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Abstract

We study the feasibility of generalizing the notions of completeness
and hardness in 2-party communication complexity (Babai, Frankl, Si-
mon, FOCS 1986) to the “number-on-forehead” (NOF) model of k-party
communication complexity with k ≥ 3 (Chandra, Furst, Lipton, STOC
1983). Beame et al. (Theory of Computing, 2010) suggest that the k-
party version of NPcc may not have any complete families under the nat-
ural (cylindrical, polynomially bounded) reductions. We confirm this in
a strong sense. Let us call a family F = (fn) of k-party communication
problems (one problem for every input length n) zero-hard if all families
of k-party communication problems solvable with zero communication
(cylinders) admit polynomially bounded reductions to F . We show that
there are no zero-hard families of k-party communication problems. Fur-
thermore, we study reduction concepts that “allow communication.” We
arrive at two definitions of reductions with t bits of communication, one of
Karp-style, the other of Cook-style. Let us consider the class of problems
solvable with t bits of communication. We show that no problem is hard
for this class with respect to t-bit Karp-style reduction and (t − 1)-bit
Cook-style reduction. All the proofs are by simple counting arguments,
much in the spirit of Beame et al.. The main purpose of the paper is
clarification of the concepts.

1 Introduction

We write NPcc
k to denote the analogue of NP in k-party communication com-

plexity. Beame et al. point out that finding an explicit NPcc
k -complete family of

communication problems would turn lower bounds, obtained via counting, into
lower bounds for explicit functions. They suggest [3, Section 5], however, that
for k ≥ 3 players, NPcc

k -complete families may not exist. We confirm this in a
strong form.

Throughout this paper we talk about the “number-on-forehead” (NOF)
model of communication complexity, introduced by Chandra, Furst, and Lip-
ton [4], unless the “number-in-hand” (NIH) model is specifically indicated. We
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shall assume that the number of players is k ≥ 3, unless the 2-player model is
specifically discussed.

We use the notation and terminology of [3] with one slight difference in the
concept of termination of the communication protocol (see the beginning of
Section 3). Moreover, we shall be consistent in making a distinction between
a “communication problem” (a finite object which refers to a communication
function over a fixed finite domain) and a “family of communication problems,”
consisting of one communication problem for each input length n.

Babai, Frankl, and Simon [1] introduced complexity classes of families of 2-
party communication problems, analogous to Turing machine complexity classes
such as P, NP, BPP, Σr, Πr, #P; and defined “rectangular reductions” between
families of 2-party communication problems. One of the results of [1] asserts that
the “set intersection” problem (a family) is NPcc

2 -complete under “polynomially-
bounded” (see definition in Section 3) rectangular reductions.

Beame et al. [3] generalize these complexity classes and the reduction concept
to multiparty communication and observe that the NPcc

2 -completeness result
of [1] extends to the NPcc

k -completeness of k-party set-intersection in the NIH
model, but not in the far more interesting NOF model. In fact they prove,
for k = 3 players, that even certain functions of communication complexity at
most 2 cannot be reduced to set-intersection without an exponential blowup in
the input length. Based on this evidence and on further thoughts on functions
with similarly low complexity, they suggest that “it seems unlikely that any
function is complete for NPcc

3 under efficient reductions that do not require
communication.”

Building on the insight of Beame et al., we show that indeed, for k ≥ 3, no
family of k-party communication problems is hard even for a trivial subclass of
NPcc

k . This subclass consists of the families of cylinders, i. e., functions that do
not depend on some player’s input, so that that player knows the answer with
zero communication. We would call a family of functions hard for this class a
“zero-hard family.” Alas, as we shall see (Corollary 3.6) no zero-hard families
exist. It follows that no complexity class that contains the families of cylinders
has a complete family of problems.

The absence of zero-hard families witnesses the weakness of the reduction
concept under the consideration. One way to increase the power of the reduc-
tion, already suggested by the wording of the question of Beame et al., is to
allow communication. We introduce two natural definitions of such reductions
- one permitting the precommunication (Karp-style), and one permitting the
oracle access (Cook-style). We consider the class of families of problems (fn)
such that fn can be computed with t(n) bits of communication. We show that
this class does not admit hard problems under the above reductions even if we
allow t(n) bits of communication for the Karp-style reduction (Corollary 4.15)
and t(n)−1 bits of communication for the Cook-style reduction (Corollary 5.5).

