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Abstract

In 1988, Karchmer and Wigderson generalized Yao’s two-party com-
munication model of functions to relations and showed a remarkable con-
nection of this model to the Boolean circuit model. A few years later,
continuing this line of work, Karchmer, Raz, and Wigderson proposed a
program to separate NC from P through direct-sum-type inequalities in
communication complexity. This spurred the study of this fundamental
question in communication complexity: given problems A and B, is it
easier to solve A and B together than separately? It seems that we are
still far from separating NC from P ; however, during the last 20 years of
research our knowledge of the behavior of different communication com-
plexity measures with respect to the direct sum has seen a lot of progress.
We survey some of these results and make a new observation about the
recent approach to the direct-sum question in the randomized setting.
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1 Introduction

Consider a computational task T and let Tn denote the juxtaposition of n
independent copies of T . Let M be a complexity measure on the set of tasks.
The following is one of the fundamental questions about M.

Question 1.1 (Direct Sum). Is it true that for all T we have M(Tn) =
Θ(nM(T ))?

In the special case when T is a Boolean function, “XOR Lemmas” are also
of interest. Note that for “reasonable” M we have

M(f(x1)⊕ · · · ⊕ f(xn)) ≤M(fn(x)).

XOR question asks thefollowing.

Question 1.2 (XOR). Is it true that for all f we have M(f(x1)⊕· · ·⊕f(xn)) =
Θ(nM(f(x))?

Economists might immediately recognize this kind of questions as whether
M admits the “economies of scale”. These questions appears all over compu-
tational complexity theory and other areas of mathematics (see Section 3), and
they are known under various names, such as “direct-sum theorems”, “direct-
product theorems” (if M is in some sense “multiplicative”), “XOR Lemmas”.
In almost all cases M(Tn) = O(nM(T )) is trivially true, and the real ques-
tion is if M(Tn) = Ω(nM(T )) holds. Quite often the gut reaction is “yes, of
course;” however, over the years of research these questions have proved to be
rather elusive. The answers vary from “strong no/strong yes” to being wide
open depending on the definitions of M and T .

The main subject of this paper is the direct-sum question in the classi-
cal two-party communication complexity (CC). This question has been studied
for over 20 years. The original motivation came from the problem of sepa-
rating complexity classes NC1 and NC2, which turned out to have an inter-
esting connection with communication complexity [KW88] and, in particular,
the direct sum in CC [KRW91]. The direct-sum question is very sensitive to
the model of communication (deterministic, nondeterministic, randomized) and
to the task at hand (relation, function, partial function). Nondeterministic
communication complexity is the most understood model in this regard. Two
works [FKNN95] and [KKN95] showed that solving k copies of a relation R
takes essentially k times the amount of the nondeterministic communication,
i. e., CN (Rk) = Ω(k(CN (R)− log n)), where n is the number of bits required to
describe an input for R and CN (R) denotes the nondeterministic communica-
tion complexity of R. This immediately implies a weak direct-sum result for the
deterministic communication complexity of functions, because the separation
between the nondeterministic communication complexity and the determinis-
tic communication complexity of functions can be at most quadratic ([AUY83]
and [HR88]). The randomized communication complexity saw little progress
until information-theoretic techniques were introduced in 2001 [CSWY01]. A
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new notion of complexity called information cost was defined in [Bra11]. As of
now, the most promising approach to the direct sum in the randomized setting is
to show that the information cost cannot be much lower than the communicaion
complexity. An interesting feature of the information cost is that it is defined in
terms of protocols that use both public and private randomness. In this work we
show (see 8.3.4) that the question whether the information cost can be achieved
with protocols that use only public randomness is essentially equivalent to the
direct-sum question. This result is our new main technical contribution. Other
new observations can be found in Section 8.3.3 and Appendix A.

The rest of the paper is organized as follows. In Section 3 we provide a quick
summary of the most famous instances of the direct-sum theorems and their vio-
lations, as well as XOR Lemmas in different contexts other than communication
complexity. In Section 4 we give an overview of communication complexity. In
Section 5 we describe Karchmer-Wigderson games [KW88] that revealed a sur-
prising relationship between communication complexity and the Boolean-circuit
depth and motivated the study of the direct-sum question. Section 6 describes
the connection between Karchmer-Wigderson games and the direct-sum prob-
lem, i. e., the Karchmer-Raz-Wigderson program to separate NC1 from NC2.
In Section 7 we exhibit the known examples when the direct-sum statements,
at least in their strongest forms, fail to hold. Section 8 surveys the past and
modern approaches to the direct-sum questions. In Section 8.3.4 we present our
new result.

2 Acknowledgements

I would like to thank Laci Babai for reviewing earlier versions of this paper
and for his helpful comments that considerably improved the presentation of
the material. I would like to thank Sasha Razborov for introducing me to the
direct-sum problem in communication complexity and getting me in touch with
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cost. I also thank Mark for pointing out Proposition 8.20.

3 Direct-Sum Theorems, Their Violations, and
XOR Lemmas in Other Contexts

3.1 Matrix Multiplication

The computational task T is to multiply a fixed n × n matrix M with entries
from F2 (the field of two elements) by a vector v. The complexity measure M
is the size of the smallest Boolean circuit computing Mv correctly for all v. A
simple counting argument shows that there is a matrix M requiring a circuit of
size Ω(n2/ log n), hence M(T ) = Ω(n2/ log n). If we now consider multiplying
M by n vectors v1, . . . , vn, then this task is equivalent to multiplying two n×n
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matrices and can be done with a circuit of size O(nω), where ω is the matrix
multiplication constant. The history of ω is fascinating on its own. The first
nontrivial bound of ω < 2.807 is due to Strassen [Str69] and the best known
bound to date is ω < 2.373 [VW11]. Therefore, the direct-sum theorem is
strongly violated in this case, as we have

M(Tn) = O(n2.373)� nM(T ) = Ω(n3/ log n).

3.2 Polynomial Evaluation

Let p(x) =
∑n
i=0 aix

i be a polynomial. A straight line program α for computing
p is a sequence of instructions of the form A� B, where � ∈ {×,÷,+,−} and
A,B can be scalars, intermediate results, or input x. The cost of α is the
number of multiplication and division instructions that do not solely depend on
the coefficients a0, . . . , an. This allows preprocessing of the coefficients of p for
free. The following classical results demonstrate that the direct sum is violated
for polynomial evaluation in a very strong sense.

Theorem 3.1 (Motzkin [Mot55], Winograd [Win70]). Let p(x) =
∑n
i=0 aix

i be
a polynomial over C. If a0, . . . , an are algebraically independent over Q, then
any straight line program computing p has cost at least n/2.

Theorem 3.2 (Fiduccia [Fid72]). Let p(x) =
∑n
i=0 aix

i be a polynomial over
C and ε1, . . . , εn ∈ C then p(ε1), . . . , p(εn) can be computed by a straight line
program of cost O(n log n).

Let T be the task of evaluating a given polynomial p(x) =
∑
i=0 aix

i with
a0, . . . , an algebraically indpendent over Q. Let M denote the cost of a best
straight line program for p. Then we have

M(Tn) = O(n log n)� nM(T ) = Ω(n2).

3.3 XOR lemmas

Definition 3.3. For a pair of Boolean functions f, g : X → {±1} the correlation
between f and g with respect to distribution µ on X is defined as

corµ(f, g) = |Ex∼µ(f(x)g(x))|.

For a class of Boolean functions C the correlation between f and C is the
maximum of corµ(f, g) over all g ∈ C. When µ is the uniform distribution, we
shall simply write cor(f, g).

3.3.1 Yao’s XOR lemma

We use f⊕n to denote the XOR of n copies of f . Let C(k, s) denote the class
of Boolean functions on k-bit inputs computable by Boolean circuits of size s.
Then Yao’s XOR lemma [Yao82] (see also [GNW95]) says the following.
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Theorem 3.4 (Yao [Yao82]). For any k, s, n ∈ N, ε, α > 0, f : {±1}k → {±1}
we have

cor(f, C(k, s)) ≤ ε⇒ cor
(
f⊕n, C

(
nk, s

( α
nk

)2
))
≤ εn + α.

We can restate the above theorem in the direct-sum-like terms given in the in-
troduction. Let T be the task of computing f . Define M(g) := − log cor(g, C(k, s))
and M′(h) := − log cor(h,C(nk, s(εΩ(n)/nk)2)). Then Yao’s lemma says

M′(f⊕n) = Ω(nM(f)).

Note that two different complexity measures appear on the two sides of the
inequality, making it hard to judge the strength of this direct-sum result. In
fact, the class of circuits computing f⊕n is smaller then the class of circuits
computing f in Yao’s XOR lemma.

