
Load Balancing between Controllers

Dhinakaran Vinayagamurthy Jaiganesh Balasundaram

Department of Computer Science
University of Toronto

December 14, 2012

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem statement . 2

2 Definitions 3

3 Framework 3
3.1 A distributed control plane framework . 3

3.1.1 Three Regions . 3
3.1.2 An application maintaining distributions . 4
3.1.3 Simulator TSIM . 4

4 Protocol 5
4.1 NH-Find . 5
4.2 NC-S List . 5
4.3 Polling phase . 7
4.4 Setup phase . 8

5 Analysis 9

6 Future Work 10

7 Conclusion 11

A Old Protocol 12
A.1 Polling phase . 12
A.2 Setup phase . 12
A.3 Transfer phase . 13
A.4 Issues . 13

1 Introduction

Software Defined networking (SDN) is a network architecture that decouples control plane from data plane.
This provides numerous benefits such as a centralized controller that can be used to manage the entire
network via user written control applications and simpler switches which only need to forward packets based
on the flow table entries. This abstracts the underlying network infrastructure to the controller applications.
The functions of a controller include, but are not limited to, handling new flow requests by setting up the
new flow entries in the flow tables of the corresponding switches, updating the routing table and maintaining

1

a network wide state. Tootoonchian et al. in [TGG+12] provided a study on the performance of a few
publicly available SDN controllers (while handling data path requests), including a multi threaded version
of NOX which they had implemented. This was done by calculating two important parameters namely the
controller throughput (the number of data path requests it can handle per second) and controller response
time (the average time the controller takes to set up data paths) in different settings. They pointed out that
the two aforementioned parameters (especially the response time of the controller) are the primary factors
to decide if additional controllers are needed in a network.

When the number of switches in a network grows, having a single controller might not be a smart idea,
as this will lead to larger flow setup latencies for some flows due to high workload on the single controller.
This led to the development of a distributed control plane, involving many controllers with each controller
serving a number of switches in the network. There were also issues of scalability and reliability in a one
controller framework. Onix [KCG+10] provided a solution to these problems by presenting a distributed
control plane framework. Though the controllers were physically distributed, they had a state synchroni-
sation mechanism to have a centralized logical view. This was achieved by using a data structure called
the Network Information Base (NIB) to track the network state and distributing it between multiple run-
ning instances. Frameworks such as Hyperflow [TG10], Kandoo [HYG12] provided alternate approaches
to this problem. Hyperflow provided a distributed, event based control plane. It uses a publish/subscribe
mechanism to maintain a logically centralized view. Kandoo provided a two level hierarchy for controllers,
thereby distinguishing local control application from non local control applications (which were run on a root
controller that had a network-wide state). Each framework has its own advantages and limitations. But in
all the cases, maintaining a consistent logically centralized view was critical to the performance of the system.

Though there is this notion of logical centralization, the network state must still be physically distributed
in order to achieve reliability and scalability goals and this can affect the performance of the control appli-
cations that have a logically centralized view but are unaware of the underlying physical state distribution.
[LWH+12] discusses this issue and identifies two important state distribution trade-offs namely performance
of control application vs. the state distribution overhead and robustness to inconsistency vs. application logic
complexity. They simulate these trade offs on an existing load balancing control application and conclude
that the inconsistency in control state reduces the performance of the logically centralized control applica-
tions that are unaware of the underlying physical state distribution.

Thus, Software Defined Networking being a budding technology, poses a multitude of interesting questions
and directions. Distributed control plane framework in particular is of enormous interest to us, since it gives
a new variety of questions to the networking community. We try to address one such interesting question in
a distributed control plane architecture.

1.1 Motivation

We believe that in a distributed control plane framework (with appropriate state synchronisation mechanism),
not all controllers are busy at any given instant of time. This idea arises from the fact that if all controllers
are busy at any given point of time, it is only logical that the network manager would have installed a new
controller in the network. (Busyness of a controller can be the measure of how close the current average
response time is to the target response time set by the network manager.) Also when the increase in workload
to a controller is only temporary, it does not make sense to install a new controller only for that time period,
if other controllers can share the increase in load. So we need a mechanism to transfer a part of load from a
‘heavy’ controller (the busy controller) to ‘light’ controller(s) (the not so busy ones), so that all the controllers
work within their set target.

