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Abstract

We develop a new local characterization of the zero-error information complexity function for two
party communication problems, and use it to compute the exact internal and external information com-
plexity of the 2−bit AND function: IC(AND, 0) = C∧ ≈ 1.4923 bits, and ICext(AND, 0) = log2 3 ≈
1.5839 bits. This leads to a tight (upper and lower bound) characterization of the communication
complexity of the set intersection problem on subsets of {1, . . . , n}, whose randomized communication
complexity tends to C∧ · n± o(n) as the error tends to zero.

The information-optimal protocol we present has an infinite number of rounds. We show this
is necessary by proving that the rate of convergence of the r−round information cost of AND to
IC(AND, 0) = C∧ behaves like Θ(1/r2), i.e. that the r-round information complexity of AND is
C∧ + Θ(1/r2).

We leverage the tight analysis obtained for the information complexity of AND to calculate and prove
the exact communication complexity of the set disjointness function Disjn(X,Y ) = ¬∨n

i=1 AND(xi, yi)
with error tending to 0, which turns out to be = CDISJ · n ± o(n), where CDISJ ≈ 0.4827. Our
rate of convergence results imply that an optimal protocol for set disjointness will have to use ω(1)
rounds of communication, since every r-round protocol will be sub-optimal by at least Ω(n/r2) bits of
communication.

We also obtain the tight bound of 2
ln 2

k ± o(k) on the communication complexity of disjointness of
sets of size ≤ k. An asymptotic bound of Θ(k) was previously shown by H̊astad and Wigderson.

1 Introduction

Information theory as the primary mathematical tool for analyzing communication was first discovered by
Shannon in the late 1940’s [37]. In particular, Shannon introduced his entropy function H(X) to measure the
amount of information contained in a random variable X. Shannon’s source coding theorem – also known
as the noiseless coding theorem – postulates that in the limit the per-message cost of transmitting a stream
of messages x1, x2, . . . independently distributed according to X is exactly H(X). In the 65 years since its
introduction, information theory has been developed in many different directions. An early milestone was the
“one-copy” version of Shannon’s theorem, attained by Huffman coding [21] – showing that on average even
a single copy of x ∼ X can be encoded using < H(X) + 1 bits. Other achievements include the Slepian-Wolf
theorem [41], which essentially says that an analogue of Shannon’s theorem holds even when the receiver has
some information about the input that is unknown to the sender. Overall, while some notable open problems
remain, it is fair to say that at least in the two terminal case the data transmission problem is very well
understood, with information theory being the primary tool in providing this understanding. While many of
the same results could, in principle, have been obtained using direct combinatorial techniques, information
theoretic formalism makes the proofs both much simpler and more illuminating.
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Communication complexity [43] can be viewed as the generalization of transmission problems to general
tasks performed by two (or more) parties over a communication channel. Communication complexity is much
more general than one-way transmission, but unlike circuit complexity, it is still amenable to lower bounds
proofs by a broad range of techniques [27]. Furthermore, communication complexity lower bounds have found
many applications, for example in obtaining tight bounds on streaming algorithms and data structures. In
addition, some of the most promising approaches for strong circuit lower bounds that appear viable, such as
Karchmer-Wigderson games and ACC lower bounds [26, 5] involve communication complexity lower bounds.
Thus, at the moment, developing tools in communication complexity is one of the most promising approaches
for making progress within computational complexity.

The earliest communication complexity lower bound techniques to be developed were combinatorial in
nature. By representing the two-party function f using a 0/1-matrix Mf , and studying its combinatorial
and analytic properties one obtains lower bounds on f ’s communication complexity in a variety of different
models. Most existing state-of-the-art lower bounds on the communication complexity of specific problems,
including recently obtained ones such as the recent lower bounds for Gap Hamming Distance [13, 39] fall
into this broad category.

Despite information theory being so successful in reasoning about one-way communication, it took a
while until information theory has been adopted into the communication complexity toolbox. Indeed, the
first applications of information in communication complexity [1, 14] were in the context of one-way and
simultaneous message communication complexity, which is most directly related to the classical transmission
setting. It was not until the work of Bar-Yossef et al. [3] that these techniques were extended to the two-way
setting. Further developments [4, 10, 8] showed that information-theoretic notions generalize nicely, at least
to two-party communication complexity. One can define the information complexity of a task as the two-
party analogue of Shannon’s entropy. Shannon’s entropy of a random variable X captures the amount of
information contained in one sample – the least amount of information that needs to be conveyed to transmit
an x ∼ X. The information complexity of an interactive task T is the least amount of information about
their inputs that Alice and Bob need to disclose to each other in order to perform T . Information complexity
is similar to Shannon’s entropy in that it captures exactly the amortized communication complexity of
computing n independent copies of T over a noiseless binary channel as n→∞. Also, like Shannon’s entropy,
information complexity satisfies the direct sum property, i.e. it is additive: the information complexity of
performing two independent tasks (T1, T2) is equal to the sum of the information complexities of T1 and T2

[10, 8].
Shannon’s information theory has two broad benefits in addressing communication problems. Firstly, it

gives us a set of simple yet powerful tools for reasoning about transmission problems and more broadly about
relationships between interdependent random variables. Tools that include mutual information, the chain
rule, and the data processing inequality [16]. It is this benefit that has been primarily used in prior works
involving information-theoretic tools in communication complexity [1, 14, 12, 3, 23, 4]. Secondly, in the
context of transmission problems – starting with Shannon’s noiseless coding theorem – information theory
is known to give tight precise bounds on rates and capacities. In fact, unlike computational complexity,
where we often ignore constant, and sometimes even polylogarithmic, factors, a large fraction of results in
information theory provide us with precise answers up to additive lower-order terms. For example, we know
that sending a sequence of random digits would take exactly log2 10 ≈ 3.322 bits per digit, and that the
capacity of a binary symmetric channel with substitution probability 0.2 is exactly 1−H(0.2) ≈ 0.278 bits
per symbol. Generally speaking, prior to this work, this benefit has not been fully realized in an interactive
communication complexity scenario. In this work, we explore and develop analytic machinery needed to bring
tight bounds into the realm of communication complexity. In particular, we use these tools to calculate the
tight communication complexity of the set disjointness function.

The set disjointness problem is one of the oldest and most studied problems in communication complexity
[27]. In the two party setting, Alice and Bob are given subsets X,Y ⊂ [n], respectively, and need to output
1 if X ∩ Y = ∅, and 0 otherwise. Thus the disjointness function Disjn can be written as Disjn(X,Y ) =∧n
i=1(¬Xi ∨ ¬Yi). In the deterministic communication complexity model, it is easy to show that Disjn has

communication complexity n+ 1. In the randomized communication complexity model – which is the focus
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of this paper – an Ω(n) lower bound was first proved by Kalyanasundaram and Schnitger [25]. The proof
was combinatorial in its nature. A much simpler combinatorial proof was given by Razborov a few years
later [35]. In terms of upper bounds on the communication complexity of disjointness, an n + 1 bound is
trivial. No better bound was known prior to this work, although by examining the problem, one can directly
convince oneself that there is a protocol for Disjn that uses only (1 − ε)n communication for some small
ε > 0 – so that the deterministic algorithm is suboptimal. Another set of techniques which were successfully
applied to versions of disjointness, especially in the quantum and multiparty settings [36, 15, 40] are analytic
techniques. Analytic techniques such as the pattern matrix method [38], allow one to further extend the
reach of combinatorial techniques.

The first information-theoretic proof of this bound was given by Bar-Yossef et al. [3]. While not materially
improving the lower bound, the information-theoretic approach was extended to the multi-party number-
in-hand setting [12, 23] with applications to tight lower bounds on streaming algorithms. At the core of
the proof is a direct-sum reduction of proving an Ω(n) bound on Disjn to proving an Ω(1) bound on the
information complexity of AND. The direct sum in this and other proofs follows from an application of
the chain rule for mutual information – one of the primary information-theoretic tools. More recently, an
information complexity view of disjointness lead to tight bounds on the ability of extended formulations
by linear programs to approximate the CLIQUE problem [9]. This suggests that information complexity
and a better understanding of the disjointness problem may have other interesting implications within
computational complexity.

A problem related to disjointness is Set Intersection Intn: now Alice and Bob do not want to just
determine whether X and Y intersect, but both want to learn the intersection set X ∩ Y . For this problem,
even in the randomized setting, a lower bound of n bits on the communication is trivial: by fixing X = [n]
we see that in this special case the problem will amount to Bob sending his input to Alice (since [n]∩Y = Y )
– which clearly requires ≥ n bits. Thus the randomized communication complexity of this problems lies
somewhere between n and 2n – the trivial upper and lower bounds. Note that the intersection problem is
nothing but n copies of the two-bit AND function. Therefore, determining the communication complexity of
Intn is equivalent to determining the information complexity of the two-bit AND function by the information
= amortized communication connection [10].

Essentially independently of the communication complexity line of work described above, a study of the
AND/intersection problem has recently originated in the information theory community. A series of papers
by Ma and Ishwar [29, 31] develops techniques and characterizations which allow one to rigorously calculate
tight bounds on the communication complexity of Intn and other amortized functions on the condition
that one only considers protocols restricted to r rounds of communication. These techniques allow one to
numerically (and sometimes analytically) compute the information complexity of the two-bit AND function
– although the numerical computation is not provably correct for the most general unbounded-round case
since the rate of convergence of r-round information complexity down to the true information complexity is
unknown. Furthermore, their results about the AND function are non-constructive in the sense that they
do not exhibit a protocol achieving their bounds. Nonetheless, numerical calculations produced by Ma and
Ishwar do point at convergence to 1.4923 bits for the AND function [22]. As discussed below, our tight
upper and lower bounds are consistent with this evidence.

The main result of this paper is giving tight bounds on the information and communication complexity
of the AND, Intn, and Disjn functions. As noted above, being able to obtain tight bounds is the second
benefit information theory provides – one that has been largely untapped by the communication complexity
community. In this work we begin to realize this benefit by precisely “solving” the randomized communication
complexity of disjointness. We give a (provably) information-theoretic optimal protocol for the two-bit AND
function. Combined with prior results – and new additional technical work – this optimality immediately
gives a tight optimal randomized protocol for Intn that uses C∧ · n ± o(n) bits of communication and fails
with a vanishing probability. Here C∧ ≈ 1.4923 is an explicit constant given as a maximum of a concave
analytic function. We then apply the same optimal result to obtain the optimal protocol for set disjointness,
showing that the best vanishing error randomized protocol for Disjn will take CDISJ · n ± o(n) bits of
communication, where CDISJ ≈ 0.4827 is another explicit constant (which we found to be surprisingly low).
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The fact that we need the bounds to be exact throughout requires us to develop some new technical tools
for dealing with information complexity in this context. For example, we show that unlike communication
complexity, the randomized ε-error information complexity converges to the 0-error information complexity
as ε→ 0.

Applying what we’ve learned about the AND function to the sparse sets regime, we are able to determine
the precise communication complexity of disjointness Disjkn where the sets are restricted to be of size at
most k. H̊astad and Wigderson [20] showed that the randomized communication complexity of this problem
is Θ(k). We sharpen this result by showing that for vanishing error the communication complexity of Disjkn
is 2

ln 2k ± o(k) ≈ 2.885k ± o(k).
Interestingly the optimal protocol we obtain for AND is not an actual protocol in the strict sense of

communication protocols definitions. One way to visualize it is as a game show where Alice and Bob both
have access to a “buzzer” and the game stops when one of them “buzzes in”. The exact time of the “buzz
in” matters. If we wanted to simulate this process with a conventional protocol, we’d need the time to be
infinitely quantized, with Alice and Bob exchanging messages of the form “no buzz in yet”, until the buzz in
finally happens. Thus the optimal information complexity of AND is obtained by an infimum of a sequence
of conventional protocols rather than by a single protocol.

It turns out that the unlimited number of rounds is necessary, both for the AND function and for DISJn.
Our understanding of information complexity in the context of the AND function allows us to lower bound
the amount of communication needed for DISJn if we restrict the number of rounds of interaction between
players to r. R(Disjn, 0

+, r) ≥ (CDISJ + Ω(1/r2)) · n. In particular, any constant bound on the number of
rounds means a linear loss in communication complexity. There are well-known examples in communication
complexity where adding even a single round causes an exponential reduction in the amount of communication
needed [32]. There are also examples of very simple transmission problems where it can be shown that two
rounds are much better than one, and more than two are better yet [33, 34]. However, to our knowledge,
together with a very recent independently obtained result on rounds in the communication complexity of
small set intersection [11], this is the first example of a “natural” function where an arbitrary number of
additional rounds is provably helpful.

Open problems

This paper shows that the information-theoretic tools and precise bounds can be extended into communi-
cation complexity where only asymptotic bounds can usually be proved. This opens up a set of problems
involving extending such bounds further into communication complexity and related models using informa-
tion theoretic analysis. We list problems here in an increasing order of generality. Additional open problems
within the more general context of interactive coding theory can be found in [7].

Extensions to the exact communication complexity of read-once formulas. The first set of problems
consists of extending the exact bounds to more general read-once formulas. Non-exact linear bounds are
known, for example, for bounded-depth AND-OR trees [24, 28]. However, it is already not clear how to
extend our exact results to a depth-two tree – i.e. to an OR of

√
n copies of Disj√n:

F (x1, . . . , xn, y1, . . . , yn) :=

√
n−1∨
i=0

√
n∧

j=1

(
¬xi√n+j ∨ ¬yi√n+j

)
.

It is not hard to see that the vanishing-error randomized communication complexity of the depth-two problem
is bounded from above by CDISJ

2 n. However, this bound is not tight, and the actual constant in front of n
should be slightly lower. It would be interesting to compute this constant, or at least figure out an algorithm
for computing it.

Communication and information complexity with non-negligible error. Our analysis for the in-
formation complexity of AND is carried out for the setting where error is not allowed. Consequently our
communication complexity bounds apply to the setting where the error goes to 0 as n grows. It would be
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interesting to understand the behavior of IC(ANDε), where ANDε is the task of computing the AND of
two bits with error at most ε. By the continuity of information complexity which we prove, we know that
this quantity converges to the (zero-error) information complexity of AND. Of particular interest is the rate
of convergence of IC(ANDε) to IC(AND):

Open Problem 1.1. What is the asymptotic behavior of IC(AND)− IC(ANDε) as ε→ 0?

One plausible conjecture is that it behaves as Θ(H(ε)).
A closely related problem is computing the communication complexity of DISJn with non-negligible

error ε > 0. It is reasonable to assume (although would be interesting to prove) that for each ε it behaves
as CDISJε · n ± o(n) for a constant CDISJε < CDISJ . We do not know how to find this constant given ε.
Once again, it would also be interesting to understand the asymptotic behavior of CDISJ − CDISJε .

The computability of information complexity and its rate of convergence in the number of
rounds. More generally, we do not have an algorithm that given the truth table of a function F (X,Y )
calculates the (zero-error) information complexity of this function. Note we can compute the communication

complexity of Fn for any n, and we have CC(Fn)
n ↘ IC(F ), which gives us a sequence which decreases down

to IC(F ), but we do not have a similar sequence of lower bound. We can construct similar lower bounds,
following the methodology of Ma and Ishwar [31] if we fix the number of rounds r the computation is allowed
to use. Thus we can compute ICr(F ) – the information cost of the best r-round protocol computing F .
Unfortunately, once again we only know that ICr(F ) ↘ IC(F ) with no effective rate of convergence. Thus
figuring this rate of convergence, or at least an upper bound on it, is sufficient for the computability of
IC(F ).

The rate of convergence of ICr(F )↘ IC(F ) is a very interesting question in its own right. The question
is about the usefulness of additional rounds in giving an information-theoretically efficient protocol for F ,
and equivalently whether extra rounds of communication are useful for computing n copies of F for large n.
We showed that in the case of F = AND, the rate of convergence is 1/r2. We conjecture that this is always
the right rate:

Conjecture 1.2. For all F (X,Y ), ICr(F )− IC(F ) = OF (1/r2).

As we’ve just mentioned the AND function shows this is the best we can hope for in general. An
example where this bound is tight is the single-bit transmission function F (X,Y ) = X. Its information cost
is ICr(F ) = IC(F ) = 1 for all r ≥ 1. It is also an interesting open problem what asymptotic behaviors can
ICr(F ) − IC(F ) exhibit as r → ∞. A recent paper by Brody et. al. [11] shows a very interesting tradeoff
between rounds and information for F = EQm the equality function on m bits, but in the regime where
r � m. Note that here we are interested in the rate of convergence where r is arbitrarily large compared to
the number of variables in F .

The zero-error communication complexity. Another interesting question is extending the informa-
tion = amortized communication results to zero-error randomized communication protocols. Currently we
only know that the internal (zero-error) information complexity of a function F is equal to its vanishing-
error amortized communication complexity. This connection fails when one considers zero-error amortized
communication complexity. An extreme example of this is the equality function EQn on n-bit strings.
The information complexity of this function is O(1) [8], and its amortized vanishing error communication
complexity in indeed constant [18]. On the other hand, it can be shown that the zero-error amortized
communication complexity of EQn is Ω(n). We conjecture that the (average case) amortized zero-error
communication complexity of functions is exactly captured by the external information complexity – the
amount of information the parties need to reveal to an external observer to compute F :

Conjecture 1.3. For all F we have limn→∞
CC(Fn,0)

n = ICext(F ).

We note that using techniques similar to Harsha et al. [19], we can show the ≤ direction of this conjecture.
The external information complexity of AND, which we show to be equal to log2 3 ≈ 1.585, exactly matches
the bound on the amortized communication complexity of AND previously established by Ahlswede and Cai
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[2]. This result provides the strongest piece of evidence to date to support this conjecture. In addition, the
conjecture is true for product prior distributions µ = µx × µy, since over product distributions the external
and internal information costs coincide. This leads to a direct sum theorem for zero-error average-case
communication complexity over product distributions. Further discussion on the conjecture can be found in
[7].

Multi-party information complexity. Generalizing further out, it would be very interesting to develop
the “right” notions for information complexity in the multi-party communication complexity setting. There
are examples where information-theoretic methods were successfully applied to multiparty number-in-hand
communication [12]. However, it is not clear whether (and how) similar techniques can apply to the number-
on-the-forehead model. One obstacle here is the existence of private multi-party protocols that allow three
or more parties to evaluate a function of their inputs while only learning the value of the function [6].

2 Our main results

Let π be a communication protocol attempting to solve some two-party function f(x, y) with zero error
where inputs are sampled according to a joint distribution µ. Our first contribution is a characterization of
the zero-error information cost function ICµ(f, 0) in terms of certain local concavity constrains. A related –
but more abstract – characterization was given in the information theory literature by Ma and Ishwar [29].

Lemma 2.1. For any function f : X × Y → Z there exist a family C(f) of functions C : ∆(X × Y)→ R+

satisfying certain local concavity constraints, such that for any distribution µ, and any protocol π solving f
with zero error under µ, it holds that

∀ C ∈ C(f) C(µ) ≤ ICµ(π).

Furthermore, ICµ(f, 0) is the point-wise maximum of C(f).

This lemma gives a very general technique for proving information-complexity lower bounds, and plays
a central role in one of our main results: The exact information complexity of the 2-bit AND function
f(x, y) = x ∧ y. Since the inputs of the parties consist of only 2 bits, the information complexity of this
function is trivially bounded by 2. By fixing x = 1, it is also easy to see that 1 is a lower bound on
the information complexity. We present a zero-error “clocked” protocol which has an infinite number of
rounds and computes the AND function, under any input distribution µ, with information cost at most
C∧ ≈ 1.4923. The maximum external information cost of our protocol is log2 3 ≈ 1.58496. While the
analysis itself is nontrivial, the main bulk of effort is proving this protocol is in fact optimal, both in the
internal and external sense:

Theorem 2.2.
IC(AND, 0) = C∧ ≈ 1.4923

Theorem 2.3.
ICext(AND, 0) = log2 3 ≈ 1.58496

We also analyze the rate of convergence to the optimal information cost, as the number r of permitted
rounds increases. We view this result as a step towards proving that information complexity of functions is
computable.

Theorem 2.4. For all µ ∈ ∆({0, 1}2) with full support we have

ICrµ(AND, 0) = ICµ(AND, 0) + Θµ

(
1

r2

)
.

Moreover, the lower bound holds even for µ such that µ(1, 1) = 0.
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In the second part of our work we show how tight information bounds may lead to exact communication
bounds. We first prove a theorem which characterizes the exact randomized communication complexity
of “

∨
”-type functions with error tending to zero, in terms of an informational quantity IC0(f, 0) which

informally measures the information cost required to solve f under the “worst” distribution supported on
f−1(0)1.

Theorem 2.5. For any Boolean function f : {0, 1}k×{0, 1}k → {0, 1}, let gn(X,Y ) := ∨ni=1f(xi, yi), where
X = {xi}ni=1, Y = {yi}ni=1 and xi, yi ∈ {0, 1}k. Then for all ε > 0, there exists δ = δ(f, ε) > 0 such that
δ → 0 as ε→ 0 and

(IC0(f, 0)− δ) · n ≤ Rε(gn) ≤ IC0(f, 0) · n+ o(n) · k.

Finally, we tie in all of our results to prove the exact randomized communication complexity of the Disjn
function, with error tending to zero. For the general disjointness function we get:

Theorem 2.6. For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as ε→ 0 and

(CDISJ − δ) · n ≤ Rε(gn) ≤ CDISJ · n+ o(n).

where CDISJ ≈ 0.4827 bits.

For the case of disjointness DISJkn of sets of size ≤ k we get

Theorem 2.7. Let n, k be such that k = ω(1) and n/k = ω(1). Then for all constant ε > 0,(
2

ln 2
−O(

√
ε)

)
· k − o(k) ≤ Rε(DISJkn) ≤ 2

ln 2
· k + o(k).

Our results rely on new insights for understanding communication protocols from an informational point
of view, as functionals on the space of distributions. This requires further development of some non-trivial
properties of the information cost function. One such property is the continuity of the information complexity
function at ε = 0:

Theorem 2.8. For all f : X × Y → Z and µ ∈ ∆(X × Y) we have

lim
ε→0

ICµ(f, ε) = ICµ(f, 0), (1)

lim
ε→0

ICext
µ (f, ε) = ICext

µ (f, 0). (2)
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3 Organization

The paper is organized as follows. Following preliminaries, in Sections 5 and 6 we develop new tools and
properties of the IC function, which will be essential to the proof of the main results of this paper. We begin
by stating and proving our local characterization of the zero error information cost function in Section 5,
and then use this new view to prove the continuity of the zero error IC function (Section 6). In Section 7
we analyze the zero error external and internal information complexity of the AND function. We begin by
presenting a zero-error continuous protocol and analyzing its internal and external information cost, and then

1Note that this quantity is not zero, since we will range only over protocols which solve f under any input.
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use the machinery developed in preceding sections to prove the optimality of our protocol. In section 7.9 we
analyze the rate of convergence of the r-round information complexity of AND to IC(AND, 0), and present
a natural discertization of our “clocked” protocol, which achieves the aforementioned rate. In section 8 we
prove Theorem 2.5. Finally, in Sections 8.3 and 9, we tie in all our results to prove the exact communication
complexity of DISJn (Theorem 2.6) and DISJkn (Theorem 2.7).