All the proofs are by simple counting arguments, much in the spirit of Beame
et al. [3]. The main purpose of the paper is clarification of the concepts.
Organization. The rest of the paper is organized as follows. Section 2 intro-
duces notation and definitions of communication complexity. In Section 3 we
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study the reduction concepts defined by Beame et al. and prove the main result
of this paper that there are no zero-hard families of problems. In Section 4 we
introduce a Karp-style reduction and extend our results from Section 3 to the
new reduction concept. In Section 5 we introduce a yet more powerful Cook-
style reduction. We show that once again results similar to those in Section 3
hold even for the Cook-style reduction. In Section 6 we list a few open problems.

2 Preliminaries

Notation. For k ∈ N we write [k] := {1, . . . , k}. For a k-tuple x = (x1, . . . , xk)
and i ∈ [k] we use (x1, . . . , x̂i, . . . , xk) to denote the (k− 1)-tuple obtained from
x by deleting the i-th coordinate.

A (k, n)-communication problem is a function f : ({0, 1}n)k → {0, 1}. Here
k is the number of players and each player’s input has n bits. A family of
k-party communication problems is a sequence (fn | n ∈ N) where fn is a (k, n)-
communication problem.

In the k-party “number-on-the-forehead” (NOF) model [4], k players num-
bered 1 through k try to compute a given (k, n)-communication problem f on
x = (x1, . . . , xk). For each i ∈ [k], player i sees x1, . . . , x̂i, . . . , xk, but not xi.
This can be visualized by imagining xi written on the forehead of player i. We
define the NOF view of the tuple x to be the k-tuple of (k − 1)-tuples:

((x2, . . . , xk), . . . , (x1, . . . , x̂i, . . . , xk), . . . , (x1, x2, . . . , xk−1))

In other words, the i-th element of the NOF view of x is the (k− 1)-tuple of all
the xj that player i sees. We shall sometimes refer to the original k-tuple x as
the NIH view of x.

The players can communicate with each other in order to compute f(x1, . . . , xk).
The players communicate by writing messages (binary strings) on a public black-
board in accordance with a communication protocol. The communication pro-
tocol specifies, as a function of the contents of the blackboard so far, which
player writes the next message. The protocol also specifies, as a function of
the contents of the blackboard and the writer’s input, the next message to be
written on the blackboard.

Following Yao’s original convention [6] (see also Lovász [5]) and deviating
from [3], we say that a communication protocol ends when one of the play-
ers, specified by the protocol, knows the answer. This is indeed the natural
termination rule; this way, for instance, if each player has an n-bit input, the
communication cost of the trivial protocol is n bits, rather than n + 1 when
a player has to broadcast the answer. In any case, the difference between the
two conventions is at most 1 bit. But this difference will have a philosophical
significance; under this definition, it is natural to consider the problems that
require zero communication. These are the problems that do not depend on the
input of one of the players. Following [2], we call such a problem a cylinder, or
an i-cylinder if the i-th player’s input is irrelevant.
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The cost of the protocol is the maximum number of bits written on the
public blackboard, where the maximum is taken over all possible inputs.

For more information on multiparty communication complexity, we refer the
reader to [3] and references therein.

3 Reductions without Communication

Beame et al. [3, Section 5] introduce two reduction concepts, “cylindrical reduc-
tions,” which map the NOF view of the input to another such view, and “cubic
reductions,” which map the NIH view of the input to another such view.

Definition 3.1 (Beame et al. [3]). Given the communication problems f :
X1 × · · · × Xk → {0, 1} and g : Y1 × · · · × Yk → {0, 1} we say that a k-tuple

(φ1, . . . , φk) of functions, φi : X1 × · · · X̂i · · · × Xk → Y1 × · · · Ŷi · · · × Yk, is a
cylindric reduction of f to g if for all (x1, . . . , xk) ∈ X1 × · · · ×Xk there exists
(y1, . . . , yk) ∈ Y1 × · · · × Yk such that for all i we have φi(x1, . . . , x̂i, . . . , xk) =
(y1, . . . , ŷi, . . . , yk) and f(x1, . . . , xk) = g(y1, . . . , yk).

Definition 3.2 (Beame et al. [3]). Given the communication problems f :
X1 × · · · ×Xk → {0, 1} and g : Y1 × · · · × Yk → {0, 1}, we say that a k-tuple
(ψ1, . . . , ψk) of functions, ψi : Xi → Yi, is a cubic reduction of f to g if for all
(x1, . . . , xk) ∈ X1 × · · · ×Xk we have f(x1, . . . , xk) = g(ψ1(x1), . . . , ψk(xk)).