1.2 Problem statement

Assume a distributed control plane framework with each controller assigned a specific target response time
by the network manager. Consider a scenario where the current average response time of a controller is go-
ing to overshoot its target response time due to reasons like the load of the controller becomes heavier than

2

normal or the target response time has been set to a new lower value by the network manager (Note that
these changes are only temporary). The aim is to design a protocol for transferring load between controllers
such that their target response times are achieved.

The rest of this report is organised as follows. We define certain terms that we use in our protocol in
Section 2. We then explain the framework on which our protocol is based in Section 3 along with various
assumptions made. Our protocol is explained in detail in Section 4 and its analysis is provided in Section 5.
Some future work that needs to be done in this direction is given in Section 6. Some work regarding the old
version of our protocol, which is significantly different from this version and which was done during till the
intermediate report submission, is provided in Appendix A.

2 Definitions

1. Average response time t: The average time taken by the controller to serve one request (for example,
a flow setup request). Note that this includes the average waiting time of that request in the queue.

2. Target response time tt: This is set by the network manager for each controller. This is like a guarantee
provided by the network manager that the controller would serve the requests with an average response time
≤ tt

3. Busyness of a controller: For a controller i,
Busynessi , Target response timei - Current average response timei

4. Distribution D: This represents a frequency distribution of number of requests of different types in a
unit time interval. The requests are categorized by their service times. The total service time of a distribution
Di is defined as the total time taken to serve the requests in the distribution and is denoted by TDi

. Note
that we use T to denote the service-only time i.e time taken by the controller to serve the request after it
reaches the controller (excluding the waiting time in the queue).

5. APP : This is the application in the controller which runs our protocol.

3 Framework

3.1 A distributed control plane framework

We assume a distributed control plane framework like hyperflow as in Figure 1. Each domain has a controller
and a set of switches in it. We assume that each switch talks to exactly one controller at any instant of
time. The set of switches talking to the same controller along with the controller they talk to, constitutes a
domain. For every domain i, Ci represents the controller in that domain (note that each domain has exactly
one controller according to our assumption) and Sij represents the jth switch of the ith domain. State
synchronisation is based on a publish/subscribe mechanism. An event logger application running on each
controller captures the events that affect the control state, serializes it and publishes the events of general
interest on the data channel. The controllers advertise themselves on the control channel. Each controller
has a separate channel to which it subscribes. Each controller can write in every other controller’s channel.
For example, if Controller Ci wants to send a message to controller Cj , Ci can write it in CtrlCj . Since Cj
is subscribed to CtrlCj

, it can read the messages from it.

3.1.1 Three Regions

The current average response time (t) of the controller falls into one of the following three regions based on
its proximity to the target response time.

� Green When t is in this region, it is highly unlikely that it will move to the red region in the near
future. We can call it as the safe region.

3

Figure 1: A distributed control plane architecture simliar to hyperflow

� Yellow In a certain time interval δp, with high probability, t would move to the red region. δp can be
viewed as the time taken for our whole protocol to complete. ty represents the average response time
just entering the yellow region.

� Red The average response time in this region is greater than or equal to the target response time.

These regions are defined based on the statistics collected by the applications in the controller.

3.1.2 An application maintaining distributions

We assume that in each controller, there exists an application that maintains the

� Arriving distributions of requests

– The arrival distribution from each switch (overall average & average of recent few time intervals)

– The aggregate arrival distribution from all switches (again, overall & recent)

� Service distribution DS

Our protocol has a strong assumption on the arrival distribution that the arrival rate for the controller does
not increase after the average response time t reaches a certain ‘high’ value (i.e after it reaches the Y ellow
region). Also, all controllers categorise the requests in a related (if not in the exactly same) manner i.e if
one controller categorises the requests into a number of types according to time taken to serve that request
and sends the frequency distribution, all other controllers should be able to parse the input distribution and
find a frequency distribution which suits them. This may be ignored by assuming all the controllers work in
a similar manner.

