp are randomly

chosen. In Game 1, matrix A ∈ Zn×mp is chosen uniformly at random and matrices Ai =

ARi − x∗iB for uniformly random Ri ∈ {−1, 1}m×m.

• In Game 0, each ciphertext component is computed as:

ci = (Ai + x∗iB)T s + ei = (Ai + x∗iB)T s + RT
i e0

On the other hand, in Game 1 each ciphertext component is computed as:

ci = (Ai + x∗iB)T s + RT
i e0 = (ARi)

T s + RT
i e0 = RT

i

(
(A)T s + e0

)
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• Finally, in Game 0 the vector rout is sampled using SampleLeft, whereas in Game 1 it is sampled

using SampleRight algorithm.

For sufficiently large α (See Section-4.4), the distributions produced in two games are statistically

indistinguishable. This follows readily from [AFV11, Lemma 4.3], Theorem-2.1.8 and Theorem-2.1.9.

We will provide the proof here for completeness.

We would like to prove that the tuple A, {Ai, ci}i∈[`] in Game 0 is statistically indistinguishable from

the set from Game 1. The generalisation of left-over hash lemma [DORS08, ABB10] states that, for

two matrices Ri
$← {−1, 1}m×m,A,Ai

$← Zn×mq and any vector e0 ∈ Zmq , the following is true, when q

is square-free (q does not have a square of a prime number as its factor).

(A,ARi,R
T
i e0) ≈s (A,Ai,R

T
i e0)

Hence, for every fixed matrix B ∈ Zn×mq and every bit x∗i ∈ {0, 1},

(A,ARi − x∗i ·B,RT
i e0) ≈s (A,Ai,R

T
i e0)

Now, we can extend this statistical indistinguishability to the joint distribution of these tuples for all

i ∈ [`], since the matrices Ri are independently chosen from {−1, 1}m×m,∀i ∈ [`]. Thus,

(
A, {ARi − x∗i ·B,RT

i e0}i∈[`]

)
≈s
(
A, {Ai,R

T
i e0}i∈[`]

)
Also, due to the fact that applying any function to two statistically indistinguishable entities results

in entities which are atleast statistically indistinguishable as the original entities, we can perform the

following steps:(
A,
{

ARi − x∗i ·B, (ARi − x∗i ·B)
T

s,RT
i e0

}
i∈[`]

)
≈s
(

A,
{

Ai, (Ai)
T

s,RT
i e0

}
i∈[`]

)
(

A,
{

ARi − x∗i ·B, (ARi − x∗i ·B + x∗i ·B)
T

s,RT
i e0

}
i∈[`]

)
≈s
(

A,
{

Ai, (Ai + x∗i ·B)
T

s,RT
i e0

}
i∈[`]

)
(

A,
{

ARi − x∗i ·B, (ARi)
T

s + RT
i e0

}
i∈[`]

)
≈s
(

A,
{

Ai, (Ai + x∗i ·B)
T

s + RT
i e0

}
i∈[`]

)
Finally, (

A,As + e0,
{

ARi − x∗i ·B, InvB(ARi − x∗i ·B), (ARi)
T

s + RT
i e0

}
i∈[`]

)
≈s
(

A,As + e0,
{

Ai, InvB(Ai), (Ai + x∗i ·B)
T

s + RT
i e0

}
i∈[`]

)
Thus, we can conclude that the public parameters in Game 0 are statistically indistinguishable from

those in Game 1, and that the output of EFKHE is statistically indistinguishable from that of E∗FKHE.

When the “large” Gaussian parameter α is chosen appropriately (as discussed in 4.4), the output of the

KeyGenFKHE and KeyGen∗FKHE algorithms are also statistically indistinguishable. Thus, the view of an

adversary in Game 0 is statistically indistinguishable from the view in Game 1.
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Lemma 4.3.3. If the decisional LWE assumption holds, then the view of an adversary in Game 1 is

computationally indistinguishable from Game 2. Similarly, if the decisional LWE assumption holds,

then the view of an adversary in Game 3 is computationally indistinguishable from Game 2.

Proof. Assume there exist an adversary Adv that distinguishes between Game 1 and Game 2. We

show how to break LWE problem given a challenge {(ai, yi)}i∈[m+1] where each yi is either a random

sample in Zq or aTi · s + ei (for a fixed, random s ∈ Znq and a noise term sampled from the error dis-

tribution ei ← χ). Let A = [a1,a2, . . . ,am] ∈ Zn×mq and u = am+1. Let c∗ = [y1, y2, . . . , ym] and

τ = ym+1 + µ bq/2c.

Now, run the simulated Setup∗FKHE algorithm where A,u are as defined above. Run the simulated

KeyGen∗FKHE algorithm. Finally, to simulate the challenge ciphertext set c∗, τ as defined above and

compute

ci = RT
i c∗ = RT

i

(
(A)T s + e0

)
Note that if yi’s are LWE samples, then this corresponds exactly to the Game 1. Otherwise, the ci-

phertext corresponds to an independent random sample as in Game 2 by the left-over hash lemma.

Thus, an adversary which distinguishes between Game 1 and Game 2 can also be used to break the

decisional LWE assumption with almost the same advantage.

The computational indistinguishability of Game 3 and Game 2 follows from the same argument.

To conclude, note that Game 0 always corresponds to an encryption of the challenge message µ0

in the real experiment and Game 4 corresponds to an encryption of the challenge message µ1 (also in

the real experiment). Hence, by the standard hybrid argument, no adversary can distinguish between

encryptions of µ0 and µ1 with non-negligible advantage establishing the selective security of our FKHE

scheme.

4.4 Parameter Selection

This section provides a detailed description on the selection of parameters for our scheme, so that both

correctness (see Section 4.2) and security (see Section 4.3) of our scheme are satisfied.

For a family of circuits C of bounded depth dmax, with the LWE dimension n, the parameters can be

chosen as follows:

• The error distribution χ is typically a truncated discrete Gaussian distribution DZ,
√
n with pa-

rameter σ =
√
n. And, the error bound B = O(σ

√
n) = O(n). For this B, the probability for a

random sample from DZ,
√
n to be 0 would be negl(n), according to Lemma 2.1.1.

From now, we will consider the LWE modulus parameter q = q(n, dmax), without instantiating it, to

calculate the other parameters m, s, α. Later, we will instantiate q with a value which would make

m, s, α satisfy the correctness and security properties.
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• The parameter m = O(n log q).

• The “small” Gaussian parameter s is chosen to be O(
√
n log q).

• Now, let us calculate the value of the “large” Gaussian parameter α = α(n, dmax). We should

choose α such that the output of the SampleLeft and the SampleRight algorithms are statistically

indistinguishable from each other, when provided with the same set of inputs F and u.

The SampleRight algorithm (Algorithm 2.2) requires

α > ‖T̃B‖ · ‖RC‖ · ω(
√

logm) (4.2)

Hence, we proceed as follows:

1. First, we calculate the value of ‖RC‖, where RC is the matrix obtained corresponding to AC

as the output of the EvalSIM algorithm. In EvalSIM, at each step of the induction, we get the

matrix

Rw = Rv ·Du − C(x∗)vRu

corresponding to the outgoing wire w of the gate g(u, v;w). We prove the following claim

which would help us deduce the value of ‖RC‖max.

Claim 4.4.1. Suppose that for a NAND gate g(u, v;w), with the incoming wires u, v at depths

j0, j1 respectively, ‖Ru‖max ≤ (
√

5
2 ·m

1.5)j0 and ‖Rv‖max ≤ (
√

5
2 ·m

1.5)j1 . Then, for the outgo-

ing wire w, the maximum norm of the matrix Rw would be ‖Rw‖max ≤ (
√

5
2 ·m

1.5)max(j0,j1)+1

Proof. This proof proceeds similar to the calculation of ‖ew‖∞ in Claim-4.2.1. In particular,

‖Rw‖max ≤ m · ‖Du‖max · ‖Ru‖max + ‖Rv‖max

≤ m
(1

2

√
5m · (

√
5

2
·m1.5)j0 + (

√
5

2
·m1.5)j1

≤
(
(

√
5

2
·m1.5) · (

√
5

2
·m1.5)j0 +m · (

√
5

2
·m1.5)j1

≤ O((

√
5

2
·m1.5)max(j0,j1)+1)

Thus, the maximum norm of the matrix Rw would be ‖Rw‖max ≤ (
√

5
2 ·m

1.5)max(j0,j1)+1).

