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ABSTRACT

Shannon introduced information theory in 1948. In Shannon’s model, the central

question is to minimize the number of bits required to transmit a message from one

party to another over a (possibly noisy) communication channel. Yao introduced com-

munication complexity in 1979. In Yao’s model, the central question is to minimize

the amount of communication required to compute a function of an input distributed

between two parties that communicate over a perfect channel. In spite of the fact that

communication complexity and information theory try to quantify communication in

various contexts, communication complexity developed without the influence of in-

formation theory. This changed recently when the notion of information complexity

was introduced. The current definition of internal information complexity is due to

Bar-Yossef et al. (2004), but similar definitions in restricted communication settings

can be traced back to Chakrabarti et al. (2001) and Ablayev (1996).

Information complexity enabled the use of information-theoretic tools in commu-

nication complexity theory. Prior to the results presented in this thesis, information

complexity was mainly used for proving lower bounds and direct-sum theorems in the

setting of communication complexity. We present three results that demonstrate new

connections between information complexity and communication complexity.

In the first contribution we thoroughly study the information complexity of the

smallest nontrivial two-party function: the AND function. While computing the com-

munication complexity of AND is trivial, computing its exact information complexity

presents a major technical challenge. In overcoming this challenge, we reveal that

information complexity gives rise to rich geometrical structures. Our analysis of in-

formation complexity relies on new analytic techniques and new characterizations of

communication protocols. We also uncover a connection of information complexity

to the theory of elliptic partial differential equations. Once we compute the exact

information complexity of AND, we can compute exact communication complexity of
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several related functions on n-bit inputs with some additional technical work. For in-

stance, we show that communication complexity of the disjointness function on n-bit

inputs is CDISJn + o(n), where CDISJ ≈ 0.4827. This level of precision, i.e., revealing

the actual coefficient in front of n, is unprecedented in communication complexity.

Previous combinatorial and algebraic techniques could only prove bounds of the form

Θ(n). Interestingly, this level of precision is typical in the area of information theory,

so our result demonstrates that this meta-property of precise bounds carries over to

information complexity and in certain cases even to communication complexity. Our

result does not only strengthen the lower bound on communication complexity of

disjointness by making it more exact, but it also shows that information complexity

provides the exact upper bound on communication complexity. In fact, this result is

more general and applies to a whole class of communication problems.

In the second contribution, we use self-reduction methods to prove strong lower

bounds on the information complexity of two of the most studied functions in the com-

munication complexity literature: Gap Hamming Distance (GHD) and Inner Product

mod 2 (IP). In our first result we affirm the conjecture that the information complex-

ity of GHD is linear even under the uniform distribution. This strengthens the Ω(n)

bound shown by Kerenidis et al. (2012) and answers an open problem by Chakrabarti

et al. (2012). We also prove that the information complexity of IP is arbitrarily close

to the trivial upper bound n as the permitted error tends to zero, again strengthening

the Ω(n) lower bound proved by Braverman and Weinstein (2011). More importantly,

our proofs demonstrate that self-reducibility makes the connection between informa-

tion complexity and communication complexity lower bounds a two-way connection.

Whereas numerous results in the past used information complexity techniques to de-

rive new communication complexity lower bounds, we explore a generic way, in which

communication complexity lower bounds imply information complexity lower bounds

in a black-box manner.

In the third contribution we consider the roles that private and public random-

ness play in the definition of information complexity. In communication complexity,

private randomness can be trivially simulated by public randomness. Moreover, the

communication cost of simulating public randomness with private randomness is well
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understood due to Newman’s theorem (1991). In information complexity, the roles of

public and private randomness are reversed: public randomness can be trivially sim-

ulated by private randomness. However, the information cost of simulating private

randomness with public randomness is not understood. We show that protocols that

use only public randomness admit a rather strong compression. In particular, efficient

simulation of private randomness by public randomness would imply a version of a

direct sum theorem in the setting of communication complexity. This establishes a

yet another connection between the two areas.