4 Preliminaries

4.1 Notation

Capital letters are reserved for random variables (e. g., A, B, C), calligraphic letters for sets (e. g., X ,Y,Z, . . .),
and small letters for elements of sets (e. g., a, b, c, . . .). For typographical purposes we shall write A1A2 · · ·An
to denote the random variable (A1, A2, . . . , An) and not the random variable that is the product of the Ai,
unless otherwise specified.

We use [n] to denote the set {1, . . . , n}.
For random variables A and Bi (i ∈ [n]) and elements bi ∈ rangeBi (i ∈ [n]) we write Ab1b2···bn to denote

the random variable A conditioned on the event “B1 = b1, B2 = b2, . . . , Bn = bn”.
Whenever convenient we shall view a probability distribution µ on a sample space X × Y as a |X | × |Y|

matrix, where the rows are indexed by elements of X and columns are indexed by elements of Y in some
standard order (e. g., lexicographic order when X and Y are sets of binary strings). For example, we shall

often write distribution µ on {0, 1}×{0, 1} as µ =
α β
γ δ

meaning that µ(0, 0) = α, µ(0, 1) = β, µ(0, 1) = γ,

and µ(1, 1) = δ.
For a distribution µ on X × Y we use µT to denote the probability distribution on Y × X that is given

by the transpose of the matrix representation of µ.

4.2 Communication Complexity

The two-party communication model was introduced by Yao [43] in 1979. In this model, two parties,
traditionally called Alice and Bob, are trying to collaboratively compute a known Boolean function f : X×Y.
Each party is computationally unbounded; however, Alice is only given input x ∈ X and Bob is only
given y ∈ Y. In order to compute f(x, y), Alice and Bob communicate in accordance with an agreed-
upon communication protocol π. Protocol π specifies as a function of transmitted bits only whether the
communication is over and, if not, who sends the next bit. Moreover, π specifies as a function of the
transmitted bits and x the value of the next bit to be sent by Alice. Similarly for Bob. The communication
is over when both parties know the value of f(x, y). The cost of the protocol π is the number of bits
exchanged on the worst input. The transcript of a protocol is a concatenation of all the bits exchanged
during the execution of the protocol.

There are several ways in which the deterministic communication model can be extended to include
randomization. In the public-coin model, Alice and Bob have access to a shared random string r chosen
according to some probability distribution. The only difference in the definition of a protocol is that now
the protocol π specifies the next bit to be sent by Alice as a function of x, the already transmitted bits,
and a random string r. Similarly for Bob. This process can also be viewed as the two players having an
agreed-upon distribution on deterministic protocols. Then the players jointly sample a protocol from this
distribution. In the private-coin model, Alice has access to a random string rA hidden from Bob, and Bob
has access to a random string rB hidden from Alice.

Definition 4.1 (Randomized Communication Complexity). For a function f : X ×Y → Z and a parameter
ε > 0, Rε(f) denotes the cost of the best randomized public coin protocol for computing f with error at
most ε on every input.
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Observe that for the purpose of the communication complexity, once we allow public randomness, it
makes no difference whether we permit the players to have private random strings or not. This is because the
private random strings can be simulated by parts of the public random string, which is infinite. However, for
information complexity it is crucial to consider protocols that permit both private and public randomness.
Thus for a protocol π we use Π(x, y) to denote the concatenation of the transcript of π and the public
randomness when the protocol runs on inputs (x, y). The worst-case number of bits transmitted in π is
denoted by CC(π). For i ∈ [CC(π)] we write Πi(x, y) to denote the ith bit transmitted in Π on input (x, y)
if it exists.

For the pre-1997 results on communication complexity see the excellent monograph by Kushilevitz and
Nisan [27].

4.3 Information Theory

In this section we briefly provide the essential information-theoretic concepts required to understand the rest
of the paper. For a thorough introduction to the area of information theory, the reader should consult a
classical monograph by Cover and Thomas [17]. Unless stated otherwise, all log’s in this paper are base-2.

We use ∆(X ) to denote the family of all probability distributions on X .

Definition 4.2. Let µ be a probability distribution on sample space Ω. Shannon entropy (or just entropy)
of µ, denoted by H(µ), is defined as H(µ) :=

∑
ω∈Ω µ(ω) log 1

µ(ω) .

For a random variable A we shall write H(A) to denote the entropy of the induced distribution on the
range of A. The same also holds for other information-theoretic quantities appearing later in this section.

For the Bernoulli distribution with probability of success p we write H(p) = −p log p− (1− p) log(1− p).

Definition 4.3. Conditional entropy of a random variable A conditioned on B is defined as

H(A|B) = Eb(H(A|B = b)).

Fact 4.4. H(AB) = H(A) +H(B|A).

Definition 4.5. The mutual information between two random variable A and B, denoted by I(A;B) is
defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

Fact 4.6 (Chain Rule). Let A1, A2, B,C be random variables. Then

I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Fact 4.7. Let A,B,C,D be four random variables such that I(B;D|AC) = 0. Then

I(A;B|C) ≥ I(A;B|CD)

Definition 4.8. Given two probability distributions µ1 and µ2 on the same sample space Ω such that
(∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler Divergence between is defined as

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

The connection between the mutual information and the Kullback-Leibler divergence is provided by the
following fact.
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Fact 4.9. For random variables A,B, and C we have

I(A;B|C) = Eb,c(D(Abc||Ac)).

Definition 4.10. Let µ1 and µ2 be two probability distributions on the same sample space Ω. Total variation
distance is defined as

‖µ1 − µ2‖ :=
1

2

∑
ω∈Ω

|µ1(ω)− µ2(ω)|.

Observe that ‖µ1 − µ2‖ = maxS⊆Ω |µ1(S)− µ2(S)| .

Fact 4.11 (Data Processing Inequality). Let A,B,C be random variables on the same sample space, and
let D be a probabilistic function of B only. Then we have

I(A;D|C) ≤ I(A;B|C).

The above concepts were defined for the discrete probability distributions. In this paper we shall also
work with continuous probability distributions. There are a lot of subtleties in going from discrete case to
continuous case in the area of information theory; however, we shall not encounter those subtleties. For our
purposes, the above definitions and facts generalize to the continuous case in a straightforward way.

For instance, Kullback-Leibler divergence between two continuous distributions over R given by their
probability density functions (PDFs) p and q is defined as

D(p||q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx.

4.4 Information Cost (IC)

Definition 4.12. The internal information cost of a protocol π with respect to a distribution µ on inputs
from X × Y is defined as

ICµ(π) := I(Π(X,Y );X|Y ) + I(Π(X,Y );Y |X).

The external information cost of π with respect to µ is

ICext
µ (π) := I(Π(X,Y );XY ).

Lemma 4.13. [10] For any distribution µ, ICµ(π) ≤ CC(π).

The information complexity of f with respect to µ is

ICµ(f, ε) := inf
π

ICµ(π),

where the infimum ranges over all (randomized) protocols π solving f with error at most ε when inputs are
sampled according to µ. Note that we cannot replace the above quantifier with a min, since the information
complexity of a function may not be achievable by any fixed (finite-round) protocol2.

Similarly, the external information complexity of f with respect to µ is defined as

ICext
µ (f, ε) := inf

π
ICext

µ (π).

The prior-free information complexity of a function f (or simply, the information complexity of f) with
error ε is defined as

IC(f, ε) := inf
π

max
µ a distribution on X × Y

ICµ(π).

where the infimum is over protocols that work correctly for each input, except with probability ε. The
external prior-free information complexity is defined analogously.

The special case IC(f, 0) is referred to as the zero error information complexity of f , and will be of
primary interest in this paper. It turns out that for this special case (ε = 0), we may reverse the order of
quantifiers:

2In fact, we shall see that this is the case for the AND function whose information complexity is analyzed in this paper.
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Theorem 4.14. [8]
IC(f, 0) = max

µ
inf

π correct on support of µ
ICµ(π),

i.e, we can choose the protocol dependent on the distribution and yet the information cost doesn’t decrease.

For r ∈ N, the r-round information complexity of a function f is defined as

ICrµ(f, ε) := inf
π

ICµ(π),

where the infimum ranges over all r-round protocols π solving f with error at most ε when inputs are sampled
according to µ. The r-round external information complexity is defined analogously.

5 Characterization of IC via Local Concavity Constraints

In this section we prove Lemma 2.1, a local characterization of the zero-error information cost function. More
precisely, for an arbitrary function f : X ×Y → Z we shall define a family C(f) of functions ∆(X ×Y)→ Z
satisfying certain local concavity constraints, and demonstrate that each member of C(f) is a lower bound
on the zero-error information cost function I(µ) := ICµ(f, 0) of f . It will be evident that I(µ) itself satisfies
the local concavity constraints, i. e., I(µ) ∈ C(f). Thus we obtain a new characterization of the zero-error
information cost of a function f as a point-wise maximum over all functions in the family C(f).

It turns out that the number of local concavity constraints used to define C(f) can be greatly reduced
if we assume that every bit sent in a protocol π, nearly achieving the information cost of f , is uniformly
distributed from an external point of view. We say that such a protocol is in normal form. In Section 5.1
we show that the normal form assumption can be made without loss of generality.

In Section 5.2 we describe the concavity constraints and demonstrate that they lead to the characterization
of the information cost described above.

5.1 Normal Form of a Protocol

Definition 5.1. We say that a protocol π is in normal form if for each fixing r of public randomness and
for each node u in the protocol πr

P (owner of u sends 0|Πr reaches u) = 1/2.

Lemma 5.2. Let π be a protocol on inputs from X ×Y and let µ ∈ ∆(X ×Y). For every δ > 0, there exists
a protocol πδ in normal form such that

1. πδ δ-simulates π i.e. for all x, y, Pr[π(x, y) 6= πδ(x, y)] ≤ δ. π(x, y) denotes the random variable for
the transcript of π on inputs x, y.

2. ICµ(πδ) ≤ ICµ(π).

Proof. Let ` be such that CC(π) · 2−` ≤ δ. In πδ, Alice and Bob try to simulate execution of π on (x, y).
Suppose that the players reached node u of π and it is Alice’s turn to speak. Let px = P (Alice sends 0 |
π reaches u,X = x) (X,Y ∼ µu, where µu is the distribution conditioned on reaching node u). Also let
p := P (Alice sends 0 | π reaches u). Note that p =

∑
x µ

u
x · px. To simulate sending the next bit, Alice first

uses private randomness to decide whether to send 0 or 1, just like in π. That is Alice samples a bit that is
0 w.p. px and 1 w.p. 1 − px. If the outcome is 0, Alice samples a random number v uniformly at random
from the interval [0, p]. If the outcome is 1, Alice samples v uniformly at random from interval (p, 1]. Then
Alice sends the first ` bits of the binary expansion of v to Bob. Lastly, Bob uses these bits to check if v < p
or v > p and decode the transmitted bit. If it turns out that the first ` bits do not suffice to decide whether
v < p or v > p then the players end the simulation and decide to abort (and incur an error). Note that both
Alice and Bob know p, so they know when to abort.
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Now the pdf of v, is q(v) =
∑
x µ

u
x · (px · (1/p)) for v ≤ p and q(v) =

∑
x µ

u
x · (1− px) · 1/(1− p) for v > p.

Since
∑
x µ

u
x · px = p, q(v) = 1 for all v ∈ [0, 1]. Therefore each bit in its binary expansion is uniform. This

proves that πδ is in normal form.
Simulation of a bit of protocol π fails if the first ` bits of v equal the first ` bits of p, which happens with

probability 2−`. Taking the union bound we get that the simulation fails only with probability CC(π) ·2−` ≤
δ.

Let B`,u denote the random variable for the ` bits transmitted by Alice to Bob after reaching node u in
πδ. Also let Bu denote the random variable for the bit to be sent by Alice to Bob in π after reaching node
u. Then the information cost corresponding to node u for π is I(Bu;X|Y ) and for πδ is I(B`,u;X|Y ). Also
let Ru denote the private randomness used by Alice to sample the ` bits in πδ. Since Ru and Bu determine
B`,u,

I(B`,u;X|Y ) ≤ I(BuRu;X|Y ) = I(Bu;X|Y ) + I(Ru;X|Y Bu) = I(Bu;X|Y )

I(Ru;X|Y Bu) = 0, since conditioned on the bit Bu to be sent, Ru consists of sampling a uniform random
number from [0, p] or from (p, 1], which is independent of X. We can similarly get that for all nodes v owned
by Bob, I(B`,v;X

′|Y ′) ≤ I(Bv;X
′|Y ′), where X ′, Y ′ ∼ µv. Hence ICµ(πδ) ≤ ICµ(π).

Remark 5.3. Similar result holds for the external information cost.

5.2 The Characterization

Definition 5.4. Let f : X×Y → Z be a given function. Define a family C(f) of all functions C : ∆(X×Y)→
R+ satisfying the following constraints:

• for all µ ∈ ∆(X × Y) if f |supp(µ) is a constant function then C(µ) = 0,

• for all µ, µA0 , µ
A
1 ∈ ∆(X × Y) if there exists a signal B that Alice can send starting from µ such that

P (B = 0) = P (B = 1) = 1/2, µA0 (x, y) = P (X = x, Y = y|B = 0), and µA1 (x, y) = P (X = x, Y =
y|B = 1) then

C(µ) ≤ C(µA0 )/2 + C(µA1 )/2 + I(X;B|Y ),

• for all µ, µB0 , µ
B
1 ∈ ∆(X × Y) if there exists a signal B that Bob can send starting from µ such that

P (B = 0) = P (B = 1) = 1/2, µB0 (x, y) = P (X = x, Y = y|B = 0), and µB1 (x, y) = P (X = x, Y =
y|B = 1) then

C(µ) ≤ C(µB0 )/2 + C(µB1 )/2 + I(Y ;B|X).

• for all µ, C(µ) ≤ log(|X | · |Y|).

Remark 5.5. The notation f |supp(µ) ≡ Constant means that both parties can determine the function’s
output under µ by looking at their own input - We do not consider the player’s output as part of the
protocol transcript, so the latter condition need not imply that the function is determined under µ from an
external point of view. The example f(0, 0) = 0, f(1, 1) = 1, µ(0, 0) = µ(1, 1) = 1/2 illustrates this point.

Note that each protocol induces a distribution over the leaves. For a protocol π, let Π denote the
transcript of the protocol when the inputs X,Y ∼ µ. Also let µt denote the distribution conditioning on
reaching leaf t i.e. µt(x, y) = Pr[X = x, Y = y|Π = t].

Lemma 5.6. Let f : X × Y → Z be a given function. Let π be a protocol in normal form. Then for all
C ∈ C(f) and all µ ∈ ∆(X × Y) we have C(µ) ≤ ICµ(π) + Et∼ΠC(µt).

Proof. [Proof by induction on c := CC(π)] When c = 0 the claim is clearly true, since there is only one leaf
t and µt = µ.

Assume the claim holds for all c-bit protocols where c ≥ 0. Consider a c+ 1-bit protocol π. Assume wlog
that Alice sends the first bit B. If this bit is 0 then Alice and Bob end up with a new distribution on the
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inputs µA0 , otherwise they end up with distribution µA1 . After the first bit, the protocol π reduces to a c-bit
protocol π0 if 0 was sent and π1 if 1 was sent. Since Alice’s bit is uniformly distributed we have

I(Π;X|Y ) = I(Π1;X|Y ) + I(Π≥2;X|YΠ1)
= I(B;X|Y ) + I(Π0;X|Y )/2 + I(Π1;Y |X)/2.

Similarly for I(Π;Y |X). Let Π0 denote the random variable for transcript of π0 and Π1 for π1. Thus we
obtain

ICµ(π) = ICµA0 (π0)/2 + ICµA1 (π1)/2 + I(X;B|Y )

≥ C(µA0 )/2− 1/2 · Et0∼Π0C(µ0t0) + C(µA0 )/2− 1/2 · Et1∼Π1C(µ1t1) + I(X;B|Y ) (by induction)

= C(µA0 )/2 + C(µA0 )/2 + I(X;B|Y )− Et∼ΠC(µt)

≥ C(µ)− Et∼ΠC(µt) (by properties of C)

Lemma 5.7. Let f : X × Y → Z be a given function. Let τ be a protocol that solves f correctly on all
inputs. Then for all C ∈ C(f) and all µ ∈ ∆(X × Y) we have C(µ) ≤ ICµ(τ)

Proof. Let Gπ denote the set of leaves t of π such that f |supp(µt) is constant. By Lemma 5.2, for all
δ > 0, there exists a protocol πδ in normal form that δ-simulates τ and ICµ(πδ) ≤ ICµ(τ). Then we have∑
t∈Gπδ

Pr[Πδ = t] ≥ (1 − δ). Moreover, by definition of C we have C(µt) = 0 for constant f |supp(µt) and

C(µ) ≤ log(|X × |Y|) for all µ. Thus by Lemma 5.6 it follows that that C(µ) ≤ ICµ(πδ) + δ · log(|X | · |Y|).
As it holds for all δ > 0, we have C(µ) ≤ ICµ(τ).

Corollary 5.8. For all f : X × Y → Z we have

1. ICµ(f, 0) ∈ C(f),

2. for all µ ∈ ∆(X × Y) and for all C ∈ C(f) we have ICµ(f, 0) ≥ C(µ).

3. for all µ ∈ ∆(X × Y) we have ICµ(f, 0) = maxC∈C(f) C(µ).

Remark 5.9. The above definitions and claims can be repeated for the external information cost. In the
concavity constraints, replacing I(X;B|Y ) and I(Y ;B|X) with I(XY ;B), we obtain a class Cext(f) of all
lower bounds on the Iext(µ) := ICext

µ (f). Repeating the steps of Lemma 5.6 and Lemma 5.7 but replacing
internal information cost with external information cost, we arrive at similar conclusions as in Corollary 5.8:

1. ICext
µ (f, 0) ∈ Cext(f),

2. for all µ ∈ ∆(X × Y) and for all C ∈ Cext(f) we have ICext
µ (f, 0) ≥ C(µ).

3. for all µ ∈ ∆(X × Y) we have ICext
µ (f, 0) = maxC∈Cext(f) C(µ).

6 On Continuity of IC

In [8] it was shown that the information cost function ICµ(f, ε) is convex in ε on the interval [0, 1]. An
immediate corollary is that the information cost is continuous in ε on the open interval (0, 1). Note that the
information cost is trivially continuous at ε = 1. However, this still left open a question whether ICµ(f, ε) is
continuous at ε = 0. In this section we prove that it is. This property turns out to be essential for our work.
We arrive at the result in two major steps: in Section 6.1 we take the matrix view of message transmission
in communication protocols, which in Section 6.2 lets us exploit the rectangular nature of protocols. We
show that protocols solving f with small probability of error must terminate with a distribution that with
high probability has all but a negligible weight on monochromatic rectangles. To turn such a protocol into
a zero-error protocol, the players may simply verify that their inputs belong to such a rectangle, and if so
they know the answer, otherwise they exchange the inputs.
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6.1 Matrix View of Message Transmission

Since information complexity only makes sense in the distributional communication model, we assume that
the players’ inputs come from a publicly known prior distribution µ. Let π be a communication protocol
under µ. Transmitting a bit in π is equivalent to updating the prior µ: As the players exchange bits, they
keep track of a sequence of priors µ1, . . . , µCC(π). The protocol dictates the rules for how prior µi+1 is
obtained from µi. More specifically, if Alice talks at step i then µi+1 is obtained from µi by multiplying rows
of µi by certain numbers, and if Bob talks at step i then µi+1 is obtained from µi by multiplying columns.
This equivalence of bit transmission and changes to the prior is formalized in the following lemma.

Lemma 6.1. Let µ, µ0, µ1 ∈ ∆(X × Y). The following two statements are equivalent:

1. There exists signal B that Bob can send such that µi(x, y) = P (X = x, Y = y | B = i) for i ∈ {0, 1}.

2. There exists t ∈ (0, 1) and δy0 ∈ [0, 1/t], δy1 ∈ [0, 1/(1− t)] (y ∈ Y) such that

• µ = tµ0 + (1− t)µ1

• (∀i ∈ {0, 1})(∀(x, y) ∈ X × Y)(µi(x, y) = δyi µ(x, y)).

Similarly for Alice, but with rows.

Proof. (⇒) By definition, µi(x, y) = P (X = x, Y = y|B = i), which by Bayes’ rule is equivalent to
µi(x, y) = P (B = i|X = x, Y = y)P (X = x, Y = y)/P (B = i). Since Bob is the speaker, P (B = i|X =
x, Y = y) = P (B = i|Y = y). Thus we have

µi(x, y) =
P (B = i|Y = y)

P (B = i)
µ(x, y).

Defining δyi = P (B = i|Y = y)/P (B = i) and t = P (B = 0) finishes the proof of (1)⇒ (2).
(⇐) Define signal B by P (B = 0|Y = y) := tδy0 and P (B = 1|Y = y) := (1− t)δy1 . For each y this defines

a valid distribution on {0, 1}, because µ(x, y) = tµ0(x, y) + (1 − t)µ1(x, y) = tδy0µ(x, y) + (1 − t)δy1µ(x, y).
Fix an x ∈ X such that µ(x, y) 6= 0, then tδy0 + (1− t)δy1 = 1 (if no such x exists, y is never observed as an
input, and P (B = i|Y = y) can be defined to be whatever we want, e. g., 1/2).

Next, observe that P (B = 0) =
∑
y P (B = 0|Y = y)P (Y = y) =

∑
x,y tδ

y
0µ(x, y) =

∑
x,y tµ0(x, y) = t.

Thus, we have defined the signal B in such a way that δyi = P (B = i|Y = y)/P (B = i), and consequently
we have µi(x, y) = P (X = x, Y = y|B = i) (following the steps of (⇒) direction in reverse).

Corollary 6.2. For every protocol π, prior µ ∈ ∆(X × Y) and a transcript t ∈ {0, 1}CC(π), there exist

vectors V tr ∈ (R+)
|X |

and V tc ∈ (R+)
|Y|

such that for all (x, y) ∈ X × Y we have

P (X = x, Y = y|Π(X,Y ) = t) = V tr (x)V tc (y)µ(x, y).

Here R+ is the set of non-negative reals.

6.2 Continuity of IC at 0-error

In this section we prove Theorem 2.8.
Clearly we have ICµ(f, ε) ≤ ICµ(f, 0), since the infimum on the left-hand side of (1) ranges over a larger set
of protocols. To prove the claim we show that the reverse inequality holds up to a small additive error, i.e.,
ICµ(f, 0) ≤ ICµ(f, ε) + q(ε) where q(ε)→0 as ε→ 0.