3.1.3 Simulator TSIM

We assume that every controller in the network has a black box called TSIM. A simulator TSIM as in Figure
2, which on inputting a set of distributions, outputs the average response time for servicing the aggregate of
its input and the current workload of the controller.

TSIM provides a mechanism for determining the average response time for a certain new input workload
without actually servicing it. In our protocol, it assists the ‘light’ controller in checking if it can accept the
load from a ‘heavy’ controller without its average response time going too close to its target response time.

4

Figure 2: The Black-Box TSIM

4 Protocol

4.1 NH-Find

We identify a set N (which represents the ‘nearby’ or ‘neighbourhood’ controllers) for each domain i. The
set of ‘Nearby’ controllers (for domain 1) is given by

N = {Ci | ∃s1j , [h(Ci, s1j) = min({h(Ck, s1j)|∀Ck ∈ T − {C1}})]}

� h(a, b) is the number of hops from a to b

� T is the set of all controllers in the network

� S1j is some switch in Domain 1

By the term ‘nearby’ controller for a switch, say Sij of domain i, we mean the ‘next closest’ controller
to it (Note that ‘next closest’ does not always mean the second closest, rather it means closest among all
controllers in the network except Ci, the controller to which Sij currently talks to. After the completion of
the first run of our protocol, many switches will have these two to be different). Every switch belonging to
domain i has one such controller and the set N consists of all such controllers. (Note that this set for each
domain can be calculated efficiently from the network graph using a shortest path algorithm).

For example, consider the architecture in Figure 3. Let C1 of domain 1 be the ‘heavy’ controller which
wishes to transfer a part of its load (by transferring a subset the switches in its domain) to meet its target
response time. The ‘nearby’ controller of each switch of domain 1 is represented by a matching color in the
Figure 4. For example, controller C2 of domain 2, is the closest to switch S11 among all the controllers in
the network except the controller in the same domain as S11 (which is C1). So the ‘nearby’ controller set
for domain 1 is N = {C2, C3, C4, C5}.

4.2 NC-S List

We maintain a list Li for every Ni ∈ N . Li has {si1, . . . , sipi} sorted in the ascending order of h(sij , Ni)
where pi initially is the total number of switches in the domain i. Hence, the switches close to Ni are higher
in the list Li.

If the network manager wants to avoid switches from being migrated to ‘far’ controllers (the controllers
which belong to N but, in practice, very far from a subset of switches in the domain), he can obtain an
upper bound on the distance between the switch and Ni and remove any switch from Li whose h(sij , Ni)
exceeds this bound. That is, he ensures that ∀j, h(sij , Ni) ≤ g · h(si1, Ni), for some constant g determined
by him.

5

Figure 3: An example of a distributed control plane with a ‘heavy’ controller C1

Figure 4: Nearby controllers for domain 1

6

4.3 Polling phase

This is the phase where the actual protocol begins. Assume C1 to be the ‘heavy’ controller. This phase
starts when t1 enters the Y ellow region (i.e when t1 becomes ty1) where, within the time interval δp, t1 will
reach the Red region (i.e ≈ tt1). C1 tries to find the appropriate controllers for offloading a part of its load,
so that t1 remains well within the target response time tt1 . The application APP in C1 follows Algorithm
1 to start this offloading process.

Algorithm 1 Polling phase - Part I

Td ← TDA
− TDS

, where TDS
= Unit time interval

for all Li do
Find M = {x|Tx < Td}, where Tx is the total service time for aggregation of the arrival distributions

from the first x switches in Li.
mi = 1 + max (M)
Send [{DSi1 , DSi2 , . . . , DSimi }, tt1] to the controller Ni

end for

Td can be viewed as the time taken by the controller to serve a part of its load, which is more than the
maximum that it could serve in a unit time interval. If we could remove the load which can be serviced in
Td, then the arrival rate becomes less than the service rate and hence the average response time would not
increase further. And since we could complete this whole transfer process within time interval δp, we avoid
t from reaching Red region. Hence, at this stage, we find the set of ‘closest’ switches to Ni, for each Ni,
such that the aggregation of the load from those switches can be serviced in Td. We send such a subset of
switches to each Ni.

