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Abstract

In classical information theory it is well-known that feedback does not improve the channel
capacity. We demonstrate that this is not the case in the interactive setting by developing a
new coding scheme for interactive communication over the binary symmetric channel (BSC)
with feedback that allows recovery of the original communication with vanishing probability of
error. More precisely, we show that the interactive channel capacity of BSC with feedback and
bit-flip probability ε is at least 1−O(

√
ε), while the upper bound on BSC without feedback was

recently shown to be 1− Ω(
√
H(ε)) by Gillat Kol and Ran Raz.

1 Introduction

Alice and Bob communicate over a noisy channel. What is the best way to encode the communi-
cation, so that Alice and Bob can recover the intended conversation with a vanishing probability
of error? The length of the intended conversation over the length of the encoded conversation
is called the rate. The supremum over rates, at which the communication happens reliably, is
known as the channel capacity. Much is known about the one-way version of channel capacity,
as it is the central object of study in classical information theory established by Shannon [13]
in 1948. In particular, the famous Shannon’s noisy-channel coding theorem provides a complete
mathematical characterization of the capacity of the channel in the one-way setting. Interactive
setting is much less studied and no analogue of Shannon’s theorem is known in this case.

The question of how to encode interactive communication to resist channel errors was first
considered by Schulman [12] in 1996. The first difficulty in the interactive setting is that
a single mistake in the earlier rounds of communication can completely derail the rest of the
conversation. The second difficulty is that the encoding has to happen online, since each message
depends on the history of communication. A standard way of simplifying a difficult problem in
communication complexity is to restrict the number of rounds of communication. However, for
the coding problem restricting the number of rounds reduces interactive setting to the one-way
setting, as it is possible to encode the original message round-by-round. The interesting case
occurs when the number of rounds is Ω(n) where n is the length of the intended conversation.
Then round-by-round encoding has to provide strong guarantees (depending on n) on the error-
tolerance of the earlier rounds. This necessarily increases communication by a factor depending
on n. Thus, a priori, it is not even clear that the channel capacity is bounded away from
zero. In spite of all these obstacles, Schulman showed how to encode conversations using tree
codes so that the communication increases by a constant factor and the intended messages
can be recovered safely even when constant fraction

(
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)
of communicated bits are corrupted

adversarially. This implies that the interactive channel capacity is, indeed, bounded away from
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0. This approach to the problem of interactive coding against adversarial noise was further
studied in [6, 11, 3, 2, 1].

The problem of encoding interactive communication in the probabilistic-noise model is subtly
different from the problem of encoding conversation to resist adversarial noise. The desired goal
for the former problem is obtaining noise-resilient encodings of length n(1 + f(1/ε)), where n is
the length of the original communication, ε is the noise parameter of the channel, and f(1/ε)
is some function o(1). The leading term in the length of the encoding has to be n. The known
results from the adversarial-noise model provide encodings of length Θ(n) with hidden and often
large constants in front of the n-term. Thus the results from the adversarial-noise model fall
short of the desired bounds on the length of encoding in the probabilistic setting to achieve
capacity.

We consider two models of probabilistic noise in this paper.

Binary symmetric channel (BSC). The channel has binary input and binary output {0, 1},
and the transmitted bit gets flipped with probability ε.

Binary erasure channel (BEC). The channel has binary input {0, 1} and ternary output
{0, 1, ∗}, and the transmitted bit gets replaced by ∗ with probability ε.

One-way channel capacity can be computed exactly using Shannon’s noisy-channel coding the-
orem. The one-way channel capacity of BSC is 1 −H(ε), where H is the binary entropy. The
channel capacity of the BEC is 1 − ε. In 1996 Schulman [12] asked whether the interactive
channel capacity can be smaller than the one-way channel capacity for some channels. This
question remained unanswered until the recent breakthrough result due to Kol and Raz [8].
They prove tight bounds on the interactive channel capacity of the BSC, separating interactive
channel capacity from its one-way analogue.

Theorem 1.1 (Kol and Raz [8]). Interactive channel capacity of BSC with bit-flip probability
ε is ≤ 1 − Ω(

√
H(ε)). In the case where players take alternating turns the interactive channel

capacity of BSC is lower bounded by 1−O(
√
H(ε)).

In many practical systems the transmitter receives noiseless feedback from the channel, i.e.,
how the transmitted bit was received by the receiver (see Figure 1). We denote channels with
feedback by appending a letter “f” to the end of the corresponding acronym: BSCf and BECf.

Figure 1: Regular channel vs channel with feedback.