In our context, we have Xi = {0, 1}n and Yi = {0, 1}q.
Somewhat surprisingly, Beame et al. [3] prove that the two reduction con-

cepts are equivalent; every cylindrical reduction can be expressed as a cubic
reduction ([3, Lemma 5.7]).

Given a reduction concept between k-party communication problems, we
say that a family (fn) of k-party communication problems has a “polynomially-
bounded” reduction to a family (gn) of k-party communication problems if there
is a quasipolynomially bounded (exp((log n)O(1)) “stretch function” q : N → N
such that for all sufficiently large n the communication problem fn reduces to
gq(n) in the given sense. (As argued in [1], log n is the natural notion of “input
length,” and the analogue of “polynomial time” should allow increasing this
quantity polynomially, hence the quasipolynomial increase in n.)

For a class C of families of k-party communication problems, we say that a
family (fn) of k-party communication problems is “C-hard” if every family in C
has a polynomially bounded reduction to the family (fn). If, in addition, (fn)
belongs to the class C, we say that it is “C-complete.”

We shall use these concepts relative to either of the two equivalent types
of reductions between communication problems introduced in [3] (“cubic” and
“cylindrical” reductions).

We show that if every 1-cylinder reduces to a given function g then the
domain of g must be exponentially large. In fact, this remains true even if each
1-cylinder reduces to some member of a rather large set of functions gi. We
need this generalization for the subsequent diagonal argument.
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Lemma 3.3. For all k, n, qi,m ∈ N, if there exists a set {gi | i = 1, . . . ,m} of
m communication problems gi : ({0, 1}qi)k → {0, 1} such that every 1-cylinder
C : ({0, 1}n)k → {0, 1} (with n-bit inputs) has a cubic reduction to one of

the gi then maxi{qi} ≥ 2n(k−2)

k − logm
k2n . In particular, if m ≤ 22

n(k−1)−1

then

maxi{qi} ≥ 2n(k−2)

2k > 2(n−1)(k−2)−2.

Proof. Let q := maxi{qi}. The number of 1-cylinders C : ({0, 1}n)k → {0, 1} is

22
n(k−1)

. On the other hand, the number of cubic reductions (u1, . . . , uk), where
ui : {0, 1}n → {0, 1}qi , is at most 2kq2

n

. They give rise to at most m2kq2
n

functions gi(u1(x1), . . . , uk(xk)). Since every 1-cylinder has a cubic reduction to
some gi, every 1-cylinder must occur among the functions gi(u1(x1), . . . , uk(xk)).

Consequently, 22
n(k−1) ≤ m2kq2

n

and therefore q ≥ 2n(k−2)

k − logm
k2n .

Definition 3.4. We let Ck1 denote the class of families of k-party 1-cylinders.

Theorem 3.5. Let (fn) be a family of communication problems such that ev-
ery family from Ck1 reduces to (fn). Then there exists a family (Cn) ∈ Ck1
that requires the corresponding stretch function q : N → N to satisfy q(n) ≥
2(n−1)(k−2)−2.

Proof. We shall define the family (Cn) non-constructively for each n.
Consider the set of functions Sn := {f` | ` < 2(n−1)(k−2)−2}. Clearly, we

have |Sn| < 2(n−1)(k−2)−2 < 22
n(k−1)−1

. Moreover, every 1-cylinder with n-
bit inputs that has a cubic reduction to one of the functions from Sn has a
corresponding stretch q < 2(n−1)(k−2)−2. Thus by Lemma 3.3, there exists a
cylinder Cn that cannot be cubically reduced to any of the f` ∈ Sn. We combine
thus defined cylinders into a single family (Cn).

It follows that if a cubic reduction of the family (Cn | n ∈ N) to the family
(fn) exists then the corresponding function q must satisfy q(n) ≥ 2(n−1)(k−2)−2.

Corollary 3.6. If k ≥ 3 then there is no Ck1 -hard family of communication
problems.

The lower bound Ω(2n(k−2)) on the stretch function q provided by Theo-
rem 3.5 should be compared with an upper bound of O(2n(k−1)) we give next.

Proposition 3.7. There is a family of communication problems (f`) such that
every family from Ck1 reduces to (f`) with the stretch function q : N → N satis-

fying q(n) ≤ d 2
n(k−1)

k−1 e+ n. Moreover, the family (f`) is itself in Ck1 .