Thus, each element of the matrix R corresponding to AC , has an absolute value of at most

‖R‖max ≤ (
√

5
2 ·m

1.5)dmax .

2. We then get ‖RC‖ as follows:

‖RC‖ := sup
x∈Sm−1

‖RC · x‖ ≤ m · ‖RC‖max ≤ m · (
√

5

2
·m1.5)dmax

3. By Theorem 2.1.10, ‖T̃B‖ =
√

5.
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4. Finally, we substitute these values in Equation 4.2 to get the value of α required for the

SampleRight algorithm.

α ≥
√

5 · (
√

5

2
·m1.5)dmax ·m · ω(

√
logm) ≥ 2 · (

√
5

2
·m1.5)dmax+1 · ω(

√
logm) (4.3)

The value of the parameter α required for the SampleLeft algorithm (Algorithm 2.1) is

α ≥ ‖T̃A‖ · ω(
√

log 2m) ≥ O(
√
n log q) · ω(

√
log 2m) (4.4)

Thus, to satisfy both Equation 4.3 and Equation 4.4, we set the parameter

α ≥ 2 · (
√

5

2
·m1.5)dmax+1 · ω(

√
logm)

Thus, the outputs of the SampleLeft and the SampleRight algorithms will be statistically indis-

tinguishable from each other, when provided with the same set of inputs F and u. Hiding the

constants, we assign α = O(n log q)O(dmax).

When our scheme is instantiated with these parameters, the correctness (see Section 4.2) of the scheme

is satisfied when

O(B · (n log q)O(dmax)) < q/4

Clearly, this condition is satisfied when q = Õ(n log dmax)O(dmax). Also, this value of q = poly(n),

enables both the quantum reduction [Reg09b] and the classical reduction [Pei09] from dLWEn,q,χ to

approximating lattice problems in the worst case, when n, χ chosen as described above. To conclude this

section, for a given max depth dmax and an LWE dimension n = n(dmax), we set the parameters for our

scheme to satisfy both the correctness and security, as follows:

χ = DZ,
√
n

B = O(n)

q = Õ(ndmax)O(dmax)

m = O(n log q)

s = O(n log q)

α = O(n log q)O(dmax)

4.5 ABE scheme from LWE

For completeness we will describe our ABE construction based on LWE assumption now. As opposed to

[GVW13] (where there are two randomly chosen matrices assigned for each wire and the transformation

key for each gate consists of 4 “recoding” matrices) in our construction the matrices for each wire

are assigned as functions of the input matrices fixed at the setup and there are no explicit “recoding”

matrices. We now define algorithms (Params,Setup,Keygen,Enc,Dec) for a family of circuits C of bounded

depth dmax.

• Params(1λ, dmax): Let n = n(λ, dmax), q = q(n, dmax) and m = m(n, dmax). Set the error dis-

tribution χ = χ(n) and the error bound B = B(n). We also additionally choose two Gaussian
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parameters: a “small” Gaussian parameter s = s(n) (which the reader should think of as polynomi-

ally bounded), and a “large” Gaussian parameter α = α(n, dmax) (which the reader should think of

as growing exponentially in dmax.) Output the global public parameters pp = (n, χ,B, q,m, s, α).

This is implicitly given to all of the algorithms defined below4.

• Setup(1`):

1. Run an instance of the trapdoor generation algorithm TrapSamp(1n, 1m, q) to obtain (A,TA).

2. Let the matrix B ∈ Zn×mq be obtained by appending columns of zeros (0n) to the primitive

matrix G ∈ Zn×n(blog qc+1)
q as defined in 2.1.10. Let its trapdoor be TB.

3. Choose ` matrices {Ai}i∈[`] at random from Zn×mq .

4. Choose a vector u at random from Znq .

5. Run the InvB algorithm ` times for each Ai to obtain Di such that B ·Di = Ai.

6. Define and output the master public key as

mpk :=
(
A, {Ai,Di}i∈[`],B,u

)
and the master secret key as msk := (TA).

• Enc(mpk,x = (x1, . . . , x`), µ): For encrypting a message µ ∈ {0, 1}, do the following:

1. Choose a vector s ∈ Znq at random.

2. Choose a noise term e0 ← χm and compute ψ0 = AT s + e0.

3. For all input wires i ∈ [`]:

(a) Choose a random matrix Ri ← {−1, 1}m×m and let ei = RT
i e0.

(b) Compute ψi = (Ai + xiB)T s + ei.

4. Encrypt the message µ as τ = uT s + e+ bq/2cµ, where e← χ.

5. Output the ciphertext as ctx =
(
x, ψ0, {ψi}i∈[`], τ

)
.

• Keygen(msk, C):

1. Inductively, from input to output, consider a gate g = (u, v;w). Without loss of generality

assume g is a binary NAND gate. The matrices for the input wires (u, v) are fixed as Au,Av

by induction and the matrix for the output wire w is assigned the value

Aw = Av ·Du −B

2. Finally, let AC be the matrix defined at the output wire by this process. Define F = [A||(AC+

B)] ∈ Zn×2m
q . Compute rout ∈ Z2m

q by running SampleLeft(A, (AC +B),TA,u, α), satisfying

F · rout = u.

3. Output the secret key for the circuit C, skC := (C, rout).

• Dec(skC , ctx): If C(x) = 0, output ⊥. Otherwise, proceed the evaluation from input to output as

follows:
4See Sections 4.2 and 4.4 for concrete instantiation of the parameters.
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1. Consider a gate g = (u, v;w) carrying input values xu, xv and hence output value xw =

xu NAND xv = 1 − xuxv. By induction, the user holds ψu = (Au + xuB)T s + eu and

ψv = (Av + xvB)T s + ev (for some error vectors eu and ev).

Compute ψw as follows:

ψw = DT
uψv − xvψu

As we show below (in Lemma 4.2.1), this new ciphertext has the form
(
Aw + xwB

)T
s + ew

(for a small enough noise term ew).

2. Finally, at the output gate the user computes

ψC = (AC + C(x) ·B)T s + eC = (AC + B)T s + eC

(since C(x) = 1).

3. Compute β = rTout · [ψ||ψC ]. As we show below (in Lemma 4.2.1), β ≈ uT s mod q.

Output µ = 0 if |τ − β| < q/4 and µ = 1 otherwise.

Note: This scheme can also be easily generalised to work for any message space M = {0, 1}v for a

bounded message length v = poly(λ) in the same way as the FKHE scheme i.e by working with a matrix

U
$← Zn×vq instead of the vector u ∈ Znq . And in the same way, the size of the secret keys will increase

multiplicatively with v.



Chapter 5

Optimisations and Extensions for

Our ABE

5.1 Optimisations

Attribute-based encryption schemes require extensive computational resources (when compared to say, an

identity-based encryption scheme), because an ABE scheme is usually instantiated with large parameters

to satisfy the security constraints. A few optimisations have been proposed in the literature attempting

to alleviate this:

1. Outsourcing computations: Algorithms are designed so that most of the computations are “public”

which do not require any secret component (msk for Keygen and skC for Dec) and hence can be

outsourced without revealing the secret.

2. Offline computations: Most of the computations are performed “offline”, when the inputs to the

algorithms are not known (and say during when the device is connected to power), so that very few

computations have to be performed during the “online” phase of the algorithm, after the inputs

are received. For instance, the ABE encryption algorithms can be optimised by performing most

of the computations before receiving both the attribute vector and the message, so that very few

operations have to be performed after receiving them.

Our scheme naturally supports these optimisations.

5.1.1 Outsourcing computations

Here we discuss about outsourcing of computations in the ABE decryption algorithm [GHW11]. ABE

decryption is often computationally expensive and has to be performed by the end user who does not

have extensive computational resources in many instances. Here, we expect “bulk” of the computation

to be done by some other entity (when given some evaluation key), but still learn nothing about the

message encrypted in the ciphertext. Gorbunov et al. [GVW13] showed that decryption in their scheme

can be outsourced easily: roughly, the user associated to circuit C gives the server its entire secret key

skC , except for the secret key material associated to the final gate (used in the final step of decryption).