3.3.2 Viola-Wigderson XOR lemmas

Viola and Wigderson [VW08] showed XOR lemmas for two models: polynomi-
als over F2 and multiparty communication complexity. More specifically, they
showed that if a Boolean function has correlation ε < 1/2 with k-bit k-party
protocols, then the correlation of XOR of m copies of the same Boolean function
with c-bit k-party protocols drops to 2cεm/2

k

. For polynomials over F2, Viola
and Wigderson showed that if a Boolean function has correlation ≤ 1 − 1/2d

with degree-d polynomials, then XOR of m copies of this Boolean function has
correlation at most exp(−Ω(m/(4dd))).

3.4 Raz’s Parallel Repetition Theorem

Consider the game where the referee chooses a pair (x, y) according to a publicly
known distribution, sends x to Alice, y to Bob, who respond with a and b, respec-
tively. Alice and Bob win the game if a publicly known predicate Q(x, y, a, b)
holds. This game originated from the study of of multi-prover interactive proof
systems [FRS88].

More specifically, the two-player referee game G is a pair (µ,Q), where µ is
a probability distribution on X × Y and Q is a predicate on X × Y × A × B.
The strategy for this game is a pair (ha, hb), where ha : X → A, hb : Y → B.
The winning probability of the strategy is P(x,y)∼µ[Q(x, y, ha(x), hb(y)) = 1].
The value of the game ν(G) is the maximum over all strategies of the winning
probability of a strategy.

The parallel repetition of G is another game Gn defined as (µn, Q∧n), where
µn is the n-fold product distribution on Xn×Y n and Q∧n is a predicate on Xn×
Y n × An × Bn defined by Q∧n(x1, . . . , xn, y1, . . . , yn, a1, . . . , an, b1, . . . , bn) =∧
iQ(xi, yi, ai, bi). A natural direct sum question is how the value of the repeted

game is related to the value of the single instance of the game. The following
celebrated result due to Raz [Raz98] provides the answer.
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Theorem 3.5 (Raz [Raz98]). For any game G with value ν(G) < 1 there exists
ν̄ < 1 (depending only on ν) such that

ν(Gn) = ν̄n/ log(|A||B|).

3.5 Decision Trees

Let f ⊆ {0, 1}n × Y be the following search problem: given x ∈ {0, 1}n there
is at least one y ∈ Y such that (x, y) ∈ f , and we are asked to find one such
y. A decision tree T is a full binary tree, in which internal nodes are labeled
with the i, where1 i ∈ [n]. The edge going to the left child is labeled 0 and the
edge going to the right child is labeled 1. The leaves are labeled by elements of
Y . We define the output function outT (v, x) on input x ∈ {0, 1}n and node v
recursively. If v is a leaf outT (v, x) is the label of the leaf. If v is the internal
node with label i and left child u and right child w, then

outT (v, x) =
{

outT (u, x) if xi = 0,
outT (w, x) if xi = 1.

The output of the decision tree on x is outT (x) := outT (r, x), where r is the
root of T . The decision tree T is said to compute f if for all x ∈ {0, 1}n we have
(x, outT (x)) ∈ f . The deterministic decision tree complexity of f , denoted by
DTC(f), is the depth of the minimum-depth decision tree computing f .

The k-fold product fk is defined naturally as a subset of ({0, 1}n)k × Y k,
where (x1, . . . , xk, y1, . . . , yk) ∈ fk if and only if (xi, yi) ∈ f for all i ∈ [k].
Jain, Klauck, and Santha [JKS10] proved the optimal direct-sum result for the
deterministic decision tree complexity of search problems f .

Theorem 3.6 (Jain, Klauck, and Santha [JKS10]). For every search problem
f ⊆ {0, 1}n × Y and for every k we have DTC(fk) = kDTC(f).

The randomized decision tree T is a probability distribution on the determin-
istic decision trees. The depth of a randomized decision tree T is the maximum
depth of a deterministic decision tree in the support of T . The ε-error ran-
domized query complexity of f , denoted by RQCε(f), is the minimum depth of
a randomized decision tree T computing f with probability of error at most
ε on every input. The following direct-sum result is due to Jain, Klauck, and
Santha [JKS10].

Theorem 3.7 (Jain, Klauck, Santha [JKS10]). Let f ⊆ {0, 1}n×Y be a search
problem, k ∈ N, δ > 0. Then RQCε(fk) ≥ δ2kRQCε′(f), where ε′ = ε/(1−δ)+δ.

3.6 Magnification Ratio

In additive combinatorics, the original proof of the Plünnecke-Ruzsa inequality
relied heavily on a direct sum result. The Plünnecke graph of level h is a directed

1[n] = {1, 2, . . . , n}.
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graph G = (V,E), where2 V =
⊔h
i=0 Vi and E ⊆

⋃k
i=1 Vi−1 × Vi, satisfying the

following two conditions:

• if (u, v) ∈ E and (v, w1), . . . , (v, wk) ∈ E then there exists v1, . . . , vk such
that for all i we have (u, vi) ∈ E and (vi, wi) ∈ E,

• if (u1, v), . . . , (uk, v) ∈ E and (v, w) ∈ E then there exists v1, . . . , vk such
that for all i we have (ui, vi) ∈ E and (vi, w) ∈ E.

For X ⊆ V0 we define the set of neighbors of X at level h by Nh(X) = {v ∈
Vh | there exists a path from some x ∈ X to v}. The magnification ratio of a
Plünnecke graph G is defined as ||G|| = min∅6=X⊆V0{|Nh(X)|/|X|}.

Given two Plünnecke graphs G1 = (
⊔
i Vi,1, E1) and G2 = (

⊔
i Vi,2, E2) of

level h, the product graph G = G1 × G2 = (V,E) is defined as follows V =⊔
i Vi,1× Vi,2 and ((v, w), (x, y)) ∈ E if and only if (v, x) ∈ E1 and (w, y) ∈ E2 .

The direct-sum theorem for the magnification ratio due to Plünnecke and
Ruzsa (see [Nat96]) is stated as follows.

Theorem 3.8 (Plünnecke, Ruzsa). Let G1 and G2 be two Plünnecke graphs.
Then we have

||G1 ×G2|| = ||G1|| · ||G2||.

To obtain the formulation of this direct-sum result in the terms from the
introduction, let T stand for a Plünnecke graph, Tn the n-fold product of such
a graph with itself, and M(T ) the logarithm of the magnification ratio of T .

4 Communication Complexity Background

In 1979, Yao [Yao79] introduced the two-party communication model for com-
puting functions. In 1988, Karchmer and Wigderson [KW88] generalized this
model to handle relations. In the generalized version, two parties, traditionally
called Alice and Bob, are trying to collaboratively “compute” a known rela-
tion R ⊆ X × Y × Z in the following sense. Each party is computationally
unbounded; however, Alice is only given input x ∈ X and Bob is only given
y ∈ Y, and their job is to output z ∈ Z such that (x, y, z) ∈ R. To that end,
Alice and Bob communicate in accordance with an agreed-upon communication
protocol π. Protocol π specifies as a function of transmitted bits only whether
the communication is over and, if not, who sends the next bit. Moreover, π
specifies as a function of the transmitted bits and x the value of the next bit
to be sent by Alice. Similarly for Bob. The communication is over as soon as
both players know z such that (x, y, z) ∈ R. The cost of the protocol π, is the
number of bits exchanged on the worst input. The deterministic communication
complexity of R, denoted by C(R), is the least cost of a protocol computing R.

Several remarks about the above definitions are in order:
2The symbol t denotes disjoint union.
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• An input pair x, y such that there is no z with (x, y, z) ∈ R is called illegal.
A relation R with illegal inputs is called partial. For partial problems R
we assume that Alice and Bob are never presented with illegal inputs.
Alternatively, we can think of illegal inputs as being in relation with any
z ∈ Z.

• If for each pair x, y there is at most one z with (x, y, z) ∈ R then R is, in
fact, a partial function. Thus Yao’s original model is the special case of
this model.

• Another possibility for a termination condition of the protocol is to finish
communication as soon as one of the parties knows the answer3. The
difference in the complexity measures between the two conventions is4at
most log |Z|.

• In this paper we shall only consider |X |, |Y|, |Z| <∞.

With a relation R ⊆ X × Y × Z we associate its communication matrix
MR of size |X | × |Y|, where the entry MR(x, y) is a set of all z ∈ Z such
that (x, y, z) ∈ R. A combinatorial rectangle is a subset of X × Y of the form
A × B for some A ⊆ X and B ⊆ Y. A combinatorial rectangle A × B is
called monochromatic if there is a z ∈ Z such that for all x ∈ A and y ∈ B
we have z ∈ MR(x, y) (to emphasize particular z we also call such rectangle
z-monochromatic). Every protocol partitions the communication matrix into a
set of nonoverlapping monochromatic combinatorial rectangles.

Let NCov(MR) denote the minimum number of monochromatic rectan-
gles needed to cover MR allowing overlaps. The nondeterministic commu-
nication complexity of R is defined as CN (R) = log NCov(MR). Similarly,
let NCovz(MR) denote the minimum number of z-monochromatic rectangles
needed to cover the entries of MR containing z. The corresponding “NP-like”
version of nondeterministic communication complexity is defined as CN,z(R) =
log NCovz(MR).