The main conceptual difference between BSC, BEC, BSCf, and BECf lies in the awareness of
mistakes during transmission. See the table below.

Transmitter Receiver

BSC 7 7

BSCf 3 7

BEC 7 3

BECf 3 3

Table 1: Who can detect an error in the transmission?

The simplest channel to deal with is BECf, since both players know exactly when the mistake
happens, so the transmitter can keep resending the bit until it goes through the channel. This
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lower bound together with a matching upper bound in the interactive setting was first observed
by Schulman [12].

Theorem 1.2 (Schulman [12]).
CAPBECf(ε) = 1− ε.

A surprising fact in classical information theory is that the feedback does not increase the
capacity of the one-way channel (see, for example, [4]). Thus, the one-way channel capacity of
BSCf is 1−H(ε) and the one-way channel capacity of BECf is 1− ε.

Does feedback help in the interactive setting? We answer this question in the positive by
providing a new coding theorem for the interactive communication over BSCf. Our main result
is the following theorem.

Theorem 1.3 (Main Theorem).

CAPBSCf ≥ 1−O(
√
ε).

Together with the recent upper bound CAPBSC ≤ 1 − Ω(
√
H(ε)) due to Kol and Raz [8] this

demonstrates that the feedback can increase the channel capacity in the interactive setting.

Remark 1.4. The best upper bound on the interactive channel capacity of the BSCf is 1−H(ε)
given by Shannon’s theorem.

Remark 1.5. Contrast our unconditional lower bound (Theorem 1.3) on the CAPBSCf with
the lower bound of Kol and Raz on CAPBSC (Theorem 1.1), where players are assumed to
take alternating turns. Feedback allows the players to behave consistently while simulating the
intended protocol, so that they never try to transmit at the same time even in the presence of
errors in the conversation. This cannot be guaranteed for the BSC without feedback unless we
restrict the intended protocol to have a certain structure. The errors are probabilistic, so any
transcript can be turned into any other transcript without the knowledge of the players.

The rest of the paper is organized as follows. In Section 2 we provide definitions and the
necessary background for the rest of the paper. In Section 3 the coding theorem is presented
in four steps: (1) simulating protocol is described for uniform protocols, i.e., protocols with
transcripts of equal length on every input, (2) the simulating protocol is reformulated as a
random walk, (3) the simulating protocol is analyzed, (4) uniformity assumption is dropped.
The paper ends with conclusions and discussion of open problems in Section 4.

2 Preliminaries

We shall require only the basic definitions of communication complexity, which we present in the
current section. For a thorough treatment of communication complexity the reader is referred
to the classical monograph due to Kushilevitz and Nisan [9]. For a basic introduction to the
classical information theory the reader is referred to the textbook of Cover and Thomas [4] and
another textbook of MacKay [10] (available online for free from MacKay’s homepage).

In two-party interactive communication the parties are traditionally called Alice and Bob.
The goal of the players is to compute a given function f : X × Y → Z. Alice is given input
X ∈ X , Bob is given input Y ∈ Y, where (X,Y ) are jointly distributed according to some
distribution µ on X ×Y. The players have access to an infinite public string R of random bits.

FIrst consider the scenario, in which the players communicate over perfect channels. At
each round, the protocol specifies the current speaker based on the communication history so
far, i.e., the transcript. A protocol, in which only one player speaks at a time, is called valid.
All protocols are valid over perfect channels, but this is not necessarily the case for imperfect
channels. If Alice is the current speaker, she sends a message based on her input X, random
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string R, and the transcript. If Bob is the current speaker, he sends a message depending on
Y , R, and the transcript so far. At the end of the protocol both players agree on an output
Z ′. The average cost of the protocol, denoted CC(π), is the expected number of bits exchanged
during the execution of π, where the expectation is over µ and R. Protocol π solves f with error
at most ε if for every input (x, y) the probability that π produces incorrect output on (x, y) is
at most ε. Let CC(f) denote the average cost of the best protocol computing f with vanishing
probability of error.

Now consider the scenario, in which the players communicate with each other over a binary
symmetric channel with probability of bit-flip ε > 0. The channel introduces errors probabilis-
tically, so there is a non-zero probability of an intended transcript being transformed to any
other transcript. We still require protocols to be valid. Let CCBSC(f, ε) denote the average cost
of the best valid protocol computing f with vanishing probability of error. When the channel is
equipped with feedback, we denote this quantity by CCBSCf(f, ε). One way of guaranteeing the
validity of the protocol is to force the players specify before the execution of the protocol who
is going to speak at each step. This is why Kol and Raz [8] introduce structure to the protocols
in their lower bound. However, when the feedback is present we shall see that the players can
maintain the validity constraint without specifying the speakers in advance.