We first prove the theorem for full support distributions, and then show how to reduce the general case to
it. To facilitate the proof for general distributions, it will be useful to prove the full support case for (complete)
relations and not only functions. A relation R is complete if ∀ (x, y) ∈ X × Y ∃ z ∈ Z s.t (x, y, z) ∈ R.
We say a combinatorial rectangle G is z-monochromatic with respect to a relation R if there is some z ∈ Z
such that ∀ (x, y) ∈ G, (x, y, z) ∈ R. We define the color of a monochromatic rectangle G to be the first
lexicographically ordered z ∈ Z for which G is z-monochromatic.
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Lemma 6.3. Let R ⊆ X × Y × Z be a complete relation, and let µ be a full support distribution on pairs
(x, y) ∈ X × Y. Denote by ρ := min(x,y) µ(x, y) the minimum mass of an element under µ. Then for any
ε > 0 small enough, zero-error information complexity of R under µ, ICµ(R, 0) is at most

ICµ(R, ε) + 2
(
H(1− 2

|X ||Y|ε1/4

ρ
) + 2(log |X |+ log |Y|+ 2)

|X ||Y|ε1/4

ρ

)
.

Proof. For β > 0, let π be a protocol with ICµ(π) ≤ ICµ(R, ε) +β that solves R with probability of error ε on
every input. That is, the probability (over (x, y) ∼ µ) that that the parties output an element π(x, y) ∈ Z
such that R(x, y, π(x, y))/∈ R is at most ε. For each transcript t ∈ {0, 1}C(π), the players end up with a
shared posterior distribution µt on X ×Y, which is obtained by iterated multiplications of either the rows or
columns of the previous distribution in each round of the protocol. Let V tc , V

t
r denote the column and row

multiplying coefficient vectors for the transcript t. That is, for all (x, y), µt(x, y) = V tr (x)V tc (y)µ(x, y). Such
vectors exist by Corollary 6.2. Note that for any t, V tc , V

t
r are known to both Alice and Bob. Protocol 1 is

the 0-error protocol τ constructed out of π.

1. Players run π. Let t be the resulting transcript.

2. Let L = {x | V tr (x) > ε1/4/ρ1/2} and M = {y | V tc (y) > ε1/4/ρ1/2}. Note that L,M are computable
by both parties.

3. Alice and Bob (privately) check whether L×M is a monochromatic rectangle,
and if not they exchange inputs.

4. Otherwise Alice sends a bit indicating if her input is in L.

5. Similarly, Bob sends a bit indicating if his input is in M .

6. If inputs belong to L×M , the players output the color of L×M .

7. Otherwise, they exchange inputs.

Protocol 1: 0-error protocol τ for f constructed out of π.

The intuition behind Protocol 1 relies on the fact that Alice’s and Bob’s communicated bits simply multi-
ply rows and columns (respectively) of the original distribution µ. It follows that since the protocol’s error is
small on most transcripts, the final distributions of most transcripts must be concentrated on monochromatic
rectangles. Verifying that players’ inputs lie in such a rectangle reveals negligible amount of information.

We now turn to formalize this intuition. Let E be the event that π makes a mistake, and let Et denote
the event that π makes a mistake given that transcript is t. We have P (E) = Et(P (Et)) ≤ ε and by Markov’s
inequality it follows that

Pt(P (Et) > ε1/2) ≤ ε1/2.
For the remainder of the argument, consider a transcript t such that P (Et) ≤ ε1/2. We begin with the
following claim which upper bounds the maximal entry in V tc , V

t
r :

Claim 6.4. (1) w.l.o.g, ‖V tr (x))‖∞ = ‖V tc (y))‖∞.
(2) ‖V tr (x))‖∞, ‖V tc (y))‖∞ < 1/

√
ρ.

Proof. Let mc be the max entry of V tc , and mr be the max entry of V tr , and suppose that mc > mr. Then
we can divide V tr and multiply V tc by d =

√
mr/mc, without affecting the distribution µt (indeed, recall that

µt(x, y) = V tr (x)V tc (y)µ(x, y)). the resulting vectors d · V tr and (1/d) · V tc satisfy (1).
(2) Recall that ρ := min(x,y)µ(x, y). Let (x∗, y∗) be the maximum entries in V tr , V

t
c respectively (if these

entries aren’t unique, let x∗, y∗ be the first such entries). By (1), V tc (y∗) = V tr (x∗). Thus, if these numbers
are larger than 1/

√
ρ, then µt(x∗, y∗) ≥ V tc (y∗)V tr (x∗)µ(x∗, y∗) > 1, Contradiction . (Note that here we

crucially use the assumption that µ is full support by assuming µ(x∗, y∗) > 0).
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The following claim asserts that all but a negligible mass of µt lies on a single monochromatic rectangle.

Claim 6.5. The rectangle L×M defined in step 3 of protocol 1 satisfies the following properties:
(1) L×M is monochromatic.

(2) µt(L), µt(M) ≥ 1− |Y|·|X |·ε
1/4

ρ .

Proof. (1) Suppose not, then there exists some input (x0, y0) ∈ L×M such that (x0, y0, τt(x0, y0)) /∈ R, and
therefore the error probability of τt is at least µt(x0, y0) = V tr (x0)V tc (y0)µ(x0, y0) > (

√
ε/ρ) · ρ =

√
ε (by

definition of L×M), contradicting the assumption that P (Et) ≤ ε1/2.
(2) let x∗ /∈ L. Then

µt(x
∗) =

∑
y

µt(x
∗, y) ≤ |Y| · (ε1/4/ρ1/2) · (1/ρ1/2) · 1 =

|X | · ε1/4

ρ

since by claim 6.4, V tc (y) < 1/ρ1/2 for all y. By a union bound over all x /∈ L, we get that µt(L̄) ≤ |Y|·|X |·ε
1/4

ρ .
A similar proof holds for M .

Now, let τ1 denote the part of transcript of τ that corresponds to running π and τ2 the remaining part
of transcript of τ . Let S be an indicator random variable of the event “players do not exchange inputs in
τ2”. We have

P (S = 1) ≥ P (P (Et) ≤ ε1/2))P ((X,Y ) ∈ L×M |P (Et) ≤ ε1/2)

≥ (1− ε1/2)(1− |X ||Y|ε1/4/ρ)2

≥ 1− 2|X ||Y|ε1/4/ρ

for all small enough ε. Since S is determined by τ2 we have

H(τ2) = H(τ2S) = H(S) +H(τ2|S)

= H(S) +H(τ2|S = 0)p(S = 0) +H(τ2|S = 1)p(S = 1)

= H(S) +H(τ2|S = 0)p(S = 0)

≤ H(1− 2
|X ||Y|ε1/4

ρ
) + 2(log |X |+ log |Y|+ 2)

|X ||Y|
ρ

ε1/4

where (1) H(τ2|S = 1) = 0, since when players do not exchange inputs τ2 =“11”, (2) H(p) is a decreasing
function for p ∈ [1/2, 1], and (3) H(τ2|S = 0) ≤ log |X | + log |Y| + 2, since when players exchange inputs
range(τ2) = X × Y × {0, 1}2.

Now, we can relate information cost of τ to that of π.

ICµ(τ) = I(τ ;X|Y ) + I(τ ;Y |X)

= I(τ1τ2;X|Y ) + I(τ1τ2;Y |X)

= I(τ1;X|Y ) + I(τ2;X|Y τ1) + I(τ1;Y |X) + I(τ2;Y |Xτ1)

= ICµ(π) + I(τ2;X|Y τ1) + I(τ2;Y |Xτ1)

≤ ICµ(f, ε) + β + 2H(τ2).

The above inequality holds for all β > 0 and therefore the 0-error information complexity of R is

ICµ(R, 0) ≤ ICµ(R, ε) + 2H(τ2)

≤ ICµ(R, ε) + 2
(
H(1− 2

|X ||Y|ε1/4

ρ
) + 2(log |X |+ log |Y|+ 2)

|X ||Y|ε1/4

ρ

)
.
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as claimed.

With Lemma 6.3 at hand, we are finally ready to prove Theorem 2.8.

Proof. To prove part (1) of the theorem, let µ be any distribution over X ×Y (not necessarily full support).
Let Π be an ε-error protocol for f under µ, and denote I := ICµ(Π). Denote by U⊥ the uniform distribution
on X × Y, and define the distribution µ′ := p · U⊥ + (1 − p) · µ for p = ε1/8. Note that µ′ is full support,

and that for small enough ε = ε(µ), ρ = min(x,y) µ
′(x, y) = p/|Supp(µ)| ≥ ε1/8

|X ||Y| . Define the relation

Rf ⊆ X × Y × {0, 1} so that (x, y, f(x, y)) ∈ Rf for all (x, y) ∈ Supp(µ), and otherwise (x, y, z) ∈ Rf for
z = {0, 1} (So Rf is trivially satisfied outside the support of µ, and inside it, it agrees with f). Clearly, Π
is an ε-error protocol for Rf under µ, and since Rf is always satisfied outside Supp(µ), Π is also an ε-error3

protocol for Rf under µ′. By Lemma 6.3, there is a zero-error protocol τ for Rf under µ′, whose information
cost is at most

ICµ′(τ) ≤ ICµ′(Π) + α,

for α := 2
(
H(1− 2 |X ||Y|ε

1/4

ρ ) + 2(log |X |+ log |Y|+ 2) |X ||Y|ρ ε1/4
)
.

Since ‖µ− µ′‖ ≤ p, Lemma B.1 implies that

ICµ′(Π) ≤ ICµ(Π) + 2p(log |X | · |Y|) + 2H(2p)

and therefore
ICµ′(τ) ≤ ICµ(Π) + 2p(log |X | · |Y|) + 2H(2p) + α.

But by definition of Rf , τ is clearly a zero-error protocol for f under µ. Using Lemma B.1 again, we have

ICµ(τ) ≤ ICµ′(τ) + 2p(log |X | · |Y|) + 2H(2p)

≤ ICµ(Π) + 4p(log |X | · |Y|) + 4H(2p) + α

≤ I + 4ε1/8(log |X | · |Y|) + 4H(2ε1/8) + 2
(
H(1− 2

|X |2|Y|2ε1/4

ε1/8
) + 2(log |X |+ log |Y|) |X |

2|Y|2

ε1/8
ε1/4

)
= I + 4ε1/8(log |X | · |Y|) + 4H(2ε1/8) + 2

(
H(1− 2 · |X |2|Y|2 · ε1/8) + 2(log |X |+ log |Y|)|X |2|Y|2ε1/8

)
,

and clearly all the terms except I in the above quantity tend to 0 when ε→ 0.
To prove part (2) of the theorem we follow exactly the same steps as in part (1).

7 The 0-error Information Cost of AND

In this section we shall compute the exact internal and the external information cost of the 2-bit AND
function. We summarize our findings about the AND function in Section 7.1. In Section 7.3 we present
a clocked protocol π for the AND function, in which the parties use a continuously increasing clock in an
asynchronous fashion (this will become clearer soon). The protocol π is infeasible in the sense that no finite-
round protocol can simulate it; however, we may still analyze its information cost as a function of the input
distribution µ. We use the machinery developed in the previous sections to demonstrate that the information
cost function of π gives a lower bound on the IC (Sections 7.6 and 7.8) of AND. Hence, the information cost
of π is precisely the information cost of the AND function. Thus, the infeasibility of π is an expected side
effect - the information cost of a function is the infimum over protocols, and thus may not be achievable by
any finite-round protocol. In Section 7.9 we describe a natural finite-round discretization of π and analyze

3In fact, Π has error at most (1− p)ε under µ′.
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its rate of convergence to the true (unbounded-round) information cost of AND, as a function of the number
of rounds.

The protocol π suggests that the space of distributions on {0, 1}×{0, 1} is partitioned into three regions
- “Alice’s region”, “Bob’s region”, and a “diagonal” region (corresponding to symmetric distributions).
Section 7.4 describes the regions and how together with the results from Section 7.2 they reduce the number
of cases necessary to consider in the analysis of the information cost function of π.

7.1 Summary of Results for AND

In Sections 7.5, 7.6, 7.7, and 7.8 we shall derive exact closed-form formulas for the distributional internal
and external 0-error information costs of the AND function. In this section we present the main results.

Theorem 7.1 (Theorem 2.2 restated).

IC(AND, 0) = C∧ = 1.49238 . . .

Proof. The prior-free information cost of a function is just a maximum over distributions of the distributional
information cost. The precise number C∧ was obtained via numerical optimization of the formulas obtained
in Sections 7.5 and 7.6, using Wolfram Mathematica. The distribution that achieves this maximum is

µ =
0.0808931 . . . 0.264381 . . .
0.264381 . . . 0.390346 . . .

.

Remark 7.2. Observe that there is a symmetric distribution that achieves the maximum of IC(AND, 0).
This holds for all symmetric functions. Let f be a symmetric function and µ be an arbitrary distribution
on the inputs of f . Then ICµ(f, 0) = ICµT (f, 0) and it is easy to see that the information complexity is a
concave function in µ (Lemma A.1). Thus for µ′ = µ/2 + µT /2, which is symmetric, we have ICµ′(f, 0) ≥
ICµ(f, 0)/2 + ICµT (f, 0)/2 = ICµ(f, 0). The same holds for the external information cost.

Theorem 7.3 (Theorem 2.3 restated).

ICext(AND, 0) = log 3 = 1.58396 . . .

Proof. Even the external information complexity is concave, so the distribution that achieves the maximum

has to be symmetric. We first show an upper bound. That is for every distribution µ =
α β
β δ

we have

ICext
µ (AND, 0) ≤ log 3. Consider a trivial protocol, in which Alice sends her bit X. Then if X turns out to

be 1, Bob sends his bit. The information cost of this protocol is

H(X) + p(X = 1)H(Y |X = 1) = (α+ β) log
1

α+ β
+ (β + δ) log

1

β + δ
+

+ (β + δ)

(
β

β + δ
log

β + δ

β
+

δ

β + δ
log

β + δ

δ

)
= (α+ β) log

1

α+ β
+ β log

1

β
+ δ log

1

δ
= H(µ′),

where µ′ is a distribution on a sample space with three elements 1, 2, 3 and µ′(1) = α+β, µ′(2) = β, µ′(3) = δ.
Since Shannon entropy is maximized for a uniform distribution, we immediately get that the information
cost of the above protocol is at most log 3.

Now we turn to the lower bound. Consider the distribution

µ =
0 1/3

1/3 1/3
.
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Let π be a 0-error protocol for solving AND and let X,Y ∼ µ. Let Π denote the transcript of π on
inputs X,Y . Because of the rectangle property of protocols, it follows that Π determines X,Y . Thus
I(Π;XY ) = H(XY ) = log 3.

Remark 7.4. Although the trivial protocol is optimal for the worst distribution (and for distributions with
α = 0), it isn’t optimal for distributions with α 6= 0. The protocol we present is optimal for the case α 6= 0.

The following theorem plays a crucial role in providing the exact communication complexity of the
disjointness function in Section 8.

Theorem 7.5.
lim
ε→0

max
µ:µ(1,1)≤ε

ICµ(AND, 0) = 0.482702 . . . .

The above result is obtained from the formulas from Section 7.5 using Wolfram Mathematica.
When in later sections we consider the disjointness function, distributions µ that place 0 mass on (1, 1)

entry will play a crucial role. Note that for such distributions we still insist that the protocol solving AND
has 0 error on all inputs. The following two claims describe the information cost of such distributions.

Claim 7.6. For symmetric distributions

µ =
α β
β 0

we have

ICµ(AND, 0) =
β

ln 2
+
β2

α
log

β

α+ β
+ α log

α+ β

α
.

Proof. Immediate from formulas from Section 7.6. Note that although we measure the information cost w.r.t
a distribution that has zero mass on (1, 1), we still require the protocol to be correct for all inputs.

Claim 7.7. For distributions

µ =
α β
γ 0

we have

ICµ(AND, 0) = (α+ β)H

(
β

γ

α+ γ

α+ β

)
− αH

(
β

γ

)
+ t ICν(AND, 0),

where

t = 2β +
αβ

γ

and

ν =

βα

γt

β

t
β

t
0

.

Proof. Immediate from formulas from Section 7.6.

We will also need the following claim about the information cost of symmetric distributions with non-zero
mass on (1, 1).

Claim 7.8. For a symmetric distribution µ =
α β
β δ

we have

ICµ(π) =
β

ln 2
+ 2δ log

β + δ

δ
+ +2β log

β + δ

β
+
β2

α
log

β

β + α
+ α log

α+ β

α
.
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Proof. Immediate from formulas from Section 7.6.

In Section 7.9 we prove Theorem 2.4 - a tight bound on the rate of convergence of the r-round information
cost of the AND function to the unbounded-round information cost:

Theorem 7.9 (Theorem 2.4 restated). For all µ ∈ ∆(X × Y) with full support we have

ICrµ(AND, 0) = ICµ(AND, 0) + Θµ

(
1

r2

)
.

Moreover, the lower bound holds even for µ such that µ(1, 1) = 0.

7.2 Distribution on Distributions and IC

A natural question which arises when we take the “informational view” of a protocol as a random walk on
∆(X ×Y), is whether the amount of information revealed in a single step of a protocol depends on how that
step was performed. Each step of a protocol can be viewed as follows: starting from a commonly known
prior distribution µ on the inputs (x, y), the current speaker transmits a message M ∈R {0, 1}t where t is
the largest length of a message for this step. When a certain instance m of the message is communicated,

the players update their common prior knowledge to µm(x, y)
def
=P (X = x, Y = y|M = m). Observe that

different messages m̃ may lead to the same distribution µm̃ = µm.

Definition 7.10. For a message M we define the distribution on distributions for M as follows: the
sample space is Ω = {µm | m ∈ range(M)} and the distribution p on Ω is p(µm) = P (µM = µm) =∑
m̃:µm̃=µm

P (M = m̃).
We shall use notation ({µ1, µ2, . . .}, {p1, p2, . . .}) to denote a particular distribution on distributions.

In this section we show that the information cost of a step depends only on the distribution on distributions,
and not on the message itself. In other words, the player may transmit an arbitrary message M ′ instead of
M , and it will reveal the same information as M , as long as M ′ induces the same Ω and p.

The tools developed in the current section shall be used later to reduce the number of cases necessary
to consider in the analysis of the information cost of AND function. One such tool is the distribution
on distributions. Another tool is the Splitting Lemma: if a player can “split” prior µ into µ0 and µ1 by
transmitting a bit, then the same player can split any prior ρ into any ρ0, ρ1 ∈ [µ0, µ1] satisfying ρ ∈ [ρ0, ρ1]
by transmitting a bit. Essentially it says splitting cares only about the direction.

The proof of the Splitting Lemma uses the matrix view of message transmission (Lemma 6.1). Since the
transmitted bit B satisfies the assumptions of Lemma 6.1, we may express µ0 and µ1 as µ with its columns
scaled by certain scaling coefficients (direction (1) ⇒ (2) of Lemma 6.1). Every distribution in the interval
[µ0, µ1] is a linear combination of “column-scaled” versions of µ, and thus is a “column-scaled” µ itself.
Finding scaling coefficients for ρ0, ρ1 and ρ we observe that ρ0 and ρ1 are, in fact, ”column-scaled” versions
of ρ. Applying direction (2)⇒ (1) of Lemma 6.1 we arrive at the desired conclusion.

Lemma 7.11 (Splitting Lemma). Suppose that starting with µ ∈ ∆(X × Y) Bob sends signal B such that
µi(x, y) = P (X = x, Y = y | B = i). Let ρ0, ρ1 ∈ [µ0, µ1] and ρ ∈ [ρ0, ρ1]. Then there exists signal B′ that
Bob can send starting at distribution ρ such that ρi(x, y) = P (X = x, Y = y | B′ = i). Similarly, when Alice
sends bit B.

Proof. Since ρ0, ρ1 ∈ [µ0, µ1] there exist numbers t0, t1 ∈ [0, 1] such that ρ0 = t0µ0 + (1 − t0)µ1 and
ρ1 = t1µ0 + (1 − t1)µ1. Also, since ρ ∈ [ρ0, ρ1] we have ρ = tρ0 + (1 − t)ρ1 for some t ∈ [0, 1]. By direction
(1)⇒ (2) of Lemma 6.1 we have µi(x, y) = δyi µ(x, y) for some δyi , i ∈ {0, 1}, y ∈ Y. Then we can express ρ0

and ρ1 in terms of µ as follows:

ρ0(x, y) = (t0δ
y
0 + (1− t0)δy1 )µ(x, y),

ρ1(x, y) = (t1δ
y
0 + (1− t1)δy1 )µ(x, y).
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Define Cy0 := t0δ
y
0 + (1− t0)δy1 and Cy1 := t1δ

y
0 + (1− t1)δy1 . Then we have

ρ(x, y) = (tCy0 + (1− t)Cy1 )µ(x, y).

Now, it is easy to see that ρ0 and ρ1 are “column-scaled” versions of ρ with scaling coefficients defined by

δ̃yi :=
Cyi

tCy0 + (1− t)Cy1
.

Overall, we have

1. ρ = tρ0 + (1− t)ρ1,

2. ρi(x, y) = δ̃yi ρ(x, y),

3. δ̃y0 =
Cy0

tCy0 +(1−t)Cy1
,

4. δ̃y1 =
Cy1

tCy0 +(1−t)Cy1

Thus by Lemma 6.1 there exists a signal B′ with the desired properties.

Lemma 7.12 (Distribution on Distributions Lemma). Let µ be a prior on inputs X × Y. Suppose that in
one protocol starting with µ Bob transmits B such that P (B = 0) = P (B = 1) = 1/2 and µb(x, y) = P (X =
x, Y = y | B = b) for b ∈ {0, 1}. Suppose that in another protocol starting with µ Bob transmits a sequence
of bits M such that

• µm(x, y) := P (X = x, Y = y|M = m),

• (∀m ∈ range(M))(µm ∈ {µ0, µ1}),

• P (Mb) = P (B = b) = 1/2, where Mb = {m|µm = µb} for b ∈ {0, 1}.

Then we have
I(Y ;M |X) = I(Y ;B|X).

Proof. For all b ∈ {0, 1} and for all m ∈ Mb we have µm = µb, i. e., P (X = x, Y = y|M = m) = P (X =
x, Y = y|B = b). Hence P (X = x|M = m) = P (X = x|B = b) and consequently P (Y = y|X = x,M =
m) = P (Y = y|X = x,B = b). We have

I(Y ;M |X) =
= Ex,m(D(Yxm||Yx)

=
∑
x,y,m P (X = x, Y = y,M = m) log P (Y=y|X=x,M=m)

P (Y=y|X=x)

=
∑
x,y,b

∑
m∈Mb

P (X = x, Y = y,M = m) log P (Y=y|X=x,B=b)
P (Y=y|X=x)

=
∑
x,y,b

∑
m∈Mb

µm(x, y)P (M = m) log P (Y=y|X=x,B=b)
P (Y=y|X=x)

=
∑
x,y,b µb(x, y)P (Mb) log P (Y=y|X=x,B=b)

P (Y=y|X=x)

=
∑
x,y,b P (X = x, Y = y|B = b)P (B = b) log P (Y=y|X=x,B=b)

P (Y=y|X=x)

= Ex,b(D(Yxb||Yx))
= I(Y ;B|X).
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1. If β < γ then Bob sends bit B as follows

B =

 1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

If B = 0 the protocol terminates, the players output 0.