The following observation relating nondeterministic communication com-
plexity and deterministic communication complexity of functions is due to Hal-
stenberg and Reischuk [HR88]. A weaker version of this theorem was originally
proven by Aho, Ullman, and Yannakakis [AUY83].

Theorem 4.1 (Halstenberg, Reischuk [HR88]). For every function f : X×Y →
{0, 1} we have

C(f) = O(CN,0(f)CN,1(f)) = O(CN (f)2).

3This was the original definition due to Yao [Yao79]. Lovász [Lov90] argued that this is,
indeed, a natural termination condition. For example, with this condition the trivial protocol
for a Boolean function F : {0, 1}n ×{0, 1}n → {0, 1} requires n bits of communication rather
than n + 1, when the last party has to broadcast the message. We decided to use the other
termination rule to be consistent with the majority of literature on the direct sum problem.

4All logarithms in this paper are to the base 2 unless otherwise stated.
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The deterministic communication complexity model can be extended by
granting Alice and Bob access to random strings. This leads to two natural
types of protocols: private-coin, where Alice and Bob each have their own ran-
dom string concealed from another player, and public-coin, where Alice and Bob
have access to a shared random string. The ε-error public-coin (private-coin)
protocol is a randomized protocol that outputs the correct value with proba-
bility at least 1 − ε on every input. The worst-case cost of the best ε-error
public-coin (private-coin) protocol is denoted by CR,ε (CpR,ε, respectively). Here
and in what follows, when ε is ommited it is assumed to be ε = 1/3.

Clearly, CR,ε ≤ CpR,ε always holds. Ilan Newman [New91] showed that for
partial functions the two measures are identical up to constant multiplicative
factors and logarithmic additive terms.

Theorem 4.2 (Newman [New91]). For every partial function f : {0, 1}n ×
{0, 1}n → {0, 1} we have

CpR(f) = O(CR(f) + log n) .

Instead of introducing randomness to the players, we can introduce random-
ness to the inputs. Let µ be a probability distribution over X ×Y. We consider
deterministic protocols, which err on at most ε-fraction of inputs weighed ac-
cording to µ. The worst-case cost of the best such protocol is called ε-error
distributional communication complexity and is denoted by CµD,ε.

Distributional and public-coin complexities are related via Yao’s Min-Max
Principle [Yao77].

Proposition 4.3 (Yao [Yao77]).

CR,ε(f) = max
µ

CµD,ε(f).

The direct product of two relations R ⊆ X × Y × Z and R′ ⊆ X ′ ×
Y ′ × Z ′ is a relation R × R′ ⊆ (X × X ′) × (Y × Y ′) × (Z × Z ′) such that
((x1, x2), (y1, y2), (z1, z2)) ∈ R×R′ if and only if (x1, y1, z1) ∈ R and (x2, y2, z2) ∈
R′. The k-fold product of a relation R is defined recursively as Rk = R×Rk−1.
The amortized versions of the complexity measures are denoted by the tilde
above the notational symbol for the given complexity measure. For example,
the amortized nondeterministic communication complexity of R is C̃N (R) =
lim supk→∞ CN (Rk)/k. The definitions of amortized versions of other complex-
ity measures are analagous. We use CnR,ε(f

n) to denote public-coin randomized
communication complexity of f where a protocol is allowed to err with proba-
bility at most ε in each coordinate on every input.

For any protocol π we use C(π) to denote the maximum number of bits
exchanged on an input.

The disjointness function, denoted by DISJ : {0, 1}n × {0, 1}n → {0, 1},
was introduced by Babai, Frankl, and Simon [BFS86] as an example of a coNP-
complete problem in the communication complexity world. Since then it has
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become one of the central objects of study in CC. Formally, it is defined as

DISJ(x, y) =

{
0 if there is an index i such that xi = yi = 1,
1 if for all i we have xi = 0 or yi = 0.

In the promise version of the disjointness function, denoted by UDISJ, Alice
and Bob are promised that if there is an index i with xi = yi = 1 then such
an index is unique. The partial function UDISJ is an easier problem than
DISJ , and yet it has the Ω(n) lower bound on its bounded-error randomized
communication complexity. This result is due to Bala Kalyanasundaram and
Georg Schnitger [KS92] (see also [Raz92] and [KN97, Chapter 4.6]).

Theorem 4.4 (Kalyanasundaram and Schnitger [KS92]).

CR(UDISJ) = Ω(n) .

The first difference function FDIFF : {0, 1}n × {0, 1}n → {0, 1, . . . , n} is
defined as follows.

FDIFF(x, y) =
{

min{i | xi 6= yi} if x 6= y,
0 otherwise.

The following proposition is implicit in the work of Feige, Raghavan, Peleg, and
Upfal [FRPU94].

Proposition 4.5 (Feige et al. [FRPU94] (implicit)).

CR,ε(FDIFF) = O (log(n/ε)) .

For a thorough treatment of communication complexity we refer an inter-
ested reader to an excellent monograph by Kushilevitz and Nisan [KN97] and a
more recent survey by Lee and Shraibman [LS09].

5 The Roots of Direct Sum in CC

The study of direct-sum questions in communication complexity originated from
the work of Karchmer and Wigderson [KW88]. This work was described in the
doctoral thesis of Karchmer [Kar89]. For these findings Karchmer became the
first foreign winner of the ACM Distinguished Doctoral Dissertation Award.

Karchmer and Wigderson were interested in proving lower bounds on circuit
depth. Consider Boolean circuits over the basis {∧,∨,¬}, where ∧- and ∨-gates
have fan-in two (unless otherwise stated) and ¬-gates have fan-in one. The
depth of a circuit is the number of fan-in two gates on the longest path from the
root to a leaf. Note that ¬-gates do not count towards the depth. The depth of
the shallowest circuit computing a given function f is denoted by d(f).

For a Boolean function f : {0, 1}n → {0, 1}, Karchmer and Wigderson [KW88]
defined a relation RKW (f) ⊆ f−1(1) × f−1(0) × [n] by (x, y, i) ∈ R if and
only if xi 6= yi. Similarly, for two disjoint subsets A,B ⊆ {0, 1}n relation
R(A,B) ⊆ A × B × [n] is defined to consist of all triples (x, y, i) with xi 6= yi.
Karchmer and Wigderson [KW88] showed the following remarkable equivalence.
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Theorem 5.1 (Karchmer, Wigderson [KW88]). For every Boolean function
f : {0, 1}n → {0, 1} we have

d(f) = C(RKW (f)).

We remark that from the point of view of Karchmer-Wigderson games, the
deterministic model is the most interesting due to the following.

Proposition 5.2. For every Boolean function f : {0, 1}n → {0, 1}, we have

1. CN (RKW (f)) = O(log n),

2. CR(RKW (f)) = O(log n),

3. CpR(RKW (f)) = O(log n).

Proof. The first part is clear as Alice and Bob can simply guess an index i such
that xi 6= yi. The second part follows immediately from Proposition 4.5, and
the third part is obtained from the second by applying Proposition 4.2.

In the monotone world, a result similar to Theorem 5.1 holds. Consider a
monotone function f : {0, 1}n → {0, 1}. Let dm(f) denote the minimum depth
of a monotone circuit (no ¬-gates) computing f . A minterm S ⊆ [n] of f is a
minimal subset of indices such that (∀x ∈ {0, 1}n)(x|S = 1|S| ⇒ f(x) = 1). A
maxterm is similar except with 0 replacing 1 everywhere in the above definition.
Let MIN(f) be the set of minterms of f and MAX(f) be the set of maxterms of
f . Note that a minterm always intersects a maxterm. Karchmer and Wigderson
defined relation RmKW (f) ⊆ MIN(f) ×MAX(f) × [n] by (A,B, i) ∈ RmKW (f)
if and only if i ∈ A ∩B and showed the following.

Theorem 5.3 (Karchmer, Wigderson [KW88]). For every monotone Boolean
function f : {0, 1}n → {0, 1} we have

dm(f) = C(RmKW (f)).

Thus proving lower bounds on the depth of monotone circuits amounts
to proving lower bounds on communication complexity of relations. Using
this characterization, Karchmer and Wigderson [KW88] (see also Grigni and
Sipser [GS95]) showed the separation mNC1 ( mAC1. Using a similar ar-
gument, but a different communication complexity problem, Raz and McKen-
zie [RM97] proved the separation of mNCi from mNCi+1 for all i ≥ 1. Un-
fortunately, the techniques used to prove these results do not carry over to the
non-monotone world, and separating NC1 from NC2 remains an open prob-
lem. However, this question can still be approached within the communication
complexity framework. This idea is now known as Karchmer-Raz-Wigderson
program and a certain direct-sum question lies at its core.

12



6 The Birth of Direct Sum in CC

For two Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} a
composed function f � g : {0, 1}nm → {0, 1} is defined by

f � g( ~X1, . . . , ~Xn) = f(g( ~X1), . . . , g( ~Xn)),

where ~Xi ∈ {0, 1}m. When a function is composed with itself k times we use
special5 notation f�k = f � f�(k−1).