In our scheme, we can do exactly the same thing, but the payoff is greater: since there are no such

39
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recoding keys as a part of our secret keys, they is no need for any component to be transmitted to or

stored by the server; the server only needs the circuit C associated to each user to perform the bulk of

the decryption process.

Thus, if a decryptor sends a ciphertext ctx (except τ , which is not required) to the server, the server

runs almost the entire Dec algorithm i.e all steps except Step 3 of our Dec algorithm (refer Section 4.5)

and returns ψC . Now the decryptor just calculates β = skTC · [ψ0||ψC ] and subtracts this from τ to get

the message µ.

5.1.2 Offline computations

Online/Offline version for an attribute-based encryption scheme was first proposed by Hohenberger and

Waters [HW14] based on discrete logarithm-esque assumptions. In those variants, bilinear pairings and

exponentiations involve intensive computations followed by multiplication, sampling of random elements

and addition. The online phase of their encryption algorithm involves one multiplication per attribute1.

For the LWE based attribute-based encryption schemes, the most computation intensive operation is

sampling from the Gaussian distribution whereas multiplication and addition are much less intensive.

Our ABE encryption algorithm allows us perform all samplings and multiplications in the offline phase

before the encryptor receives the attribute vector and the message to be encrypted. We are left with

only a few additions to perform during the online phase after receiving them. In particular, we can

dissect the offline and online phases of our encryption algorithm as follows:

• Offline.Enc(mpk): Repeat the following steps to create tuples of
{
ψ0, {ψ′i}i∈[`], ψB , τ

′}:

1. Choose a vector s ∈ Znq at random.

2. Choose a noise term e← χm and compute ψ0 = AT s + e.

3. Compute ψB = BT s.

4. For all i ∈ [`]:

(a) Choose a random matrix Ri ← {−1, 1}m×m and let ei = RT
i e.

(b) Compute ψ′i = AT
i s + ei.

5. Compute τ ′ = uT s + e, where e← χ.

Output
{
ψ0, {ψ′i}i∈[`], ψB , τ

′} , µ′ = bq/2cµ.

• Online.Enc(mpk,x = (x1, . . . , x`), µ,
{
ψ0, {ψ′i}i∈[`], ψB , τ

′} , µ′): For encrypting a message µ ∈
{0, 1} labelled with an attribute vector x ∈ {0, 1}`, do the following:

1. Choose one tuple from
{
ψ0, {ψ′i}i∈[`], ψB , τ

′} and compute {ψi}i∈[`] as follows:

ψi =

{
ψ′i + ψB , if xi = 1

ψ′i , if xi = 0

2. Encrypt the message µ as τ = τ ′ + µ′, if µ = 1 and as τ = τ ′, if µ = 0.

1Their representation of attributes x and access structures C are slightly different from our scheme. But one can
consider the number of attributes to be log ` where ` is the length of the attribute vector x of our scheme.
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3. Output the ciphertext as ctx =
(
x, ψ0, {ψi}i∈[`], τ

)
.

Thus without any additional pre-processing, our ABE encryption algorithm inherently supports of-

fline computations for everything, except some a additions, where a = 1+hamming weight of x.

One issue with this optimisation in general is that the values calculated during the offline phase should

not be leaked.

5.2 Extensions

5.2.1 Ciphertext policy ABE

In this work, we deal with key policy ABE where the secret keys skC are generated for policies repre-

sented by circuits C and ciphertext ctx are generated for attribute vectors x. There is a dual version of

this, the ciphertext policy ABE, where ciphertexts ctC are generated for policies and the secret keys skx

are generated for attributes.

Almost all the known efficient constructions of ABE are for key policy ABE. A natural way to transform

a key-policy ABE to a ciphertext policy ABE is as follows: first construct a universal circuit U such

that U(C,x) = C(x), then give secret keys corresponding to attribute vectors x by running the Keygen

algorithm of the key policy ABE with U(.,x) as input, and give the ciphertexts corresponding to circuits

C by running the Enc algorithm of the key policy ABE with the bit string representation of C (in the

way it would be input to U(·,x).

But there is an issue with this transformation since the size of the secret key is not independent of the

size of the circuit. All the previously known constructions of ABE had this issue, since each of them

produced skC with sizes proportional to the size (atleast the multiplicative size) of the circuit C. Also

there is no other transformation known which transforms a key-policy ABE into a ciphertext policy

ABE such that |skx| is independent of |C| and ctC is independent of |x|. But, since our construction

generates secrete keys whose size is independent of the size of the circuit, the above transformation gives

a ciphertext policy ABE from our key policy ABE with ctC ∝ |C| and independent of |x|. Also, |skx| is

independent of |C| (but it still depends on the depth of U).

5.2.2 Key delegation

Any user with secret key skC1
for a circuit C1 can generate a secret key skC1∧C2

for any circuit C2 such

that the delegatee with the delegated secret key skC1∧C2
can decrypt a ciphertext under the attribute

vector x can be decrypted by the delegatee only when both C1(x) = 1 and C2(x) = 1. Gorbunov et al.

[GVW13] provided a restricted form of key delegation where skC1∧C2
can be generated only when both

skC1
and skC2

are known to the delegator. Our ABE scheme provides full key delegation with minor

changes.

To obtain key delegation properties, we modify our Keygen algorithm slightly. On input a circuit C1, the

Keygen algorithm provides the trapdoor TF1
corresponding to F1 = [A||AC1

] as the secret key (instead

of rout1) by running 2m instances of SampleLeft(A,AC1
+ B,TA,0, α). Note that rout1 can be obtained
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from TF1 by running SampleD(F1,TF1 ,u, α). Now delegation is done i.e skC1∧C2 is generated by running

3m instances of SampleLeft(F1,AC2 + B,TF1 ,0, α). The delegated secret key is TF12 ∈ Z3m×3m
q where

F12 := [F1||(AC2 + B)] ∈ Zn×3m
q . Thus the size of the secret key increases quadratically increases with

the number of delegations. Please refer to [BGG+14] for further details.



Chapter 6

Compact Reusable Garbled Circuits

and FE with Short Keys

In this chapter, we use our ABE scheme to construct compact reusable garbled circuits, and a single-

key secure succinct FE scheme (SKFE) with short secret keys. By compact, we mean that the size of

our garbled circuit is independent of the size of the circuit, that is being garbled. Starting from our

ABE scheme, we essentially use the techniques from the work of Goldwasser et al. [GKP+13b] to first

construct the SKFE scheme which produce short secret keys where as in the ABE scheme the size of

skC is independent of the size of C (and dependent on the depth of C). Recall that their succinctness

property assures that the size of the ciphertext is independent of the size of the circuits used to evaluate

the attribute vector.

6.1 Definitions

6.1.1 Functional Encryption (FE)

We recall the functional encryption definition from the literature [KSW08, BSW11, GVW12] with some

notational changes.

A functional encryption scheme FE for a class of boolean circuits with an n-bit input C = {Cn}n∈N is a

tuple of four p.p.t. algorithms (FE.Setup, FE.Keygen, FE.Enc, FE.Dec) such that:

FE.Setup(1λ)→ (mpk,msk) : The setup algorithm takes as input the security parameter 1λ and outputs

a master public key mpk and a master secret key msk.

FE.Keygen(msk, C)→ skC : The key generation algorithm takes as input the master secret key msk and

a circuit C ∈ C and outputs a key skC .

FE.Enc(mpk, x)→ ctx : The encryption algorithm takes as input the master public key mpk and an

input x ∈ {0, 1}∗ and outputs a ciphertext ctx.

FE.Dec(skC , ctx) : The decryption algorithm takes as input a key skC and a ciphertext ctx and outputs

a value y.

43
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Definition 6.1.1 (Correctness). For any polynomial n(·), for every sufficiently large security parameter

λ, for n = n(λ), for all C ∈ Cn, and all x ∈ {0, 1}n,

Pr[(mpk,msk)← FE.Setup(1λ); skC ← FE.Keygen(msk, C); ctx ← FE.Enc(mpk, x) :

FE.Dec(skC , ctx) = C(x)] = 1− negl(λ).