The first and second contributions are the result of collaboration with Braverman,

Garg, and Weinstein. The third contribution is my work alone.
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Table 1: Notation

[n] {1, 2, . . . , n}
R≥0 the set of non-negative real numbers

CC(π) communication cost of protocol π
R(f, ε) randomized (public randomness) communication com-

plexity of f with error tolerance ε
Rpriv(f, ε) randomized (private randomness) communication com-

plexity of f with error tolerance ε
Rr(f, ε) r-round randomized (private randomness) communica-

tion complexity of f with error tolerance ε
Dµ(f, ε) distributional communication complexity of f with error

tolerance ε when inputs are sampled from µ
Π(x, y) random variable equal to the concatenation of public

randomness with a transcript of Π on input (x, y)
ICµ(π) internal information cost of protocol π with respect to

distribution µ
ICext

µ (π) external information cost of protocol π with respect to
distribution µ

ICµ(f, ε) internal information complexity of f with respect to dis-
tribution µ and with error tolerance ε

ICext
µ (π) external information complexity of f with respect to dis-

tribution µ and with error tolerance ε
ICr

µ(f, ε) r-round information complexity of f with respect to dis-
tribution µ and with error tolerance ε

ICpriv
µ (f, ε) private-coin information complexity of f with respect to

distribution µ and with error tolerance ε
ICpub

µ (f, ε) public-coin information complexity of f with respect to
distribution µ and with error tolerance ε

∆(S) family of all probability distributions on set S
H(µ) Shannon entropy (base 2) of a distribution µ

I(µ1;µ2) mutual information between distributions µ1 and µ2

D(µ1||µ2) Kullback-Leibler divergence between distributions µ1

and µ2

‖µ1 − µ2‖ total variation distance between distributions µ1 and µ2
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CHAPTER 1

INTRODUCTION

1.1 Background and Our Contributions

Shannon introduced information theory in the late 1940’s [48]. Shannon was inter-

ested in the transmission problem: “given a (possibly noisy) channel between two

players, what is the minimum amount of communication required to transmit a mes-

sage X from one player to another reliably?” In this setting, the message X comes

from a distribution known to both players, i.e., X is a random variable. Shannon in-

troduced the entropy function H(X) to measure the amount of information contained

in the random variable X. In the case of a noiseless channel, Shannon proved that

H(X) is the exact solution to the transmission problem in the limit. In other words,

Shannon’s source-coding theorem states that for transmitting a sequence of messages

x1, x2, . . ., where the xi are independently distributed according to X, H(X) is the

necessary and sufficient per-message amount of communication in the limit. Shannon

also introduced the mutual information function I(X;Y ) that measures the amount

of information shared between two random variables X and Y . The action of a noisy

channel can be interpreted as modifying the sender’s distribution X into the receiver’s

distribution Y . In the case of a noisy channel, Shannon showed that the best rate of

a reliable transmission through a noisy channel is I(X;Y ) in the limit. In this thesis

we shall work exclusively with noiseless channels, but the mutual information func-

tion can be applied to models other than noisy channel transmission. In particular,

mutual information will play a central role in our work.

Since its introduction in the 1940s, information theory has been applied to and

studied in many areas of the natural and social sciences and technology. With regards

to the transmission problem, one of the early results of great theoretical and practical

significance is Huffman coding [27], which establishes the single-copy version of the
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source-coding theorem. Huffman showed a method for encoding a single copy of a

message x ∼ X with at most H(x)+1 bits on average. Among other notable achieve-

ments, the Slepian-Wolf theorem [51] proves the analogue of the source-coding theo-

rem in the presence of shared information between the two players. In spite of some

remaining open problems, the transmission problem between two players is fairly well

understood with information-theoretic quantities giving the exact bounds in many

settings. While, in principle, the same results could have been obtained by combi-

natorial arguments, information-theoretic arguments often lead to especially elegant

solutions. This suggests that information theory is “the right” tool for analyzing the

transmission problem.

Yao introduced communication complexity in the late 1970s [52]. Yao was inter-

ested in the minimum amount of communication that two players have to perform

in order to compute a function of a distributed input. Communication complexity

has two main features that make it especially important in complexity theory in gen-

eral. First of all, many problems of communication complexity turn out to be at the

heart of problems in a variety of models of computation. For example, such connec-

tions allow carrying over lower bounds from communication complexity to streaming

algorithms [2], data structures [39], property testing [6], circuit complexity [31, 5],

and extended formulations [11]. Secondly, communication complexity is amenable to

various strong and unconditional lower bound techniques [34, 33].