Over two decades ago Karchmer, Raz, and Wigderson [KRW91] proposed
the following two problems, which remain wide open to this day.

Open Problem 6.1 (Deterministic Direct Sum of Relations). What is the
relationship between C(Rk) and C(R)?

Open Problem 6.2 (Deterministic Direct Sum for Karchmer-Wigderson Games
of Composed Functions). What is the relationship between C(RKW (f�k)) and
C(RKW (f))?

Karchmer, Raz, and Wigderson [KRW91] showed that a “good answer” to
the second question would give a separation between NC1 and NC2. This
approach is now called Karchmer-Raz-Wigderson program.

Theorem 6.3 (Karchmer, Raz, Wigderson [KRW91]). If for some ε ∈ (0, 1)
every f satisfies C(RKW (f�2)) ≥ (1 + ε)C(RKW (f)) then NC1 6= NC2.

Proof. Let k = log n/ log log n and take a hard function f on log n variables,
i. e., d(f) = C(RKW (f)) = Ω(log n). Then f�k is a function on n vari-
ables. This function is clearly in NC2. Now, we have C(RKW (f�k)) ≥ (1 +
ε)C(RKW (f�(k/2)) ≥ . . . ≥ (1 + ε)log kC(RKW (f)) = Ω(log1+ε′ n/ log log n) for
some ε′ > 0.

Karchmer et al. [KRW91] mention that the assumption of the above theorem
can be tweaked in many ways without weakening the conclusion. For instance,
the assumption can be changed as follows.

Theorem 6.4 (Karchmer, Raz, Wigderson [KRW91]). If for a random function
f and for every g we have C(RKW (f � g)) ≥ ε ·C(RKW (f)) +C(RKW (g)) then
NC1 6= NC2.

One of the very few steps made towards Open Problem 6.2 was a lower
bound on the universal composition relation, denoted by Un,k. Alice and Bob
are each given a red/blue coloring of a complete n-ary tree of depth k. The
players are promised that the roots are colored differently. Moreover, if node
u is colored in Alice’s tree differently from u in Bob’s tree then there exists a
child of u that is also colored differently. The goal of Alice and Bob is to agree
on a leaf that is colored differently in the two colorings.

In light of the following proposition, proving a lower bound on C(Un,k) is an
easier task than Open Problem 6.2 and was proposed by Karchmer, Raz, and
Wigderson [KRW91] as a test of the feasibility of their program.

5Not to be confused with fk, the juxtaposition of k copies of f .
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Proposition 6.5 (Karchmer, Raz, Wigderson [KRW91]). For every set of k
Boolean functions f1, . . . , fk : {0, 1}n → {0, 1} we have C(RKW (f1 � · · · �fk)) ≤
C(Un,k).

The lower bound for the universal composition relation was first proved by
Edmonds et al. [ERIS91], who showed that C(Un,k) ≥ kn − O(k2

√
n log n).

A completely different approach was used by H̊astad and Wigderson [HW97]
who showed C(Un,k) ≥ kn − O(k3 log k). Observe that both theorems leave
open whether C(Un,k) = Ω(nk) for k ≥

√
n? A rather tight6 upper bound

C(Un,k) ≤ k(n+ 2). is due to Tardos and Zwick [TZ97].
Karchmer, Raz, and Wigderson [KRW91] also described the monotone ver-

sion of the universal composition relation, denoted by Umn,k. As before, Alice
and Bob are each given a red/blue coloring of a complete n-ary tree of depth k.
This time the colorings are such that both roots are red and if a node is colored
red in both inputs then there exists a child colored red in both inputs. The job
of Alice and Bob is to find a leaf that is colored red in both inputs. Similarly,
to Proposition 6.5 we have the following.

Proposition 6.6 (Karchmer, Raz, Wigderson [KRW91]). For every set of k
monotone Boolean functions f1, . . . , fk : {0, 1}n → {0, 1} we have C(RmKW (f1 �
· · · � fk)) ≤ C(Umn,k).

Similar to the nonmonotone case, the trivial upper bound on C(Un,k) is
k(n+ log n) and a trick due to Karchmer [Kar89] can reduce it to k(n+ log∗ n).
We show the upper bound C(Un,k) ≤ k(n+ 4) in Appendix A. Karchmer, Raz,
and Wigderson [KRW91] show a lower bound C(Umn,k) ≥ kn − 2 by a simple
reduction from the intersection function, which leads us to ask the following
question.

Open Problem 6.7. Is there a “reduction-style” proof of a lower bound for
C(Un,k)?

Theorem 6.3 might be viewed as an indication that the direct-sum theorem
for deterministic communication complexity of relations is out of reach of current
techniques; however, it led researchers to consider direct-sum questions in other
models of communication. In the next section we survey to which degree direct
sum can fail in various CC models.

7 Direct Sum Violations

Quite often the direct-sum theorem in its strongest form fails to hold, i. e.,
the amount of resources needed to solve A and B together is not exactly the
sum of the amount of resources needed to solve A and B separately. Many
models admit some small savings, and then the question becomes to quantify
the possible savings.

6Getting C(Un,k) ≤ k(n + log n) is trivial, a simple trick due to Karchmer [Kar89] gives
k(n + log∗ n).
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7.1 Deterministic Communication Complexity

Consider the following promise problem f , known under the name “league
problem”. Alice is given S ⊆ {0, . . . ,m − 1} with |S| = 2 and Bob is given
x ∈ S. Their task is to compute the rank of x in S. The size of the input is
n = 2 logm + logm = 3 logm. This problem was studied by Orlitsky [Orl90]
and Feder et al. [FKNN95], who showed the following.

Theorem 7.1 (Orlitsky [Orl90]). For the league problem f : {0, 1}n → {0, 1}
we have C(f) = Θ(logn).

Theorem 7.2 (Feder et al. [FKNN95]). For the league problem f : {0, 1}n →
{0, 1} we have C̃(f) = O(1).

Proof of Theorem 7.1 relies on the following observation.

Proposition 7.3 (Orlitsky [Orl90]). For every relation R ⊆ X ×Y×Z we have

C1(R) ≤ 2C(R).

Proof. Let π be an optimal two-way protocol for R. Enumerate all transcripts
τ1, . . . , τ` in some order, where ` ≤ 2C(F ). Now we describe a one-way communi-
cation protocol for R that uses at most 2C(R) bits. The first player sends to the
second player a binary string s of length `, where bit si indicates whether tran-
script τi is consistent with that player’s input or not. The second player, upon
the receipt of the string s, can find an index i such that τi is consistent with
both players’ inputs. Since we require the answer to R to be evident from the
transcript, the second player can infer the answer. Correctness of this protocol
is evident from the correctness of π.

Proof of Theorem 7.1. First we show that C(f) = O(log n). Given S = {s1, s2},
Alice can find an index i such that si1 6= si2 and send i to Bob. Bob then replies
with xi, so Alice find out whether x = s1 or x = s2. The whole communication
requires log logm+ 1 = O(log n) bits.

For the lower bound, consider one-way protocols, in which Bob communi-
cates first. Bob has to communicate at least logm bits, for otherwise two distinct
inputs x1 and x2 will correspond to the same message. Such a protocol is guar-
anteed to make a mistake if Alice is given S = {x1, x2}. Thus, we conclude that
C1(f) = Ω(n). Applying Proposition 7.3, we obtain that C(f) = Ω(logn).

In the proof of Theorem 7.2 we shall consider the following family of hash
functions. Let p be a prime such that 4 logm ≤ p ≤ 8 logm. Define

H = {h : {0, . . . ,m−1} → {0, . . . , 7} | h(x) = (ax mod p) mod 8, 1 ≤ a ≤ p−1}.

We say that a function h ∈ H is good for the set S ⊆ {0, . . . ,m − 1} if h is
one-to-one on S, and bad otherwise. To show Theorem 7.2 we shall need the
following proposition due to Feder et al. [FKNN95].
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Proposition 7.4 (Feder et al. [FKNN95]). Let S1, . . . , S` ⊆ {0, . . . ,m − 1}
be such that |Si| = 2 for all i. Then there exists a set of log ` + 1 functions
h1 . . . , hlog `+1 ∈ H with the property that function hi is good for at least a half
of the Sj for which all h1, . . . , hi−1 are bad.

We are now ready to show Theorem 7.2.

Proof of Theorem 7.2. We present a protocol due to Feder et al. [FKNN95] to
solve f `, where f is the league problem. Alice is given S1, . . . , S` ⊆ {0, . . . ,m−1}
where |Si| = 2, and bob is given x1 ∈ S1, . . . , x` ∈ S`. Alice finds a set of hash
functions h1, . . . , hlog `+1 as in Proposition 7.4. From the property described in
Proposition 7.4 it follows that for each i ∈ [`] there is j(i) such that hj(i) is
good for Si. Alice sends the names of the functions along with the j(i) to Bob.
Bob then replies with hj(i)(xi) to Alice, and Alice has now all the information
necessary to compute the ranks of the xi in the Si.