Proof. The number of 1-cylinders Cn : {0, 1}nk → {0, 1} is 22
n(k−1)

. Thus each
such cylinder has a name that can be described in binary by a string of length
2n(k−1). We denote the name of Cn by 〈Cn〉. Now, we are ready to describe a
cubic reduction (u1,Cn

, . . . , uk,Cn
) from Cn to f` (to be defined later):

• u1,Cn
(x1) = 0d

2n(k−1)

k−1 e · x1, where · denotes the concatenation,
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• uj,Cn(xj) = 〈Cn〉j · xj , where j ∈ {2, . . . , k} and 〈Cn〉j denotes the sub-

string of 〈Cn〉 spanning from index (j− 2)d 2
n(k−1)

k−1 e+ 1 to (j− 1)d 2
n(k−1)

k−1 e
(except possibly for j = k, when the substring may be shorter, in which
case we can inflate the substring by appending 0s to the end).

Now it is clear how the family (f`) should be defined. We define f` only for `

for which there exists n such that ` = d 2
n(k−1)

k−1 e + n. For input (y1, . . . , yk) let
ŷi be the substring of yi consisting of the last n bits and ỹi be the remaining
part of yi. Then define E to be the substring of ỹ2 · ỹ3 · · · ỹk consisting of the
first 2n(k−1) bits. Let Cn be the cylinder such that 〈Cn〉 = E. Finally

f`(y1, . . . , yk) := Cn(ŷ1, . . . , ŷk).

Observe that (f`) ∈ Ck1 . In addition, for every 1-cylinder Cn we have

Cn(x1, . . . , xk) = f`(u1,Cn
(x1), . . . , uk,Cn

(xk)),

where ` = d 2
n(k−1)

k−1 e+ n.

4 Karp-Style Reduction with Communication

Let π be a protocol computing some k-party function on n-bit inputs. For each
(x1, . . . , xk) ∈ {0, 1}nk, we write π(x1, . . . , xk) to denote the communication
transcript, i. e., the concatenation of all messages exchanged during the execu-
tion of π on (x1, . . . , xk). First we introduce the notion of “communication-
constructible” functions, which plays the central role in our definition of the
Karp-style reduction with communication.

Definition 4.1. Let f : {0, 1}nk → {0, 1}t be a k-party communication prob-
lem with n-bit inputs. We say that f is communication-constructible if there
exists a (NOF) protocol π such that for each (x1, . . . , xk) ∈ {0, 1}nk we have
f(x1, . . . , xk) = π(x1, . . . , xk).

If a function f : {0, 1}nk → {0, 1}t is communication-constructible, then f i :
{0, 1}nk → {0, 1}i, obtained by restricting output of f to a prefix of length i, is
also communication-constructible. This follows by simply truncating protocol
π for f after the first i bits of communication. This implies that the fraction
of non-communication-constructible functions is monotonically non-decreasing
in t. Thus most functions are not communication-constructible, as even for
t = 1 most of the functions require n bits of communication by a classical
counting argument. Using this observation one can derive a trivial upper bound
on the number of communication constructible function. Next we give a weak,
but sufficient for our purposes, upper bound on the number of communication-
constructible functions.

Proposition 4.2. The number of communication-constructible functions {0, 1}nk →
{0, 1}t is at most

2(2
n(k−1)+log k)(2t−1).
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Proof. Let f : {0, 1}nk → {0, 1}t be a communication-constructible function. A
t-bit protocol π for f can be viewed as a complete binary tree of depth t (see
Figure 1). Each internal node u is labeled by a pair (Pu, fu), where Pu ∈ [k] and
fu : {0, 1}n(k−1) → {0, 1}. The leaves do not have labels. The players use this

Pr, fr

Pu, fu

fr(x1, . . . , x̂Pr
, . . . , xk)

?
= 0 fr(x1, . . . , x̂Pr

, . . . , xk)
?
= 1

Figure 1: Representation of a k-party t-bit communication protocol π for a
communication-constructible function as a labeled complete binary tree.

tree and the labeling for computing f(x1, . . . , xk) in an obvious way. Starting
at the root r, player Pr evaluates fr on the given inputs and writes the result
on the public blackboard. The players proceed to the corresponding subtree.

Since the set of communication-constructible functions can be mapped in-
jectively into a set of the labeled trees as above, it suffices to count the number
of such trees to establish the claim. Now, for each internal node u the number of

possible labels of u is at most k22
n(k−1)

= 22
n(k−1)+log k. The number of internal

nodes is 2t − 1.

Note that in spite of over-counting the above bound is meaningful for t ≤
n+ log n

2 . As we shall later see, for our purposes we may assume that t ≤ n.

Remark 4.3. Consider t-bit k-party protocols with n-bit inputs that compute
some Boolean function. The tree representation of such protocols would be
similar to the tree representation from the proof of Proposition 4.2, except it
would have the leaves labeled the same way as the internal nodes. Thus, we
conclude that the number of t-bit k-party protocols with n-bit inputs is at most

2(2
n(k−1)+log k)(2t+1−1).