Definition 1. The interactive capacity of the BSC with probability of bit-flip ε is defined as

CAPBSC(ε) := lim
n→∞

min
{f :CC(f)=n}

n

CCBSC(f, ε)
.

For BSCf with probability of bit-flip ε the capacity is defined similarly

CAPBSCf(ε) := lim
n→∞

min
{f :CC(f)=n}

n

CCBSCf(f, ε)
.

In the paper we shall work with the deterministic protocols only. Our result easily extends
to the randomized protocols with public randomness by viewing such protocols as distributions
over the deterministic protocols.

A deterministic protocol over a perfect channel can be represented as a communication tree.
Each node v has an owner Ov, who can be either Alice or Bob, and a function fv, which
specifies a bit to transmit based on the owner’s input. If Ov =Alice, the function fv is of the
form fv : X → {0, 1}; otherwise, it is of the form fv : Y → {0, 1}. Each internal node has
exactly two outgoing edges: one labelled 0 and one labelled 1. Each leaf is labelled by some
z ∈ Z. To execute π in this representation, the players start at the root and proceed as follows.
The owner of the current node v evaluates fv on their input and transmits the resulting bit to
the other party. Both players update the current node by following the corresponding edge out
of v. When the players get to a leaf, the protocol terminates and the players output the label
of the leaf.

3 Coding Theorem

A new coding theorem for interactive communication over the BSCf is proved in this section.

Lemma 3.1. For all sufficiently small ε > 0 for every deterministic communication protocol π
with n := CC(π) there exists deterministic protocol τ such that

• communication in τ is over the binary symmetric channel with feedback and bit-flip prob-
ability ε > 0,

• CC(τ) ≤ n(1 +O(
√
ε)),
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• at the end of τ both players output correct leaf of π with probability approaching 1 as n
approaches infinity.

Theorem 1.3 (Main Theorem) is an immediate consequence of Lemma 3.1. Lemma 3.1 is proved
in three steps. First, it is proved under the uniformity assumption on π, i.e., that the transcript
length of π is the same on every input. In Section 3.1 simulating protocol is presented. In
Section 3.2 the simulating protocol is shown to be a random walk on a specific tree. The
properties of the simulating protocol are analyzed and proved in Section 3.3. The uniformity
assumption is dropped in Section 3.4.

3.1 Simulating Protocol

Let π be a deterministic protocol over the perfect channel, such that it terminates after exactly
n steps. Fix inputs x ∈ X and y ∈ Y. Let L be the unique leaf, which is reached by the players
after executing π on inputs (x, y). We describe a protocol τ , in which the players communicate
over the BSCf with bit-flip probability ε, and at the end of communication the players output
L except with probability negligible in n.

Let k,m ∈ N be parameters to be specified later. The players augment the communication
tree of π by replacing each leaf with an infinite complete binary tree, in which every node is
labelled with the label of the replaced leaf. Call the augmented tree T .

Players keep track of the current node v in T . Initially v is set to the root of T .

The players repeat the following steps m times:

The players repeat the following steps k times:

The current owner of v, evaluates fv on the given input, transmits the output bit over
the noisy channel to the other party.

The players update the current node v to the new node according to the value of the
bit after it was transmitted through the channel.

The transmitter of the bit remembers if the bit got flipped by the channel.

Alice sends a single verification bit BA, where BA is set to 0 if there were no mistakes in
her transmissions leading from the root of T to the current node v and 1 otherwise.

Bob sends a single verification bit BB, where BB is set to 0 if there were no mistakes in his
transmissions leading from the root of T to the current node v and 1 otherwise.

Alice takes a pair of bits - the received Bob’s verification bit and her own verification bit,
as it was received by Bob (using feedback).

Bob Takes a pair of bits - the received Alice’s verification bit and his own verification bit,
as it was received by Alice (using feedback).

Note that Bob computes exactly the same pair of bits as Alice does.

If not both of the bits are 0 the players backtrack the current node v by 2k positions, where
backtracking from the root is accomplished by staying put. While backtracking the players
forget which simulated bits were transmitted incorrectly in the last 2k positions, so that
they are not reused in the future calculations of verification bits.

If the current node v is labelled by a leaf of the original communication tree of π, the players
output the label of that leaf. Otherwise, the players output an arbitrary label.

Protocol 1: Protocol τ simulating π over the BSCf.
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3.2 Random Walk View

The simulating protocol from Section 3.1 can be viewed as a random walk on the tree TR shown
in Figure 2.