2. If β > γ then Alice sends bit B as follows

B =

 1 if x = 1
0 with probability 1− γ/β if x = 0
1 with probability γ/β if x = 0

If B = 0 the protocol terminates, the players output 0.

3. If x = 0 then Alice samples NA ∈R [0, 1) uniformly at random. If x = 1 then Alice sets NA = 1.

4. If y = 0 then Bob samples NB ∈R [0, 1) uniformly at random. If y = 1 then Bob sets NB = 1.

5. Alice and Bob monitor the clock C, which starts at value 0.

6. The clock continuously increases to 1. If min(NA, NB) < 1, when the clock reaches min(NA, NB)
the corresponding player sends 0 to the other player, the protocol ends, the players output 0. If
min(NA, NB) = 1, once the clock reaches 1, Alice sends 1 to Bob, the protocol ends, and the players
output 1.

Protocol 2: Protocol π for the AND-function

7.3 The Protocol

In this section we present a zero-error protocol π for the function AND : {0, 1}2 → {0, 1} (see Protocol 2),
which achieves both the internal and the external information costs of AND. The inputs (X,Y ) to AND are

distributed according to µ =
α β
γ δ

.

Protocol 2 consists of two parts. In the first part (steps 1 and 2), Alice and Bob check to see if their
prior is symmetric, and if it is not they communicate “a bit” to make it symmetric. We shall refer to the
first part of π as its non-symmetric part. In the second part (steps 3 − 6), Alice and Bob start with a
symmetric prior and observe the clock as it increases from 0 to 1. As the time passes, the prior gets modified,
but it remains symmetric. Also as the time passes, each player becomes more and more convinced that the
other player has 1 as an input. The presence of this clock and this “continuous leakage” of information
is precisely what makes this protocol infeasible - no finite-round protocol can simulate it: a finite-round
protocol necessarily leaks bounded-from-zero amount of information in each round. In π when a player’s
private number (NA or NB) is reached by the clock, the player “raises the flag” to indicate the end of a
protocol. The rules for picking the private numbers NA and NB can be intuitively justified by the following
two observations:

1. When a player has input 0, that player does not need to know the other player’s input. However, the
other player must become aware that the first player has input 0, so that both players agree on the
output of AND being 0.

2. When both players have 0 as input, their roles are completely symmetric, because AND is a symmetric
function.

We shall refer to the second part of π as its symmetric part.
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The intuition as to why π reveals little information is as follows: Since the protocol is zero error, the
players must learn, with absolute certainty, either that they both have 1’s, or that at least one of them has
a 0 input. The “savings” of the protocol come from the latter case - Suppose that the protocol terminates
with Alice announcing that the counter has reached her number NA. In this case, Bob learns that Alice
has a 0. But what does Alice know about Bob’s input? Granted, Alice is now slightly more inclined to
believe that Bob has a 1 (since NB > NA), but it is of course still quite probable that Bob has a 0, since in
that case the numbers NA and NB are chosen independently at random and the latter event happens with
probability 1/2. Thus, when the protocol terminates there is still much uncertainty left to Alice’s knowledge
about Bob’s input.

Remark 7.13. In a well-defined protocol, the order in which the players communicate should depend solely
on the partial transcript. For our “clocked” protocol, it is natural to require the order depend on the partial
transcript and the value of the clock. This presents a small problem: in case NA = NB < 1 the players both
transmit 0 simultaneously. However, this event “NA = NB < 1” happens with probability 0, thus we may
pretend that it never happens.

From the definition of π, it is clear that it correctly solves AND on all inputs. Analyzing its information
cost, on the other hand, requires careful calculations. This is what the remaining part of this section is
devoted to. The division of π into non-symmetric and symmetric parts makes the calculations more
modular and will appear throughout the rest of this section.

7.4 Regions of ∆({0, 1} × {0, 1}) for the AND Function

Protocol 2 suggests that the space of distributions µ =
α β
γ δ

on {0, 1} × {0, 1} is partitioned into three

regions for the AND function:

1. Bob’s region consisting of all distributions µ with β < γ,

2. Alice’s region consisting of all distributions µ with β > γ,

3. Diagonal region consisting of all symmetric distributions µ with β = γ.

Bob’s regions consists of all priors, for which Bob is more likely to have 0 as an input than Alice, i. e.,

P (Y = 0) = α+ γ > α+ β = P (X = 0).

Intuitively, if the players start with a prior in Bob’s region then to achieve minimum leakage of information
Bob should speak first until Alice is more likely to have 0 as an input. This happens when the prior moves
into the Alice’s region. Hence the names of the regions. If in some protocol Alice speaks in Bob’s region,
then that particular step releases non-optimal amount of information and may be improved by changing the
speaker (see Sections 7.6 and 7.8).

Ideally, the players should try to keep the prior in the diagonal region - this corresponds to increasing
Alice’s and Bob’s probabilities of having 1 as an input simultaneously. In a feasible (i. e., finite-round)
protocol, once the prior is on the diagonal, the next bit of communication necessarily moves the prior off
the diagonal with probability 1/2 (assuming normal form) into Alice’s region and probability 1/2 into Bob’s
region, making that step non-optimal no matter who the speaker is. If the players could transmit infinitesimal
amount of information at each step, they would be able to maintain the prior on the diagonal. This is exactly
what the clock in Protocol 2 achieves.

In Sections 7.6 and 7.8 we shall demonstrate that the information cost function of Protocol 2 is also a
lower bound on the information cost of AND function for each distribution by showing that the information
cost of Protocol 2 satisfies the constraints of Definition 5.4.

We claim that among all possible signals that either Alice or Bob can send in Definition 5.4, it suffices
to consider just three cases. Assume that the players start with a prior µ. The three cases are as follows:

1. the prior µ is in Bob’s region, Bob sends a bit, the resulting distributions remains in Bob’s region,
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2. the prior µ is in Alice’s region, Bob sends a bit, the resulting distributions remains in Alice’s region,

3. the prior µ is in the diagonal region, Bob sends a bit, the resulting distributions fall in Alice’s and
Bob’s regions.

The cases missing above are when Bob sends a bit and one of the resulting distribution “crosses the
diagonal” (i. e., if we start in Bob’s region and end up in Alice’s region or start in Alice’s region and end
up in Bob’s region). We refer to such bits as crossing bits, and bits of one of the forms above (1-3) as
non-crossing bits. The following claim shows that we can replace every crossing bit with a sequence of
non-crossing bits without changing the information carried by B.

Claim 7.14. Any crossing bit B sent by Bob in an execution of a normal-form protocol may be replaced by
a sequence (B1, B2, . . .) of non-crossing bits (in normal form) such that the distribution on distributions of
(B1, B2, . . .) is the same as the distribution on distributions of B.

Proof. Suppose that Bob’s signal B starts at µ and has a distribution on distributions ({µ0, µ1}, {1/2, 1/2})
and moreover [µ0, µ1] contains a symmetric distribution µD. We shall replace B with a sequence (B1, B2, . . .)
representing the random walk on [µ0, µ1] where each step is as large as possible under a constraint of not
crossing µD, µ0, and µ1. If the random walk reaches µ0 or µ1 it terminates. Formally this simulation is
described in Protocol 3.

Set µc ← µ

Set i← 1

Repeat until µc = µ0 or µc = µ1

If (2µc − µD) ∈ [µ0, µ1] then

Bob sends signal Bi (by Splitting Lemma 7.11) splitting µc into 2µc − µD and µD

Else if (2µc − µ0) ∈ [µ0, µ1] then

Bob sends signal Bi (by Splitting Lemma 7.11) splitting µc into 2µc − µ0 and µ0

Else

Bob sends signal Bi (by Splitting Lemma 7.11) splitting µc into 2µc − µ1 and µ1

Update µc to the current distribution

i← i+ 1

Protocol 3: simulating crossing bit B by a sequence of non-crossing bits.

Each bit sent in Protocol 3 is in normal form, hence the random walk on [µ0, µ1] is unbiased. The optional
stopping theorem from the theory of martingales implies that the probability of random walk reaching µ0 is
1/2. Hence the distribution on distributions is preserved.

By Distribution on Distributions Lemma 7.12, the message (B1, B2, . . .) in Protocol 3 carries exactly the
same information as the crossing bit B. Protocol 3 may not terminate, but this happens with probability
0. It can be overcome by a standard argument - truncating the protocol after a sufficiently large number of
steps have been performed.

So far we have only considered Bob as a speaker. Observe that since the roles of Alice and Bob are
completely symmetric, we do not have to consider the case when Alice sends a signal separately.

The same reasoning holds for the external information cost.
We can reduce the number of inequalities necessary to verify that the information cost function of

Protocol 2 satisfies Definition 5.4 even further. We claim that case 1 above is automatically satisfied.
Suppose that starting from µ in Bob’s regions Bob sends a non-crossing bit B and then executes Protocol 2.
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The information about inputs revealed by these two steps is exactly the same as if the players executed
Protocol 2 from µ right away. We prove this in the rest of this section. Let π denote Protocol 2. First we
need a simple lemma.

Lemma 7.15. Let µ be a non-symmetric distribution µ =
α β
γ δ

such that at least one symmetric distri-

bution is reachable from µ if only Bob speaks. Then there exists a unique symmetric distribution µD such
that for any message M that Bob can send we have (∀m ∈ range(M))(µmis symmetric⇒ µm = µD).

Proof. Suppose that γ < β. Bob sending a message is equivalent to multiplying the columns of the matrix
for µ by nonnegative numbers c0, c1. In order for Bob to arrive at a symmetric distribution he must achieve
c0γ = c1β. There are two possibilities:

1. γ = 0 then β 6= 0 (µ is not symmetric). There is only one possibility for the resulting symmetric

distribution
1 0
0 0

, which uniquely determines (c0, c1) = (1/α, 0).

2. γ > 0 then we must have c0 > 1. But since the resulting matrix still has to correspond to a valid
distribution we have c0(α + γ) + c1(β + δ) = 1. This forces c1 < 1. Moreover, as c0 decreases, c1
increases. Thus, by continuity there is only one solution (c0, c1) satisfying c0γ = c1β.

Claim 7.16. If Bob sends a non-crossing signal B in normal form starting from prior µ in Bob’s region
and having a distribution on distributions ({µ0, µ1}, {1/2, 1/2}) then

ICµ(π) = ICµ0(π)/2 + ICµ1(π)/2 + I(B;Y |X).

In particular, constraint in Definition 5.4 is satisfied for such signals.

Proof. Define τ to be the following protocol:

1. Bob sends signal B as in the statement of the claim, resulting in distribution µB

2. The players run π starting at µB

Observe that expanding the information cost of τ after step 1 above we obtain

ICµ(τ) = ICµ0
(π)/2 + ICµ1

(π)/2 + I(Y ;B|X)

It is left to show that ICµ(τ) = ICµ(π).
Let π1 denote the non-symmetric part (lines 1-2 in Protocol 2) of π when it is executed on µ and π2

denote the remaining part of π. Let τ1 denote the part of τ corresponding to step 1 above together with the
non-symmetric part of π from step 2. Let τ2 denote the remaining part of τ . To finish the proof it suffices
to show that Π1 and T1 have the same distribution on distributions, because then the information content
of messages Π1 and T1 would be the same by Lemma 7.12, and Π2|Π1 would have the same distribution as
T2|T1 implying that ICµ(τ) = ICµ(π).

Suppose that the message Π1 has a distribution on distributions ({ν0, ν1}, {t, 1− t}), i. e., µ = tν0 + (1−
t)ν1, where ν0 is the distribution after Bob sent 0 in the non-symmetric part of π (note: Pν0(Y = 1) = 0)
and ν1 is the distribution on the diagonal.

Define random variables X0 = µ, X1 = µB - the updated distribution after Bob sent bit B, and X2 = µT1

- the updated distribution after τ1 was executed. We have

1. E(X2) = X0 = µ, because X0, X1, X2 is a martingale by definition of µB and µT1
, and

2. X2 ∈ {ν0, ν1} by Lemma 7.15 and a simple observation that there is a unique distribution ν̃ reachable
by Bob from µ such that Pν̃(Y = 1) = 0.

The above two facts imply that P (X2 = ν0) = t. So T1 has the same distribution on distributions as Π1.

In other words, we’ve shown that the information cost of a protocol is locally optimal with respects to
steps that are “aligned” with the steps of the protocol.
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7.5 Internal Information Cost: Upper Bound

We start by analyzing the symmetric part of Protocol 2, i. e., we shall compute ICν(π) where

ν =
α β
β 1−α−2β

is a symmetric distribution.
Since ν is symmetric and the roles of Alice and Bob in Protocol 2 are symmetric, we have

ICν(π) = I(X; Π|Y ) + I(Y ; Π|X) = 2I(X; Π|Y ).

Working from first-principles, we obtain

I(X; Π|Y ) = (α+ β)I(X; Π|Y = 0) + (1− α− β)I(X; Π|Y = 1)

= (α+ β)I(X; Π|Y = 0) + (1− α− β)H(X|Y = 1)

= αD(ΠX=0,Y=0||ΠY=0) + βD(ΠX=1,Y=0||ΠY=0)

+ (1− α− β)H(X|Y = 1).

The second step follows from

I(X; Π|Y = 1) = H(X|Y = 1)−H(X|Π, Y = 1)

and H(X|Π, Y = 1) = 0, since given Y = 1 the transcript Π determines X.
A transcript of Π on x, y can be represented uniquely by the value c ∈ [0, 1] of the clock when the protocol

is terminated together with a name of a player P ∈ {A,B}, whose random number is reached by a counter
first. For x, y ∈ {0, 1} we have

D(Πxy||Πy) =
∑

P∈{A,B}

∫ 1

0

fx,y(c,P) log
fx,y(c,P)

fy(c,P)
dc,

where fx,y(c,P) is the PDF for Πxy and fy(c,P) is the PDF for Πy.
We have

• f0,0(c, A) = f0,0(c,B) = 1− c for c ∈ [0, 1]

• f1,0(c, A) = 0 for c ∈ [0, 1) and f1,0(c,B) = 1 for c ∈ [0, 1)

• f0(c, A) = α
α+β (1− c) for c ∈ [0, 1] and f0(c,B) = β

α+β + α
β+α (1− c) for c ∈ [0, 1)

Overall we obtain

I(X; Π | Y ) = α

∫ 1

0

(1− c) log
α+ β

α
+ (1− c) log

(1− c)(α+ β)

β + (1− c)α
dc+

+ β

∫ 1

0

log
α+ β

β + (1− c)α
dc+ (1− α− β)H

(
β

1− α− β

)
.

After using Wolfram Mathematica to simplify the expressions, we obtain:

ICν(π) =
β

ln 2
+ 2(1− α− 2β) log

1− α− β
1− α− 2β

+

+ 2β log
1− α− β

β
+
β2

α
log

β

β + α
+ α log

α+ β

α
(3)
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Now, we consider the non-symmetric part of Protocol 2 for the prior µ =
α β
γ 1−α−β−γ ,

where β < γ. Recall that Bob sends bit B with distribution

B =

 1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

The contribution of this bit to the internal information cost is

I(Y ;B|X) = H(B|X)−H(B|XY )

= (α+ β)H
(

β
α+β + β

γ ·
α

α+β

)
+ (γ + δ)H

(
δ

γ+δ + β
γ ·

γ
γ+δ

)
−

− (α+ γ)H
(
β
γ

)
.

(4)

Bob sends bit 1 with probability t = 1 − α − γ + β + αβ/γ. In that case the protocol continues on

distribution ν̃ =
βα
γt

β
t

β
t

1−α−β−γ
t

. If Bob sends 0 the protocol terminates. Thus the overall

internal information cost of π for the case β ≤ γ is

ICµ(π) = I(Y ;B|X) + t ICν̃(π). (5)

Closed-form formula for the above equation may be obtained from (3) and (4). Since the roles of Alice and
Bob are symmetric, we have

ICµ(π) = ICµT (π).

This completes the analysis of ICµ(π) for all three cases β < γ, β = γ, β > γ.

7.6 Internal Information Cost: Lower Bound

In this section we shall show that Expression (5) is a lower bound on ICµ(AND, 0). Let

µ =
α β
γ 1−α−β−γ

and suppose that Bob sends signal B with properties

• P (B = 1) = P (B = 0) = 1/2,

• P (B = 1 | Y = 1) = 1/2 + ε1/2,

• P (B = 0 | Y = 0) = 1/2 + ε0/2.

The resulting distributions are

• µ0 =
(1 + ε0)α (1− ε1)β
(1 + ε0)γ (1− ε1)(1− α− β − γ)

if Bob sends 0, and

• µ1 =
(1− ε0)α (1 + ε1)β
(1− ε0)γ (1 + ε1)(1− α− β − γ)

if Bob sends 1.

Also note that ε1 = ε0
α+γ

1−α−γ .

Corollary 5.8 says that to demonstrate that ICµ(π) is a lower bound on ICµ(AND, 0) it suffices to prove
the following concavity constraint:

ICµ(π) ≤ ICµ0
(π)/2 + ICµ1

(π)/2 + I(B;Y |X),
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where

I(B;Y |X) = H(B|X)−H(B|XY )

= (α+ β)H(B | X = 0) + (γ + δ)H(B | X = 1)−
∑

i,j∈{0,1}

H(B | X = i, Y = j)

= (α+ β)H(
α

α+ β
(1/2− ε0/2) +

β

α+ β
(1/2 + ε1/2)) + (γ + δ)H(

γ

γ + δ
(1/2− ε0/2) +

δ

γ + δ
(1/2 + ε1/2))−

− (α+ γ)H(1/2 + ε0/2)− (β + δ)H(1/2 + ε1/2)

By Claims 7.14 and 7.16, to demonstrate that ICµ(π) is a lower bound on I(AND) := ICµ(AND, 0) it suffices
to consider only two types of non-crossing signals B that are sent by Bob:

1. The prior µ is in Alice’s region, i. e., β > γ. Using Wolfram Mathematica we obtain

ICµ0
(π)/2 + ICµ1

(π)/2 + I(Y ;B|X)− ICµ(π) =

α(β − γ)

(α+ β)(1− α− γ)2 ln 4
ε20 +O(ε30),

which is > 0 for small enough ε0.

2. The prior µ is in the diagonal region, i. e., β = γ. Using Wolfram Mathematica we obtain

ICµ0
(π)/2 + ICµ1

(π)/2 + I(Y ;B|X)− ICµ(π) =

αβ

12(α+ β)(1− α− β)3 ln 2
ε30 +O(ε40),

which is > 0 for small enough ε0.

Also, note that trivially ICµ(π) ≤ 2, as the players learn at most each others bits during the execution of π.
Hence Expression (5) satisfies all the constraints of Definition 5.4 and thus is a lower bound on ICµ(AND, 0)
by Corollary 5.8.

7.7 External Information Cost: Upper Bound

We start by analyzing the symmetric part of Protocol 2, i. e., we shall compute ICext
ν (π) where

ν =
α β
β 1−α−2β

is a symmetric distribution.
Working from first-principles, we obtain

ICext
ν (π) = I(XY ; Π)

= Ex,y(D(Πxy||Π))

= αD(ΠX=0,Y=0||Π) + βD(ΠX=0,Y=1||Π)+

+ βD(ΠX=1,Y=0||Π) + (1− α− 2β)D(ΠX=1,Y=1||Π).

A transcript of Π on x, y is determined by the value c ∈ [0, 1] of the clock when the protocol is terminated
together with a name of a player P ∈ {A,B}, whose random number is reached by a counter first. For
x, y ∈ {0, 1} we have

D(Πxy||Π) =
∑

P∈{A,B}

∫ 1

0

fx,y(c,P) log
fx,y(c,P)

f(c,P)
dc,

where fx,y(c,P) is the pdf for Πxy and f(c,P) is the PDF for Π.
We have
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• f0,0(c, A) = f0,0(c,B) = 1− c for c ∈ [0, 1]

• f0,1(c, A) = 1 for c ∈ [0, 1) and f0,1(c,B) = 0 for c ∈ [0, 1]

• f1,1(c, A) = f1,1(c,B) = 0 for c ∈ [0, 1) and P (ΠX=1,Y=1 = (1, A)) = 1

• f(c, A) = f(c,B) = α(1− c) + β for c ∈ [0, 1) and P (Π = (1, A)) = 1− α− 2β

After plugging in the above PDFs in the expression for ICext
ν (π) and using Wolfram Mathematica to simplify

the expressions, we obtain:

ICext
ν (π)

= 2α

∫ 1

0

(1− c) log
(1− c)

α(1− c) + β
dc+ 2β

∫ 1

0

log
1

α(1− c) + β
dc+

+ (1− α− 2β) log
1

1− α− 2β

= (1− α− 2β) log
1

1− α− 2β
+

β

ln 2
+
β2

α
log β − (α+ β)2

α
log(α+ β).

Now, we consider the non-symmetric part of Protocol 2 for the prior µ =
α β
γ 1−α−β−γ ,

where
β < γ. Bob sends bit B with distribution

B =

 1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

The contribution of this bit to the external information cost is

I(XY ;B)

= H(B)−H(B | XY )

= H(B)−H(B | Y )

= H((1− α− γ) + (β/γ)(α+ γ))− (α+ γ)H(β/γ).

Bob sends bit 1 with probability t = 1−α−γ+β+αβ/γ. In that case the protocol continues on distribution

ν̃ =

βα

γt

β

t
β

t

1− α− β − γ
t

.

If Bob sends 0 the protocol terminates. Thus the overall external information cost of π for the case β ≤ γ
is as follows (once again, Wolfram Mathematica was used to simplify the expressions):

ICext
µ (π)

= I(XY ;B) + t ICext
ν̃ (π)

= β
ln 2 + β log 1

β + (1− α− β − γ) log 1
1−α−β−γ+

+β(α+γ)
α log γ + (α+β)(α+γ)

α log 1
α+γ .

(6)

Since the roles of Alice and Bob are symmetric, we have

ICext
µ (π) = ICext

µT (π).

This completes the analysis of ICext
µ (π) for all three cases β < γ, β = γ, β > γ.
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Remark 7.17. Observe that if α = 0, i. e.,

µ =
0 β
γ 1− β − γ ,

the expression of ICext
µ (π) simplifies to

ICext
µ (π) = β log

1

β
+ γ log

1

γ
+ (1− β − γ) log

1

1− β − γ
= H(µ).

7.8 External Information Cost: Lower Bound

In this section we shall show that Expression (6) is a lower bound on ICext
µ (AND, 0). Let

µ =
α β
γ 1−α−β−γ

and suppose that Bob sends signal B with properties

• P (B = 1) = P (B = 0) = 1/2,

• P (B = 1 | Y = 1) = 1/2 + ε1/2,

• P (B = 0 | Y = 0) = 1/2 + ε0/2.