In spite of the fact that communication complexity and information theory try

to quantify communication in various contexts, communication complexity devel-

oped without the influence of information theory until the late 1990s and the early

2000s. Most of the lower bound techniques on communication complexity of func-

tions f : X ×Y → {0, 1} were based on analyzing various combinatorial and analytic

measures of communication matrices. The communication matrix associated with f

is an |X | × |Y| matrix M defined by Mx,y = f(x, y). The modern notion of internal

information complexity was introduced by Bar-Yossef et al. [3]. Earlier versions of

information complexity in restricted communication models appear in [1, 20]. In-

formation complexity is a lower bound on communication complexity and yields an

approach that is drastically different from the previous lower bound methods. In
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particular, it does not refer to properties of the communication matrix; instead, in-

formation complexity is defined purely in terms of information-theoretic quantities.

More specifically, information complexity is defined as the least amount of information

(as measured by the Shannon’s mutual information) that a communication protocol

leaks about players’ inputs.

Information complexity is a particularly useful tool for proving lower bounds on

communication complexity, because it has the direct sum property [12, 7], and it is

among the strongest lower bound methods on communication complexity [32, 25, 35].

The direct sum property asserts that the information complexity of n independent

copies of a communication problem is exactly equal to n times the information com-

plexity of a single copy of the problem. Often, communication problems have the

structure that allows the direct sum property to be applied [3, 29, 4]. This leads

to a surprising reduction: in order to prove a lower bound on the communication

complexity of a size-n problem, one has to prove a lower bound on the information

complexity of a related constant size problem. In addition, information complexity is

increasingly recognized as an interesting measure in its own right [7, 35, 14]. In this

thesis we explore three new connections between information complexity and com-

munication complexity, which we describe next. The first and second contributions

are based on the joint work with Braverman, Garg, and Weinstein.

One interesting feature of information theory is that it gives tight precise bounds

on rates and capacities for the transmission problems. In fact, unlike computational

complexity, where we often ignore constant, and sometimes even polylogarithmic,

factors, a large fraction of results in information theory give precise answers up

to additive lower-order terms. For example, we know that sending a sequence of

random digits would take exactly log2 10 ≈ 3.322 bits per digit, and that the ca-

pacity of a binary symmetric channel with substitution probability 0.2 is exactly

1 − H(0.2) ≈ 0.278 bits per symbol. Prior to this work, this benefit has not been

fully realized in the setting of information complexity. In our first contribution, we

explore and develop analytic machinery needed to bring tight bounds into the realm

of information and communication complexity. We show that information complexity

provides exact matching upper and lower bounds on the communication complexity
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of
∨

-type functions (see Section 2.8). As an application, we use these tools to calcu-

late the tight communication complexity of the set disjointness function and several

other related functions. The main technical ingredient is the exact computation of

information complexity of the smallest non-trivial communication problem – the two-

bit AND : {0, 1} × {0, 1} → {0, 1} function. While computing the communication

complexity of AND is trivial, computing its exact information complexity is a major

technical challenge. We overcome this challenge, and in the process we uncover an

interesting geometric structure of the information complexity function, we describe

new characterizations of communication protocols, and uncover connections of infor-

mation complexity with the theory of elliptic partial differential equations.

In our second contribution, we explore generic techniques for deriving informa-

tion complexity lower bounds from communication complexity lower bounds for self-

reducible functions. Informally, f has a self-reducible structure if f on inputs of

length nk (which we denote by fnk) reduces to k independent copies of f under in-

puts of size n (which we denote by fkn). Our technique can be summarized in the

following argument by contradiction. Let Cnk be a lower bound on the communica-

tion complexity of fnk. From self-reducibility if follows that Cnk is a lower bound on

fkn . If information complexity of fn is In << Cnk/k then, by “information=amortized

communication” (see [12]), we can construct a protocol for fkn with communication

≈ kIn << Cnk – contradiction. We apply this reasoning to two functions: Gap Ham-

ming Distance, and Inner Product mod 2. Chakrabarti and Regev [19] proved that

the randomized communication complexity of the Gap Hamming Distance problem

is linear and that the distributional communication complexity is linear under the

uniform distribution. Kerenidis et al. [32] proved that the information complexity

of Gap Hamming Distance is also linear with respect to some implicitly defined dis-

tribution. Our techniques allow us to use the result of Chakrabarti and Regev [19]

in a black-box manner to prove that the information complexity of the Gap Ham-

ming Distance problem is linear with respect to the uniform distribution – this was

explicitly stated as an open problem by Chakrabarti et al. [18]. We also show that

the information complexity of the Inner Product function gets arbitrarily close to the

trivial upper bound as the error tolerance goes to zero. Ideas of self-reducibility play
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a central role in applications of information complexity to communication complexity

lower bounds, starting with the work of Bar-Yossef et al. [3]. These arguments start

with an information complexity lower bound for a (usually very simple) problem, and

derive a communication complexity bound on many copies of the problem. Here, we

start with a communication complexity lower bound, which we use as a black-box,

and use self-reducibility to derive an information complexity lower bound.