Security of Single Key Functional Encryption

Intuitively, the security of SKFE requires that an adversary should not learn anything about the input

x other than the computation result C(x), for some circuit C for which a key was issued (the adversary

can learn the circuit C). Two notions of security have been used in the previous works: full and selective

security, with the same meaning as for ABE. We present both definitions because we achieve them

with different parameters of the gapSVP assumption. Our definitions are simulation-based: the security

definition states that whatever information an adversary is able to learn from the ciphertext and the

function keys can be simulated given only the function keys and the output of the function on the inputs.

Definition 6.1.2 (FULL-SIM- FE Security). Let FE be a functional encryption scheme for the family

of circuits C = {Cn}n∈N. For every p.p.t. adversary A = (A1, A2) and p.p.t. simulator S, consider the

following two experiments:

expreal
FE,A(1λ): expideal

FE,A,S(1λ):

1: (mpk,msk)← FE.Setup(1λ)

2: (C, stateA)← A1(mpk)

3: skC ← FE.Keygen(msk, C)

4: (x, state′A)← A2(stateA, skC)

5: ctx ← FE.Enc(mpk, x)

6: Output (state′A, ctx)

5: ˜ctx ← S(mpk, skC , C, C(x), 1|x|)

6: Output (state′A, ˜ctx)

The scheme is said to be (single-key) FULL-SIM−secure if there exists a p.p.t. simulator S such that

for all pairs of p.p.t. adversaries (A1, A2), the outcomes of the two experiments are computationally

indistinguishable: {
expreal
FE,A(1λ)

}
λ∈N

c
≈
{

expideal
FE,A,S(1λ)

}
λ∈N

We now define selective security, which is a weakening of full security, by requiring the adversary to

provide the challenge input x before seeing the public key or any other information besides the security

parameter. We simply specify the difference from full security.

Definition 6.1.3 (SEL-SIM-FE Security). The same as Def. 6.1.2, but modify the game so that the first

step consists of A specifying the challenge input x given only the security parameter.

6.1.2 Reusable Garbled Circuits

We use the term reusable garbled circuit to refer to the most interesting variant of garbled circuits: the

ones that can run on an arbitrary number of encoded inputs without compromising the privacy of the
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circuit or of the input. We recall the definition of a reusable garbled circuit presented in [GKP+13b].

A reusable garbling scheme for a family of circuits C = {Cn}n∈N with Cn being a set of boolean circuits

taking n bits as input, is a tuple of p.p.t. algorithms RGb = (RGb.Garble,RGb.Enc,RGb.Eval) such that

RGb.Garble(1λ, C)→ (Ĉ, gsk) : The garbling algorithm takes as input the security parameter λ and a

circuit C ∈ Cn for some n, and outputs the garbled circuit Ĉ and a secret key gsk.

RGb.Enc(gsk, x)→ x̂ : The encoding algorithm takes as input x ∈ {0, 1}n and outputs an encoding x̂.

RGb.Eval(Ĉ, x̂) : The evaluation algorithm takes as input a garbled circuit Ĉ, an encoding x̂ and outputs

a value y which should be C(x).

Definition 6.1.4 (Correctness). For any polynomial n(·), for all sufficiently large security parameters

λ, for n = n(λ), for all circuits C ∈ Cn and all x ∈ {0, 1}n,

Pr[(Ĉ, gsk)← RGb.Garble(1λ, C); x̂← RGb.Enc(gsk, x); y ← RGb.Eval(Ĉ, x̂) : C(x) = y] = 1− negl(λ).

Definition 6.1.5 (Efficiency). There exists a universal polynomial p = p(λ, n) (p is the same for all

classes of circuits C) such that for all input sizes n, security parameters λ, for all boolean circuits C with

n bits of input, for all x ∈ {0, 1}n,

Pr[(Ĉ, gsk)← RGb.Garble(1λ, C) : |gsk| ≤ poly(λ, n) and runtime(RGb.Enc(gsk, x)) ≤ poly(λ, n)] = 1.

Note that since RGb.Enc is a p.p.t. algorithm, it suffices to ensure that |gsk| ≤ poly(λ, n) and obtain

that RGb.Enc’s runtime is also at most a polynomial. We prefer to keep the runtime of RGb.Enc in the

definition as well for clarity.

Security of Reusable Garbled Circuits

Here, we present the security definition of the reusable garbled circuits, as presented in [GKP+13b].

Definition 6.1.6. (Input and circuit privacy with reusability)

Let RGb be a garbling scheme for a family of circuits C =
{
Cn
}
n∈N. For a pair of p.p.t. algorithms

A = (A1, A2) and a p.p.t. simulator S = (S1, S2), consider the following two experiments:

expreal
RGb,A(1λ): expideal

RGb,A,S(1λ):

1: (C, stateA)← A1(1λ)

2: (gsk, Ĉ)← RGb.Garble(1λ, C)

3: α← A
RGb.Enc(gsk,·)
2 (C, Ĉ, stateA)

4: Output α

1: (C, stateA)← A1(1λ)

2: (
˜̂
C, stateS)← S1(1λ, 1|C|)

3: α← A
O(·,C)[[stateS ]]
2 (C,

˜̂
C, stateA)

4: Output α

In the above, O(·, C)[[stateS ]] is an oracle that on input x from A2, runs S2 with inputs C(x), 1|x|, and

the latest state of S; it returns the output of S2 (storing the new simulator state for the next invocation).

We say that the garbling scheme RGb is input- and circuit-private with reusability if there exists a

p.p.t. simulator S such that for all pairs of p.p.t. adversaries A = (A1, A2), the following two distributions
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are computationally indistinguishable:{
expreal

RGb,A(1λ)

}
λ∈N

c
≈
{

expideal
RGb,A,S(1λ)

}
λ∈N

.

We can see that this security definition enables reusability of the garbled circuit: A2 is allowed to

make as many queries for input encodings as it wants.

6.2 Constructions

6.2.1 Single-Key Functional Encryption and Reusable Garbled Circuits

In this section we show the gain in efficiency in the size of the secret key for the SKFE scheme that we

obtain by using our ABE schemes.

From [GKP+13b], we know how to obtain a Single-Key Functional Encryption from:

1. Attribute-based Encryption

2. Fully-Homomorphic Encryption

3. “one-time” Garbled Circuits

Theorem 6.2.1 ([GKP+13b]). There is a (fully/selectively secure) single-key functional encryption

scheme FE for any class of circuits C that take ` bits of input and produce a one-bit output, assuming

the existence of (1) C-homomorphic encryption scheme, (2) a (fully/selectively) secure ABE scheme for

a related class of predicates and (3) Yao’s Garbling Scheme, where:

1. The size of the secret key is 2 · α · abe.keysize, where abe.keysize is the size of the ABE key for

circuit performing homomorphic evaluation of C and outputting a bit of the resulting ciphertext.

2. The size of the ciphertext is 2 · α · abe.ctsize(` · α+ γ) + poly(λ, α, β)

where (α, β, γ) denote the sizes of the FHE (ciphertext, secret key, public key), respectively. abe.keysize, abe.ctsize(k)

are the size of ABE secret key, ciphertext on k-bit attribute vector and λ is the security parameter.

We use the same transformation by replacing the ABE scheme of [GVW13] with our ABE scheme

with short secret keys. Since FHE (and Yao’s Garbled Circuits) can also be instantiated assuming the

sub-exponential hardness of LWE ([BV11, BGV12]), we obtain the following corollaries.

Corollary 6.2.2. Combining our short secret key ABE construction (Theorem-4.3.1 and Section 4.5)

and Theorem-6.2.1, we obtain a single-key functional encryption scheme for a circuit class C with depth

at most dmax, where the secret key size is some poly(dmax, λ) and λ is the security parameter.

6.2.2 Compact garbled circuits

From any SKFE scheme, [GKP+13b] show how to construct a compact reusable garble circuits. We

apply our results to get the optimal construction of reusable garbled circuits.