The resulting distributions are

• µ0 =
(1 + ε0)α (1− ε1)β
(1 + ε0)γ (1− ε1)(1− α− β − γ)

if Bob sends 0, and

• µ1 =
(1− ε0)α (1 + ε1)β
(1− ε0)γ (1 + ε1)(1− α− β − γ)

if Bob sends 1.

Also note that ε1 = ε0
α+γ

1−α−γ .

Remark 5.9 says that to demonstrate that ICext
µ (π) is a lower bound on ICext

µ (AND, 0) it suffices to prove
the following concavity constraint:

ICext
µ (π) ≤ ICext

µ0
(π)/2 + ICext

µ1
(π)/2 + I(XY ;B),

where

I(XY ;B)

= H(B)−H(B | XY )

= H(B)−H(B | Y )

= 1− ((α+ γ)H(1/2 + ε0/2) + (1− α− γ)H(1/2 + ε1/2)) .

By Claims 7.14 and 7.16, to demonstrate that ICext
µ (π) is a lower bound on Iext(AND) := ICext

µ (AND, 0)
it suffices to consider only two types of non-crossing signals B that are sent by Bob:

1. The prior µ is in Alice’s region, i. e., β > γ. Using Wolfram Mathematica we obtain

ICext
µ0

(π)/2 + ICext
µ1

(π)/2 + I(XY ;B)− ICext
µ (π) =

α(β − γ)

(α+ β)(1− α− γ)2 ln 4
ε20 +O(ε30),

which is > 0 for small enough ε0.
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2. The prior µ is in the diagonal region, i. e., β = γ. Using Wolfram Mathematica we obtain

ICext
µ0

(π)/2 + ICext
µ1

(π)/2 + I(XY ;B)− ICext
µ (π) =

αβ

12(α+ β)(1− α− β)3 ln 2
ε30 +O(ε40),

which is > 0 for small enough ε0.

Also, note that trivially ICext
µ (π) ≤ 2, as the players learn at most each others bits during the execution of π.

Hence Expression (6) satisfies all the constraints of Definition 5.4 and thus is a lower bound on ICµ(AND, 0)
by Remark 5.9.

7.9 Rate of Convergence

In this section we prove that for most distributions µ the rate at which ICrµ(AND, 0) converges to ICµ(AND, 0)
is Θ(1/r2). The empirical evidence that the rate of convergence is Θ(1/r2) has appeared in the information
theory literature prior to our work. In [30], Ma and Ishwar consider the task f of computing AND when only
Bob is required to learn the answer. They derive an explicit formula for ICµ(f) for product distributions
µ and design an algorithm that computes ICrµ(f) to within a desired accuracy. Ishwar and Ma generously
provided their scripts, which we used to generate Figure 1 (it is a variant of Figure 4(a) from [30]). Figure 1
demonstrates that maxµ - product ICrµ(f)− ICµ(f) asymptotically behaves like Θ(1/r2).

Figure 1: Empirical evidence that rate of convergence is Θ(1/r2). The log-log scale figure shows the graph
of maxµ - product ICrµ(f) − ICµ(f) for a range of values r together with the line 1/(16r2). The x-axis is the
number of rounds r. The y-axis is the change in the information cost maxµ - product ICrµ(f)− ICµ(f).

Our proof consists of two main parts: (1) the lower bound Ω(1/r2) on the rate of convergence and (2)
a matching upper bound O(1/r2). The high-level idea for the lower bound is to show that any r-round
protocol, when viewed as a random walk on ∆(X × Y), has to travel a lot in the wrong region. In other
words, Alice often speaks in Bob’s region, and Bob often speaks in Alice’s region. Then we can use formulas
from Section 7.6 to conclude that each such step wastes a lot of information as compared to the optimal
protocol. Aggregating this wastage over all rounds, Ω(1/r2) information has to be wasted overall. The
upper bound is obtained by carefully analyzing a discretized version of our infeasible protocol for AND from
Section 7.3. Both upper and lower bounds require a number of technical lemmas, which we also include in
the text.
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The rest of this section is organized as follows. In Subsection 7.9.1 we prove the lower bound on the rate
of convergence modulo two technical lemmas. Subsection 7.9.2 contains the proof of the first lemma, which
quantifies how much information is wasted by a feasible protocol versus an optimal infeasible one in terms
of the distance traveled in the wrong region. Subsection 7.9.3 proves the second technical lemma from the
lower bound on the rate of convergence. The second lemma gives a lower bound on the distance traveled
in the wrong region by a protocol that solves the AND function. Finally, in Subsection 7.9.4 we prove the
upper bound on the rate of convergence.

In this section it will be easier for us to work with general protocols and forgo the normal-form assumption.

7.9.1 Lower Bound on the Rate of Convergence

We say that a message M crosses the diagonal if this message starts at prior µ, has distribution on distri-
butions ({µm}, {pm}), and there exists m such that the interval [µ, µm] intersects the diagonal region, i. e.,
the interval [µ, µm] contains a symmetric distribution.

We begin by showing that we can split a message that crosses the diagonal into two that do not cross
the diagonal.

Lemma 7.18. Let M be a message sent by one of the players that crosses the diagonal. There exists
two messages M1 and M2 such that neither M1, nor M2 crosses the diagonal, and (M1,M2) has the same
distribution on distributions as M .

Proof. The idea of the proof is that each message M is simply a sequence of bits, so the player can generate
M bit by bit until there is a danger of the next bit crossing the diagonal. If the player is about to generate
a crossing bit, the player will instead split that bit into two using the Splitting Lemma (Lemma 7.11). The
split happens in such a way that after the first bit is sent the player either ends up on the diagonal, or moves
away from the diagonal. If the player does not jump to the diagonal, then the process continues in the same
way. If the player happens to jump to the diagonal that signifies the end of message M1 and beginning of
M2.

All that is left to show is that a crossing bit may be split into two non-crossing bits while preserving the
distribution on distributions. Suppose that the player sends a bit B starting at prior µ and splitting µ into
µ0 and µ1, such that [µ, µ1] contains a symmetric distribution µD. Since µ ∈ [µ0, µD] there is a signal B1

that splits µ into µ0 and µD (by the Splitting Lemma). Also, since µD ∈ [µ0, µ1] there is a signal B2 that
splits µD into µ0 and µ1. Now instead of sending bit B, the player first sends B1. If B1 = 0 the message is
terminated, otherwise the player sends B2. This new message induces the same distribution on distributions
as B, because (B1, B2) and B express µ as a convex combination of µ0, µ1, which is unique. Note that we
allow B, B1 and B2 be biased.

Theorem 7.19. For all µ =
α β
γ δ

with {α, β, γ} ⊆ supp(µ) we have

ICrµ(AND, 0) = ICµ(AND, 0) + Ωµ

(
1

r2

)
.

Proof. Fix an arbitrary r-round protocol π that solves AND with 0-error and distribution µ =
α β
γ δ

with α, β, γ 6= 0. Using Lemma 7.18 we obtain a protocol π′ with m ≤ 2r messages, such that no message
crosses the diagonal and ICµ(π′) = ICµ(π). We shall view π′ as a random walk on the set of distributions
∆({0, 1}2). For technical reasons we shall restrict this random walk to the subset S of ∆({0, 1}2) defined as
follows

S := {µ′ | α′ ≥ 0.01α and min(β′, γ′) ≥ 0.01 min(β, γ)} .

Using ideas from the proof of Lemma 7.18 we can always impose a constraint that π′ does not make steps
that cross from S into S without stopping at the boundary of S. We let π′′ denote such a modification of
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π′. Clearly, ICµ(π′′) = ICµ(π′) and the number of messages in the first part of π′′ that proceeds only until
the boundary of S is at most m.

We shall show that ICµ(π′′) = ICµ(AND, 0) + Ωµ
(

1
r2

)
by showing that the part of π′′ until the boundary

of S already wastes Ωµ
(

1
r2

)
amount of information as compared to the optimal protocol.

Let Ti denote the ith message of π′′ for i ≤ m. The whole transcript T until the boundary of S is then
simply T1T2 · · ·Tm. We shall write T≤i = T1T2 · · ·Ti. Similarly, we shall write T>i meaning Ti+1Ti+2 · · ·Tm.

A transcript t gives rise to m + 1 distributions µ
t≤0

0 , µ
t≤1

1 , . . . , µ
t≤m
m traced out by the protocol π when

viewed as a random walk on ∆(X × Y). Observe that µ
t≤0

0 = µ. We define the central object of this proof:

δ
t≤i
i - the distance traveled by a player in the wrong region during the ith round. More formally

δ
t≤i
i =


‖[µt≤i−1

i−1 , µ
t≤i
i ] ∩∆A‖ if the ith message is

transmitted by Bob,

‖[µt≤i−1

i−1 , µ
t≤i
i ] ∩∆B‖ if the ith message is

transmitted by Alice.

The lower bound Ωµ(1/r2) on the overall wastage of protocol π′′ follows from two crucial observations:

Lemma 7.20.

ICµ(π′′)− ICµ(AND, 0) = Ωµ

(
m∑
i=1

(Etδ
t≤i
i )3

)
.

Lemma 7.21.

Et

(
m∑
i=1

δ
t≤i
i

)
= Ωµ(1).

We prove the above lemmas later in Subsections 7.9.2 and 7.9.3. Now, by Hölder’s inequality we have

m∑
i=1

(
Etδ

t≤i
i

)3

≥

(
Et

(
m∑
i=1

δ
t≤i
i

))3

/m2 = Ωµ(1/r2),

where the last step follows from Lemma 7.21 and the fact that m ≤ 2r. This finishes the proof by Lemma 7.20.

7.9.2 Informational Wastage

The goal of the current subsection is to prove Lemma 7.20 that appears in the proof of the lower bound
on the rate of convergence. For definitions of relevant mathematical objects see Subsection 7.9.1. Recall
that Lemma 7.20 asserts that the information wasted by an m-message protocol as compared to the optimal
infeasible protocol is roughly the sum of the cubed distances traveled in the wrong region. The proof of this
lemma consists of a sequence of reductions. We start with analyzing how much information is wasted by a
single bit and gradually build up the result to the entire protocol.

We start by formally defining what it means for a particular step in a protocol, which consists of one of
the players sending a message, to waste information.

Definition 7.22. Suppose that Bob sends message M with distribution on distributions ({µm}, {pm}) from
prior µ. Then the informational wastage of M is defined as

IW(µ,M) :=
∑

m∈range(M)

pm ICµm(AND, 0) + I(M ;Y |X)− ICµ(AND, 0).

For Alice’s messages it can be defined similarly.
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The information wasted is how much extra information is revealed by a protocol that sends message M
and then plays optimally versus the protocol that plays optimally from the start.

When the message is a single bit B sent by Bob from a symmetric prior µ, the above definition simplifies
to

IW(µ,B) = p ICµ0
(AND, 0) + (1− p) ICµ1

(AND, 0) + I(B;Y |X)− ICµ(AND, 0),

where µ0 := P (X = x, Y = y|B = 0) belongs to Bob’s region and µ1 := P (X = x, Y = y|B = 1) belongs to
Alice’s region.

Observe that formulas from Section 7.6 simply say that for a uniform bit B and symmetric prior µ we
have

IC(µ,B) ≥ C(µ)||µ1 − µ||3 = Ω(||µ1 − µ||3), (7)

where C(µ) = αβ
12(α+β)(1−α−β)3 is a continuous positive function of µ. In other words, the information wasted

is roughly the cube of the distance traveled in the wrong region.

Remark 7.23. In what follows we only consider the information wasted from a symmetric prior, because the
information wasted when a player speaks starting in the wrong region is strictly larger (see formulas at the
end of Section 7.6).

Now we extend this result to nonuniform bits. As expected, for a nonuniform bit the cube of the distance
traveled in the wrong region gets scaled by the probability of jumping into the wrong region.

Lemma 7.24. Suppose that Bob sends bit B from symmetric prior µ with distribution on distributions
({µ0, µ1}, {p, 1− p}). If µ1 + 2p(µ0 − µ1) ∈ ∆({0, 1} × {0, 1}) then

IW(µ,B) ≥ C(µ)(1− p)||µ1 − µ||3 = Ω((1− p)||µ1 − µ||3),

where C(µ) = αβ
12(α+β)(1−α−β)3 . Similarly for Alice.

Proof. Case p ≤ 1/2. Let µ′0 := µ1 + 2p(µ0 − µ1) ∈ [µ0, µ1]. Then we have µ = (1/2)µ1 + (1/2)µ′0, so
there exists signal B′ that Bob can send with distribution on distributions ({µ′0, µ1}, {1/2, 1/2}). Clearly
we have IW(µ,B) ≥ IW(µ,B′). Finally, from Equation (7) we obtain IW(µ,B′) ≥ C(µ)||µ1 − µ||3 ≥
C(µ)(1− p)||µ1 − µ||3.

Case p > 1/2. Let µ′0 := µ1 + 2p(µ0− µ1). By conditions of the lemma, µ′0 is a valid distribution. Then
we have µ0 := ((1 − p)/p)µ′0 + ((2p − 1)/p)µ, so there exists bit B′ that Bob can send from prior µ0 with
distribution on distributions ({µ′0, µ}, {(1− p)/p, (2p− 1)/p}). By Claim 7.16 we have IW(µ0, B

′) = 0 thus

IW(µ,B) = IW(µ,B) + p IW(µ0, B
′) = IW(µ,M),

where M is message (B,B′) that has distribution on distributions ({µ′0, µ, µ1}, {1− p, 2p− 1, 1− p}). Since
µ = (1/2)µ′0 + (1/2)µ1 there exists signal B′′ with distribution on distributions ({µ′0, µ1}, {1/2, 1/2}).
Define I(ν) := ICν(AND, 0). Then we have

IW(µ,M)

= (1− p)I(µ′0) + (1− p)I(µ1) + (2p− 1)I(µ) + I(M ;Y |X)− I(µ)

= 2(1− p)[(1/2)I(µ′0) + (1/2)I(µ1) + I(M ;Y |X)/(2(1− p))− I(µ)]

= 2(1− p)[(1/2)I(µ′0) + (1/2)I(µ1) + I(B′′;Y |X)− I(µ)]

= 2(1− p) IW(µ,B′′)

≥ 2(1− p)C(µ)||µ1 − µ||3,

I(M ;Y |X)/(2(1 − p)) = I(B′′;Y |X), since sending M and staying at prior µ with probability 2(1 − p) and
otherwise sending B′′ induce the same distribution on distributions.The last step follows from Equation (7).
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The next step is to extend our lower bound on the information wasted in a single step of a protocol
to messages. Suppose that Bob sends a message M with distribution on distributions ({µm}, {pm}) from
symmetric prior µ. Define sets M1 := {m | µm(0, 1) > µm(1, 0)} and M2 := {m | µm(0, 1) ≤ µm(1, 0)}.
The set M1 contains all the messages that lead to Alice’s region and M2 contains all the messages that
lead to Bob’s region. Let µ1 be the average of µm ∈ M1 and µ0 to be the average of µm in M2. If
µ1+2p(µ0−µ1) ∈ ∆({0, 1}2) then the information wasted by sendingM is at least Ω(P (m ∈M1)||µ1−µ||3) =
Ω((Em||[µm, µ] ∩∆A||)3).

Lemma 7.25. Suppose that the conditioned specified in the above paragraph hold for a message M sent by
Bob, then we have

IW(µ,M) ≥ C(µ)(Em||[µm, µ] ∩∆A||)3,

where C(µ) = αβ
12(α+β)(1−α−β)3 . Similar inequality holds for Alice.

Proof. Define an indicator random variable Z as follows

Z =

{
1 if µM (0, 1) > µM (1, 0)
0 otherwise

In other words, Z indicates if after sending M the players end up in Alice’s region.
Consider the two protocols:

1. π1 - Bob first sends M and then players play optimally.

2. π2 - Bob first sends Z, then M |Z and then players play optimally.

Clearly, sending Z followed by M |Z produces the same distribution on distributions as simply sending M ,
thus π1 and π2 have the same information cost. Therefore they have the same informational wastage. Observe
that if Bob sends Z = 1 then the players update their distribution µ to distribution µ1 = Em∼M |Z=1(µm).
It is easy to see that ||µ1 − µ|| = Em∼M |Z=1(||µm − µ||) (note that this matches the definition of µ1 we
gave in a paragraph prior to the statement of this lemma). Now we are in a position to apply Lemma 7.24
to the bit Z. All in all, we have IW(µ, (Z,M |Z)) ≥ IW(µ,Z) ≥ P (Z = 1)C(µ)||µ1 − µ||3 ≥ C(µ)(P (Z =
1)Em∼M |Z=1(||µm − µ||))3 ≥ C(µ)(Em||[µm, µ] ∩∆A||)3.

Now we are in a position to prove Lemma 7.20.

Lemma (7.20 restated).

ICµ(π′′)− ICµ(AND, 0) = Ωµ

(
m∑
i=1

(Etδ
t≤i
i )3

)
.

Proof of Lemma 7.20. By Lemma 7.25 the informational waste of the ith message Ti given a fixed partial
transcript t≤i−1 is at least

C(µ
t≤i−1

i−1 )(Eti∼Ti|t≤i−1
(δ
t≤i
i ))3 ≥ (0.01α)(0.01 min(β, γ))

12
(Eti∼Ti|t≤i−1

(δ
t≤i
i ))3,

where the last step follows from the fact that µ
t≤i−1

i−1 ∈ S and C(µ′) ≥ α′β′

12 (see proof of Theorem 7.19 for
the relevant definitions). Aggregating this over all messages Ti we finish the proof of the lemma

ICµ(π′′)− ICµ(AND, 0) ≥ (0.01α)(0.01 min(β, γ))

12

(
m∑
i=1

(Etδ
t≤i
i )3

)
.
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7.9.3 Distance Traveled in the Wrong Region

The goal of the current subsection is to prove Lemma 7.21 appearing in the proof of the lower bound on
the rate of convergence. See Subsection 7.9.1 for the relevant definitions. Lemma 7.21 asserts that when
a protocol is viewed as a random walk on the space of distributions, the protocol has to spend non-trivial
amount of time in the wrong region if it solves the AND function.

The proof relies on the following observation. Consider a protocol that solves AND correctly on all
inputs. We view it as a random walk on the space of distributions. Recall that a single move multiplies rows
or columns of the current distribution. Thus if the random walk starts from a non-trivial distribution (i. e.,
we cannot derive the answer to AND from it immediately), the protocol would have to multiply some row
or column by 0. This immediately implies that a protocol solving AND correctly has to travel statistical
distance at least min(β, γ) overall. A more careful analysis reveals that in fact such a protocol has to travel
min(β, γ) in the “wrong region”. This is proved in this section via an invariant argument (see Lemma 7.27).
We start by proving the following lemma, which shows that a certain process defined by a random walk of
the protocol is a supermartingale.

Lemma 7.26. Let π be a protocol that starts at prior µ. For a (partial) transcript t, let µt =
αt βt
γt δt

denote the resulting distribution arising from t. Then βT γT is a supermartingale.

Proof. Let B be a bit sent by Bob from µ. Then µi(x, y) = P (X = x, Y = y|B = i) for i ∈ {0, 1}. We need
to show that

Eb∼B(βbγb) ≤ βγ.

Let p := P (B = 0). Recall that the jth column of µi is simply a multiple of the jth column of µ. We

can write µ0 =
C0α C1β
C0γ C1δ

and µ1 =
D0α D1β
D0γ D1δ

, where Ci = P (B = 0|Y = i)/P (B = 0) and

Di = P (B = 1|Y = i)/P (B = 1). Observe that Di = (1− Cip)/(1− p). Therefore we have

Eb∼B(βbγb)

= pC0C1βγ + (1− p)D0D1βγ

= βγ(pC0C1 + (1− C0p)(1− C1p)/(1− p))
= βγ((1− p)pC0C1 + (1− C0p)(1− C1p))/(1− p)
= βγ(1− p+ (C1 − 1)(C0 − 1)p)/(1− p)
= βγ(1 + (C1 − 1)(C0 − 1)p/(1− p))
≤ βγ,

where the last step follows from the fact that Ci ≤ 1 ⇐⇒ C1−i ≥ 1, so (C1 − 1)(C0 − 1) ≤ 0.

The next lemma proves an invariant of a protocol solving the AND function. The lemma says that in
order for a protocol to decrease the value of min(β, γ) by a certain amount, the protocol has to spend an
equivalent amount of time in the wrong region.

Lemma 7.27.

Et

(
min(βtm, γ

t
m)−min(β, γ) +

m∑
i=1

δ
t≤i
i

)
≥ 0.

Proof. We prove the claim for all m-message protocols π and for all distributions µ by induction on m.
Base case is obvious, because it happens when m = 0 and we have min(βt0, γ

t
0) = min(β, γ).
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Now, consider the inductive step. We have

Et(min(βtm, γ
t
m)−min(β, γ) +

m∑
i=1

δ
t≤i
i )

= Et(min(βtm, γ
t
m)−min(βt11 , γ

t1
1 ) +

m∑
i=2

δ
t≤i
i + min(βt11 , γ

t1
1 )−min(β, γ) + δt11 )

≥ Et1(min(βt11 , γ
t1
1 )−min(β, γ) + δt11 ),

where the last step follows by induction. To complete the inductive step it is left to show that Et1(min(βt11 , γ
t1
1 )−

min(β, γ) + δt11 ) ≥ 0. We shall assume that the first message is sent by Bob. The case when Alice sends the
first message is similar.

There are two possibilities, which we analyze separately.
First possibility is that µ is not a symmetric prior. So µ either belongs to Bob’s region, or Alice’s region.

Consider the case when µ belongs to Bob’s region (γ > β). Then min(β, γ) = γ. Moreover, since the
messages in our protocol do not cross the diagonal, we have that γt11 ≥ βt11 for all t1 ∈ T1. Consequently
min(βt11 , γ

t1
1 ) = γt11 . Since γTii is a martingale, we have

Et1(min(βt11 , γ
t1
1 )−min(β, γ)) = 0.

Adding Et1(δt11 ) to the above only increases the right-hand side. Similar calculation works for the case when
µ belongs to Alice’s region.

Second possibility is that µ is a symmetric prior, i. e., γ = β. Recall that the prior gets modified by
multiplying the columns:

µt11 (x, y) = P (X = x, Y = y|T1 = t1)

= P (T1=t1|X=x,Y=y)
P (T1=t1) P (X = x, Y = y)

= P (T1=t1|Y=y)
P (T1=t1) µ(x, y).