As for the communication cost, first observe that each hash function can
be described by log p = O(log n) bits. Thus, Alice sending the names of the
functions costs O(log ` log n) in total. Next, total cost of sending all the j(i)
can be made O(`), since Alice can encode the index of the function good for
at least a half of the sets with 2 bits, for at least a half of the remaining sets
with 3 bits, and so on. Bob’s reply costs O(`) bits in total. Then, the whole
communication requires O(`+ log ` log n) bits.

7.2 Randomized Communication Complexity

In this section we shall consider the equality function EQ : {0, 1}n × {0, 1}n →
{0, 1} defined by EQ(x, y) = 1 if and only if x = y.

Proposition 7.5.
CR,ε(EQ) = Θ(log 1/ε).

Proof. For the upper bound, we can use the “inner-product protocol”. In round
i, Alice sends an inner product over F2 of x with a random string ri to Bob.
Since randomness is public, Bob knows ri and can compare the bit sent by Alice
to the inner product of y with ri. If the bits don’t match players agree that
x 6= y, otherwise they continue to the next round. After k rounds requiring 2k
bits of communication, the probability that x 6= y is 2−k. We require ε ≤ 2−k,
thus k = log 1/ε suffices.

For the lower bound, we exhibit a distribution µ on {0, 1}n × {0, 1}n with
the property that CµD,ε(EQ) = Ω(log 1/ε). The result then follows by Proposi-
tion 4.3. Define µ as follows

µ =
{ 1

2n+1 if x = y
1

2n+1(2n−1) otherwise.

Consider a deterministic protocol π that solves EQ with probability of error at
most ε when inputs are sampled according to µ. Let R1, . . . , Rt be 1-rectangles
of π. Let Ri = Xi×Yi. We may assume that for all i we have Xi = Yi (if that’s
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not the case, with two extra bits of communication Alice and Bob can split the
1 rectangle into four, only one of which is a 1-rectangle and is of the desired
form). Let si = |Xi| = |Yi|. The weight of the mistakes in such a rectangle is
(s2
i − si)/(2n+1(2n− 1)). Since the weight of all mistakes is at most ε we obtain∑
i(s

2
i − si)/(2n+1(2n − 1) ≤ ε. We also have

∑
i si = 2n and

∑
i s

2
i ≥ 22n/t by

Cauchy-Schwarz. Combining these inequalities together it follows t ≥ 1/(4ε),
thus C(π) ≥ log 1/ε− 2.

Feder et al. [FKNN95] showed how the “inner-product protocol” can be
adapted to handle multiple instances of equality efficiently and showed the fol-
lowing result.

Theorem 7.6 (Feder et al. [FKNN95]).

CR,2−Ω(
√

k)(EQk) = O(k).

Thus, if the error probability ε is treated as a parameter we obtain a sep-
aration between CR,ε(EQ) = Θ(log 1/ε) and amortized CR,ε(EQk)/k = O(1)
already for k = Θ(log2 1/ε).

However, no gap is known for public-coin randomized communication com-
plexity of functions when 0 < ε < 1/2 is a fixed constant.

Open Problem 7.7. What is the largest gap between CR(f) and C̃R(f)?

The log n gap between the private-coin randomized communication complex-
ity and its amortized version is known. This gap is achieved by the equality
function. It is well known that CpR(EQ) = Θ(log n) (see [KN97], for example).
By Theorem 7.6 we have C̃R(EQ) = O(1), and it follows by Theorem 8.27 that
C̃pR(EQ) = O(1).

7.3 Nondeterministic Communication Complexity

Consider the non-equality function NEQ : {0, 1}n×{0, 1}n → {0, 1} defined by
NEQ(x, y) = 1 if there exists i such that xi 6= yi and NEQ(x, y) = 0 otherwise.
In this section we describe the following result due to Karchmer, Kushilevitz,
and Nisan [KKN95]. For non-equality function NEQ we have CN1(NEQ) =
Θ(log n) and C̃N1(NEQ) = O(1).

A trivial protocol gives CN1(NEQ) ≤ log n + 2. This is essentially optimal
due to the following folklore observation.

Proposition 7.8. For every Boolean function f : {0, 1}n×{0, 1}n → {0, 1} we
have

C(f) ≤ 2CN1 (f) + 1.

Proof. Similar to the proof of Proposition 7.3.

Via a simple logrank argument (first observed by Mehlhorn and Schmidt [MS82])
we have C(NEQ) = Θ(n). It follows that CN1(NEQ) = Θ(log n).
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To establish the amortized nondeterministic complexity of NEQ, observe
that the “inner-product protocol” for equality function (see Proposition 7.5)
gives a public-coin randomized protocol with one-sided error for NEQ with
O(1) bits of communication. Hence by Theorem 8.6 we have that C̃N,1(NEQ) =
O(1).

Open Problem 7.9. Is there a function f such that CN (f) = Θ(log n) but
C̃N (f) = O(1)?

8 Direct Sum Approaches for General Functions
and Relations

A common approach to proving a direct-sum theorem for measure M follows
the steps of Program 1. Sometimes the first step is used to replace a discrete

1. Define a complexity measure K,

2. show that K obeys the direct sum,

3. relate K to measure M of interest.

Program 1: A common approach to the direct-sum question for measure M.

measure M by an analytic K, which may be easier to handle.
In this section we describe several successful implementations of the above

paradigm for different communication complexity models.

8.1 Nondeterministic Communication Complexity

The direct-sum question in the nondeterministic setting has one of the most sat-
isfying resolutions. Shortly after the question was raised, two different solutions
appeared, first by Feder, Kushilevitz, Naor, and Nisan [FKNN95] and then by
Karchmer, Kushilevitz, and Nisan [KKN95]. In this section we present the re-
sult due to Karchmer et al. [KKN95]. Along the way, their approach establishes
a precise characterization of the nondeterministic communication complexity in
terms of an analytic measure K in the spirit of the Program 1.

With a relation R ⊆ X × Y × Z we can associate a hypergraph HR =
(VR, ER), where the set of vertices VR = X × Y, and the set of hyperedges ER
consists of all monochromatic rectangles of R. Consider the following integer
program:

N(HR) = min
φ

∑
e∈ER

φ(e)

∑
e:v∈e

φ(e) ≥ 1 (∀v ∈ VR)

φ(e) ∈ {0, 1} (∀e ∈ ER)
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Function φ satisfying the constraints is called integral cover ofHR. Note that the
non deterministic communication complexity of R is simply equal to logN(HR).
It is quite natural to consider a relaxation of this problem:

N∗(HR) = min
φ

∑
e∈ER

φ(e)

∑
e:v∈e

φ(e) ≥ 1 (∀v ∈ VR)

0 ≤ φ(e) ≤ 1 (∀e ∈ ER)

We refer to any φ satisfying the constraints of this linear program as a fractional
cover of HR.

In terms of Program 1, we have M(R) = logN(HR) and K(R) = logN∗(HR).
We proceed to show steps two and three of the approach.

Given two hypergraphs H1 = (V1, E1) and H2 = (V2, E2) we can define
a product hypergraph H1 × H2 = (V1 × V2, Ep) where Ep = {e1 × e2 | e1 ∈
E1 and e2 ∈ E2}. The measuresN(H) andN∗(H) were studied by Lovász [Lov75]7.
The following proposition demonstrates that the measure N∗ obeys the direct
product theorem with respect to the product of hypergraphs.

Proposition 8.1 (Lovász [Lov75]). N∗(H1 ×H2) = N∗(H1)N∗(H2)

Lovász [Lov75] also showed that the integrality gap is not too large.

Proposition 8.2 (Lovász [Lov75]).

N∗(H) ≥ N(H)
1 + ln |V (H)|

.

For two relations R and S, it is not necessary the case that HR×S = HR×HS ,
thus we cannot directly invoke Proposition 8.1. The bridge is provided by the
following proposition due to Karchmer, Kushilevitz and Nisan [KKN95].

Proposition 8.3 (Karchmer, Kushilevitz, Nisan [KKN95]). Let R and S be
two relations. Then

N∗(HR×S) = N∗(HR ×HS).

Theorem 8.4 (Karchmer, Kushilevitz, Nisan [KKN95]). For every relation
R ⊆ X × Y × Z we have

(a) k logN∗(HR) ≤ CN (Rk) ≤ k logN∗(HR) + log log |X ||Y|+ log k + 5

(b) C̃N (R) = logN∗(HR) ≥ CN (R)− log log |X ||Y| − 5

Proof.
Part (a) We have CN (Rk) = logN(HRk) ≥ logN∗(HRk) = logN∗(Hk

R) =
k logN∗(HR), where the last two equalities follow from Proposition 8.3 and
Proposition 8.1, respectively.