The notion of communication-constructible functions might be of interest in
its own right; however, our motivation for introducing it is to give the following
definition of the Karp-style reductions with communication.

Definition 4.4. Let f : {0, 1}nk → {0, 1} and g : {0, 1}qk → {0, 1} be two
k-party Boolean functions. We say that f cylindrically reduces to g with t
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bits of precommunication if there exist functions h : {0, 1}nk → {0, 1}t and
ψi : {0, 1}n(k−1)+t → {0, 1}q(k−1) for i ∈ [k] such that

1. (precommunication) h is communication-constructible;

2. (consistency) for each (x1, . . . , xk) ∈ {0, 1}nk and z ∈ {0, 1}t there exists
(y1, . . . , yk) ∈ {0, 1}qk such that for each i we have ψi(x1, . . . , x̂i, . . . , xk, z) =
(y1, . . . , ŷi, . . . , yk), i. e., the i-th player computes (y1, . . . , ŷi, . . . , yk) given
precommunication string z;

3. (validity) for each (x1, . . . , xk) ∈ {0, 1}nk, if z = h(x1, . . . , xk) and (y1, . . . , yk)
is defined as above then f(x1, . . . , xk) = g(y1, . . . , yk).

Note: the vector (y1, . . . , yk) is unique.
We also refer to this reduction concept as “the Karp-style reduction with

communication.”

This notion is a formal description of the following simple idea that general-
izes the notion of reduction without communication: before mapping the NOF
view of inputs of f to the NOF view of inputs of g, the players are allowed to
perform some precommunication during which the players communicate t bits.
These t bits are then available to the players in the computation of the new
NOF view.

Definition 4.5. We define the cubic reduction with t bits of precommunica-
tion analogously to the cylindrical reduction by replacing in Definition 4.4 each
function ψi : {0, 1}n(k−1)+t → {0, 1}q(k−1) with φi : {0, 1}n+t → {0, 1}q, where
φi(xi, z) = yi.

Remark 4.6. One could argue that it would be more natural to introduce and
use the notion of NIH communication-constructible functions in the definition
of cubic reductions with t bits of precommunication. With such a definition the
cubic and cylindrical reductions would not be equivalent, and our main interest
is in the NOF model. We are only interested in the NIH reduction concepts
to the extent that they are equivalent to NOF reductions concepts and aid our
counting arguments.

Remark 4.7. In Definition 4.4 we could have asked to enforce the consistency
constraints only for z = h(x1, . . . , xk). However, this does not seem to be enough
to guarantee the equivalence of the two reduction concepts.

Now we show that the two reduction concepts, cubic and cylindrical, are equiv-
alent, just as was the case for the reduction concepts without communication [3,
Section 5].

Proposition 4.8. Let f : {0, 1}nk → {0, 1} and g : {0, 1}qk → {0, 1} be two
k-party functions. Then f cylindrically reduces to g with t bits of precommuni-
cation if and only if f cubically reduces to g with t bits of precommunication.
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Proof. Consider the following alternative characterization of a cylindrical re-
duction from f to g with t bits of precommunication: it is a set Ψ of at most 2t

cylindrical reductions from f to g without communication (each with stretch q)
together with a communication-constructible function h that allows the players
to agree (using t bits of precommunication) on a specific (ψ1, . . . , ψk) ∈ Ψ to
use in the reduction step. Analogous characterization holds for the cubic reduc-
tion with t bits of precommunication - simply replace the set Ψ of cylindrical
reductions without communication with a set of Φ of cubic reductions with-
out communication. By the result of Beame et al. [3] we can transform each
cylindrical reduction without communication (ψ1, . . . , ψk) ∈ Ψ into a cubic re-
duction without communication (φ1, . . . , φk) ∈ Φ, and vice versa. Function h is
left unchanged.

From now on, we shall write “f reduces to g with t bits of precommunica-
tion”, understanding that it could mean either cylindrical or cubic reduction,
whichever we prefer in that particular case.

Definition 4.9. For t ∈ N, let Ak
t denote the class of k-party communication

problems that are solvable by a t-bit protocol. When t : N→ N is a function, we
use Ak

t to denote the class of families (fn) of k-party communication problems
such that for each n we have fn ∈ Ak

t(n).

In the rest of this section we show that reductions with precommunication
exhibits the following sharp threshold phenomenon. While there is a trivial
Ak

t -hard family under reductions with t(n) + 1 bits of precommunication, there
is no Ak

t -hard family under reductions with t(n) bits of precommunication.