Theorem 6.2.3 ([GKP+13b]). There exists a reusable garbling scheme for any class of circuits C
that take ` bits of input, assuming the existence (1) symmetric-encryption algorithm, (2) a single-key

functional encryption for C, where:
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1. The size of the secret key is |C|+ fe.keysize + poly(λ), where fe.keysize is the size of the FE key for

circuit performing symmetric-key decryption and evaluation of C.

2. The size of the ciphertext is fe.ctsize(λ+ `)

where fe.ctsize(λ+ `) is the size of FE ciphertext on λ+ `-bit input.

Corollary 6.2.4. From Corollary-6.2.2 and Theorem-6.2.3, we obtain a reusable garbled circuits scheme

for any class of polynomial-size circuits with depth at most dmax, where the secret key size is |C| +
poly(dmax, λ).

Construction

We now partially unwind the construction of the garbling scheme in [GKP+13b], which shows the

correctness of Theorem 6.2.3 and Corollary 6.2.4. The following construction uses the algorithms of

our attribute-based encryption scheme, the fully-homomorphic encryption scheme in [?, BGV12] and

a semantically secure symmetric-key encryption scheme as black boxes. We now define the algorithms

(RGb.Garble,RGb.Enc,RGb.Eval) for a family of circuits C of bounded depth dmax.

• We consider the existence of the following three sets of algorithms:

1. An attribute-based encryption scheme ABE(ABE.Setup,ABE.Keygen,ABE.Enc,ABE.Dec)

2. A (levelled) fully homomorphic encryption scheme FHE(FHE.Keygen,FHE.Enc,FHE.Eval)

3. A semantically secure symmetric-key encryption scheme E(E.Enc,E.Dec)

• RGb.Garble(1λ, C)

1. Run 2κ instances of ABE.Setup(1λ) to obtain (fmpki,0, fmski,1) and (fmpki,0, fmski,1), for i ∈
[κ], where κ is the length of FHE ciphertexts.

2. Generate the secret key for the symmetric-key encryption scheme as sk← E.Keygen(1λ).

3. Generate an encrypted form of the circuit C as CE := E.Enc(sk, C).

4. Define the universal circuit UE(sk, x) as the one which performs the computation, for some

sk, x:

(a) Compute C = E.Dec(sk, CE).

(b) Run C on x.

5. The (reusable) garbled circuit for C is the collection of ABE secret keys corresponding to

the FHE evaluation circuits that evaluate the input ciphertexts to produce the ith bit of the

output ciphertext.

Ĉ :=
(
(fsk1,0, fsk1,1), . . . , (fskκ,0, fskκ,1)

)
where fski,0 ← ABE.Keygen(fmski,0,¬FHE.EvalUEi ), fski,1 ← ABE.Keygen(fmski,1,FHE.EvalUEi )

for i ∈ [κ].

6. The component gsk :=
(
(fmpk1,0, fmpk1,1), . . . , (fmpkκ,0, fmpkκ,1), sk

)
is also output by this

algorithm. This is used in the generation of input encodings.1

1Note that, due to the impossibility result proved in [GKP+13b], input encodings cannot be generated for a reusable
garbled circuit without the knowledge of a “secret” component. In our scheme, the knowledge of gsk allows one to generate
input encodings to be evaluated by Ĉ.
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• RGb.Enc(1λ, gsk, x)

1. Run an instance of the key generation algorithm of the fully homomorphic encryption scheme

(hpk, hsk)← FHE.Keygen(1λ). And generate the encryption of each bit of the input (sk, x) to

UE as follows:

ψ :=
(
{ψi ← FHE.Enc(hpk, ski)}i∈[1,...,|sk|] , {ψi ← FHE.Enc(hpk, xi)}i∈[|sk|+1,...,|sk|+n]

)
2. Run Yao’s garbling scheme on the FHE decryption circuit with its secret key hardcoded

(FHE.Dec(hsk, ·) : {0, 1}κ → {0, 1}) to produce a (one-time) garbled circuit D̂, together with

2κ labels Lbi , for b ∈ {0, 1}, i ∈ [κ].

3. Now, the input encoding is x̂ :=
(
{ci}i∈[κ], D̂

)
where

ci = (ci,0, ci,1) :=
(
ABE.Enc(fmpki,0, (hpk, ψ), L0

i ),ABE.Enc(fmpki,0, (hpk, ψ), L1
i )
)

• RGb.Eval(Ĉ, x̂)

1. Obtain the labels Ldii corresponding to the bits di of the evaluated FHE ciphertext (di =

FHE.EvalUEi (hpk, ψ)) as follows:

– First run ABE.Dec(fski,0, ci,0). If the output is not ⊥, then di = 0 and hence L0
i has been

obtained as output.

– If the output of the previous step is ⊥, run ABE.Dec(fski,1, ci,1). If this output is not ⊥,

then di = 1 and hence L1
i has been obtained.

– If both the ABE decryption algorithms output ⊥, output ⊥.

2. Evaluate the garbled circuit D̂ of the FHE decryption algorithm with the obtained labels

{Ldii }i∈[κ] to obtain C(x).

Gb.Eval(D̂, Ldi1 , . . . , L
dκ
κ ) = FHE.Dec(hsk, d1 . . . dκ) = UE(sk, x) = C(x)
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Other Applications of our ABE

Other than single-key functional encryption and compact garbled circuits, our ABE scheme with short

secret keys also results in efficiency improvements in some other interesting primitives like attribute-based

fully homomorphic encryption and verifiable computation.

7.1 Attribute-Based Fully Homomorphic Encryption (ABFHE)

An attribute-based fully homomorphic encryption (ABFHE) scheme has all of the functionality of ABE,

but also allows messages encrypted under the same attribute vector to be processed homomorphically by

anyone (without any public or private keys), such that the final ciphertexts can still be decrypted by any

party that was entitled to decrypt the original ciphertexts. Recently, Gentry, Sahai and Waters [GSW13]

constructed the first ABFHE scheme, building on the ABE scheme of Gorbunov, Vaikuntanathan and

Wee [GVW13].

An ABFHE scheme is defined as follows:

• The four algorithms Setup,Keygen,Enc,Dec defined as in the ABE scheme.

• Eval(mpk,x, f, ct1
x, . . . , cttx) → ctfx: The algorithm, associated to some family function F. For

any function f ∈ F, Eval homomorphically evaluates f on ciphertexts
{

ctix ← Enc(mpk,x, µi)
}
i∈[t]

generated under the same attribute vector x ∈ {0, 1}`.

Correctness

For any (msk,mpk)← Setup(1λ, 1dmax), skC ← Keygen(msk, C) for any C of depth atmost dmax, for any

t and ciphertexts
{

ctix ← Enc(mpk,x, µi)
}
i∈[t]

generated under the same attribute vector x ∈ {0, 1}` for

which C(x) = 1, for any t-ary function f ∈ F, ctfx ← Eval(mpk,x, f, ct1
x, . . . , cttx) is a ciphertext that

satisfies Dec(skC , ctfx) = f(µ1, . . . , µt).

Security

The notions of security for ABFHE are the same as for ABE (refer Section 2.2.1) except that the adver-

sary will have access to the (public) algorithm Eval (in addition to the Enc algorithm), which it could
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exploit during the security game. Hence, ABFHE schemes can either be selectively secure or be adap-

tively secure, depending on when the adversary provides the challenge attribute vector x.

By applying Gentry et al.’s techniques to our ABE scheme, we obtain an ABFHE scheme with short

secret keys, with security based on LWE. Gentry et al. actually provided a general compiler to transform

any LWE-based ABE scheme with suitable properties into an LWE-based ABFHE scheme, the properties

being:

1. Property 1 (Ciphertext and decryption key vectors): Decryption keys sC,x and ciphertexts

ctx are vectors over Zq. The first coefficient of each sC,x is 1.

2. Property 2 (Small Dot Product): If ctx encrypts 0, then 〈ctx, sC,x〉 is “small”.

3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform vectors over Zq
(under LWE).

This transformation results in a (levelled) FHE scheme, and hence F consists of all circuits of depth

dmax
′ for some dmax

′. The decryption keys in our LWE-based ABE scheme do not natively have the

form needed by the compiler. But, one can re-interpret our decryption as a two-step process in the same

way [GSW13] treated the decryption in [GVW13] when it faced the same problem.