7An interested reader who decides to follow up on this reference should be alerted that
Lovász’s statements are in terms of duals of our graphs.
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We have CN (Rk) = logN(HRk) ≤ log((1+ln |X |k|Y|k)N∗(HRk)) ≤ k logN∗(HR)+
log log |X ||Y|+ log k + 5, where the first inequality is due to Proposition 8.2.

Part (b) Immediately follows from Part (a). Also note that in the definition
of C̃N (R) we can replace lim sup with just lim, as Part (a) implies that the limit
exists.

If we repeat the above process for the one-sided “NP-like” version of non-
deterministic communication complexity, i. e., when we require to cover only
1-inputs, we obtain a similar theorem.

Theorem 8.5 (Karchmer, Kushilevitz, Nisan [KKN95]). For every relation
R ⊆ X × Y × Z we have

C̃N,1(R) = logN∗1 (R),

where N∗1 (R) denotes the solution to the relaxed linear program for covering
1-rectangles of R.

We end this section with an interesting corollary: an upper bound on C̃N,1(f)
of a function f in terms of one-sided randomized communication complexity
CR1(f).

Corollary 8.6 (Karchmer, Kushilevitz, Nisan [KKN95]). For every function
f : X × Z → {0, 1} we have

C̃N,1(f) ≤ CR1(f) + 1.

8.2 Deterministic Communication Complexity

To apply Program 1 to the deterministic communication complexity, we need to
define measure K. The idea due to Feder et al. [FKNN95] is to apply Program 1
to K = CN , since we already know the direct-sum theorem for CN . Thus,
Feder et al. [FKNN95] showed that for functions the separation between C and
C̃ can be at most quadratic.

Theorem 8.7 (Feder et al. [FKNN95]). Let f : X × Y → {0, 1} be a function.
Then

C̃(f) = Ω(
√
C(f)− log log |X ||Y| − 1).

Proof. We have

C(fk) ≥ CN (fk)
≥ k logN∗(Hf ) by Theorem 8.4 part (a)
≥ k (CN (f)− log log |X ||Y| − 5) by Theorem 8.4 part (b)
= Ω

(
k
(√

C(f)− log log |X ||Y| − 1
))

by Theorem 4.1.
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Unfortunately, this approach does not work for relations or even partial
functions. The gap between C(f) and CN (f) can be exponential if f is partial.
The following example is implicit in [Raz90] and (is hinted at) in [FKNN95]. Let
x, y ∈ {0, 1}n and let x(0) denote the first half of x and let x(1) denote the second
half of x. Define y(0) and y(1) similarly. Consider partial function f : {0, 1}n ×
{0, 1}n → {0, 1} defined by f(x, y) = z if x(z) = y(z) and x(1−z) 6= y(1−z)
where z = 0, 1. Function f is undefined on all other inputs. We have CN (f) =
O(log n), since the players can guess an index i such that xi 6= yi and depending
on whether i ∈ [n/2] or i ∈ [n] \ [n/2] answer 1 and 0, respectively. The lower
bound C(f) = Ω(n) follows from a simple fooling set argument. Consider set
S = {(x, x) | x ∈ {0, 1}n}. Suppose that a combinatorial rectangle R contains
more than 2n/2 entries from S. Then by pigeonhole principle there exist inputs
(x, x) and (x′, x′) from S such that x(0) = x′(0) and x(1) 6= x′(1). Thus, if rectangle
R were monochromatic it would have to be labeled 0. However, by the same
argument R also has to contain (x, x) and (x′, x′) such that x(0) 6= x′(0) and
x(1) = x′(1), thus R has to be labeled 1. Therefore a monochromatic rectangle
cannot contain more than 2n/2 entries from S. Since |S| = 2n, a deterministic
protocol is required to produce at least 2n/2 rectangles at its leaves. The claimed
lower bound follows immediately.

8.3 Randomized Communication Complexity

The direct sum for randomized communication complexity did not see much
progress until Chakrabarti et al. [CSWY01] introduced an information theo-
retic approach to the area8. They showed that functions satisfying a certain
robustness criterion (the equality function is one such example) obey the di-
rect sum in the simultaneous communication complexity. In this model, there
is only one round of communication and both players submit their messages
simultaneously. In their work, Chakrabarti et al. introduced the notion of the
information cost of a protocol, which behaves well with respect to the direct
sum. Using similar techniques Jain et al.[JRS03] show a direct-sum for distri-
butional communication complexity of bounded-round protocols under product
distributions.

Bar-Yossef et al. [BYJKS04] observed that the direct sum for the informa-
tion cost of a protocol can be used to show a lower bound on the number-
in-hand (NIH) t-party communication complexity of the disjointness function.
The disjointness function can be viewed as

∨n
i=1

∧t
j=1 xij . Thus, the lower

bound on CC of the disjointness problem reduces to proving a lower bound
on the information cost of the AND function

∧t
j=1 xij . Using this paradigm,

Bar-Yosseff et al. [BYJKS04] showed Ω(n/t2) lower bound on the CC of the
t-party disjointness. Gronemeier [Gro09] closed the gap between upper bound
and lower bound of the NIH CC of disjointness by providing a tighter analysis of
the information cost of the AND function and ultimately showing Ω(n/t) lower

8Information theory was used in the communication complexity before, see for example
the work of Ablayev [Abl96], but not in the context of direct sum.
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bound for the disjointness function.
The first direct-sum result for general randomized protocols is due to Barack,

Braverman, Chan, and Rao [BBCR10]. They showed that the communication
required for computing n instances of a problem is at least

√
n times the com-

munication required to compute a single instance of a problem. A promising
direction to the direct-sum question in the randomized communication complex-
ity is to better understand the information cost measure. Since the paper by
Barack et al. [BBCR10], the information cost measure was studied in [BR11],
[Bra11], and [BW11].

8.3.1 Information Theory Background

Definition 8.8. The entropy of the probability distribution p on sample space
Ω is defined as

H(p) =
∑
ω∈Ω

p(ω) log
1

p(ω)
.

The entropy of a random variable X is defined as the entropy of the induced
probability distribution on the range of X.

Let X and Y be two random variables. For y ∈ range(Y ) we can consider
the conditional probability distribution p(X | Y = y). We denote the entropy
of this probability distribution by H(X | Y = y).

Definition 8.9. The conditional entropy of random variable X given Y is
defined as

H(X|Y ) = Ey (H(X|Y = y)) .

For two random variables X,Y we have H(X,Y ) = H(X) +H(Y |X).

Definition 8.10. The mutual information of two random variables X and Y
is defined as

I(X;Y ) = H(X)−H(X|Y ).

Note that we also have I(X;Y ) = H(Y )−H(Y |X).

Definition 8.11. The total variation distance between two probability distri-
butions p and q on Ω is defined as

||p− q|| = 1
2

∑
ω∈Ω

|p(ω)− q(ω)|.

Definition 8.12. Kullback-Leibler divergence between two probability distri-
butions p and q on Ω is defined as

dKL(p ‖ q) =
∑
ω∈Ω

p(ω) log
p(ω)
q(ω)

.
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8.3.2 Notation

We reserve capital letters A,B, . . . for random variables. Lower-case letters
a, b, . . . stand for specific values from the range of a corresponding random vari-
able. We use random variable R to denote public random string, X and Y to
denote inputs of the players.

For a protocol π we write πr to denote the protocol obtained from π by
fixing R = r. Slightly abusing notation, we shall write πr(x, y) for a transcript
of πr when it is executed on x and y. When X,Y,R are used instead of x, y, r
the transcript itself becomes a random variable (also if private randomness is
alowed πr(x, y) is a random variable).

Expression πir(x, y) denotes the ith bit of transcript πr(x, y) and π<ir (x, y)
denotes the concatenation of the first i − 1 bits of πr(x, y). For typographical
reasons we shall sometimes omit (x, y) from πr(x, y) and simply write πr to
denote the transcript of the protocol. We tried to make the distinction (πr
referring to the protocol versus πr referring to the transcript of the protocol)
clear from the context.

8.3.3 Information Cost Measure

Suppose that µ is a probability distribution on X×Y and π is a randomized pro-
tocol with both public and private randomness computing a function on X ×Y.
Informally, the information cost of such a protocol measures how much infor-
mation about the inputs the parties reveal to each other (internal information
cost) or to an independent observer (external information cost) during the ex-
ecution of the protocol on input (X,Y ) ∼ µ. Formally, the two measures are
defined as follows.

Definition 8.13. Given a distribution µ on X × Y, the external information
cost of protocol π with respect to µ is defined as

ICext(π, µ) = I(X,Y ;RπR(X,Y )),

and the internal information cost of protocol π with respect to µ is defined as

ICint(π, µ) = I(X;RπR(X,Y )|Y ) + I(Y ;RπR(X,Y )|X).