Thus on the first message t1 the first column of µ gets multiplied by Ct10 := P (T1 = t1|Y = 0)/P (T1 = t1)
and the second column gets multiplied by Ct11 := P (T1 = t1|Y = 1)/P (T1 = t1). Next we define two sets of
messages S := {t1|Ct10 < Ct11 } and R := {t1|Ct10 ≥ Ct11 }. Observe that Ct10 P (Y = 0) + Ct11 P (Y = 1) = 1.
Hence if Ct10 < Ct11 then Ct10 < 1 and Ct11 > 1; similarly, if Ct10 > Ct11 then Ct10 > 1 and Ct11 < 1,

Observe that

• (∀t1 ∈ R)(δt11 = 0),

• (∀t1 ∈ S)(δt11 = (1− Ct10 )(α+ β) + (Ct11 − 1)(β + δ)),

• (∀t1 ∈ R)(min(βt11 , γ
t1
1 ) = Ct11 β), and

• (∀t1 ∈ S)(min(βt11 , γ
t1
1 ) = Ct10 β).

Introduce notation pt1 := P (T1 = t1). Then we have

Et1
(
min(βt11 , γ

t1
1 ) + δt11

)
=
∑
t1∈S pt1C

t1
0 β +

∑
t1∈R pt1C

t1
1 β +

∑
t1∈S pt1((1− Ct10 )(α+ β) + (Ct11 − 1)(β + δ))

≥
∑
t1∈S pt1C

t1
0 β +

∑
t1∈R pt1C

t1
1 β +

∑
t1∈S pt1(1− Ct10 )β +

∑
t1∈S pt1(Ct11 − 1)β

=
∑
t1∈S pt1C

t1
1 β +

∑
t1∈R pt1C

t1
1 β

= β.

Finally we are in a position to prove Lemma 7.21.
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Lemma (7.21 restated).

Et

(
m∑
i=1

δ
t≤i
i

)
= Ωµ(1).

Proof of Lemma 7.21. By Lemma 7.26 βTii γ
Ti
i is a supermartingale. Therefore −2βTii γ

Ti
i = (βTii − γ

Ti
i )2 −

(βTii )2 − (γTii )2 is a submartingale. By optional stopping theorem we have

Et
(
(βTm − γTm)2 − (βTm)2 − (γTm)2

)
≥ (β − γ)2 − β2 − γ2.

Rearranging we get
Et
(
(βTm − γTm)2 − (β − γ)2

)
≥ Var(βTm) + Var(γTm).

By definition of S, when transcript t is observed exactly one of the following three cases happens:

1. βtm = 0.01 min(β, γ)

This transcript contributes at least (0.99 min(β, γ))2 to Var(βTm).

2. γtm = 0.01 min(β, γ)

This contributes at least (0.99 min(β, γ))2 to Var(γTm).

3. αtm = 0.01α

We do not have a guarantee on the contribution to Var(βTm) or Var(γTm), but since αTim is a martingale
we have Et(αtm) = α. In addition, αtm ≤ 1. Thus P (αTm > 0.01α) ≥ 0.99α.

From the above it follows that

Var(βTm) + Var(γTm) ≥ (0.99α)(0.99 min(β, γ))2 =: cµ.

Consequently
Et
(
(βtm − γtm)2 − (β − γ)2

)
≥ cµ. (8)

Observe that |βtm − γtm|+ |β − γ| ≤ 2. Thus

|βtm − γtm| − |β − γ| ≥ ((βtm − γtm)2 − (β − γ)2)/2.

Taking expectation of both sides and using inequality (8) we obtain

Et(|βtm − γtm| − |β − γ|) ≥ cµ/2. (9)

By Lemma 7.27 we have

Et

(
min(βtm, γ

t
m)−min(β, γ) +

m∑
i=1

δ
t≤i
i

)
≥ 0.

Using min(a, b) = (a+ b)/2− |a− b|/2 we derive

Et

(
βtm + γtm

2
− |β

t
m − γtm|

2
− β + γ

2
+
|β − γ|

2
+

m∑
i=1

δ
t≤i
i

)

= Et

(
−|β

t
m − γtm|

2
+
|β − γ|

2
+

m∑
i=1

δ
t≤i
i

)
≥ 0,

where the first step follows from the fact that βTii and γTii are martingales. Rearranging and applying
inequality (9) we finally arrive at the conclusion of the statement.

Et

(
m∑
i=1

δ
t≤i
i

)
≥ (1/2)Et(|βtm − γtm| − |β − γ|) ≥ cµ/4.
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7.9.4 Upper Bound on the Rate of Convergence

In this subsection we present an r-round discretization (see Protocol 4) of our optimal protocol (see Proto-
col 2) for AND. We shall prove that the discretized AND protocol achieves O(1/r2) upper bound on the rate
of convergence. This matches the lower bound on the rate of convergence proven in Subsection 7.9.1.

If β < γ then Bob sends bit B as follows

B =

 1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

If B = 0 the protocol terminates, the players output 0.

If β > γ then Alice sends bit B as follows

B =

 1 if x = 1
0 with probability 1− γ/β if x = 0
1 with probability γ/β if x = 0

If B = 0 the protocol terminates, the players output 0.

If x = 0 then Alice samples NA ∈ {0, 1, . . . , r − 1} with P (NA = i) = 2r−2i−1
r2 .

If x = 1 then Alice sets NA = r.

If y = 0 then Bob samples NB ∈ {0, 1, . . . , r − 1} with P (NB = i) = 2r−2i−1
r2 .

If y = 1 then Bob sets NB = r.

For C = 0 to r − 1

If C = NA then Alice sends 1 to Bob, protocol terminates, players output 0

Else Alice sends 0 to Bob

If C = NB then Bob sends 1 to Alice, protocol terminates, players output 0

Else Bob sends 0 to Alice

Protocol terminates, players output 1

Protocol 4: Discretized r-round protocol πr for the AND-function

Recall that the “informational wastage” (or “information wasted”) is how much extra information a
particular bit, message, or protocol reveals when compared to the optimal protocol.

The most natural way to discretize our continuous AND protocol would be to sample numbers NA and
NB uniformly at random from the set {0, . . . , r−1} when the corresponding player(s) have 0 as input. While
analysing this option, we discovered that this discretization wastes increasing amounts information in later

rounds as the counter C approaches r. This leads to a total information wasted ≈ 1
r2

∑r
i=1

1
i = Θ

(
log r
r2

)
. A

natural remedy is to select numbers NA and NB non-uniformly, assigning less probability mass to the later
rounds. Indeed, Protocol 4 assigns probability 2r−2i−1

r2 to the ith value of NA and NB leading to the correct
O( 1

r2 ) bound on the total information wasted. In the rest of this section we prove this claim formally.
We start with two technical lemmas.
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Lemma 7.28. Suppose that Alice sends bit B distributed as follows

B =

 1 if X = 1
0 with probability ψ if X = 0
1 with probability 1− ψ if X = 0

from prior µ =
α β
β δ

. Then the informational wastage of B is

O

(
αβ

α+ β
ψ3 +

2αβ(β2 + 3αβ + 2α2)

(1− ψ)3β3
ψ4

)
.

Proof. The informational wastage of bit B is

IW (α, β, ψ) = I(B;X|Y ) + P (B = 1) IC′µ(AND, 0)− ICµ(AND, 0),

where

µ′ =
(1− ψ)α/t (1− ψ)β/t

β/t δ/t
,

and t = (1− ψ)α+ (2− ψ)β + δ. Furthermore, we have

I(B;X|Y ) = H(B|Y )−H(B|XY ) = (α+ β)H

(
α

α+ β
ψ

)
+ (β + δ)H

(
β

β + δ
ψ

)
− (α+ β)H(ψ).

Writing Taylor series for IW (α, β, ψ) for ψ around 0 we obtain

∃ζ ∈ [0, ψ] s.th. IW (α, β, ψ) =
αβ

(α+ β) ln 64
ψ3 +R(ζ)

ψ4

24
,

where R(ζ) = 2αβ(β2+3αβ(1−ζ)+α2(2−3ζ+ζ3))
(1−ζ)3(α+β−αζ)3 ln 2 .

The above expressions were obtained with help from Wolfram Mathematica. The statement of the lemma
follows immediately.

Suppose that players start with a symmetric prior µ =
α β
β δ

. Observe that the counter C in Protocol 4

can be viewed as a discrete implementation of a continuous clock from Protocol 2. The hand of our clock

now moves in discrete steps from position z to position z + φ where z = 1 −
(
r−i
r

)2
and φ = 2r−2i−1

r2 for
i ∈ {0, . . . , r− 1}. We now analyse how a single such move is accomplished by Alice and Bob in our protocol
and how much information is wasted during this move.

At time z the prior µ becomes µz =
(1− z)2α (1− z)β
(1− z)β δ

normalized. Thus, when the players move

from time z to time z+φ it is equivalent to first Alice sending bit B as in Lemma 7.28 with ψ = φ
1−z followed

by a similar bit B′ sent by Bob. Note that after Alice sends bit B, the prior moves into Bob’s region. In
the optimal protocol, Bob would send exactly bit B′. Hence Bob’s bit wastes no information. Therefore
the total informational wastage incurred while moving clock hand from time z to time z + φ in 2 rounds of
communication comes from bit B.

Lemma 7.29. Let µ =
α β
β δ

be a distribution with full support. When Alice and Bob in 2 rounds of

communication advance the clock from position z to z + φ with φ
1−z ≤

2
3 they waste a total of Oµ

(
φ3

1−z

)
information.
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Proof. As discussed in the paragraph before the statement of the lemma, we simply have to apply Lemma 7.28
to Alice’s signal B with ψ = φ

1−z and distribution

µz =
(1− z)2α/n (1− z)β/n
(1− z)β/n δ/n

,

where n = (1 − z)2α + 2(1 − z)β + δ. Note that by assumptions of the lemma we have ψ ≤ 2/3, therefore
we have 1/(1− ψ)3 ≤ 27. Furthermore we have n ≥ δ and φ ≤ 1− z. Plugging all this in Lemma 7.28 and
simplifying we obtain that the total information wasted is

O

(
(1− z)3αβ

n((1− z)2α+ (1− z)β)

φ3

(1− z)3
+ 27

2(1− z)3αβn3

(1− z)3β3n2

(1− z)2β2 + 3(1− z)3αβ + 2(1− z)4α

n2

φ4

(1− z)4

)
=

= O

(
α

δ

φ3

1− z
+

α

δβ2

φ4

(1− z)2

)
= Oµ

(
φ3

1− z

)
.

Now we are in a position to prove the main result of this subsection.

Theorem 7.30. For distributions µ =
α β
γ δ

with full support we have

ICrµ(AND, 0)− ICµ(AND, 0) = Oµ

(
1

r2

)
.

Proof. Let πr denote Protocol 4 and π denote Protocol 2. In the first stage of protocol πr the player who
is more likely to have 0 sends a bit that either terminates the protocol or moves the prior to the diagonal.
This stage is exactly the same in protocol π. Thus the difference in the information cost of the two protocols
arises only from the second (which we previously called symmetric) stage of π and πr. Thus for the rest of
the proof we shall assume that µ is symmetric, i. e., β = γ.

Observe that for the ith jump of the clock we have φi = 2r−2i−1
r2 and zi = 1 −

(
r−i
r

)2
. Therefore

φi
1−zi = 2r−2i−1

(r−i)2 ≤ 2
r−i . Hence φi

1−zi ≤ 2/3 for all i except i ∈ {r − 2, r − 1}. The later event happens with

probability O(1/r2) conditioned on Alice having 0 as input. In addition if X = 1, Alice learns the entire
Bob’s bit. Hence the difference in the information cost of πr and π arises from the events when Alice or
Bob have 0 as input. Consequently we may ignore the last two movements of the clock as they contribute at
most O(1/r2) to the informational wastage. For the rest of the clock movements we may apply Lemma 7.29

which says that the information wasted in the ith movement is Oµ

(
φ3
i

1−zi

)
. Aggregating it over the first r−2

movements of the clock we get the total amount of information wasted is

Oµ

(
r−3∑
i=0

(2r − 2i− 1)3r2

r6(r − i)2

)
= Oµ

(
r−3∑
i=0

(r − i)
r4

)
= Oµ

(
1

r2

)
.

8 The Communication Complexity of
∨
-type Functions

The main result of this section is a characterization of the (randomized) communication complexity required
to solve

∨
-type functions, that is, functions of the form gn(X,Y )n = ∨ni=1f(xi, yi), in terms of an informa-

tional quantity of the function f . The following definitions will be central to our analysis. Call a protocol π
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good for f if π solves f correctly on all inputs. Let U0, U1 be the set of distributions supported on f−1(0),
f−1(1) respectively. Define

IC0(f, 0) := inf
π good for f

max
µ∈U0

IC(π, µ)

IC1(f, 0) := inf
π good for f

max
µ∈U1

IC(π, µ)

By a minimax argument similar to the one in [8], it can be shown that the above definitions are equivalent
to the following :

IC0(f, 0) := max
µ∈U0

inf
π good for f

IC(π, µ)

IC1(f, 0) := max
µ∈U1

inf
π good for f

IC(π, µ)

It means that instead of needing a single protocol to be good for all distributions, we can choose a protocol
based on the distribution. We formally prove this in the Appendix.

Theorem 8.1. Let f : X × Y → {0, 1} be a function. Then

inf
π good for f

max
µ∈U0

IC(π, µ) = max
µ∈U0

inf
π good for f

IC(π, µ)

Similarly

inf
π good for f

max
µ∈U1

IC(π, µ) = max
µ∈U1

inf
π good for f

IC(π, µ)

These quantities measure the zero-error information cost of the function with respect to the restricted family
of distributions having zero mass on the pre-image of 1 (0)4 . But we require that the protocol be correct
for all inputs. Also note that IC1(f, 0) = IC0(f̄ , 0).
We are now ready to prove Theorem 2.5. For convenience, we restate it below.

Theorem 8.2 (Theorem 2.5 restated). For any Boolean function f : {0, 1}k × {0, 1}k → {0, 1}, let
gn(X,Y ) := ∨ni=1f(xi, yi), where X = {xi}ni=1, Y = {yi}ni=1 and xi, yi ∈ {0, 1}k. Then for all ε > 0,
there exists δ = δ(f, ε) > 0 such that δ → 0 as ε→ 0 and

(IC0(f, 0)− δ) · n ≤ Rε(gn) ≤ IC0(f, 0) · n+ o(n)k.

The hardness of Rε(gn) of
∨

-type functions gn in the view of Yao’s mini-max argument is captured by the
distributions for f that put negligible mass on 1-entries (i.e. x, y such that f(x, y) = 1), for otherwise a
trivial and small-communication sampling protocol would succeed with high probability. Interestingly, this
phenomenon enters our proof in both the upper bound and the lower bound. In the upper bound, we use
the aforementioned ”small-communication sampling protocol” as a preprocessing step to either solve gn or
conclude that the prior puts negligible mass on 1-entries. In the lower bound, we extract the f function from
the gn function by feeding inputs to gn sampled from a prior µ. We require that the value of gn depends
only on the extracted function f , hence the restriction that the inputs do not evaluate to 1.

Remark 8.3. Theorem 2.5 is stated for
∨

-type functions only, but an equivalent result holds for
∧

-type
functions, with IC0(f, 0) replaced by IC1(f, 0). Can be easily proved via De-Morgan’s rule.

8.1 The Lower Bound

We begin with the ’≥’ direction of theorem 2.5.

4Note that taking a maximum in the above definitions is allowed since the corresponding set of distributions is compact and
information is continuous
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Lemma 8.4. For all ε > 0, there exists δ = δ(f, ε) > 0 such that δ → 0 as ε→ 0 and Rε(g) ≥ (IC0(f, 0)−δ)·n

At the heart of the proof lies a reduction from computing gn function to computing f with n times less
information cost with respect to the restricted distributions. This kind of a reduction was first introduced in
[3] and since then has been used in [4], [10] and [8] in the context of direct sums for information complexity. We
also need continuity of information cost to go from ε-error information cost (w.r.t the restricted distributions)
to 0-error information cost.
Proof. Denote ρ := IC0(f, 0). Suppose that there is a protocol Π for computing gn(X,Y )n with error
probability at most ε and communication cost |Π|. Let ν∗ := arg maxν∈U0

ICν(f, 0) be the distribution
maximizing the zero-error information cost of f (note this maximum is well defined as U0 is a compact set).
We will use Π to generate a protocol π which computes f(x, y) with error probability at most ε for any
(x, y) ∈ {0, 1}k with information cost smaller than |Π|/n under ν∗. This protocol is obtained by restricting
Π to a single (random) coordinate, where the rest of the coordinates are publicly sampled according to ν∗.
The protocol is described in Figure 5 (cf. [10]). It can be proved that information cost of the restricted
protocol π under ν∗ is (see Proof of Theorem 3.17 in [10]):

IC(π, ν∗) ≤ IC(Π, ν∗n)
n

Furthermore, since ν∗ is supported on f−1(0) and Π has error ≤ ε, we have that except with probability ε,
for any x, y ∈ {0, 1}k it holds that:

π(x, y) = Π((X1, . . . , XJ−1, x,XJ+1, . . . , Xn), (Y1, . . . , YJ−1, y, YJ+1, . . . , Yn)) = f(x, y)

Note that we measure the information cost of π with respect to ν∗ only, while π computes f(x, y) for all
inputs (x, y) ∈ {0, 1}k, except with probability ε (over the randomness of π).

Let ICgν∗(f, 0) := infπ good for f IC(π, ν∗). Continuity of information cost at error ε = 0 (Theorem 2.8)
now implies that IC(π, ν∗) ≥ IC0(f, 0) − δ(f, ε, ν∗) for some δ(f, ε, ν∗) → 0 as ε → 05. By the definition
(maximality) of ν∗, we have maxν∈U0

IC(π, ν) ≥ IC0(f, 0)− δ(f, ε, ν∗). Hence

Rε(g) ≥ max
ν∈U0

IC(Π, νn) ≥ n · (max
ν∈U0

IC(π, ν)) ≥ n · (IC0(f, 0)− δ(f, ε, ν∗))

1. The parties jointly and publicly sample a uniformly selected index J ∈ {1, . . . , n}.

2. The parties publicly sample X1, . . . , XJ−1, YJ+1, . . . , Yn independently according to ν.

3. The first party privately samples XJ+1, . . . , Xn and the second party privately samples Y1, . . . , YJ−1

conditioned on the corresponding publicly sampled variables, so that each (Xi, Yi) is distributed ac-
cording to ν.

4. The parties run Π((X1, . . . , XJ−1, x,XJ+1, . . . , Xn),
(Y1, . . . , YJ−1, y, YJ+1, . . . , Yn)) and output its output.

Protocol 5: The protocol π(x, y), x, y ∈ {0, 1}

8.2 Upper Bound

In this section we prove an upper bound on the communication complexity of OR-type functions. Recall
that we call a protocol π good for f if π solves f correctly on all inputs. We first bound the information
complexity of gn.

5Note that the proof of continuity produces a good protocol.
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Lemma 8.5. Let f : {0, 1}k × {0, 1}k → {0, 1} be a function and let I = IC0(f, 0). Then for all n and for
all distributions µ on {0, 1}nk × {0, 1}nk, ICµ(gn, 0) ≤ nI + o(n)k, where gn(x1, x2, . . . xn, y1, y2, . . . yn) =
∨ni=1f(xi, yi) and xi, yi ∈ {0, 1}k for all i. More precisely ICµ(gn, 0) ≤ nI +O(n2/3 log(n) · k)

The intuition behind the proof is that the hardest distributions for gn are the ones in which the marginal
distributions on almost all copies have negligible mass on f−1(1), otherwise Alice and Bob could just sample
a small number of coordinates and either find a coordinate (xi, yi) such that f(xi, yi) = 1.

Proof. Let π be a protocol that is good for f such that maxµ∈U0
IC(π, µ) ≤ I + δ, for some δ > 0. Consider

the protocol πn for computing gn (Figure 6) :

1. Alice and Bob exchange(with replacement using public randomness) n2/3 random coordinates (xi, yi) ∈
{0, 1}k (using n2/3 · k bits). Denote the (multi) set of random coordinates by J. If for some i ∈ J
f(xi, yi) = 1 the parties output 1 and terminate.

2. On each coordinate (other than those in J), Alice and Bob run the protocol π and output 1 if π outputs
1 on some coordinate.

Protocol 6: Protocol πn(x, y)

Correctness of the above protocol follows from the fact that π is good for f . We now analyze its
information cost. Let X,Y ∼ µ denote the random variables for the input. Let Π be a random variable
for the transcript of the protocol πn. Then Π = JΠ1Π2, where J denotes the random coordinates sampled,
Π1 denotes the contents of the random coordinates and Π2 denotes the random variable for Step 2 of the
protocol. Let E denote the indicator random variable for the event that for some i ∈ J f(xi, yi) = 1. Note
that if E = 1, then Π2 is empty. Now

I(Π;X|Y ) = I(Π1Π2;X|Y J)

= I(Π1;X|Y J) + I(Π2;X|Y JΠ1)

≤ n2/3 · 2k + I(Π2;X|Y JΠ1E)

≤ n2/3 · 2k + I(Π2;X|Y E)

First inequality follows from the fact that we are exchanging at most n2/3 · 2k bits (can be easily done in
n2/3 · k+ 1 bits) and the fact that J and Π1 determine E. The second inequality is true because conditioned
on E and X,Y , Π2 is independent of J and Π1.

I(Π2;X|Y E) = Pr[E = 0] · I(Π2;X|Y,E = 0)

Let Nf (x, y) = |{xi, yi s.t. f(xi, yi) = 1}|. Here x, y ∈ {0, 1}nk and xi, yi ∈ {0, 1}k are blocks of x, y. We
slightly abuse notation and let µ(d) denote Pr[N(X,Y ) = d], where X,Y ∼ µ. If Pr[E = 0] ≤ 1/n1/3, then
I(Π2;X|Y E) ≤ n2/3 · k. Hence we can assume that Pr[E = 0] ≥ 1/n1/3.
Let µ′ = µ|(E = 0). If we have x, y such that Nf (x, y) = d, then the probability of sampling n2/3 coordinates

and not getting any (xj , yj) such that f(xj , yj) = 1 is bounded by e−2d2/n4/3

by Chernoff bounds. Thus

µ′(d) ≤ µ(d) · e−2d2/n4/3

Pr[E = 0]
≤ µ(d) · e−2d2/n4/3

· n1/3

Thus for d ≥ n2/3 log(n), µ′(d) is very small. Hence

EX,Y∼µ′(Nf (X,Y )) ≤ O(n2/3 log(n))

Let µ′i denote the marginal distribution of µ′ on the ith block. Let εi = Pr[f(Xi, Yi) = 1], where (Xi, Yi) ∼ µ′i.
We will need the following lemma from [8] (see Proof of Theorem 4.2). It says that the information cost of a
protocol Π, that runs a protocol π independently on many copies, is less than the sum of information costs
of the protocol π on different copies w.r.t the marginal distributions.

44



Lemma 8.6. Let µ be a distribution on {0, 1}nk. Divide the input into n blocks of size k each and let
µi denote the marginal distribution on ith block. Let τ be a protocol that runs on 2k sized inputs. Then
IC(τn, µ) ≤

∑n
i=1 IC(τ, µi).