In our third contribution, we explore the role played by private randomness in the

definition of information complexity. In communication complexity, private random-

ness can always be simulated by private randomness without increasing communica-

tion, thus public randomness is more powerful. Moreover, the best general simulation

of public randomness by private randomness is well understood due to Newman [40].

In information complexity, the situation is reversed – public randomness can always

be simulated by private randomness without increasing information, thus private ran-

domness is more powerful. We show that private randomness plays an important role

in the compression problem: “given a protocol π with information cost I and com-

munication cost C, what is the least communication cost of a protocol that simulates

π?” In [4], it was shown that it is possible to compress protocols that use public

and private randomness to Õ(
√
IC) communication. In the third contribution, we

show that if a protocol does not use private randomness, then it can be compressed

to Õ(I) communication. In particular, this implies that any result separating infor-

mation complexity from communication complexity, such as [25], has to crucially rely

on using private randomness. Another implication is that an efficient simulation of

private randomness with public randomness in terms of information complexity would

imply a version of a direct sum theorem in communication complexity.

The rest of the thesis is organized as follows. This chapter introduces the notation

and the main definitions of communication complexity, information theory, and infor-

mation complexity that are used throughout the rest of the thesis. Chapter 2 contains

all the technical details of our first contribution, as described above. Chapter 3 de-

scribes our second contribution, and Chapter 4 describes the third contribution. We

conclude with open problems and final remarks in Chapter 5.
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1.2 Notation

Capital letters (A,B,C, . . .) denote random variables. The corresponding lower-case

letters (a, b, c, . . .) denote specific values attained by the random variables. For n ∈ N
define [n] = {1, 2, . . . , n}.

Let µ be a distribution on a product of two sets X × Y . We shall think of µ in

two ways:

1. as a function µ : X × Y → R,

2. as a matrix µ with rows indexed by X and columns indexed by Y .

Due to the matrix interpretation of the distribution µ, we shall use linear algebra

terms with respect to µ whenever it is convenient to do so. For instance, we shall

sometimes refer to the transpose of µ, denoted by µT , understanding it to be the

distribution given by the transpose of the matrix corresponding to µ.

Example 1.2.1. Consider X = Y = {0, 1}. Viewing µ as a function, it is specified

by four numbers µ(0, 0) = α, µ(0, 1) = β, µ(1, 0) = γ, µ(1, 1) = δ, where α, β, γ, δ ≥ 0

and α + β + γ + δ = 1. We can also think of µ as a matrix by arranging these four

numbers as follows:

µ =
α β

γ δ
.

Let t ∈ {0, 1}n and i ∈ [n] define t≤i = t1t2 . . . ti, t<i = t1t2 . . . ti−1, t≥i =

titi+1 . . . tn, and t>i = ti+1ti+2 . . . tn. Out of bound indexes correspond to empty

strings. The same notation is used with random variables whose values are binary

strings.

1.3 Communication Complexity

The two-party communication model was introduced by Andrew Yao [52] in 1979.

In this model, two players, Alice and Bob, attempt to compute the value of f :

{0, 1}n × {0, 1}n → {0, 1} at (x, y). Each player is computationally unbounded and

each player knows f ; however, Alice only knows x ∈ {0, 1}n and Bob only knows
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y ∈ {0, 1}n. In order to compute f(x, y), Alice and Bob communicate according to

a protocol π, which they agree upon before seeing the input. Protocol π specifies as

a function of transmitted bits whether the communication is over and, if not, who

sends the next bit. Moreover, π specifies as a function of transmitted bits and x the

value of the next bit to be sent by Alice. Similarly for Bob. The communication is

over when both parties know the value of f(x, y).

Definition 1.3.1. The transcript of a protocol π on input (X, Y ) is the concatenation

of all bits exchanged during the execution of π on input (X, Y ).