The first step involves the “recoding of recodings” process. This is a recursive process used to cal-

culate the recoding key tC,x ∈ Zm+m`
q transforming encodings of the bits of the attribute vector i.e

[ψ0||ψ1|| · · · ||ψ`] ∈ Zm+m`
q to the encryption of the message τ ∈ Zq, where ψ0, ψ1, . . . , ψ`, τ form part of

some ciphertext ctx.

This process proceeds (from output to input) as follows:

1. The secret key skC for the circuit C, is the “recoding” element rout = [rT0 ||rTC ]T ∈ Z2m
q that is used

to transform [ψ0||ψC ] into τ i.e [rT0 ||rTC ] · [ψT0 ||ψTC ]T = τ .

2. For any NAND gate g(u, v;w), ψw can be calculated from ψu, ψv as ψw = [−xvIm||Du] · [ψTu ||ψTv ]T .

Thus, the recoding element for this gate is [−xvIm||Du] where −xvIm is the recoding matrix for ψu

and Du is the recoding matrix for ψv. We recursively perform this operation from the output level

to the input level so tha at the input level we obtain the big recoding matrix Q := (Q1|| · · · ||Q`) ∈
Zm×m`q such that [Q1|| · · · ||Q`] · [ψT1 || · · · ||ψT` ]T = ψC .

3. Now the final recoding element tC,x also performs the final transformation of [ψ0||ψC ] to β i.e

tC,x := [rT0 ||rTout ·Q] ∈ Zm+m`
q .

4. The secret key for the ABFHE scheme is sC,x = (1,−tC,x). Also the ciphertext ctx is viewed as a

single long vector [τT ||ψT0 ||ψT1 || · · · ||ψT` ]T ∈ Z1+m+m`
q .

Thus, rather than decrypting “incrementally” gate-by-gate, we “holistically” view decryption as ap-

plying an overall linear transformation (in particular, a dot product) to the ciphertext vector ctx: we

thereby obtain a “sub-key” sC,x, a vector that depends on skC and x, that represents this overall linear

transformation from input encodings to the encryption of the message bit.
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In the second step of decryption, we simply determine whether the dot product 〈ctx, sC,x〉 is small or not.

Viewed in this way, our ABE scheme has all of the properties required by the compiler in [GSW13], and

hence we obtain ABFHE with short secret keys.

7.2 Verifiable Computation

As mentioned earlier, a verifiable computation protocol allows a computationally weak client to veri-

fiably outsource computations to one or more workers. The efficiency requirement of these protocols

is that the computational complexity involved in outsourcing the computation and in the verification

of the result(s) returned by the worker(s) should be significantly less than the complexity involved in

the original computation by the client himself. This problem of (non-interactive) verifiable computation

was initially studied in the works of Kilian [Kil92], Micali [Mic94] and Goldwasser, Kalai and Rothblum

[GKR08]. Later, after several other results, Parno, Raykova and Vaikuntanathan [PRV12] showed that

one could use a key-policy attribute-based encryption scheme to perform verifiable computation with

public delegation and public verification. After the pre-processing stage (which is required for almost all

the known results on verifiable computation) is performed by some user, the delegation of the compu-

tation and the verification of the result returned by the worker can be performed by any user. Without

these two properties, these tasks would be restricted to the user who performed the pre-processing stage.

Our ABE scheme results in a verifiable computation protocol for any polynomial size circuits with short

evaluation keys, along with the public delegation and public verification properties.

VC protocol from ABE

Intuition: To calculate C(x), the client generates ABE encryptions for (x,m0) and (x,m1) for some

m0,m1. The evaluation key is the pair of ABE secret keys for C, C̄. Thus worker with the evaluation key

can correctly decrypt only the ciphertext corresponding to (x,m0) when C̄(x) = 1 i.e C(x) = 0. On the

other hand, when C(x) = 0, he can correctly decrypt only the ciphertext corresponding to (x,m1) A veri-

fiable computation protocol for a family of circuits C, VC(VC.Keygen,VC.ProbGen,VC.Compute,VC.Verify)

can be obtained from an attribute-based encryption scheme for a family of circuits C′ (which includes

C and the complements of all the circuits in C) ABE(ABE.Setup,ABE.Enc,ABE.Keygen,ABE.Dec) as

follows:

• VC.Keygen(C, 1λ)

1. Run two instances of ABE.Setup(1λ) to obtain (mpk0,msk0), (mpk1,msk1).

2. Set skC̄ ← ABE.Keygen(msk0, C̄) and skC ← ABE.Keygen(msk1, C), where C̄ is the comple-

ment of the circuit C.

3. The public key for the verifiable computation protocol for the circuit C is pkC := (mpk0,mpk1)

and the evaluation key is ekC := (skC , skC̄).

• VC.ProbGen(pkC ,x)

1. Generate a pair of random messages m0,m1
$← {0, 1}λ.
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2. Compute ciphertexts c0 ← ABE.Enc(mpk0,x,m0), c1 ← ABE.Enc(mpk1,x,m1).

3. Output
(
cC,x := (c0, c1), vkC,x := (OWF(m0),OWF(m1))

)
.

• VC.Compute(ekC , cC,x)

1. Parse ekC as (skC , skC̄) and cC,x as (c0, c1).

2. Compute d0 ← ABE.Dec(skC̄ , c0) and d1 ← ABE.Dec(skC , c1).

3. Output d := (d0, d1).

• VC.Verify(vkC,x, d)

1. Parse vkC,x as (OWF(m0),OWF(m1)) and d as (d0, d1).

2. If OWF(d0) = OWF(m0), output 0, else if OWF(d1) = OWF(m1), output 1, else output ⊥.

Theorem 7.2.1. There exists a verifiable computation protocol for a family of circuits C containing

polynomial size circuits of depth bounded dmax, with the properties of public delegation and public verifi-

cation. Also, the size of the evaluation keys for any circuit C ∈ C is O(λ, dmax), and hence independent

of the size of C.

Proof. Our attribute-based encryption scheme in Chapter 5 is one for a family of polynomial size circuits

C of depth bounded by dmax. This implies the existence of a verifiable computation protocol for the

family of circuits C [PRV12].

From the above construction of VC from ABE, we can see that the size of the evaluation key for a circuit

C ∈ C is the sum of the size of secret keys produced by the ABE scheme for C, C̄. Since, the size of

secret keys in our ABE scheme for any circuit C ∈ C is O(λ, dmax), the size of the evaluation key for C

in the resulting VC protocol is also O(λ, dmax).



Chapter 8

ABE with Short Secret Keys from

Ring-LWE

8.1 Ring LWE

The ring-LWE problem, introduced by Lyubashevsky, Peikert and Regev [LPR10], is the ring analogue

of the standard learning with errors (LWE) problem [Reg09a]. Informally, in a ring R = Z[X]/(f(X))

for a monic irreducible polynomial f(X) of degree n and for an integer q defining the quotient ring

Rq := R/qR = Zq[X]/(f(X)), the ring-LWE problem is to distinguish the tuples of (ai, b = ai · s+ ei) ∈
Rq × Rq from uniformly random tuples in the same domain, where ai ∈ Rq are uniformly random and

independent, s
$← Rq is the secret (which stays the same for all the tuples) and ei ∈ R are the noise

terms which are short and independent.

8.2 Preliminaries

Recently, a toolkit for ring-LWE was provided by Lyubashevsky, Peikert and Regev [LPR13], which

includes fast algorithms for the important cryptographic operations. Their algorithms work for arbitrary

cyclotomic polynomials Φm(X) (for any m). They use canonical embedding for defining the geometric

norms (such as norms and inner products). This embedding maps every element of K = R[X]/(Φm(X))

to a set of n complex numbers, where n = ϕ(m) and it ensures that addition and multiplication of two

ring elements are component-wise. Also, the work of Micciancio and Peikert [MP12] ensures that all the

algorithms, such as TrapSamp,SampleD and hence SampleLeft,SampleRight, that we used in our LWE

scheme work have analogues for the ring-LWE version. We refer the ring analogues with a subscript R.