Proposition 4.10. For every t : N → N such that t(n) ≤ n there exists Ak
t -

hard family of communication problems (τn) with respect to the reductions with
t(n)+1 bits of precommunication. Moreover, (τn) ∈ Ck1 and the stretch function
is q(n) = 1 for every (fn) ∈ Ak

t .

Proof. Define (τn) to be the family of projection functions on the second coordi-
nate, i. e., τn : {0, 1}nk → {0, 1} is defined by (x1, . . . , xk) 7→ x2. Let (fn) ∈ Ak

t .
To reduce (fn) to (τn) the players compute the value of the function fn and
broadcast the answer using t(n) + 1 bits in the precommunication phase of the
reduction. The functions φi simply map the players’ inputs to the answer bit,
which then gets output by τ1. In particular, we have q(n) = 1. Observe that
from the entire family (τn) only τ1 is used.

Lemma 4.11. Let g : {0, 1}qk → {0, 1} be a k-party Boolean function. The
number of distinct functions on n-bit inputs reducible with t bits of precommu-
nication to g is at most

2(2
n(k−1)+log k)(2t−1)+qk2n+t

.

Proof. A function cubically reducible to g with t bits of precommunication is
completely determined by the two components h and the φi. The number of
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distinct h is given by Proposition 4.2 and is at most 2(2
n(k−1)+log k)(2t−1). The

total number of the φi : {0, 1}n+t → {0, 1}q (i ∈ [k]) is 2qk2
n+t

.

We present an analogue of Lemma 3.3 for the reductions with precommuni-
cation.

Lemma 4.12. For all k, n, qim, t ∈ N, such that t < n, if there exists a set
{gi | i = 1, . . . ,m} of m communication problems gi : ({0, 1}qi)k → {0, 1}
such that every function f : ({0, 1}n)k → {0, 1} from Ak

t (with n-bit inputs)
is reducible to one of the gi with t bits of precommunication then maxi{qi} ≥
2n(k−2)−t

k − logm
k2n+t−1. In particular, if m ≤ 22

n(k−1)−1

then maxi{qi} ≥ 2n(k−2)−t

2k −
1 ≥ 2(n−1)(k−2)−t−2.

Proof. Let q := maxi{qi}. By Lemma 4.11 the number of distinct functions re-

ducible to one of the functions from the set {gi} is at mostm2(2
n(k−1)+log k)(2t−1)+qk2n+t

.
Observe that the functions f : {0, 1}t×{0, 1}n(k−1) → {0, 1} are solvable with t

bits of communication, thus they appear in Ak
t . Thus, |Ak

t | ≥ 22
n(k−1)+t

. Con-

sequently, 22
n(k−1)+t ≤ m2(2

n(k−1)+log k)(2t−1)+qk2n+t

and q ≥ 2n(k−2)−t

k − logm
k2n+t −

(2t−1) log k
k2n+t ≥ 2n(k−2)−t

k − logm
k2n+t − 1.

The proof of the following theorem is analogous to the proof of Theorem 3.5.

Theorem 4.13. Let t : N → N be such that t(n) < n, and let (fn) be a family
of communication problems such that every (gn) ∈ Ak

t reduces to (fn) with t(n)
bits of precommunication. Then there exists a family (gn) ∈ Ak

t that requires the
corresponding stretch function q : N→ N to satisfy q(n) ≥ 2(n−1)(k−2)−t(n)−2.

We immediately obtain the following corollaries.

Corollary 4.14. For each ε ∈ (0, 1) and for each t : N → N such that t(n) ≤
(1− ε)n, there is no A3

t -hard family of communication problems with respect to
reductions with t(n) bits of precommunication.

Corollary 4.15. For each k ≥ 4 and for each t : N → N such that t(n) < n
there is no Ak

t -hard family of communication problems with respect to reductions
with t(n) bits of precommunication.

Proposition 4.16. For every t : N → N, there is a family of communication
problems (f`) such that every family from Ak

t reduces to (f`) without communi-
cation with the stretch function q : N → N satisfying q(n) ≤ 2n(k−1)+t(n)+1 for
n ≥ 3. Moreover, the family (f`) is itself in Ak

log `
k

.

Proof. Let (gn) ∈ Ak
t . Then there is a t(n)-bit protocol π for computing gn.