Figure 2: Tree TR. The simulating protocol can be viewed as a random walk on this tree.

Each triangle represents an infinite binary subtree replacing leaves of the communication
tree of π in T . Disregarding these triangles, TR consists of at most n

k levels. Each node in these
levels has arity at most 2k. Nodes at level i are precisely the nodes of T at level ki. The edges
connecting nodes at level i and level i + 1 are labelled by the concatenation of all messages
exchanged on the path connecting the corresponding nodes in T . The tree TR can be viewed
as a collapsed version of T , where only the nodes corresponding to checkpoints are included.
The checkpoint is a node, at which the verification bits can be exchanged in T . The simulating
protocol performs a random walk on this tree for m steps. If after m steps, the random walk ends
up in one of the triangles, the players output the corresponding label. In Section 3.3 we shall
fix parameters m and k that guarantee small communication overhead and large probability of
success.

3.3 Analysis

Proof. Let k be such that ε = 1
k2

. Choose m = n
k (1 + 64

√
ε). Recall that protocol π terminates

after exactly n steps on every input. Thus we can fix the input to be (x, y), which in turn
determines the correct leaf L of π reached by players on the noiseless channel.

In the rest of the proof the random walk from Section 3.2 is analyzed. The random walk
essentially travels along the path from the root of TR to the infinite subtree labelled by L.
Occasionally the random walk branches off this path, but rather soon it returns back to the node
where the branching took place. Traveling downward from the root of TR to L corresponds to
correct simulation of k bits of π and correct verification bits. Traveling upward along the path
from L to the root of TR corresponds to either correct simulation of k steps of π and incorrect
verification bits or incorrect simulation of k steps of π and correct verification bits. Lastly,
branching off the path from the root of TR to L corresponds to incorrect simulation of k bits of
π followed by incorrect verification bits.

The probability that the random walk branches off the path from the root to L is bounded
by the probability of incorrect verification bits, i.e., either Alice’s verification bit got flipped
or Bob’s verification bit got flipped. This happens with probability at most 2ε. If the players
branch off the path from the root of TR to L, there was an error in the transcript. Since the
players send verification bits for the entire transcripts up until the current node, the probability
that the branched-off random walk will “dig deeper” into the tree TR is also upper bounded by
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the probability of incorrect verification bits. A step of the random walk is called bad if either
it branches off the path from the root of TR to L or it is going deeper in the wrong branch.
Otherwise a step is called good. Define random variable

Yi =

{
1 if ith step is bad
0 otherwise

Thus P (Yi = 1) ≤ 2ε and by Chernoff bound P (
∑
Yi ≥ 8εm) ≤ e−6εm n→∞→ 0. Thus with high

probability we have at most 8εm bad moves, which are undone by at most 8εm other moves
and we have mc := m − 16εm = n

k (1 + 32
√
ε) moves along the path from the root of TR to L

(provided that ε ≤ 1
64). It is left to show that with at least mc moves along the path from the

root of TR to L, the random walk is likely to end up in the infinite subtree labelled with L.
Define the following random variable for the ith good step.

Xi =

{
1 if backtracking occurs
−1 otherwise

In order for backtracking to happen, at least one of the k + 2 communicated during the step
bits has to get flipped. Thus p := P (Xi = 1) ≤ (k + 2)ε ≤ 4

√
ε.

Observe that the protocol outputs the correct leaf as long as the number of correct steps
along the path from root to L exceeds the number of incorrect steps by at least n/k. Thus the
probability of outputting incorrect leaf given that the protocol makes at least mc good steps is
upper bounded by

P
(∑

Xi > −
n

k

)
≤ exp(−mc(1/2− p− n/(2mck))2/3p),

where the inequality follows from Chernoff bound. We have

1
2 − p−

1
2
n
k

1
mc

= 1−2p
2 − 1

2(1+32
√
ε)

≥ 1
2(1+32

√
ε)

((1− 8
√
ε)(1 + 32

√
ε)− 1)

≥ 1
2(1+32

√
ε)

(24
√
ε− 256ε)

≥ 8
√
ε(1−32

√
ε)

2(1+32
√
ε)

≥ 4
3

√
ε,

where the last step holds provided ε ≤ 1
1024 . Hence under these conditions the probability of

incorrect output by τ is upper bounded by e−Ωε(m). In particular the probability of incorrect
output approaches 0 as n→∞.

Lastly, the number of bits exchanged by the protocol is bounded by

m(k + 2) =
n

k
(1 + 64

√
ε)(k + 2) = n(1 + 64

√
ε)(1 + 2

√
ε) = n(1 +O(

√
ε)).