At the receiving controller Ni

When a controller receives a set of distributions and target response time of C1, APP in Ni first checks if ti
is in yellow region. If so, then Ni is undergoing a similar ‘offloading’ process on its own. Hence, APP just
returns ⊥.

Otherwise, APP should find the number of switches that it can accept from C1 considering its current
load. In other words, APP should determine the number of switches yi, such that when the control of those
yi switches are transferred to Ni, its average response time ti does not reach the yellow region tyi . APP
follows Algorithm 2.

Algorithm 2 Polling phase - Part II

taggi ← TSIM(DSi1 , DSi2 , . . . , DSimi)
qi ← mi + 1
tyi ← value of ti, when ti enters the yellow region.
repeat

qi ← qi − 1
taggi ← TSIM(DSi1 , . . . , DSiqi)

until taggi < tyi . This loop can be done more efficiently by a modified binary search algorithm
[Algorithm 3] for large values of mi.
Send [taggi , qi] to C1.

Issues

In this process, we do not make sure that the switches moved to Ni get their service within time tt1 , because
if tyi > tt1 then there is a possibility of those switches not getting their service within (average response time

7

Algorithm 3 Modified Binary Search algorithm

Create a list Ls such that the element at position i in the list is the aggregation of the first i distributions
received by Ni
Ls ← 0||Ls||∞ . Ls obtained eventually, has m(+2) distributions (aggregations of distributions) in
a non-decreasing order, since the distributions DSij ,∀j ∈ {1,mi} takes non-negative values (i.e the total
service time of the distributions keep on increasing as we go from the first to last element in the list)
function Binary Search(Ls,tyi ,min = 0,max = m+ 1)

while max ≥ min do
mid← mid(max,min)
Tmid = TSIM(Ls[mid]) . TSIM values calculated can be stored in an array, to avoid

recalculations.
if Tmid ≤ tyi then

if Tmid+1 > tyi then
return [Tmid,mid]

end if
min← mid+ 1

else if Tmid > tyi then max← mid− 1
end if

end while
end function

of) tt1 . We can solve this to an extent by checking if taggi < min(tt1 , tyi). This check will ensure assured
service for the ‘offloaded’ switches, for the time being, as long as the arrival from the already existing switches
in the domain of Ni does not increase much. But, if the load due to them increases, then ti can go higher
upto tti . So, to avoid this, one can assign higher priority for the requests from the newly arrived switches in
Ni, so that they are serviced within tt1 .

4.4 Setup phase

This phase takes place back at C1. APP in C1 ignores the Nis which have sent ⊥. From each other neigh-
bourhood controller Ni, C1 gets (approximately) the maximum amount of load that Ni can take from C1,
along with the average response time for processing that load. Now, APP in C1 tries to find the set of
controllers for offloading switches so that its average response t1 does not increase further.

APP first checks if any Ni can accept all the switches that it has been requested. If there exists any
such Ni, APP finds the one with minimum tagg. Else, the total load to be ‘offloaded’ has to be distributed
among different Nis, according to the qis received. APP follows Algorithm 4 in doing these steps. It is
more meaningful for Td to be calculated again, during this algorithm, rather than using the value that is
calculated during the Algorithm 1. Here, we have assumed that the synchronisation of states between Ni
and C1, especially for processes which are interrupted due to the migration of the switches, occurs within
the time interval δs. We include δs in δp which is the total time taken by our protocol to complete.

Issues

� Consider the scenario where a switch, say Sr, occurs in two lists, say Lr1 and Lr2 , with Lr1 occurring
higher in the sorted list. If Sr is reconfigured to the domain of Nr1 (the Ni corresponding to Lr1) and
Trem does not become ≤ 0 before Lr2 is accessed.