Now using the above lemma, we get that

I(Π2;X|Y,E = 0) + I(Π2;Y |X,E = 0) ≤
n∑
i=1

IC(π, µ′i) ≤ n · IC(π, (

n∑
i=1

µ′i)/n)

where the last inequality follows from concavity of information cost (Lemma A.1). By linearity of expectation

n∑
i=1

εi = EX,Y∼µ′(Nf (X,Y )) ≤ O(n2/3 log(n))

Thus ν = (
∑n
i=1 µ

′
i)/n has O(log(n)/n1/3) mass on f−1(1) and hence is O(log(n)/n1/3) close to distribution

ν′ in U0. Using Lemma B.1 along with the fact that IC(π, ν′) ≤ I + δ gives us that IC(π, ν) ≤ I + δ +
O(log(n)/n1/3 · k) +H(O(log(n)/n1/3)). Hence

I(Π2;X|Y,E = 0) + I(Π2;Y |X,E = 0) ≤ n(I + δ) +O(n2/3 log(n) · k)

Thus we get that IC(gn, 0) ≤ n(I + δ) +O(n2/3 log(n) · k), ∀δ > 0. Hence IC(gn, 0) ≤ nI +O(n2/3 log(n) ·
k).

The next theorem proves an upper bound on the communication complexity of gM .

Theorem 8.7. For any constant ε > 0, Rε(gM ) ≤M · IC0(f) + o(M)k

We will need the following non-distributional version of “information equals amortized communication”
from [8].

Theorem 8.8. Let g : X×Y → {0, 1} be a function, and let IC(g, 0) = I. Then for each δ1, δ2 > 0, there is
an C = C(g, δ1, δ2) such that for each N ≥ C, there exists a protocol πN = πN ((x1, x2, . . . , xN ), (y1, y2, . . . , yN ))
for computing N instances of g. The protocol has communication complexity < N · I · (1 + δ1) and answers
on all coordinates correctly except with probability δ2.

Proof. (of Theorem 8.7) The proof utilizes the self-reducible structure of gM . This kind of a self-reducibility
trick was used in [8] to analyze the information complexity of the Disjointness function. Consider a sufficiently
large M . Choose n to be the largest such that n · C(gn, 1/n, ε) ≤ M . Now let N ≥ C(gn, 1/n, ε) be the
largest such that n · N ≤ M . We can assume that n · N = M . By Theorem 8.8, there exists a protocol
πN for solving N instances of gn with communication < N · IC(gn, 0) · (1 + 1/n) and solving all instances
correctly except with probability ε. Now consider the protocol πM for solving gM (Figure 7) :

1. Divide the input into N blocks of size n each and run πN to solve these N instances of gn.

2. Output 1 if πN outputs 1 on some instance.

Protocol 7: Protocol πM

Clearly the protocol has error ≤ ε. The communication cost of the protocol is :

N · IC(gn, 0) · (1 + 1/n) ≤ N · (n · IC0(f, 0) +O(n2/3 log(n) · k)) · (1 + 1/n)

≤M · IC0(f) + o(M)k
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We give an overview of the whole proof and protocol for solving gM just for clarity :

1. Pick n << M , let N = M/n.

2. Construct a low information cost protocol τ for gn by:

• Sampling n2/3 coordinates and terminating if we know output of gn.

• Apply the protocol that achieves IC0(f, 0) to the remaining coordinates.

3. Use “information equals amortized communication” to compress the low information cost protocol τN

into a low communication protocol for gM .

8.3 The exact communication cost of DISJn

In this section we show how our previous results easily imply Theorem 2.6. Since Non-Disjointness is a
∨

-
type function, with the inner function “f” being the AND function, and since the tools obtained in section 7
enable us to compute IC0(AND, 0), we can use Theorem 2.5 to obtain the exact randomized communication
complexity of DISJn with error tending to 0.

Corollary 8.9 (Theorem 2.6 restated). For all ε > 0, there exists δ = δ(f, ε) > 0 such that δ → 0 as ε→ 0
and

(CDISJ − δ) · n ≤ Rε(gn) ≤ CDISJ · n+ o(n)k.

where CDISJ ≈ 0.4827 bits.

Note that the reductions in the proof of the upper bound and lower bound of Theorem 2.5 preserve the
number or rounds. Hence an r-round protocol for DISJn will be suboptimal by at least Ω(n/r2), because
of Theorem 2.4.
Proof. Theorem 7.5 says that

lim
ε→0

max
µ:µ(1,1)≤ε

ICµ(AND, 0) ≈ 0.4827 . . . .

Note that here we have distributions which have negligible mass on (1, 1) rather than 0 mass which we
require in the definition of IC0(AND, 0). But that is because definition of IC0(AND, 0) deals only with
protocols that work correctly for each input, whereas the definition of ICµ(AND, 0) required protocols to
be correct only on the support of µ. So the fact that IC0(AND, 0) ≈ 0.4827 requires a small proof.

Claim 8.10. For all functions f : {0, 1}k × {0, 1}k → {0, 1},

IC0(f, 0) = lim
ε→0

max
µ:µ(f−1(1))≤ε

ICµ(f, 0)

Proof. By the definition of IC0(f, 0), for all δ > 0, there exists a protocol π that solves f correctly on all
inputs and maxµ∈U0

IC(π, µ) ≤ IC0(f, 0) + δ. Let ε > 0 (recall that U0 is the set of distributions supported
on f−1(0)) and let µε be a distribution such that µε(f

−1(1)) ≤ ε and let µ be the distribution obtained by
restricting µε to f−1(0). Then by Lemma B.1, |IC(π, µ)− IC(π, µε)| ≤ t(ε), where t(ε)→ 0 as ε→ 0. Also
since π solves f correctly on all inputs, π has 0-error w.r.t every distribution. Thus

ICµε(f, 0) ≤ IC0(f, 0) + δ + t(ε)

and since this is true for all ε, δ > 0

lim
ε→0

max
µ:µ(f−1(1))≤ε

ICµ(f, 0) ≤ IC0(f, 0)

For the other direction, we use the other definition for IC0(f, 0) i.e.

IC0(f, 0) = max
µ∈U0

inf
π good for f

IC(π, µ)
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Let µ ∈ U0 be the distribution that achieves the maximum in the above definition. Perturb µ by ε to obtain
µε i.e. µε = ε · Uk +(1− ε) ·µ (Uk is the uniform distribution over {0, 1}k×{0, 1}k). Then µε has full support
and µε(f

−1(1)) ≤ ε. Let π be a protocol that has 0-error w.r.t µε and IC(π, µε) ≤ ICµε(f, 0) + δ. Since
µε has full support, π works correctly for all inputs. Also by Lemma B.1, IC(π, µ) ≤ IC(π, µε) + t(ε) ≤
ICµε(f, 0) + δ + t(ε). Since this is true for all δ > 0,

inf
π good for f

IC(π, µ) ≤ ICµε(f, 0) + t(ε)

and hence
IC0(f, 0) ≤ lim

ε→0
max

µ:µ(f−1(1))≤ε
ICµ(f, 0)

Now Theorem 2.6 follows from Theorem 2.5 and the fact that

CDISJ = IC0(AND, 0) ≈ 0.4827

9 Exact Complexity of DISJ with small sets

We also study the DISJn problem with the promise that both Alice and Bob have sets of size ≤ k. Lets
denote this by DISJkn . This problem was studied in [20]. It is also one of the problems that give a separation
between deterministic communication complexity and average-case 0-error communication complexity (e.g.
see [27]). There they proved the following theorem:

Theorem 9.1. Rε(DISJ
k
n) ≤ O(k), for all constant ε > 0. Moreover the error is one-sided i.e. when the

sets intersect, the protocol always outputs intersect.

A lower bound of Ω(k) is immediate from the Ω(n) lower bound on the communication complexity of
DISJn. We are able to determine the exact communication complexity of this problem except for some
regimes.

Theorem 9.2. Let n, k be such that k = ω(1) and n/k = ω(1). Then for all constant ε > 0, ( 2
ln 2 −O(

√
ε)) ·

k − o(k) ≤ Rε(DISJkn) ≤ 2
ln 2 · k + o(k).

We start by proving a lower bound. In this section when we talk about a 0-error protocol, we will mean
a protocol that is correct for all inputs. So we will use ICµ(AND, 0) to denote the information cost of AND
w.r.t the best protocol that works correctly not only for the support of µ but for all inputs.

9.1 Lower Bound

Lemma 9.3. Let n, k be such that k = ω(1) and n/k = ω(1). Then Rε(DISJ
k
n) ≥ ( 2

ln 2 −O(
√
ε)) · k− o(k).

Proof. Once again, the idea is to show that a low communication protocol for DISJkn can be used to devise
a low information protocol for a single copy of AND under some distribution. Consider the following distri-
bution for the AND function.

µ =
1− 2(k − k2/3)/n (k − k2/3)/n

(k − k2/3)/n 0

Let Π be a protocol for DISJkn with error probability at most ε and communication |Π|. We will design a
protocol π for AND which works correctly for all inputs with high probability and which has information cost
≤ |Π|/n w.r.t. µ. The protocol is the same as Protocol 5, except that we sample the remaining coordinates
according to µ. Let x, y be the inputs to π.
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As before

ICµ(π) ≤ ICµn(Π)

n
≤ |Π|

n

By multiplicative Chernoff bounds, except with probability 2e−(k−k2/3)−2/3(k−k2/3)/3, Alice and Bob both
have sets of size (not counting the embedded coordinate)

≤ (k − k2/3)(1 + (k − k2/3)−1/3) ≤ k − 1

Furthermore, since the distribution µ has zero mass on (1, 1), the answer of π is determined by x ∧ y, so

by the guarantee on Π, except with probability ε + e−k
Ω(1)

(probability over the internal randomness of
π), π correctly computes x ∧ y. However, to complete the proof we shall use previous analysis which only
has guarantees for 0-error computation of AND. Thus we shall need a continuity argument to argue that
π can be extended to a 0-error protocol with a “tiny” overhead in the information cost. Unfortunately the
convergence rate in Theorem 2.8 is not good enough here (because the information cost of AND w.r.t µ is a
sub-constant and the deviation from the information cost is constant for constant ε in Theorem 2.8). So we
get a stronger convergence rate for this particular case.

Lemma 9.4. Let ν =
1− 2k/n k/n
k/n 0

. Then if there is protocol π for AND such that for all inputs, π

outputs the correct answer with probability ≥ ε, and IC(π, ν) = I. Then for all δ > 0, there is protocol π′

for AND such that it is correct for all inputs and IC(π′, ν) ≤ I +O( kn ·
√
ε) + δ.

First lets see what this lemma gives us. We get a protocol π′ for AND with information cost ≤ |Π|
n +

O( (k−k2/3)
n ·

√
ε+ e−kΩ(1)). However the information cost of AND with respect to

α β
β 0

(w.r.t. restricted

protocols that work for each input) is (by Claim 7.6)

=
β

ln 2
+
β2

α
log

β

β + α
+ α log

α+ β

α

For µ, α = 1− 2(k − k2/3)/n and β = (k − k2/3)/n. For these parameters, we get that the information cost
is 2

ln 2 ·
k
n ± o(

k
n ). Thus we get that

|Π| ≥ n ·
(

2

ln 2
· k
n
− o

(
k

n

)
−O

(
(k − k2/3)

n
·
√
ε+ e−kΩ(1)

))
=

(
2

ln 2
−O

(√
ε
))
· k − o(k)

We will need the following proposition:

Proposition 9.5. Let χ =
α β
γ 0

be a distribution for AND. Also let β ≤ γ. Then ICχ(AND) ≤

O(β · log(2γ/β))

Proof. Let us first look at the information cost of a symmetric distribution. Consider the distribution
α β
β 0

By Claim 7.6 the information cost is

β

ln 2
+
β2

α
log

β

β + α
+ α log

α+ β

α
≤ 2β

ln 2

Now for χ, the information cost by Claim 7.7 is (cost of the symmetrization step) + t·(cost of remain-
ing symmetric distribution). t·(cost of remaining symmetric distribution) ≤ t · O(β/t) ≤ O(β). For the
symmetrization step, the cost is
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(α+ β)H

(
β

α+ β
+
β

γ
· α

α+ β

)
− αH

(
β

γ

)
= (α+ β)H

(
β

γ
+

β

α+ β

(
1− β

γ

))
− αH

(
β

γ

)
≤ (α+ β)

(
H

(
β

γ

)
+

β

α+ β

(
1− β

γ

)
H ′
(
β

γ

))
− αH

(
β

γ

)
= βH

(
β

γ

)
+ β

(
1− β

γ

)(
log

(
1− β

γ

)
− log

(
β

γ

))
= β log

(
γ

β

)
The first inequality follows from the concavity of the entropy function. This completes the proof of Propo-
sition 9.5

Proof. (Of Lemma 9.4) The main idea behind the proof is that if π is a ε-error protocol, then the distri-
butions on the leaves should be “easy to solve”. Hence, to finish the job, when reaching a leaf `, Alice and
Bob run the the optimal protocol for the distribution at leaf `. We formalize this idea below (Figure 8):

1. Run the protocol π.

2. Upon reaching a leaf l, run a protocol τ such that IC(τ, νl) ≤ ICνl(AND, 0) + δ and output according
to the output of τ .

Protocol 8: 0-error protocol

The novel idea here is that upon reaching a leaf, Alice and Bob run the optimal 0-error protocol for AND
for the particular distribution reached in the corresponding leaf, rather than run a simpler protocol as we
do in the proof of continuity of IC for general functions.

Alice and Bob start with the distribution ν. Let l be a leaf in the protocol tree. Let pl be the probability
of reaching this leaf (probability over the randomness of the protocol and the distribution ν). Let X,Y ∼ ν.

Let νl be the distribution conditioned on reaching leaf l. Let νl =
α β
γ 0

We consider two cases. The first case is when the protocol outputs 0 upon reaching the leaf l.

Claim 9.6. Pr[π reaches leaf l on input (1, 1)] = pl · β
k/n ·

γ
k/n ·

1−2k/n
α

Proof. We use the rectangular structure of a protocol. Particularly since π is a protocol, it holds that for all
leaves l, there exists functions pA : {0, 1} → [0, 1] and pB : {0, 1} → [0, 1] such that

Pr[π reaches leaf l on input (a, b)] = pA(a) · pB(b)

pA and pB are basically the products of probabilities at Alice’s and Bob’s nodes, respectively. Now

pA(1)pB(1) =
pA(1)pB(0) · pA(0)pB(1)

pA(0)pB(0)
(10)

Also

pA(1)pB(0) = Pr[π reaches leaf l on input (1, 0)] = Pr[π reaches leaf l|X = 1, Y = 0]

=
Pr[π reaches leaf l] · νl(1, 0)

ν(1, 0)
= pl ·

γ

k/n
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Similarly we get that

pA(0)pB(1) = pl ·
β

k/n

pA(0)pB(0) = pl ·
α

1− 2k/n

Using (10), we get Claim 9.6

Now since we output 0 on this leaf l, this leaf contributes error pl · β
k/n ·

γ
k/n ·

1−2k/n
α to the error for (1, 1).

Thus ∑
leaves l that output 0

pl ·
β

k/n
· γ

k/n
· 1− 2k/n

α
≤ ε =⇒

∑
leaves l that output 0

pl ·
β

k/n
· γ

k/n
≤ 2ε

Now if β ≤ γ, the contribution of extra information cost from leaf l is ≤ pl · β log(2γ/β) (we will ignore the
δ term because it is not important), otherwise ≤ pl · γ log(2β/γ). So wlog assume that β ≤ γ. Let β0 = β

k/n

and γ0 = γ
k/n . We make the following simple claim.

Claim 9.7. Either β0 log(2γ0/β0) < 4
√

2ε or β0 log(2γ0/β0) < β0γ0√
2ε

.

Note that the above claim proves that (after considering the other similar region where γ ≤ β)∑
leaves l that output 0

extra info from leaf l ≤ O(k/n ·
√
ε)

Proof. (Of Claim 9.7) Assume on the contrary and let 2γ0

β0
= 2l, where l ≥ 1. Then

β0 · l > 4
√

2ε > 2γ0/l =⇒ l2 > 2l+1

a contradiction

Now consider a leaf l which outputs 1. Again assume wlog that β ≤ γ. Then

Pr[π reaches leaf l on input (1, 0)] = pl ·
γ

k/n

So the contribution of this leaf l to the error for (1, 0) is pl · γ
k/n . Thus we get that∑

leaves l that output 1

pl ·
γ

k/n
≤ ε

The contribution of this leaf to the extra info cost is ≤ pl ·O(β log(2γ/β)). Now since β0 log(2γ0/β0) < 2γ0,
hence (after considering the other region γ ≤ β)∑

leaves l that output 1

extra info from leaf l ≤ O(k/n · ε)

This completes the proof of Lemma 9.4.
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9.2 Upper Bound

Now we prove the upper bound on the communication complexity of DISJkn .

Theorem 9.8. Let N,K be such that K = ω(1) and N/K = ω(1). Then for all constant ε > 0,
Rε(DISJ

K
N ) ≤ 2

ln 2 ·K + o(K).

We start with the following proposition :

Proposition 9.9. Let ν =
1− 2k/n+ l/n (k − l)/n

(k − l)/n l/n
, where n ≥ k ≥ l. Then ICν(AND) ≤ 2

ln 2 ·
k
n +

O
(
l
n · log

(
2k
l

))
.

Proof. By Claim 7.8, the information cost is ≤

β

ln 2
+ 2γ log

β + γ

γ
+ 2β log

β + γ

β
+ α log

α+ β

α

Here α = 1− 2k/n+ l/n, β = (k − l)/n and γ = l/n. Plugging in the values we get that ICν(AND) ≤

2

ln 2
· k
n

+O

(
l

n

)
+O

(
l

n
· log

(
k

l
+ 1

))
≤ 2

ln 2
· k
n

+O

(
l

n
· log

(
2k

l

))

For an upper bound on the communication complexity of set-disjointness, we will also need to study the
complexity of set-intersection for some regime of parameters. Consider the distribution ν where n = k2.
Then ICν(AND, 0) ≤ 2

ln 2 · 1/k + O
(
l
k2 · log

(
2k
l

))
. Let r(k) be the number of rounds of a protocol π for

AND such that IC(π, ν) ≤ 2
ln 2 · 1/k + O

(
l
k2 · log

(
2k
l

))
+ 1/k3/2. Let t(N) be the largest k such that

k2r(k) · log(k4r(k)) ≤ N . Then we have the following lemma :

Lemma 9.10. Let K,N be such that K = ω(1), N/K = t(N). Then for all L = o(K), there is a randomized
protocol ΠL such that if x, y ∈ {0, 1}N × {0, 1}N and |x| ≤ K, |y| ≤ K, |x ∧ y| ≤ L, then Π(x, y) returns
the intersecting coordinates in x, y (i.e. solves set-intersection), except with probability 1/t(N)7/2. ΠL has
expected communication cost ≤ 2

ln 2 ·K + o(K), for all x, y such that |x| ≤ K, |y| ≤ K, |x ∧ y| ≤ L and has
maximum communication O(N · t(N)) for all x, y.

Proof. The central idea of the proof is to run an optimal information-cost protocol for AND on each coordi-
nate and then compress the resulting protocol using “information equals amortized communication”. Note
that we can assume that Alice and Bob both have sets of size exactly K, otherwise Alice and Bob can have
K dummy elements each which are distinct and they can complete their sets using these dummy elements.
The universe size increases from N to N + 2K, but the universe size doesn’t matter anyways.
Choose k = t(N) and n = k2 (in the distribution ν of proposition 9.9). Let µ be any distribution on {0, 1}N×
{0, 1}N . Then consider the protocol πN in which Alice and Bob run the protocol π on each coordinate (π
being the protocol that has r(k) number of rounds and information cost 2

ln 2 ·1/k+O
(
l
k2 · log

(
2k
l

))
+1/k3/2

w.r.t ν). Let µi be the marginal distribution on coordinate i.

IC(πN , µ) ≤
N∑
i=1

IC(π, µi) ≤ N · IC(π, (

N∑
i=1

µi)/N)

The first inequality follows from Lemma 8.6 and the second follows from concavity of information cost
(Lemma A.1). Let

∑N
i=1 µi)/N = µ̄. For x, y ∈ {0, 1}N , let Na,b(x, y) = |{i s.t. xi = a, yi = b}|. Then

µ̄(a, b) = EX,Y∼µ[Na,b(X,Y )]. Let L be the expected intersection size of X,Y ∼ µ. Then µ̄(1, 1) = L/N
and µ̄(1, 0) = µ̄(0, 1) = (K − L)/N . Let Lk/K = l. Then µ̄(1, 1) = l/k2 and µ̄(1, 0) = µ̄(0, 1) = (k − l)/k2.
The number of rounds of πN is r(k) and information cost ≤
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N ·
(

2

ln 2
· 1/k +O

(
l

k2
· log

(
2k

l

))
+ 1/k3/2

)
=

2

ln 2
·K +O

(
L · log

(
2K

L

))
+K/

√
k

=
2

ln 2
·K +O

(
L · log

(
2K

L

))
+ o(K)

Now we compress the protocol πN using the following round-by-round compression lemma from [10] :

Lemma 9.11. Let X,Y ∼ µ be inputs to a r round communication protocol π̄ whose internal information
cost is I. Then for every δ1 > 0, there exists a protocol τ such that at the end of the protocol, each party
outputs a transcript for π̄. Furthermore, there is an event G with P [G] > 1−rδ1 such that conditioned on G,
the expected communication of τ is I + O(

√
rI) + 2r log(1/δ1), and both parties output the same transcript

distributed exactly according to π(X,Y ).

Now for δ2 = 1/k2, consider the protocol τ ′ obtained by compressing πN with δ1 = 1
k4r(k) and exchanging

inputs after communicating K/δ2 bits.

Ex,y∼µ[|τ ′(x, y)|] ≤ 2

ln 2
·K +O

(
L · log

(
2K

L

))
+ o(K) + Pr[¬G] · (K/δ2 + 2N) +O(δ2 ·N)

≤ 2

ln 2
·K +O

(
L · log

(
2K

L

))
+ o(K)

Note that Pr[¬G] · (K/δ2 + 2N) = o(K) for all δ2 such that 1/δ2 = o(k4) and O(δ2 · N) = o(K) for
all δ2 such that δ2 = o(1/k). The error of τ ′ w.r.t µ is r(k) · ε = 1/k4. Note that if L = o(K), then
Ex,y∼µ[|τ ′(x, y)|] = 2

ln 2 ·K + o(K). Now we apply a minimax argument similar to the arguments in [8] and
the proof of Theorem 8.1 in order to produce a protocol which has low worst-case communication cost6. Let
UL be the set of distributions over {0, 1}N × {0, 1}N with expected intersection size ≤ L.
Consider the following zero-sum game G. The first player M chooses a protocol a distribution µ ∈ UL and
the second player T chooses a (randomized) protocol τ ′. The payoff for player M is given by :

PM (µ, τ ′) = (1− 1/
√
k) · Ex,y∼µ[|τ ′(x, y)|]

2
ln 2 ·K +O

(
L · log

(
2K
L

))
+ o(K)

+ 1/
√
k · Ex,y∼µ[error(τ ′(x, y))]

1/k4

We first establish that the value of the game is bounded away by 1.