Previously, when we dealt with the communication complexity of a protocol
we never considered protocols with both public and private randomness. Indeed,
we did not have to. Any protocol with both public and private randomness can
be replaced by a protocol with just public randomness without any increase
in the communication complexity. Alice and Bob simply partition the shared
random string into three disjoint parts, use one of the parts for the shared ran-
domness, and the other two for “private” randomness. The distinction between
private and public randomness becomes crucial to the definition of the informa-
tion cost measures, as making private bits public may increase the information
cost dramatically. For example, suppose that in the course of a protocol Alice
wants to send the first bit of her input XORed with a random bit to Bob. If
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the random bit was generated privately, Alice’s message reveals 0 information
to Bob. If, on the other hand, the random bit was generated publicly, Alice’s
message reveals 1 bit of information to Bob.

The information cost can be defined for functions. The following two natural
definitions were considered in [Bra11].

Definition 8.14. Let f : X ×Y → Z be a function. The prior-free information
cost of f is defined as

ICint(f, ε) = inf
π

max
µ

ICint(π, µ),

where the infimum ranges over all protocols π that compute f with probability
of error at most ε on each input.

The distributional infromation cost of f is defined as

ICint
D (f, ε) = max

µ
inf
π

ICint(π, µ),

where the infimum ranges over all protocol π that compute f with probability
of error at most ε when inputs are sampled from µ.

Analogous definitions exist for the external information cost.

Clearly, we have ICint
D (f, ε) ≤ ICint(f, ε). Braverman [Bra11] showed that

the two definitions are essentially equivalent.

Theorem 8.15 (Braverman [Bra11]). For every function f : X × Y → Z and
ε ≥ 0 we have ICint(f, ε) ≤ 2 ICint

D (f, ε/2).

In the light of the above theorem, we shall use the prior-free information
cost in what follows understanding that the two definitions can be used inter-
changeably.

The information cost measures were introduced with the goal of implement-
ing Program 1:

1. ICint and ICext are analytic measures,

2. ICint ([Bra11]) obeys the direct sum,

3. ICint ≤ ICext ≤ CR ([BBCR10]) and the hope is that ICint = Θ(CR).

The third step of the program is not completed yet, and the exact relationship
between ICint and CR is not known.

Open Problem 8.16. Is ICint(f, ε) = Θ(CR,ε(f)) for all f and ε ≥ 0?

Observe that it is not known whether ICext = O(ICint).

Open Problem 8.17. Is there a function f and ε ≥ 0 such that ICext(f, ε) >
ICint(f, ε)? If so, what’s the largest separation possible?
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It is also not known whether ICext obeys the direct sum or not. Indeed, any
restriction-based proof that ICext satisfies the direct sum would settle both the
direct-sum problem and Open Problem 8.17. This observation was communi-
cated to us by Mark Braverman. To demonstrate this claim we shall need the
following two results.

Theorem 8.18 (Braverman [Bra11]). For ε > 0 we have

ICint(f, ε) = lim
n→∞

CnR,ε(f
n)

n
.

Theorem 8.19 (Barack et al. [BBCR10]). For every distribution µ, proto-
col π and α > 0, there exists functions πx, πy and a protocol τ ′ such that
|πx(X, τ ′(X,Y )) − π(X,Y )| < α,P (πx(X, τ ′(X,Y )) 6= πy(Y, τ ′(X,Y ))) < α
and

C(τ ′) = O

(
ICext(π, µ)

log(C(π)/α)
α2

)
.

Proposition 8.20. Suppose that the following statement is true: given µ, f, n, ε
and a protocol π that solves fn with proability of error at most ε (on each
coordinate) when inputs are sampled from µn there exists a protocol τ solving f
with probability of error at most ε when inputs are sampled accoring to µ such
that C(τ) ≤ C(π) and ICext(τ, µ) ≤ C(π)/n. Then for all f and ε > 0 we have

1. ICext(f, ε) = ICint(f, ε),

2. CR,ε(fn) = Ω̃(nCR,ε(f)).

Proof.

1. ICint(f, ε) ≤ ICext(f, ε) ≤ CnR,ε(f
n)/n n→∞−−−−→ ICint(f, ε), where the last

step is by Theorem 8.18.

2. Fix α > 0. Pick a distribution µ that achieves maximum of CµD,ε+α(f).
Let π be a protocol that solves fn with proabability of error at most ε and
C(π) ≤ CnR,ε(f

n) ≤ CR,ε(fn). Applying the premise of the proposition,
we obtain a protocol τ such that C(τ) = C(π) and ICext(τ, µ) ≤ C(π)/n.
Now we apply Theorem 8.19 to obtain a protcol τ ′ such that C(τ ′) =
Õ(ICext(τ, µ)) = Õ(CR,ε(fn)/n). Moreover, since τ ′ solves f with proba-
bility of error at most α + ε when inputs are sampled according to µ we
have C(τ ′) ≥ CµD,ε+α(f) = CR,ε+α(f) by Proposition 4.3.

In the rest of this section, we shall examine the role of the destinction be-
tween private and public randomness in establishing the relationship between
ICint and CR. In the process, we shall use various techniques that have appeared
in the literature on the information cost.
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8.3.4 Public vs Private Randomness in the Information Cost: a New
Result

Definition 8.21. The public internal information cost of a function f with
error parameter ε ≥ 0 is defined as

ICint,pub(f, ε) = inf
π

max
µ

ICint(π, µ),

where the infimum ranges over all public-coin protocols (no private coins al-
lowed) π that compute f with probability of error at most ε on each input.

Clearly, for every ε ≥ 0 we have ICint,pub(f, ε) ≥ ICint(f, ε).

Definition 8.22. We say that the function f is ε-bold if9 ICint,pub(f, ε) =
Õ(ICint(f, ε)).

In this section, we prove the following result, which we believe to be new.

Theorem 8.23. The following two statements are equivalent:

1. ICint(f, ε) = Θ̃(CR,ε(f)).

2. f is ε-bold.

Corollary 8.24 (Direct Sum for Bold Functions). If f is ε-bold then

CR,ε(fn, ε) = Ω̃(nCR,ε(f)).

Proof. CR,ε(fn, ε) ≥ ICint(fn, ε) = n ICint(f, ε) = Ω̃(nCR,ε(f)).

We now return to the proof of Theorem 8.23.

Proof of 1 implies 2.
Take a protocol π for f provided by the definition of CR,ε. For all distribu-

tions µ we have ICint(π, µ) ≤ CR,ε(f) = Õ(ICint(f, ε)). Since π has only public
randomness we conclude ICint,pub(f, ε) = Õ(ICint(f, ε)).

The idea for the proof of direction “2 implies 1” is to start with a public-coin
protocol π that has small information cost, but might have a large communica-
tion cost, and derive protocol τ with communication cost roughly equal to the
information cost of π. This process is called “protocol compression” in the work
of Barack et al. [BBCR10]. In fact, we shall use their compression scheme, and
show that in the deterministic setting it gives an almost optimal compression.

We start with a few lemmas.

Lemma 8.25 (Barack et al. [BBCR10]). Let π be a protocol, and µ be a distri-
bution on inputs X × Y.

ICint(π, µ) = Er(ICint(πr, µ)).
9In particular, f is not intimidated by going public.
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Proof. First we show how to manipulate the first term in the definition of
ICint(π, µ).

I(X;RπR(X,Y )|Y ) = H(RπR(X,Y )|Y )−H(RπR(X,Y )|Y X)
= H(R|Y ) +H(πR(X,Y )|Y R)−H(R|Y X)−H(πR(X,Y )|Y XR)
= I(R;X|Y ) + I(πR(X,Y );X|Y R)
= 0 + I(πR(X,Y );X|Y R).

Where I(R;X|Y ) = 0 because R and X are independent. Similarly, we obtain
I(Y ;RπR(X,Y )|X) = I(πR(X,Y );Y |XR). Finally, we have

ICint(π, µ) = I(πR(X,Y );X|Y R) + I(πR(X,Y );Y |XR) = Er(ICint(πr, µ)).

Now, let π be a public-coin protocol and µ be a probability distribution on
the inputs X × Y. For each random string r protocol πr is deterministic, and
can be viewed as a complete binary tree of depth C(π). With each node u we
associate three objects:

1. ou ∈ {Alice, Bob} - the owner of the node,

2.

fu :
{
X → {0, 1} if ou =Alice,
Y → {0, 1} if ou =Bob.

This function specifies, which bit is transmitted by the owner of the node.

3.

pu :


X → {0, 1} defind by pu(x) = P (fu(y) = 1|reached u,X = x),

if ou =Alice,
Y → {0, 1} defined by pu(y) = P (fu(x) = 1|reached u, Y = y),

if ou =Bob.

In other words, pu is the non-owner’s estimate of the probability that the
owner sends 1 as the next bit.

Each internal node u has two outgoing edges, one of which is labeled 1 and the
other 0. The leaves are labeled with values from Z. The protocol is executed
by starting at the root and using functions fu to decide which edge to follow,
until a leaf is reached, at which point its label is declared to be the output of
the protocol.

The following compression scheme appears in [BBCR10]. Out of protocol π
we construct the following protocol τk,γ , where k and γ are parameters to be
specified later.