– Sr cannot be reconfigured to the domain of Nr2 , though it can accept a switch with an input load
of (atmost) that of Sr.

– One way of addressing this issue can be to reconfigure the next (non re-configured) switch or set
of switches in the list Lr2 such that T for the aggregation of load from these switch(es) is less
than or equal to that of Sr.

8

Algorithm 4 Setup phase

Require: Get [taggi , qi] tuples from Ni ∈ NS, where NS ⊆ N is the set of neighbourhood controllers which
does not send ⊥
Pick F = {Ni | qi = mi}
if F 6= ∅ then

tmin ← min({taggj |Nj ∈ F})
Synchronise states of C1 and the Ni, corresponding to tmin
Reconfigure the first qi switches of Li to communicate to Ni

else
for all Ni ∈ NS do

Find Ti ← total service time for aggregation of {DSi1 , . . . , DSiqi}
end for
Sort NS in the decreasing order of Ti . Now, NS contains N1, N2, . . . in the decreasing order of Ti
Trem ← Td
i← 0
repeat

i← i+ 1
Synchronise states of C1 and Ni
Reconfigure the first qi switches of Li to communicate to NS[i]
Trem ← Trem − Ti

until Trem ≤ 0 or i
?
= |NS|

end if

5 Analysis

Our protocol assumes an arrival distribution such that arrival rate for the controller does not increase after
the average response time t reaches the Y ellow region. In other words, once the arrival rate increases to a
certain ‘high’ value, it should not increase thereafter. A value is rated as ‘high’ depending on the service
rate of the controller.

But we do not use any other property of the arrival or service distribution in our protocol. This implies
that if the protocol works well for a particular distribution, it should work well for any kind of distribution,
satisfying the above condition.

Hence, we briefly instantiate our protocol with a very special type of arrival distribution, where each type
of requests, from each of the switches follow poisson distribution with varying rates.

Claim

If the average response time increases beyond the target, then it contradicts the assumption that all the
neighbourhood controllers together are free enough to accept the load to be offloaded by C1.

Proof

Let N be the set of neighbourhood controllers as described in the protocol and let each Ni ∈ N have a list
Li. Let λkij be the arrival rate for type k request sent by the jth switch in Li (assuming that requests
are categorised into types 1, 2, . . .). We consider all the assumptions made in our protocol to remain intact
during this analysis. Note that if

∑
k,j λkij > µ throughout, then the system will be unstable. We consider

the case where there is increase in some of λkijs for a significant period of time such that
∑
k,j λkij > µ

during that period. The difference should be offloaded to some other controller(s).

9

Polling phase

According to Algorithm 1, APP finds TDA
=

∑
k Zkstk, where Zk is the total number of requests of type k

that arrives in unit time interval, that is determined by taking a list, say Li, which contains all the switches
in the domain and calculating Zk =

∑
j λkij . stk is the service time for a type k request. APP then finds

Td = TDA
− TDS

, where TDS
is the unit time interval.

Then, for every list Li, APP finds the minimum mi such that

∑
∀k

(stk

mi∑
j=1

λkij) > Td

Then, for each Ni, 〈DSi1 , . . . DSimi 〉 is sent.

When Ni receives 〈DSi1 , . . . DSimi 〉, APP of Ni interacts with TSIM as in Algorithm 2 and outputs
〈qi, taggi〉, where qi ≤ mi such that taggi = TSIM(DSi1 , . . . DSiqi) < tyi .

Setup phase

For all Ni ∈ NS, APP finds Ti =
∑

∀k(stk
∑yi
j=1 λkij) and sorts NS in the descending order of Ti. Note

that NS ⊆ N is the set of controllers which do not send ⊥. Then APP works as in Algorithm 4.

In this process, we can see that each neighbourhood controller receives set of switches, which when mi-
grated away from C1, stops the queue of C1 from increasing further. Clearly speaking, after the migration,
for each unit time interval, the queue size decreases by the number of requests which can be serviced in time
−Trem (which is ≥ 0, since Trem should become ≤ 0 at the end of the protocol if all the load that are needed
to be offloaded, are indeed offloaded). Also, we have assumed the time interval δp, for t to increase from ty1
to tt1 , such that our protocol finishes within this δp.