Claim 9.12. V alG(M) ≤ 1

Proof. Let ν be any mixed strategy for player M . Denote by µ̄ the average distribution in ν : µ̄(x, y) =
Eµ∼νµ(x, y). Since the payoff function is calculated in terms of expectations over (x, y) ∼ µ, for any τ ′ we
have:

Eµ∼νPM (µ, τ ′) = PM (µ̄, τ ′)

Since UL is convex, µ̄ ∈ UL. Then by the arguments above, there is a randomized protocol τ ′ such that
Ex,y∼µ̄[|τ ′(x, y)|] ≤ 2

ln 2 ·K + O
(
L · log

(
2K
L

))
+ o(K) and Ex,y∼µ̄[error(τ ′(x, y))] ≤ 1/k4. This implies that

PM (µ̄, τ ′) ≤ 1.

By the Minimax Theorem, there is a distribution ν on protocols τ ′, such that for each distribution µ ∈ UL,
Eτ ′∼νPM (µ, τ ′) ≤ 1. This implies that the randomized protocol ΠL obtained by executing a protocol τ ′

that is distributed according to ν also satisfies PM (µ,ΠL) ≤ 1 for all µ ∈ UL. Also since the maximum
communication for each τ ′ was O(N · k), the maximum communication for ΠL is O(N · k). PM (µ,ΠL) ≤
implies that for all µ ∈ UL

6We need to apply minimax to infinite matrices, but we are dealing with convex sets of distributions as rows and continuous
entities as matrix entries, so the justification follows along the same lines as proof of Theorem 8.1 in Appendix
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Ex,y∼µ[|ΠL(x, y)|] ≤
(

2

ln 2
·K +O

(
L · log

(
2K

L

))
+ o(K)

)
· (1 + 2/

√
k)

=
2

ln 2
·K +O

(
L · log

(
2K

L

))
+ o(K)

Also for all µ ∈ UL :
Ex,y∼µ[error(ΠL(x, y))] ≤ 1/k7/2

Considering the singleton distribution 1(x,y), where |x| = |y| = K and |x∧ y| ≤ L, we get that E|ΠL(x, y)| ≤
2

ln 2 ·K+O
(
L · log

(
2K
L

))
+o(K) = 2

ln 2 ·K+o(K), if L = o(K) and error(ΠL(x, y)) ≤ 1/k7/2. This completes
the proof of the lemma.

In this lemma we get a protocol which has low expected communication but high maximum communication.
However the bound on the maximum communication ensures that taking multiple copies of same problem
would result in concentration and we can get a protocol which has low maximum communication. We
formalize this in the lemma below :

Remark 9.13. Note that we can get a similar lemma for N,K such that K = o(N) and N/K < t(N) by
choosing a smaller value of k and a larger value of n in the proof.

Lemma 9.14. There exists a slowly growing function of N , s(N) such that for N,K such that ω(1) ≤
N/K ≤ s(N), there exists a protocol Γ which solves set-intersection for x, y such that |x| ≤ K, |y| ≤ K and
|x ∧ y| ≤ K/

√
s(N) and has maximum communication 2

ln 2 ·K + o(K) and sub-constant error.

Proof. Essentially we want to take t(M)3 copies of INT
M/t(M)
M for some M and use the previous lemma.

Let M be the largest such that M · t(M)3 ≤ N . We can assume N = M · t(M)3, since otherwise solving for
(M +1)t(M +1)3 doesn’t cost us much more. Define s(N) = t(M). We also assume wlog that N/K = s(N),
the case N/K < s(N) corresponds to the previous lemma with M/KM < t(M). Let k = t(M), so that
N = M · k3.
Let that Alice has x ∈ {0, 1}N and Bob has y ∈ {0, 1}N such that |x| = |y| = K and |x∧ y| ≤ c ·K/

√
s(N).

Consider the protocol in Figure 9 for finding the intersecting coordinates of x and y.

1. Alice and Bob (using public randomness) randomly divide their inputs into k3 blocks of length M each.

2. They run the protocol from Lemma 9.11 with KM = M/k · (1 + 5/k) and LM = M/k3/2 · (1 + 5/k) on
each block and terminate after exchanging k3 · (expected communication on single copy) + k11/4 ·KM

bits.

Protocol 9: Protocol for big sets

Since K = Mk2, the communication clearly is less than 2
ln 2 ·K + o(K). There are three different sources

of error :

1. The error from the protocol of Lemma 9.11

2. In some block B, the number of elements of either Alice or Bob is more than KM , or the number of
intersecting elements is more than LM .

3. The total communication is more than k3 · (expected communication on single copy) +k11/4 ·KM bits.

We show that the error from each source is sub-constant, hence completing the proof of the lemma.

1. Since the error of the protocol of Lemma 9.11 is 1/k7/2 on each copy, the total error by union-bound
is ≤ 1/

√
k.
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2. Consider a particular block B. Let Xi denote the random variable that the ith coordinate in the block
has Alice’s element. Also let Si =

∑i
j=1Xj . Then Pr[Xi = 1|Si−1] ≤ K/(N −M) = k2/(k3 − 1) ≤

1/k · (1+2/k3). Then by Chernoff bounds, Pr[SM ≥M/k · (1+2/k3)(1+1/k)] ≤ e−
M/k·(1+2/k3)

3k2 , which
is exponentially small since M is much larger than k. Similarly the probabilities that Bob has more
than KM elements in block B and that the number of intersecting elements in block B are more than
LM are exponentially small. The probability that there is some block in which these events happen is
k3 · (something exponentially small) and is again sub-constant.

3. Let Ti be the amount of communication needed for ith block. Then the Ti’s are independent. Also

V ar[Ti] < E[Ti] ·maxTi = E[Ti] ·O(Mk). Let T =
∑k3

i=1 Ti. Then E[T ] =
∑
iE[Ti] = k3 ·O(M/k) =

O(Mk2) and V ar[T ] < O(M2k3). By Chebyshev’s inequality, Pr[T ≥ E[T ] + k11/4 ·KM ] ≤ V ar[T ]
k5.5K2

M
=

O(1/
√
k), which is again sub-constant.

Now we complete the proof of upper bound for all regimes of N,K.

Proof. (Of Theorem 9.8) The central idea of the proof is to reduce the size of the universe by hashing and
then apply lemma 9.14. Note that for N/K < s(N), Alice and Bob can solve DISJKN by first sampling
enough elements and finding a common element and later solving set-intersection (if they didn’t find a
common element in the first step). So we assume N/K >> s(N). Let R be such that R

K = s(R). Consider
the protocol in Figure 10.

1. Alice and Bob each sample N√
K

random coordinates (with replacement) and then they run the H̊astad-

Wigderson protocol (for sets of size ≤ 2
√
K)(Theorem 9.1) in O(

√
K) communication. If the protocol

outputs “intersecting”, then output 0 else continue.

2. Alice and Bob choose a uniformly random hash function H : [N ] → [R] and hash the universe into R
bins. If Alice and Bob have sets X and Y , they run the protocol Π from Lemma 9.14 on H(X) and
H(Y ), but run the protocol Π only for 2

ln 2 ·K + o(K) bits (The performance guarantee of the Lemma
for instances of small intersection size). If Π doesn’t stop after communicating these many bits, output
a random answer. If Π returns that the sets are disjoint, then they output 1. Else continue.

3. Now look at all the bins that have both Alice’s and Bob’s elements (returned by protocol Π in Step 2).
Each bin can be viewed as a smaller DISJ problem. Alice and Bob run the H̊astad-Wigderson protocol
on each bin with probability of failing 1/2 if the bins are disjoint (The protocol has only one-sided
error). They then run the protocol again on each bin that the protocol says is intersecting and keep
doing this until the protocol declares all bins as disjoint, in which case they output 1, or they use

communication more than K ·
(
K
R

)1/4
in this step, in which case they output 0.

Protocol 10: Protocol for K-DISJ

Lets first see why the protocol is correct with high probability.

1. In the first step, the expected sizes of Alice’s and Bob’s remaining sets is
√
K. Thus, except with

exponentially small probability, both Alice and Bob have sets of size ≤ 2
√
K (by Chernoff bounds). If

|X∩Y | > K3/4 then again by Chernoff bounds, except with exponentially small probability, Alice’s and
Bob’s remaining sets intersect. Thus the parties output 0 in the first step except with an exponentially
small probability (HW protocol has error only when the sets are disjoint) if |X ∩ Y | > K3/4.

2. For the further steps, lets analyze |H(X) ∩ H(Y )|. Let Xij be the indicator random variable for
the event that Alice’s ith element ai and Bob’s jth element bj are mapped to the same bin. Then

54



if ai = bj , Pr[Xij = 1] = 1 and if ai 6= bj , Pr[Xij = 1] = 1
R . Also let X =

∑K
i,j=1Xij . Then by

linearity of expectation, E[X] ≤ |X ∩ Y |+K2/R ≤ K3/4 +K2/R ≤ 2K2/R (s(R) is a slowly growing
function). Let B1, . . . , Bt be the bins that are common between Alice and Bob. Also let li be the
number of elements of Alice or Bob in bin Bi (whoever has larger number of elements in bin Bi).
Then the contribution to number of collisions from bin Bi is atleast li. Thus, except with probability

O(
√
K/R),

∑
i li ≤

K
√
K√
R

. In particular the number of intersecting bins are atmost K
√
K√
R

and thus

by Lemma 9.14, uses communication atmost 2
ln 2 · K + o(K). Now since the error of protocol Π is

sub-constant, the error in second step is sub-constant.

3. In the third step, we can have an error only when all the bins are disjoint (because of the one-sided error
of HW protocol). In that case, the expected amount of communication required (until the HW protocol

outputs disjoint on each bin) is ≤ O(
∑
i li)+ 1

2 ·O(
∑
i li)+

(
1
2

)2 ·O(
∑
i li)+ . . . = O(

∑
i li) = O(K

√
K√
R

).

This is because probability that the HW protocol says ”intersecting” on a disjoint bin for i steps is

1/2i. Thus only with probability O
((

K
R

)1/4)
, communication more than K ·

(
K
R

)1/4
is required.

It remains to analyze the protocol’s communication complexity. Step 1 has communication complexity

O(
√
K) = o(K). Step 3 has communication atmost K ·

(
K
R

)1/4
= o(K). The bulk of the communication

occurs in step 2, where by Lemma 9.14 (and because of the check) it is bounded by 2
ln 2 ·K + o(K)

Remark 9.15. By similar techniques, we can prove that the randomized communication complexity of SET-
INTERSECTION for sparse sets (sets of size ≤ k) is essentially

(
2

ln 2 · ln(1 + e)
)
·k±o(k) ≈ 3.7893 ·k±o(k).

This is because maxµ∈Ck,n ICµ(AND, 0) = 2
ln 2 · ln(1 + e) · kn + o

(
k
n

)
, where Ck,n is the set of distributions µ

such that µ =
α β
β δ

and β + δ = k
n .

Appendix

Here we give all the pending proofs.

A Concavity of Information cost

We need the following lemma about concavity of information cost from [8]

Lemma A.1. Let ν be a distribution on probability distributions µ over X × Y , and denote µ̄(x, y) :=
Eµ∼νµ(x, y). Then for any protocol π it holds that

Eµ∼νB [ICµ(π)] ≤ ICµ̄(π).

In other words, the average amount of information revealed by π with respect to the different distributions
µ ∼ ν is smaller or equal to the amount of information revealed with respect to µ̄.

To establish the statement of the theorem, consider the following four random variables. Let M be a
random variable representing the distribution µ. Then M is distributed according to ν. Let X and Y be
the inputs to the two parties in π such that (X,Y ) is distributed according to µ. Finally, let Π = π(X,Y )
be the transcript of the protocol executed on X and Y . Π is randomized even conditioned on (X,Y ) due to
the public and private randomness used in the execution of the protocol. In this language, we have:

Eµ∼ν
[
I(X,Y)∼µ(π(X,Y); X|Y)

]
= I(Π; X|YM),

and
I(X,Y )∼µ̄(π(X,Y );X|Y ) = I(Π;X|Y ).

55



Since the distribution of Π only depends on X and Y , we have I(Π;M |XY ) = 0. By substituting A = X,
B = Π, C = Y , and D = M into Proposition 4.7 we get

I(X; Π|Y ) ≥ I(X; Π|YM), (11)

which proves that
Eµ∼ν

[
I(X,Y)∼µ(π(X,Y); X|Y)

]
≤ I(X,Y)∼µ̄(π(X,Y); X|Y).

Similarly, the following symmetric inequality is established: Eµ∼ν
[
I(X,Y)∼µ(π(X,Y); Y|X)

]
≤ I(X,Y)∼µ̄(π(X,Y); Y|X).

Together, the last two inequalities imply

Eµ∼ν [ICµ(π)] ≤ ICµ̄(π). (12)

B Proof of Theorem 9.1

Here we provide the proof of Theorem 8.1 (adapted from [8]). Actually we can replace U0 by any convex
and compact subset of distributions. infπ good for f maxµ∈U0 IC(π, µ) ≥ maxµ∈U0 infπ good for f IC(π, µ) is
easy to see. We prove the other inequality below. The proof is essentially a minimax argument.

We will need the following lemma (from another working paper by the same authors) :

Lemma B.1. Let µ1 and µ2 be distributions on {0, 1}N × {0, 1}N such that |µ1 − µ2| ≤ ε. Also let ε <
1/2. Let π be a protocol for solving a function (possibly partial) with domain {0, 1}N × {0, 1}N . Then
|IC(π, µ1)− IC(π, µ2)| ≤ 4Nε+ 2H(2ε).

Proof. We will design random variables X,Y,E such that X,Y ∈ {0, 1}N and E ∈ {0, 1, 2}, X,Y |E ∈
{0, 1} ∼ µ1, X,Y |E ∈ {0, 2} ∼ µ2 and Pr[E = 1] = Pr[E = 2] ≤ ε. First let us see how this helps. Let Π
denote the random variable for the transcript of the protocol when the inputs are X,Y . Let X1Y1 ∼ µ1 and
X2Y2 ∼ µ2. Also let Π1 and Π2 denote the random variables for the transcript in these cases respectively.

I(Π;X|Y E) = Pr[E = 0] · I(Π;X|Y,E = 0) + Pr[E = 1] · I(Π;X|Y,E = 1) + Pr[E = 2] · I(Π;X|Y,E = 2)

= Pr[E ∈ {0, 1}] · I(Π;X|Y,E{0,1}) + Pr[E = 2] · I(Π;X|Y,E = 2)

Here conditioning on E{0,1} means that E ∈ {0, 1} and that both Alice and Bob know the value of E. Now

I(Π;X|Y,E ∈ {0, 1}) ≤ I(Π;X|Y,E{0,1}) +H(E|E ∈ {0, 1}) = I(Π;X|Y,E{0,1}) + C1

, where C1 ≤ H(ε/(1 − ε) ≤ H(2ε). Also I(Π;X|Y,E = 2) ≤ N and I(Π;X|Y,E ∈ {0, 1}) = I(Π1;X1|Y1).
Thus

I(Π;X|Y E) = (1− Pr[E = 2]) · (I(Π1;X1|Y1) + C1) + Pr[E = 2] · C2

where C1 ≤ 1 and C2 ≤ N . Similarly

I(Π;X|Y E) = (1− Pr[E = 1]) · (I(Π2;X2|Y2) + C3) + Pr[E = 1] · C4

where C3 ≤ H(2ε) and C4 ≤ N . Equating the two we get that

(1− Pr[E = 1]) · (I(Π1;X1|Y1)− I(Π2;X2|Y2)) = Pr[E = 1] · (C4 − C3) + (1− Pr[E = 1]) · (C2 − C1)

Since Pr[E = 1] ≤ ε ≤ 1/2, we get that

|I(Π1;X1|Y1)− I(Π2;X2|Y2)| ≤ 2Nε+H(2ε)

and hence |IC(π, µ1)− IC(π, µ2)| ≤ 4Nε+ 2H(2ε).
Now let us see how to design random variables X,Y,E satisfying the given conditions. Let U, V, P denote

the random variables obtained by sampling uniformly from {0, 1}N × {0, 1}N × [0, 1]. Let G denote the
event that P < max(µ1(U, V ), µ2(U, V )). Let X,Y = U, V |G. Also define a random variable F ∈ {0, 1, 2} as
follows :
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• F = 0, if P < min(µ1(U, V ), µ2(U, V ))

• F = 1, if µ2(U, V ) ≤ P < µ1(U, V )

• F = 2, if µ1(U, V ) ≤ P < µ2(U, V )

Now define E = F |G. Let us verify that X,Y,E satisfy the conditions.

Pr[X = x, Y = y|E ∈ {0, 1}] =
Pr[U = x, V = y, F ∈ {0, 1}, G]

Pr[F ∈ {0, 1}, G]
=

1
22N µ1(x, y)∑
x,y

1
22N µ1(x, y)

= µ1(x, y)

Thus X,Y |E ∈ {0, 1} ∼ µ1. Similarly X,Y |E ∈ {0, 2} ∼ µ2. Also

Pr[E = 1] = Pr[F = 1|G] =
∑
x,y

Pr[U = x, V = y|G]Pr[F = 1|G,U = x, V = y]

=
∑

x,y s.t. µ1(x,y)>µ2(x,y)

1
22N max(µ1(x, y), µ2(x, y))

1
22N

∑
x,y max(µ1(x, y), µ2(x, y))

· µ1(x, y)− µ2(x, y)

max(µ1(x, y), µ2(x, y))

=

∑
x,y s.t. µ1(x,y)>µ2(x,y)(µ1(x, y)− µ2(x, y))∑

x,y max(µ1(x, y), µ2(x, y))

Thus Pr[E = 1] = |µ1−µ2|∑
x,y max(µ1(x,y),µ2(x,y)) ≤ |µ1 − µ2| ≤ ε. Similarly Pr[E = 2] = |µ1−µ2|∑

x,y max(µ1(x,y),µ2(x,y)) .

Hence Pr[E = 1] = Pr[E = 2] ≤ ε. This completes the proof.

Note that this proves that IC(π, µ) is continuous as a function of µ for all protocols π.

Proof. Of Theorem 8.1 Since we are dealing with protocols and distributions (which are infinite sets), we
also provide justification for why minimax applies here. Let G be the set of protocols that are good for f .
Note that G is an infinite set. We first prove the following lemma.

Lemma B.2. Let H be any finite subset of G. Then for any α ≥ maxµ∈U0
minπ∈H IC(π, µ), there exists a

protocol τ ∈ G such that IC(τ, µ) ≤ α, ∀µ ∈ U0.

Note that U0 is the set of distributions supported on f−1(0).
We define the following zero-sum two player game G0. Player A will come up with a (randomized)

two-party protocol π ∈ H. Player B will come up with a distribution µ ∈ U0. Player B’s payoff is given by:

PB(π, µ) := IC(π, µ).

We first prove that the value of the game for player B is bounded by α.

Claim B.3. The value VB(G0) ≤ α.

Proof. Let νB be a probability distribution representing a mixed strategy for player B. Thus νB is a
distribution on probability distributions µ over X × Y. We need to show that there is a zero-error protocol
τ ∈ H such that Eµ∼νB

[IC(τ, µ)] ≤ α. Let µ̄ be a distribution on X × Y that is obtained by taking the
average of µ ∼ νB . Formally,

µ̄(x, y) := Eµ∼νB
µ(x, y).

Note that since all distributions µ ∈ U0, hence µ̄ ∈ U0. Since α ≥ maxµ∈U0
minπ∈H IC(π, µ), there is a

protocol τ ∈ H such that IC(τ, µ̄) ≤ α. Now by Lemma A.1, it holds that

Eµ∼νB
[IC(τ, µ)] ≤ IC(τ, µ̄).

Thus the value of the game is bounded by α completing the proof of Claim B.3.
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The minimax theorem holds for our game by an ε-net argument and continuity of IC(π, µ). Applying
the minimax theorem, we get that there is a mixed strategy for player A such that for each response by
player B, the value of the game for player B is at most α. A mixed strategy for player A is a distribution
νA on protocols. In other words,

Eπ∼νA
PB(π, µ) ≤ α, for all µ. (13)

Let π̄ be the randomized protocol obtained by publicly sampling π ∼ νA, and then applying π to the inputs.
We claim that π̄ is the protocol we are looking for. In other words, the randomized protocol π̄ has the
desired payoff properties. Clearly π̄ ∈ G.

Claim B.4. For each distribution µ, IC(π̄, µ) ≤ α.

Proof. The proof proceeds similarly to the proof of Lemma A.1. We will prove that

I(X,Y )∼µ(π̄(X,Y );X|Y ) ≤ Eπ∼νA

[
I(X,Y)∼µ(π(X,Y); X|Y)

]
. (14)

In other words, the amount of information revealed by π̄ is bounded by the average amount of information
revealed by π that is drawn according to νA.

To establish (14), consider the following four random variables. Let S be a “selector” random variable,
that picks the protocol π to run according to the distribution νA. Let X and Y be inputs distributed
according to µ independently of S. Finally, let Π = π(X,Y ) be the transcript of the selected protocol
executed on X and Y . We have:

Eπ∼νA

[
I(X,Y)∼µ(π(X,Y); X|Y)

]
= I(Π; X|YS),

and
I(X,Y )∼µ(π̄(X,Y );X|Y ) = I(Π;X|Y ).

Since the protocol π is selected independently of the inputs, we have I(X;S|ΠY ) = 0. By substituting
A = Π, B = X, C = Y , and D = S into Proposition 4.7 we get

I(Π;X|Y ) ≤ I(Π;X|Y S), (15)

establishing (14). Similarly to (14) the following symmetric inequality is established:

I(X,Y )∼µ(π̄(X,Y );Y |X) ≤ Eπ∼νA

[
I(X,Y)∼µ(π(X,Y); Y|X)

]
. (16)

Together, (14) and (16) imply
IC(π̄, µ) ≤ Eπ∼νA

[IC(π, µ)] . (17)

Now we use a compactness argument (adapted from [42]) to complete the proof. Choose any
α > maxµ∈U0

infπ∈G IC(π, µ). Define

A(π) := {µ ∈ U0 : IC(π, µ) ≥ α}

Then ∩π∈GA(π) = φ. Since U0 is compact and the sets A(π) are closed because of the continuity of
IC(π, µ), we get that there is a finite set of protocols H ⊂ G such that ∩π∈HA(π) = φ. Thus we have that
minπ∈H IC(π, µ) < α, ∀µ ∈ U0. Then by Lemma B.2, there exists a protocol τ ∈ G such that IC(τ, µ) ≤ α,
∀µ ∈ U0. Thus

inf
π∈G

max
µ∈U0

IC(π, µ) ≤ max
µ∈U0

inf
π∈G

IC(π, µ)

which completes the proof.
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