Definition 1.3.2. The communication cost of a protocol π, denoted by CC(π), is the

maximum length of a transcript of π, where the maximum is taken over all possible

inputs.

Definition 1.3.3. The number of rounds of a protocol is the maximum number

of alternations between Alice and Bob, where the maximum is taken over all the

transcripts.

This completes the description of the deterministic 0-error communication model.

The above model can be extended to include randomness in several ways. In the

public-coin model, Alice and Bob have access to a shared random string R. Now the

protocol π specifies the next bit to be sent by Alice as a function of x, the already

transmitted bits, and the random string R. Similarly for Bob. The communication

cost of a public-coin protocol is defined as the maximum total number of bits sent by

the players, where the maximum is taken over the choice of inputs and the choice of

randomness. A public-coin protocol can be viewed as a distribution on deterministic

protocols. The players may terminate prior to knowing the exact value of f(x, y)

and output a consistent guess. In this case we measure the probability (over public

randomness) of players outputting an incorrect value. Figure 1.1 depicts a typical

public-coin protocol.

Definition 1.3.4. Fix a function f : {0, 1}n×{0, 1}n → {0, 1} and a parameter ε ≥ 0.

The randomized communication complexity of f with error tolerance ε, denoted by
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BobAlice

y ∈ {0, 1}nx ∈ {0, 1}n

public (shared) randomness R

M1(x,R)

M2(M1(x,R), y, R)

M3(M2(M1(x,R), y, R), x, R)

...

f(x, y)

Figure 1.1: Typical public-coin protocol

R(f, ε), is the cost of a least-cost public-coin protocol that computes f with error at

most ε on every input.

Definition 1.3.5. Fix a function f : {0, 1}n × {0, 1}n → {0, 1} and a parameter

ε ≥ 0. The r-round randomized communication complexity of f with error tolerance

ε, denoted by Rr(f, ε), is the cost of a least-cost r-round public-coin protocol that

computes f with error at most ε on every input.

In the private-coin model, Alice has access to a random string RA hidden from Bob,

and Bob has access to a random string RB hidden from Alice. As before, private-coin

protocol π specifies as a function of transmitted bits whether the communication is

over and, if not, who sends the next bit. Now, π specifies as a function of transmitted

bits, x, and RA next bit to be sent by Alice. Similarly for Bob. Players may terminate

prior to knowing the exact value of f(x, y) and output a consistent guess. In this

case we measure the probability (over private randomness) of players outputting an

incorrect value.

Definition 1.3.6. Fix a function f : {0, 1}n × {0, 1}n → {0, 1} and a parameter

ε ≥ 0. The randomized communication complexity with private randomness of f with

error tolerance ε, denoted by Rpriv(f, ε), is the cost of a least-cost private-coin protocol

that computes f with error at most ε on every input.
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Private-coin protocols are in one-to-one correspondence with binary trees that

have additional structure, which we describe next. Each node u of T has an owner

- Alice or Bob. Each node u of T has an associated function pu : {0, 1}n → [0, 1].

Each leaf ` of T has a label o` ∈ {0, 1}. Algorithm 1 describes how to turn such a

tree into a private-coin protocol. The key observation is that functions pu specify the

probability of a player sending 0 as the next bit, conditioned on the transcript so far.

It is easy to see that this correspondence is bijective.

Algorithm 1 Converting a tree into a private-coin protocol

Require:
x ∈ {0, 1}n, RA - known to Alice
y ∈ {0, 1}n, RB - known to Bob
T - known to Alice and Bob

1: Both players set u← root of T
2: while u is not a leaf do
3: if owner of u is Alice then
4: Alice privately samples r ∈ [0, 1]
5: if r ≤ pu(x) then
6: Alice sends 0
7: Both players update u← left child of u
8: else
9: Alice sends 1
10: Both players update u← right child of u

11: else
12: Bob privately samples r ∈ [0, 1]
13: if r ≤ pu(y) then
14: Bob sends 0
15: Both players update u← left child of u
16: else
17: Bob sends 1
18: Both players update u← right child of u

19: Both players output ou

From the point of view of communication complexity, once we allow public ran-

domness, it makes no difference whether players have access to private random strings

or not. This is because disjoint parts of the public random string can be designated

for simulation of private randomness. However, we shall see later that for informa-
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tion complexity it is crucial to consider protocols that use both private and public

randomness. A protocol with both public and private randomness is a distribution

on protocols with private randomness only.