Still, if at the end of the protocol, the average response time t1 becomes greater than the target tt1 , the
only possibility (assuming all our other assumptions remain intact) is that t1 has been increasing even after
the protocol is over. This implies that Trem > 0 at the end of Algorithm 4 and the loop in Algorithm 4 has

stopped because of the condition i
?
= |NS| i.e the neighbourhood controllers together are not free enough to

take the load that is needed to be offloaded from C1, which contradicts our original assumption. Hence a
new controller has to be installed in that region.

6 Future Work

� At the end of our protocol, the average response time t1 of C1 is well within the target response
time tt1 . But there is a very high probability for t1 to remain in the Y ellow region, which would
kick start the process again. To avoid this, APP can be programmed to start the process again only
when ti starts increasing again, since ti would decrease momentarily due to the transfer of the switches.

But then if t1 starts increasing before reaching the Green region, time may be insufficient for the
protocol to complete before ti reaches Red region. To avoid this, during the Polling phase C1 may
send distributions of mi + εi, for a very small εi. Or, continue transferring switches in the Setup phase
till Trem ≤ −δTTd, for some fraction δT . Both these steps require that the neighbouring controllers
are more ‘free’ than we assumed initially, which seems plausible, considering the fact that the network
operators keep the ‘utilisation’ of a controller well below maximum for ‘normal anticipated’ workload.

Here, we could not determine ε and δ since we could not model, what we claim to be the three regions
for the average response time to exist. This follows from the problem of modelling the change in
average response time of the controller with respect to the other controller parameters.

10

� We have just tried to propose an algorithm to achieve the target in all controllers and hence, our
protocol does not find the best possible way to do this offloading. One better algorithm can determine
the fraction of load to be transferred to a neighbourhood controller based on its percentage of ‘freeness’.

7 Conclusion

Thus, we have proposed a protocol that avoids installation of a new controller for temporary increase in
workload or temporary reduction in the target response time, which may cause the controller not to respond
within its target, if the controllers in the neighbourhood are free enough to share the extra load of the heavy
controller. All the controllers eventually work within their target response times.

We have presented an analysis of our protocol which follows the contrapositive approach in arguing that
if the protocol does not terminate with success, that is only because the neighbourhood controllers are not
free enough to share the load that is needed to be offloaded, provided all the other assumptions remain intact.

Though the primary aim of the protocol is achieved, there are several issues that it cannot address in
certain situations. The main reason for this being the lack of a mathematical model which could determine
the rate of increase in the average response time of a controller with regard to its various parameters.

Acknowledgements

We sincerely thank Amin Tootoonchian for very helpful discussions during various stages of the project. We
also thank Prof. Yashar Ganjali, for his wonderful course and for spreading a part of his excitement on SDN
on us.

References

[HYG12] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a framework for efficient and scalable
offloading of control applications. In Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 19–24, New York, NY, USA, 2012. ACM.

[KCG+10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu,
Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix:
a distributed control platform for large-scale production networks. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

[LWH+12] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja Feldmann. Logically
centralized?: state distribution trade-offs in software defined networks. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12, pages 1–6, New York, NY,
USA, 2012. ACM.

[TG10] Amin Tootoonchian and Yashar Ganjali. Hyperflow: a distributed control plane for openflow.
In Proceedings of the 2010 internet network management conference on Research on enterprise
networking, INM/WREN’10, pages 3–3, Berkeley, CA, USA, 2010. USENIX Association.

[TGG+12] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sherwood. On
controller performance in software-defined networks. In Proceedings of the 2nd USENIX confer-
ence on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services,
Hot-ICE’12, pages 10–10, Berkeley, CA, USA, 2012. USENIX Association.

11

A Old Protocol

This protocol attempts to reduce the load of controller nearing its target response time, by transferring the
packets in its queue to appropriate nearby controllers. Note that this differs significantly from our main
protocol in the sense that our main protocol transfers a subset of switches to the nearby controllers, whereas
this protocol only transfers the set of packets from its queue. A packet or a set of packets contain the request
made by a switch.