Sampling Stage Alice and Bob sample random string r. Now, Alice and Bob
each has a tree representation of πr. Alice and Bob use public randomness
to sample a uniformly random number tu ∈ [0, 1] for each node u. They
set the current node to be the root.
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Path Construction Without communicating to Bob, Alice builds a path v =
v0, . . . , vC(π) as follows. Starting with the current node vi, if ovi = Alice
then vi+1 is obtained from vi by applying fvi

and following the correspond-
ing edge in the tree. Otherwise, Alice follows the 1-edge if tvi

≤ pvi
and the

0-edge otherwise. Similarly, Bob constructs his path w = w0, . . . , wC(π).

Finding Mistakes Alice and Bob use the protocol from Proposition 4.5 for
finding the first difference between v and w with error probability at most
γ.

Loop If no difference is found or Path Construction and Finding Mis-
takes were performed k times, Alice and Bob terminate their communi-
cation. Otherwise, the non-owner of the node of the first difference fixes
the mistake, Alice and Bob set the current node to be the node of the first
difference, and they both go to step Path Construction.

The following lemma lies at the heart of the analysis of the above protocol
compression.

Lemma 8.26. The expected number of times step Finding Mistakes has to
be executed in τk,γ to arrive at the correct leaf of π is at most ICint(π, µ).

Proof. Consider τk,γ,r - the protocol τk,γ after r has been fixed. Let Si,r be
the indicator variable whether a mistake occured at the ith level of the tree πr,
i ∈ [C(π)].

Suppose that during the execution of τk,γ,r(x, y) the current node is u. More-
over, assume that u is owned by Alice and fu(x) = 1. The probability that Bob
makes a mistake at this node is 1 − pu ≤ ln(1/pu) < log(1/pu) = dKL((πir |
π<ir xy)||(πir | π<ir y)). If fu(x) = 0 we still obtain that Bob makes a mistake at
node u with probability pu ≤ log(1/(1− pu)) = dKL((πir | π<ir xy)||(πir | π<ir y)).
Similar inequalities hold if Bob owns node u. Therefore, we get

Ex,y, ~tu(Si,r) = Ex,y, ~tu,π<i
r

(dKL((πir | π<ir xy)||(πir | π<ir y))+
dKL((πir | π<ir xy)||(πir | π<ir y)))

= I(X;πir | Y π<ir ) + I(Y ;πir | Xπ<ir ).

Thus, we have

Ex,y, ~tu(
∑C(π)
i=1 Si,r) =

∑C(π)
i=1 Ex,y, ~tu(Si,r)

≤
∑C(π)
i=1 I(X;πir | Y π<ir ) + I(Y ;πir | Xπ<ir )

= I(X;πr(X,Y ) | Y ) + I(Y ;πr(X,Y ) | X)
= ICint(πr, µ).

Let Si be the indicator random variable that a mistake occured at step i
during execution of τ . Using Lemma 8.25 we obtain

Ex,y, ~tu,r

C(π)∑
i=1

Si

 = Ex,y, ~tu,r

C(π)∑
i=1

Si,r

 ≤ Er(ICint(πr, µ)) = ICint(π, µ).
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Now, we put all the pieces together and finish the proof Theorem 8.23.

Proof of 2 implies 1 in Theorem 8.23.
Let f : X × Y → Z and ε ≥ 0 be given. Let π be a public-coin protocol

achieving internal information cost of ICint,pub(f, ε) + 1 on every distribution.
By Proposition 4.3 we know that CR,3ε(f) = maxµ C

µ
D,3ε(f). Fix µ to be a

distribution that achieves the maximum on the right hand side.
Apply the compression scheme described above to obtain the protocol τk,γ

with parameters k = ICint(π, µ)/ε and γ = ε2/ ICint(π, µ). The probability
(taken over public coin flips and inputs) that τk,γ outputs an incorrect value is
bounded above by the sum of probabilities of the following three events:

1. the number of mistakes in τk,γ is more than k, the probability of which
is P (S ≥ k) ≤ E(S)/k = ICint(π, µ)/k = ε by Markov’s inequality and
Lemma 8.26,

2. the protocol for finding the first mistake fails, the probability of which is,
by union bound, at most kγ = (ICint(π, µ)/ε) · (ε2/ ICint(π, µ)) = ε,

3. given that the output of τk,γ matches that of π, the protocol π could still
output the wrong value with probability at most ε.

It follows that for some choice of public coins the probability of success at least
1 − 3ε is achieved, when the probability is taken only over the random inputs.
Hence we have CR,3ε(f) = CµD,3ε(f) = O(k log(C(π)/γ)) = O((ICint(π, µ)/ε) ·
(log((C(π) ICint(π, µ))/ε2))) = Õ(ICint(π, µ)). We have

CR,ε(f) = Θ(CR,3ε(f)) = Õ(ICint(π, µ)) = Õ(ICint,pub(f, ε)) = Õ(ICint(f, ε)),

where the first step follows from sequential repetition and the last step follows
since f is bold.

In particular, we have shown that getting rid of private randomness in the
definition of information cost is equivalent, up to logarithmic factors, to the
direct-sum theorem for the randomized communication complexity.

We end this section with a remark that the question of private vs public
randomness and how it affects the direct sum has appeared before, although in
a very different context. The following theorem is due to Feder et al. [FKNN95].

Theorem 8.27 (FKNN1995). Let f : {0, 1}n × {0, 1}n → {0, 1} be a partial
function. Then

C̃pR(f) = Θ(C̃R(f)).

Proof. Clearly, CR(fk) ≤ CpR(fk). In addition, by Theorem 4.2 we have CpR(fk) =
O(CR(fk) + log kn).
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A Upper Bound on the Monotone Universal Com-
position Relation

The proof of Tardos and Zwick [TZ97] is based on Hamming error-correcting
codes, which we briefly review here. Let n = 2r − 1. Hamming code encodes
messages of length n − r over a binary alphabet into codewords of length n as
follows. The bits at positions 2i for i = 0, . . . , r − 1 are parity bits, the rest
are (unmodified) message bits. For each i = 0, . . . , r − 1, the bit at position
2i is computed as a parity of message bits appearing at indices that contain
2i in their binary expansion. To correct a single error, the receiver computes
parity bits of a received codeword, XORs those bits with the parity bits of the
received codeword, and the result of the XOR operation encodes the index of
the error. Observe that the total number of codewords with at most one bit
of error is 2n−r(n + 1) = 2n, i. e., distance-1 Hamming neighborhoods of the
valid codewords partition the space of all strings of length n. We shall take the
correct message as a representative for a block of this partition.

The trivial upper bound on C(Un,k) is k(n+log n) and a trick due to Karch-
mer [Kar89] can reduce it to k(n + log∗ n). Next, we show how to modify the
algorithm of Tardos and Zwick [TZ97] to handle the monotone case and show
C(Un,k) ≤ k(n+ 4). We believe this was not pointed out before.

Proposition A.1. C(Umn,1) ≤ n+ 4.

Proof. In Umn,1, Alice is given x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n with
a promise that there exists i with xi = yi = 1. Their job is to find such an
index i. We shall describe a protocol that achieves this task with n+ 4 bits of
communication. Let n = 2r − 1 + s where 0 ≤ s ≤ 2r, and define n1 = 2r−1 − 1
and n2 = s+ 2r−1. Let x1 be the prefix of x of length n1 and x2 be the suffix of
x of length n2, thus concatenation of x1 with x2 is the whole string x. Define
y1 and y2 similarly. Alice regards x1 as a codeword (possibly with an error)
from the Hamming code of length n1. Let msg(x1) denote the representative of
a block, to which x1 belongs. Alice sends msg(x1) to Bob.

If |msg(x1)∩y1| ≥ 2 then Bob sends 0 to Alice together with y1. Alice finds
an index i such that xi1 = msg(x1)i = yi1 = 1, which is guaranteed to exist, and
sends it to Bob. In this case, the whole communication takes (2r−1 − r) + (1 +
2r−1 − 1) + (r − 1) ≤ n bits.

Otherwise, if |msg(x1) ∩ y1| ≤ 1 Bob sends 1 to Alice together with y2. If
Alice finds an index i such that yi2 = xi2 = 1, then she sends 0 to Bob along with
index i. In this case the whole communication takes (2r−1− r) + (1 +n2) + (1 +
log n2) ≤ n+ 4 bits.

The remaining case is when Alice does not find the desired index in the
second half of the input, so she notifies Bob by sending 1 to him. If |msg(x1)∩
y1| = 1, Bob sends 0 to Alice together with the only index i from the intersection,
since Alice must have xi1 = msg(x1)i = 1, for otherwise the promise of the
problem would be violated. If |msg(x1) ∩ y1| = 0, Bob sends 1 to Alice, and
Alice responds with the index i such that xi1 6= msg(x1)i, as this is the only
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candidate for the answer. In both last cases the whole communication takes
(2r−1 − r) + (1 + n2) + 1 + r ≤ n+ 2.

Corollary A.2. C(Umn,k) ≤ k(n+ 4).
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