In the cubic reduction, player i maps xi to (xi, < π >), where < π > is the
name of the protocol π. By Remark 4.3, this stretches the input to size at most
(2n(k−1)+log k)(2t(n)+1−1)+n ≤ 2n(k−1)+t(n)+1 for n ≥ 3. The family to which
we reduce is the “universal family” (U`) defined by U`((x1, < π >), . . . , (xk, <
π >)) = output of π on (x1, . . . , xk), where ` = (2n(k−1)+log k)(2t(n)+1−1)+n.
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Observe that the communication complexity of U` is bounded above by t(n).
Since ` ≥ 2n(k−1)+t(n) ≥ 2t(n)k, we have (U`) ∈ Ak

log `
k

.

Remark 4.17. Using a similar idea, if we allow t(n) bits of precommunication
in the above proposition then we can put the family (f`) in a class of problems
solvable with 0 bits of communication. The players choose a t(n)-bit protocol
and run it on their inputs, as the precommunication step. In the reduction
step, they append the name of the protocol together with the transcript to their
inputs. The family to which we reduce is a “universal family with transcript”
(UT`) defined by UT`((x1, T,< π >), . . . , (xk, T,< π >)) = output of π on
(x1, . . . , xk), where T = π(x1, . . . , xk). Note that the stretch function satisfies
q(n) ≤ (2n(k−1) + log k)(2t(n)+1 − 1) + t(n) + n ≤ 2n(k−1)+t(n)+2 for n ≥ 3.

5 Cook-style Reduction with Communication

Recall, the reduction concept described in Section 3 is a communication com-
plexity analogue of the Karp reduction from the Turing machine world. In the
current section we describe the reduction concept which is analogous to the Cook
reduction. When f reduces to g via a Cook reduction it means that we can solve

t0-bit com-
munication

new NOF
view via

ψ
(1)
1 , . . . , ψ

(1)
k

1st g-
oracle
query

t1-bit com-
munication

· · ·

· · ·
new NOF
view via

ψ
(`)
1 , . . . , ψ

(`)
k

`th g-
oracle
query

t`-bit com-
munication

value of f

Figure 2: Reduction of f to g with ` rounds of communication, i. e., ` queries
to the g-oracle.

f with the help of an oracle for g. This has a rather intuitive interpretation in
the communication complexity world (see Figure 2). More precisely:

Definition 5.1. We say that a function f : {0, 1}nk → {0, 1} Cook-style reduces
to g : {0, 1}qk → {0, 1} with ` rounds and t bits of communication (1 ≤ ` ≤ t) if

there exists t0, . . . , t` ∈ N, hi : {0, 1}nk+i+
∑i−1

j=0 tj → {0, 1}ti (0 ≤ i ≤ `− 1), h` :

{0, 1}nk+`+
∑`−1

j=0 tj → {0, 1} and ψ
(i)
j : {0, 1}n(k−1)+(i−1)+

∑i−1
s=0 ts → {0, 1}q(k−1)

(i ∈ [`], j ∈ [k]) such that

1. `+
∑`

i=0 ti = t,

2. for each 0 ≤ i ≤ ` − 1, hi is communication-constructible, where the last
i+
∑i−1

j=0 tj bits are interpreted as a shared string among the players,

3. communication complexity of h` is t`,
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4. for each i ∈ [`] the functions (ψ
(i)
1 , . . . , ψ

(i)
k ) produce a consistent new NOF

view on all inputs,

5. for each (x1, . . . , xk) ∈ {0, 1}nk, after the computation is performed in the
obvious way as per Figure 2 the protocol h` outputs f(x1, . . . , xk).

Definition 5.2. We say that f : {0, 1}nk → {0, 1} Cook-style reduces to g :
{0, 1}qk → {0, 1} with t bits of communication if there exists 0 ≤ ` ≤ t such
that f Cook-style reduces to g with ` rounds and t bits of total communication.

Observe that in Definition 5.1 each query to the g-oracle costs one bit of
communication. In contrast, the reduction without rounds from Section 4 allows
querying g for free. This difference is motivated by the following argument. If
we expand g-oracle into a communication protocol for g, then after each query
(= run of the protocol) we are only guaranteed that a single player knows the
answer to the query. A query to g in the definition from Section 4 happens
only once and at the end. Moreover, in that definition the output of the query
matches the output of the function, which is sufficient to terminate the protocol
for f without any extra bits of communication. However, if we allow rounds
then the players should perform postcommunication with the assumption that
all of them know the answer. This would require a player who knows the answer
to a query from the run of a protocol for g to broadcast it. Thus, in case of
rounds of communication we can visualize the g-oracle as writing the answers to
the queries on the board, and everything that’s written on the board is counted
towards the communication cost.