Assumption 1.

There exists a channel between every pair of controllers in a distributed control plane.

There are three main steps involved in transferring the load from one controller to another.

A.1 Polling phase

The first step is the Polling process. This is the first step in finding an appropriate light controller. We
assume that the controller has RTTs estimated for all the controllers connected to it.

When the average response time of a controller reaches a certain threshold (say the yellow region as in
the main protocol), it sends the distribution of its transferable packets to all the controllers within its range.
These may be the set of controllers with which the heavy controller shares its states, since these controllers
bypass one of the major bottlenecks in load balancing i.e. sharing and synchronisation of the states between
controllers.

At the receiving controller: When a controller receives a request from a heavy controller, it should decide
whether it could meet its target response time, even after accepting the load from the heavy controller.

The average response time given by TSIM is sent to the heavy controller, if the new average response
time avg′ is less than its target, else the request is ignored.

Assumption 2. We assume that a controller receives atmost one request or (arbitrarily) considers atmost
one request, at an instant of time.

If a controller chooses to answer the best combination of n > 1 requests at an instant, there are several
factors that could come into play like

� Time taken for selecting the best combination of n requests (2n combinations), such that the target
response time is satisfied.

� Even if an optimal solution is obtained, the solution is optimal only with respect to this particular
controller. The requirements of other controllers are not taken into consideration, which may result in
some controllers in the chosen combination reject the offer from this controller.

A.2 Setup phase

The heavy controller now has (RTT, average response time) pairs for all the controllers. It finds the best
available option as follows.

� The delay due to transfer of packets to the light controller is calculated as follows.

tr =
n

kβ

RTT

2

where k is the fraction of the channel bandwidth β between the two controllers that is free at that
instant. The factor 2 appears since there is no need for any reply to be sent for the completion of the
protocol. n is the total number of packets that are to be transferred.

� The total service time in the light controller for all the packets transferred is ts = n · avg′

12

� The controller which corresponds to min(tr + ts) or min(RTT2kβ + avg′) (since n may not be predicted

at this point in the protocol) is fixed as light controller for this iteration. If there is a tie between two
or more controllers, then lower avg′ can be used to break the tie (with the assumptions that tβ value
remains almost same for all the channels and RTT is not high. This is reasonable since if RTT if high,
then it would obviate this load transfer process).

A.3 Transfer phase

After an appropriate light controller is determined, the heavy controller has to find a start packet n1 i.e the
first packet in the queue such that the average response time for n1 packets in the queue is approximately
greater than the target response time.

avgn1
> target

(By approximate, we intend to say that there is no need for an algorithm to find an exact start packet n1
such that the condition does not hold good for n1 − 1. Returning the largest approximate solution for the
algorithm that is less than n1 would be sufficient.)

From the previous assumptions that there exist atleast one controller that is operating well below its
target response time,

avg′ +
RTT

2kβ
< avgn1

If there exists such n1, then the weighted arithmetic mean of the response time of the packets transferred
to the other controller and the response time of the packets processed in the heavy controller is less than or
equal to the target response time. If n2 is the end packet that is transferred to the light controller from the
queue of the heavy controller, then

∀n, avg
′ · (n2 − n1) + avg · (n− (n2 − n1))

n
< target

where n is the number of packets in the queue at any instant.

A.4 Issues

We have a number of issues when balancing the load of a controller using this protocol.

� It is not very straightforward to determine when to stop transferring the packets to the light controller.

� This protocol does not guarantee in order processing of packets and this might be a cause of concern
in many applications

We can avoid these problems, if we migrate a subset of switches to the light controllers instead. In this case,
we do not need to worry about when to stop transferring the packets because the switches now go under the
control of the light controller and will remain under its control (until maybe the light controller now becomes
heavy and decides to migrate this switch at the end of its protocol). Also the packets would be processed in
order since only switches are migrated, not packets.

13