Lastly, we consider the scenario when inputs are sampled from a probability dis-

tribution µ on {0, 1}n × {0, 1}n.

Definition 1.3.7. Fix a function f : {0, 1}n × {0, 1}n → {0, 1}, a distribution µ on

{0, 1}n×{0, 1}n, and a parameter ε ≥ 0. The distributional communication complexity

of f with respect to µ and error tolerance ε, denoted by Dµ(f, ε), is the cost of a least-

cost deterministic protocol computing f with probability of error at most ε, where

the probability is measured over inputs (x, y) ∼ µ.

The distributional and randomized communication complexities are related via

Yao’s minimax principle.

Theorem 1.3.1 (Yao’s minimax principle). ∀f : {0, 1}n×{0, 1}n → {0, 1}, ε ≥ 0 we

have

R(f, ε) = max
µ

Dµ(f, ε).

For more background on communication complexity we refer the interested reader

to the excellent monograph by Kushilevitz and Nisan [33].

1.4 Information Theory

In this section we briefly provide the essential information-theoretic concepts. For a

thorough introduction to the area of information theory, the reader should consult a

classical textbook by Cover and Thomas [23]. Unless stated otherwise, all log’s are

to the base 2.

Let S be a set. We use ∆(S) to denote the family of all probability distributions

on S.

Definition 1.4.1. Let µ be a probability distribution on a sample space Ω. Shannon

entropy (or just entropy) of µ, denoted byH(µ), is defined asH(µ) :=
∑

ω∈Ω µ(ω) log 1
µ(ω)

.
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For a random variable A we shall write H(A) to denote the entropy of the induced

distribution on the range of A. The same also holds for other information-theoretic

quantities appearing later in this section.

Definition 1.4.2. For the Bernoulli distribution with probability of success p we

write H(p) = −p log p− (1− p) log(1− p).

Definition 1.4.3. Conditional entropy of a random variable A conditioned on B is

defined as

H(A|B) = Eb(H(A|B = b)).

Fact 1.4.1. H(AB) = H(A) +H(B|A).

Definition 1.4.4. The mutual information between two random variable A and B,

denoted by I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C),

is defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

Fact 1.4.2 (Chain Rule). Let A1, A2, B, C be random variables. Then

I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Fact 1.4.3. Let A,B,C,D be four random variables such that I(B;D|AC) = 0. Then

I(A;B|C) ≥ I(A;B|CD)

Fact 1.4.4. Let A,B,C,D be four random variables such that I(A;C|BD) = 0. Then

I(A;B|D) ≥ I(A;C|D)

Definition 1.4.5. Given two probability distributions µ1 and µ2 on the same sample

space Ω such that (∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler divergence
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between is defined as

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

For random variables A and B we shall write D(A||B) for Kullback-Leibler di-

vergence between the induced probability distributions on the range of A and B,

respectively.

The connection between the mutual information and the Kullback-Leibler diver-

gence is provided by the following fact.

Fact 1.4.5. For random variables A,B, and C we have

I(A;B|C) = EB,C(D(ABC ||AC)).

Fact 1.4.6. Let X and Y be random variables. Then for any random variable Z we

have EX [D(YX ||Y )] ≤ EX [D(YX ||Z)].

Definition 1.4.6. Let µ1 and µ2 be two probability distributions on the same sample

space Ω. Total variation distance is defined as

‖µ1 − µ2‖ :=
1

2

∑
ω∈Ω

|µ1(ω)− µ2(ω)|.

For random variables A and B we shall write ‖A − B‖ for the total variation

distance between the induced probability distributions on the range of A and B,

respectively.

Fact 1.4.7. ‖µ1 − µ2‖ = maxS⊆Ω |µ1(S)− µ2(S)| .

Fact 1.4.8 (Data Processing Inequality). Let A,B,C be random variables on the

same sample space, and let D be a probabilistic function of B only. Then we have

I(A;D|C) ≤ I(A;B|C).

The above concepts were defined for the discrete probability distributions. In this

work we shall also encounter continuous probability distributions. There are some
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subtleties in going from discrete case to continuous case in the area of information

theory; however, we shall not encounter these subtleties. For our purposes, the above

definitions and facts generalize to the continuous case in a straightforward way.