In the rest of this section we show that the Cook-style reduction with t−1 bits
of communication does not admit hard problems for the class of communication
problems solvable with t bits of communication.

Lemma 5.3. Let g : {0, 1}qk → {0, 1} be a k-party communication problem.
The number of functions on n inputs Cook-style reducible to g with t bits of
communication is at most

22
n(k−1)+t+1+kq2n+t+1+n2n log k+n−2n(k−1)

.

Proof. Fix ` ≥ 1 and t0, . . . , t` such that

ti ≥ 0 and `+
∑̀
i=0

ti = t. (1)

We shall give a bound b(t0, . . . , t`) on the number of functions that are reducible
to g using ti bits of communication in round i + 1 of the `-round reduction.
This bound will be of the form b(t0, . . . , t`) =

∏`
i=0 ci, where ci is the number

of choices available in the i-th round of reduction. Similarly to Lemma 4.11, we
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have

log ci ≤ (2n(k−1)+i+
∑i−1

j=0 tj + log k)(2ti − 1) + kq2n+i+
∑i

j=0 tj

= 2n(k−1)+i+
∑i

j=0 tj + 2ti log k − 2n(k−1)+i+
∑i−1

j=0 tj − log k

+ kq2n+i+
∑i

j=0 tj

for 0 ≤ i ≤ `− 1.
The last step in the reduction is postcommunication. Similarly to Re-

mark 4.3, we have

log c` ≤ (2n(k−1)+`+
∑`−1

i=0 ti + log k)(2t`+1 − 1)

= 2n(k−1)+t+1 + 2t`+1 log k − 2n(k−1)+`+
∑`−1

i=0 ti − log k.

Observe that the powers of 2 in the expressions for log ci form the telescoping
sums, thus

log b(t0, . . . , t`) =
∑̀
i=0

ci

≤ 2n(k−1)+t+1 − 2n(k−1) +
∑̀
i=0

2ti+1 log k − (`+ 1) log k

+

`−1∑
i=0

kq2n+i+
∑i

j=0 tj

≤ 2n(k−1)+t+1 − 2n(k−1) + n2n log k + kq2n+t+1,

where kq2n+t+1 ≥
∑`−1

i=0 kq2
n+i+

∑i
j=0 tj since i +

∑i
j=0 tj are distinct for i ∈

{0, 1, . . . , `− 1} and are all less than or equal to t. Also, ` ≤ t ≤ n.
The number of functions that are reducible to g is ≤

∑
`,t0,...,t`

b(t0, . . . , t`),

where `, t0, . . . , t` satisfy (1). For a fixed ` the number of solutions to (1) is
(
t
`

)
.

Thus, overall the number of solutions to (1) is
∑t

`=1

(
t
`

)
< 2t. Finally, we obtain∑

`,t0,...,t`

b(t0, . . . , t`) ≤ 2t22
n(k−1)+t+1−2n(k−1)+n2n log k+kq2n+t+1

,

the proof is now complete since t ≤ n.

With this lemma, the following theorem follows easily using steps similar to
the ones in Section 4.
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Theorem 5.4. Let t : N → N be such that 0 ≤ t(n) ≤ n, and let (fn) be a
family of communication problems such that every (gn) ∈ Ak

t reduces to (fn)
with t(n)− 1 bits of total communication. Then there exists a family (gn) ∈ Ak

t

that requires the corresponding stretch function q : N → N to satisfy q(n) ≥
2(n−1)(k−2)−t(n)−2.

Proof. Similar to the proof of Theorem 3.5.

Corollary 5.5. For each t : N → N such that t(n) ≤ n there is no Ak
t -hard

family of communication problems with respect to reductions with t(n) − 1 bits
of total communication.

6 Open Questions

In Section 3 we showed Ω(2n(k−2)) lower bound on the stretch function (Theo-
rem 3.5) and O(2n(k−1)) upper bound (Proposition 3.7). We leave open finding
the tight bound on the stretch function. This will likely close gaps in Sections 4
and 5, as well.

Problem 6.1. Close the gap between the lower and upper bounds on the stretch
function, Ω(2n(k−2)) vs. O(2n(k−1)) (Theorem 3.5, Proposition 3.7). This is
open even for k = 3.

In Sections 4 and 5 we explored natural notions of reductions that extend
the notion of Karp-style reductions in NOF communication complexity. These
extensions did not add sufficient power to the reduction concept in order to
permit zero-hard problems.

Problem 6.2. Is there a reasonable notion of reduction that permits zero-hard
problems?

We expect the answer to be negative under any reasonable definition of
“reasonable.”
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