8.2.1 Notations

For some constant c ∈ Zq, we will refer to ~c ∈ Rq the ring element with all of its coordinates to be

that constant c. Now, if all coordinates of an element a ∈ Rq have to be multiplied (or added) with a

particular constant c, it can be performed by multiplying (or adding) a with ~c. But we will postpone

these details to the analysis and use c · a (or c+ a) in the scheme skipping the arrow above the number.

53



Chapter 8. ABE with Short Secret Keys from Ring-LWE 54

8.2.2 Additional algorithms

We will also use the following two algorithms.

• Powersof2(a): The algorithm takes an element a ∈ Rq as input and outputs a′ = [20 · a, 21 ·
a, . . . , 2y−1 · a] ∈ R1×y

q , where y = blog qc+ 1. Given a matrix A ∈ Rn×nq as input, Powersof2(A)

returns a matrix in Zn×nyq , with Powersof2 algorithm applied to each element of A.

• BD(a): The algorithm takes in an element a ∈ Rq and outputs a vector aT = [a0, . . . , ay−1]] ∈ Ryq ,

where ai is a ring element whose coordinates are the ith bits (when ordered from LSB to MSB)

in the binary decomposition of the coordinates of a. Given a matrix A ∈ Rn×mq as input, BD(A)

returns a ny ×m matrix with BD applied to each element of A.

The primitive vector b is defined as b = Powersof2(1) = (b1, b2, . . . , by) ∈ Ryq , where bi = 2i. We note

that for any vector a ∈ Ryq : BD(a) · b = a.

8.3 Construction

Note that n,m used in this section are different from those used in the LWE scheme. We now define

algorithms ABER(ParamsR,SetupR,EncR,KeygenR,DecR) for a family of circuits C of bounded depth

dmax.

• ParamsR(1λ, dmax): Let us consider the use of the ring R = Z[X]/(Φm(X)), where Φm(X) is

the mth cyclotomic polynomial of degree n = ϕ(m). Let Rq = R/qR be the ring modulo the

ideal generated by an integer q. Here, m = m(λ, dmax), q = q(dmax). Set the error distribution

χ = χ(n), which is a continuous LWE error distribution over K and the error bound B = B(n).

We also additionally choose two Gaussian parameters: a “small” Gaussian parameter s = s(n)

(which the reader should think of as polynomially bounded), and a “large” Gaussian parameter

α = α(n, dmax) (which the reader should think of as growing exponentially in dmax.) Output the

global public parameters pp = (n, χ,B, q,m, s, α). This is implicitly given to all of the algorithms

defined below1.

• SetupR(1`):

1. Run the trapdoor generation algorithm TrapSampR(1y, Rq) to obtain (a, ta), where y =

blog qc+ 1.

2. Choose ` vectors {ai}i∈[`] at random from Ryq .

3. Choose u at random from Rq.

4. Define and output the master public key as

mpk :=
(
a, {ai}i∈[`],b, u

)
and the master secret key as msk := (ta).

• EncR(mpk,x = (x1, . . . , x`), µ): For encrypting a message µ ∈ {0, 1}, do the following:

1See Sections 8.4 for concrete instantiation of the parameters.
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1. Choose a vector s ∈ Rq at random.

2. Choose a noise term e← χy and compute ψ0 = s · a + e.

3. For all input wires i ∈ [`]:

(a) Choose a random matrix Ri ← {−1, 1}y×y and let ei = RT
i e.

(b) Compute ψi = s · (ai + xi · b) + ei.

4. Encrypt the message µ as τ = s · u+ e+ bq/2cµ, where e← χ.

5. Output the ciphertext as ctx =
(
x, ψ0, {ψi}i∈[`], τ

)
.

• KeygenR(msk, C):

1. Inductively, from input to output, consider a gate g = (u, v;w). Without loss of generality

assume g is a binary NAND gate. The matrices for the input wires (u, v) are fixed as au,av

by induction and the matrix for the output wire w is assigned the value

aw = BD(au) · av − b

2. Finally, let aout be the vector defined at the output wire by this process. Define f = [a||(aout+

b)] ∈ R2y
q . Compute rout ∈ R2m

q by running SampleLeftR(a, (aout + b), ta, u, α), satisfying

f · rout = u.

3. Output the secret key for the circuit C, skC := (C, rout).

• DecR(skC , ctx): If C(x) = 0, output ⊥. Otherwise, proceed the evaluation from input to output

as follows:

1. Consider a gate g = (u, v;w) carrying input values xu, xv and hence output value xw =

xu NAND xv = 1 − xuxv. By induction, the user holds ψu = s · (au + xub) + eu and

ψv = s · (av + xvb) + ev (for some error vectors eu and ev).

Compute ψw as follows:

ψw = BD(au) · ψv − xvψu

As we show below (in Lemma 8.4.1), this new ciphertext has the form s ·
(
aw + xwb

)
+ ew

(for a small enough noise term ew).

2. Finally, at the output gate the user computes

ψout = s · (aout + C(x) · b) + eout = s · (aout + b) + eout

(since C(x) = 1).

3. Compute β = rTout · [ψ||ψout] As we show below (in Lemma 8.4.1), β ≈ s · u mod qR.

Output µ = 0 if |τ − β| < q/4 and µ = 1 otherwise.

We prove the correctness of our ring-LWE scheme below, which would help us calculate the parameters

for this scheme. The security proof of the ring-LWE scheme is similar to our LWE scheme, hence we

skip it here.
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8.4 Correctness and Compactness

Lemma 8.4.1 (Correctness). Let C be a family of circuits with their depth bounded by dmax and let

ABEr = (ParamsR,SetupR,EncR,KeygenR,DecR) be the ring-LWE version of our attribute-based en-

cryption scheme. Assuming that, for a LWE dimension n = n(λ, dmax), the parameters for ABER are

instantiated as follows:

χ = DZ,
√
n B = O(n)

q = Õ(ndmax)O(dmax)n s = O(
√
n log q)

m = O(n log q) α = O(n log q)O(dmax)

then the scheme ABER is correct, according to Definition 2.2.1.

Proof. Let us consider a circuit C ∈ C of depth atmost dmax, such that C(x) = 1. Informally, we have

to prove that the encoding obtained at the output wire is of the “correct” form and that the noise

component e of β is “small” enough.

Claim 8.4.1. For each encoding ψu for wire u at level j, the user holds [s · (au + ~xub) + eu], where

||eu||∞ ≤ B · (2y)j+1.

Proof. First, note that when e← χy, ||e||∞ ≤ B by the definition of χ and B. Hence, for the noise term

ei = RT
i e, ||ei||∞ ≤ yB since Ri ∈ { ~−1,~1}y×y. Thus, the base case for the input encodings holds.

• Now, consider a gate g = (u, v, w) and any two input encodings ψu = s · (au + ~xub) + eu, ψv =

s·(av+ ~xvb)+ev at depths j0, j1 respectively, where ||eu||∞ ≤ B·(2y)j0+1 and ||e1||∞ ≤ B·(2y)j1+1.

Then, the recoded encoding ψw is computed as follows:

ψw = (BD(au))ψv − ~xvψu

= s ·
(
BD(au) · av + ~xv · BD(au) · b

)
+ BD(au) · ev − ~xv · (s · (au + ~xub) + eu)

= s ·
(
BD(au) · av + ~xv · au

)
+ BD(au) · ev − ~xv · (s · (au + ~xub) + eu)

= s ·
(
aw + (

−−−−−−→
1− xuxv) · b

)
+ ew

where the last equation is because aw = av ·BD(au)−b. Also, we define ew := BD(au) ·ev− ~xv ·eu.

• Thus,

||ew||∞ ≤ y · ‖BD(au)‖max · ||eu||∞ + ||ev||∞
≤ y ·

(
B · (2y)j0+1

)
+B · (2y)j1+1

= B · (yj0+22j0+1 + (2y)j1+1)

≤ B · (2y)max(j0+1,j1+1)+1

as claimed (the second inequality is because ‖BD(au)‖max ≤ 1).