3.4 Dropping Uniformity Assumption

If protocol π does not satisfy the uniformity assumption then the length of the transcript, which
we denote by C(X,Y ), is a random variable depending on the sampled inputs X and Y . The
terminating condition of Protocol 1 is modified as follows: instead of performing the outer loop
m times, the players perform the outer loop until they reach depth 100 log n of some infinite
subtree 1 for the first time. If the players communicate over 100n bits they terminate regardless
of whether the required depth has been reached in an infinite subtree.

1Recall: these subtrees replace leaves of the communication tree of original protocol π.
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One can show that except with probability negligible in n the protocol terminates and
outputs the correct leaf in C(X,Y )

k (1 + 64
√
ε) + 1024 logn

k steps. Thus, except with probability
negligible in n, the protocol communicates

EX,Y
(
C(X,Y )

k
(1 + 64

√
ε) +

1024 log n

k

)
(k + 2) = n(1 +O(

√
ε))

in expectation. And with negligible probability in n they communicate at most 100n bits.
Therefore, the average cost of the modified τ is still n(1 + O(

√
ε)) and it outputs the correct

answer with negligible probability of error.

4 Conclusions and Open Problems

A new coding theorem for the interactive communication over the binary symmetric channel with
feedback was presented. This theorem together with the recent upper bound on the capacity
of the BSC due to Kol and Raz [8] demonstrates that the feedback can increase the interactive
channel capacity, unlike the classical channel capacity. In contrast with the coding theorem in [8],
the coding theorem in this paper works unconditionally. This coding theorem was motivated
by the idea of noisy comparison trees due to Feige et al. [5]. The summary of results about the
interactive channel capacity of the binary symmetric channel is shown in Table 2

Lower bound Upper bound

BSC 1−O(
√
H(ε)) (alternating turns) [8] 1− Ω(

√
H(ε)) [8]

BSCf 1−O(
√
ε) (this paper) 1−H(ε) [13]

Table 2: Interactive channel capacity of the binary symmetric channel, summary of results.

In the rest of this section we list a few open problems related to this area of research, starting
with:

Open Problem 4.1. Close the gap between the upper bound and the lower bound on CAPBSCf .

It is possible that the technique of Kol and Raz [8] can be used to improve the upper bound.
However, their technique is complicated. The area would benefit greatly from developing new
techniques for giving strong upper bounds on the capacity of the interactive channel.

Open Problem 4.2. Develop new techniques for proving strong upper bounds on the interactive
channel capacity.

As for improving the lower bound of BSCf, the coding scheme presented in this paper is
limited by the overall overhead on communication of (1 + Ω

(
1
k

)
)(1 + Ω(kε)), which is optimized

for k = Θ
(

1√
ε

)
. Another possible way of attacking the problem would be to adapt the classical

online coding scheme for the one-way communication over BSCf due to Horstein [7]. In that
coding scheme, the transmitter encodes the message as a binary decimal number. The receiver
keeps track of the current guess of the message, and the transmitter communicates whether the
receiver’s guess is to the left of the proper message or to the right of the proper message.

Another open problem is analyzing other types of interactive channels to better understand
the power of feedback in the interactive channel capacity.

Open Problem 4.3. Analyze other types of channels and give a characterization of how much
the feedback helps for a given channel. Can anything be said in general?
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The binary erasure channel is an interesting starting point for the above question. The
best known upper bound is 1 − ε, and it follows from Shannon’s theorem. It seems that the
coding scheme of [8] can be used to show 1− O(

√
ε) lower bound2 for the alternating-speakers

regime. However, neither of these bounds seems to be the right answer for the interactive
channel capacity of the BEC.

Open Problem 4.4. Find the exact interactive channel capacity of the BEC with erasure-
probability ε.

Even improving the upper bound to 1− cε for some c > 1 would be interesting, as it might
shed some light on Open Problem 4.2. As for the lower bound, one should be looking for a
coding scheme with 1 + o(

√
ε) overhead in communication.

Shannon’s theorem can be viewed as proving equivalence between the informational charac-
terization of the one-way channel capacity (it is sometimes referred to as a “single-letter” char-
acterization in the field of electrical engineering) and the operational definition of the channel
capacity. The big goal is to find an analogue, if it exists, of Shannon’s theorem in the interactive
setting. Definition 1 gives the operational definition of the interactive channel capacity. What
is the proper informational, i.e., single-letter, description of the same quantity?

Open Problem 4.5. Find an analogue of Shannon’s theorem in the interactive setting, i.e.,
find an informational characterization of the operational definition of the interactive channel
capacity.
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