Hence, by Claim-8.4.1, if C(x) = 1, the user obtains ψout = s·(aout+C(x)·b)+eout = s·(aout+b)+eout,

where ‖eout‖∞ ≤ B ·(2y)dmax+1. After final re-encoding, the user obtains β := rout ·[ψ∗||ψout] = s·u+ef ,
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where ef = [eT ||eTout] · rout. Here, rout is the output of SampleLeft algorithm (Algorithm 2.1. Hence, it

has an infinite norm ‖rout‖∞ ≤ α
√
y ≤ O(n log q)dmax · ω(

√
log y).

Thus,

‖ef‖∞ ≤ y·(‖e‖∞+‖eout‖∞)·‖rout‖∞ ≤ y·
(
B+B·(2y)dmax+1

)
·
(
O(ydmax)·ω(

√
log y)

)
≤ O(B·(n log q)2dmax+2)·ω(

√
log y)

Also, ciphertext component τ is computed using noise term ||e||∞ ≤ B. Hence,

||ef − e||∞ ≤ O(B · (n log q)2dmax+2) · ω(
√

log y) < q/4,

which holds given the above setting of the parameters.Thus, ψ and ψ′ are “close”, message µ ∈ {0, 1} is

decoded correctly as required.

Corollary 8.4.2. For any depth dmax family of circuits C, the secret key size in our Attribute-Based

Encryption is O(n log q) = poly(dmax, λ).

8.4.1 Parameter Selection

This section provides a detailed description on the selection of parameters for our scheme, so that both

correctness (see Section 8.4) and security of our scheme are satisfied.

For a family of circuits C of bounded depth dmax, with the LWE dimension n, the parameters can be

chosen as follows:

• The error distribution χ is typically a truncated discrete Gaussian distribution DZ,
√
n with param-

eter
√
n. And, the error bound B = O(

√
n
√
n) = O(n). For this B, the probability for a random

sample from DZ,
√
n to be 0 would be negl(n), according to Lemma 2.1.1.

From now, we will consider the LWE modulus parameter q = q(n, dmax), without instantiating it, to

calculate the other parameters m, s, α. Later, we will instantiate q with a value which would make

m, s, α satisfy the correctness and security properties.

• The parameter y = blog qc+ 1.

• The “small” Gaussian parameter s is chosen to be O(
√
n log q).

• Now, let us calculate the value of the “large” Gaussian parameter α = α(n, dmax). We should

choose α such that the output of the SampleLeft and the SampleRight algorithms are statistically

indistinguishable from each other, when provided with the same set of inputs F and u.

The SampleRight algorithm (Algorithm 2.2) requires

α > ‖T̃b‖ · ‖R‖ · ω(
√

log y) (8.1)

Hence, we proceed as follows:
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1. First, we calculate the value of ‖R‖, where R is the matrix obtained corresponding to aout

in the simulated ABER algorithm KeyGen∗R. In KeyGen∗R, at each step of the induction, we

get the matrix

Rw = Rv · BD(au)− C(x∗)vRu

corresponding to the matrix aw of the outgoing wire w of the gate g(u, v;w). We prove the

following claim which would help us deduce the value of ‖R‖max.

Claim 8.4.2. Suppose that for the gate g(u, v;w), with the incoming wires u, v at depths

j0, j1 respectively, ‖Ru‖max ≤ (2y)j0 and ‖Rv‖max ≤ (2y)q1 . Then, for the outgoing wire w,

the maximum norm of the matrix Rw would be ‖Rw‖max ≤ (2y)max(j0,j1)+1

Proof. This proof proceeds similar to the calculation of ‖ew‖∞ in Claim-8.4.1. In particular,

‖Rw‖max ≤ m · ‖BD(au)‖max · ‖Ru‖max + ‖Rv‖max

≤ y
(
(2y)j0 + (2y)j1)

=
(
2j0(y)j0+1 + (2y)j1)

≤ (2y)max(j0,j1)+1

Thus, the maximum norm of the matrix Rw corresponding to aw would be ‖Rw‖max ≤
(2y)max(j0,j1)+1.

Thus, each element of the matrix R corresponding to aout, has an absolute value of atmost

‖R‖max ≤ (2y)dmax .

2. We then get ‖R‖ as follows:

‖R‖ := sup
x∈Sm−1

‖R · x‖ ≤ y · ‖R‖max ≤ (2y)dmax

3. For a matrix TB corresponding to a primitive vector b [MP12], ‖T̃B‖ =
√

5.

4. Finally, we substitute these values in Equation 8.1 to get the value of α required for the

SampleRight algorithm.

α ≥
√

5 · (2y)dmax · ω(
√

log y) (8.2)

The value of the parameter α required for the SampleLeft algorithm (Algorithm 2.1) is

α ≥ O(
√
n log q) · ω(

√
log 2y) (8.3)

Thus, to satisfy both Equation 8.2 and Equation 8.3, we set the parameter

α ≥ (2y)dmax · ω(
√

log y)

Thus, the outputs of the SampleLeft and the SampleRight algorithms will be statistically indis-

tinguishable from each other, when provided with the same set of inputs f and u. Hiding the

constants, we assign α = O(n log q)dmax · ω(
√

log y).

When our scheme is instantiated with these parameters, the correctness (see Section 8.4) of the scheme
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is satisfied when

O(B · (n log q)2dmax+2) · ω(
√

log y) < q/4

Clearly, this condition is satisfied when q = Õ(ndmax)O(dmax). Also, this value of q = poly(n), enables

both the quantum reduction [Reg09b] and the classical reduction [Pei09] from dLWEn,q,χ to approximat-

ing lattice problems in the worst case, when n, χ chosen as described above. To conclude this section, for

a given max depth dmax and using the m = m(λ, dmax)th cyclotomic polynomial Φm(X), with n = ϕ(m),

we set the parameters for our scheme to satisfy both the correctness and security, as follows:

χ = DZ,
√
n

B = O(n)

q = Õ(ndmax)O(dmax)

y = blog qc+ 1

s = O(n log q)

α = O(n log q)2(dmax+1) · ω(
√

log y)



Chapter 9

Conclusions and Future Work

We have thus provided new techniques which help us construct reusable garbled circuits whose size is

independent of the size of the circuit being garbled. We have formally defined our technique and call it a

fully key-homomorphic encryption. Using FKHE, we obtain interesting results along the way. First we

construct an ABE scheme with very short secret keys where the size of the secret keys are independent

of the size of the circuits, and dependent only on the depth of those circuits. We then obtain a single-key

functional encryption with short secret keys and finally the construction of compact (reusable) garbled

circuits. Our way of constructing the ABE scheme leads to optimisations in many of ABE’s other ap-

plications too. In particular, we obtain an attribute-based fully homomorphic encryption with short

secret keys, a verifiable computation procedure with short evaluation keys (and with public delegation

and public verification properties).

For completeness, we have given a direct construction for reusable garbled circuits starting from the

algorithms of ABE, fully homomorphic encryption scheme and one-time garbled circuits and thus partly

unwinding the construction in [GKP+13b]. We have also instantiated the ABE algorithms from ring-

LWE assumption which generally leads to much better parameters for implementation than the regular

LWE version. With the optimisations like outsourcing decryption and offline computations being inher-

ently present, our ABE scheme would be very efficient for practical implementations.

We have obtained all these optimisations starting from the ABE scheme. One interesting future work

to use FKHE scheme or our techniques directly to build or optimise other primitives. This is the first

time one has defined or used any variant of full key-homomorphism. With additive key-homomorphism

leading to interesting cryptographic applications, it would be interesting to find other applications for

variants of full key-homomorphism which can be built from standard assumptions.

9.1 Future work

The following are some of the interesting future directions along this line of work that one could tackle.

• Remove the dependence on the depth of the circuit in the secret key sizes.

• Obtain full adaptive security for FKHE/ABE (without any leveraging).

60
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• Identify other applications for our FKHE and for other variants of full key homomorphism.

• Completely unwind and optimise the reusable garbled circuit construction in [GKP+13b] and ob-

tain a compact construction which reduces the security directly to standard hardness assumptions.

• Obtain a variant of full key-homomorphism that optimises one-time garbled circuits with efficient

parameters for practical implementation.
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