For instance, Kullback-Leibler divergence between two continuous distributions

over R given by their probability density functions (PDFs) p and q is defined as

D(p||q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx.

1.5 Information Complexity

In this section we consider protocols that have both public and private randomness.

We also consider inputs X and Y being sampled from a joint distribution µ. Let

Π(X, Y ) denote the random variable that is the concatenation of public randomness

with a transcript of π on a random input (X, Y ). Due to private randomness, Π(x, y)

remains a random variable even after particular inputs X = x and Y = y are fixed.

Definition 1.5.1. Fix a communication protocol π on inputs {0, 1}n × {0, 1}n and

a distribution µ ∈ ∆({0, 1}n × {0, 1}n). The (internal) information cost of π with

respect to µ, denoted by ICµ(π), is defined as

ICµ(π) := I(Π(X, Y );X|Y ) + I(Π(X, Y );Y |X).

Definition 1.5.2. Fix a communication protocol π on inputs {0, 1}n×{0, 1}n and a

distribution µ ∈ ∆({0, 1}n×{0, 1}n). The external information cost of π with respect

to µ, denoted by ICext
µ (π), is defined as

ICext
µ (π) := I(Π(X, Y );XY ).

Definition 1.5.3. Fix a function f : {0, 1}n × {0, 1}n → {0, 1}, a distribution µ ∈
∆({0, 1}n × {0, 1}n), and a parameter ε ≥ 0. The (internal) information complexity

of f with respect to µ and error tolerance ε, denoted by ICµ(f, ε), is defined as

ICµ(f, ε) := inf
π

ICµ(π),
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where the infimum ranges over all protocols π with public and private randomness

solving f with error at most ε when inputs are sampled according to µ.

The external information complexity of f with respect to µ and error tolerance ε is

defined analogously.

Definition 1.5.4. Fix a function f : {0, 1}n × {0, 1}n → {0, 1}, a distribution µ ∈
∆({0, 1}n×{0, 1}n), and a parameter ε ≥ 0. The (internal) private-coin information

complexity of f with respect to µ and error tolerance ε, denoted by ICpriv
µ (f, ε), is

defined as

ICpriv
µ (f, ε) := inf

π
ICµ(π),

where the infimum ranges over all protocols π with private randomness only (no public

randomness) solving f with error at most ε when inputs are sampled according to µ.

The external private-coin information complexity of f with respect to µ and error

tolerance ε is defined analogously.

Definition 1.5.5. Fix a function f : {0, 1}n × {0, 1}n → {0, 1}, a distribution µ ∈
∆({0, 1}n × {0, 1}n), and a parameter ε ≥ 0. The (internal) public-coin information

complexity of f with respect to µ and error tolerance ε, denoted by ICpub
µ (f, ε), is

defined as

ICpub
µ (f, ε) := inf

π
ICµ(π),

where the infimum ranges over all protocols π with public randomness only (no private

randomness) solving f with error at most ε when inputs are sampled according to µ.

The external public-coin information complexity of f with respect to µ and error

tolerance ε is defined analogously.

Definition 1.5.6. Fix a function f : {0, 1}n × {0, 1}n → {0, 1}, a distribution µ ∈
∆({0, 1}n × {0, 1}n), and parameters ε ≥ 0 and r ∈ N. The r-round information

complexity of a function f with respect to µ and error tolerance ε, denoted by ICr
µ(f, ε),

is defined as

ICr
µ(f, ε) := inf

π
ICµ(π),

where the infimum ranges over all r-round protocols π solving f with error at most ε
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when inputs are sampled according to µ.

The r-round external information complexity is defined analogously.

The above notions of information complexity depend on the input distribution

µ. We shall sometimes refer to the input distribution as the prior distribution. A

straightforward way of defining the prior-free versions of information complexity no-

tions is to take the maximum over distributions µ. For instance, the following is the

definition of the prior-free (internal) information complexity

Definition 1.5.7. Fix a function f : {0, 1}n × {0, 1}n → {0, 1} and ε ∈ [0, 1/2]. The

prior-free (internal) information complexity of f with error tolerance ε is defined as

IC(f, ε) = max
µ

ICµ(f, ε).

Prior-free notions of external information complexity, bounded-round information

complexity, information complexity with public/private randomness only are defined

analogously.

Fact 1.5.1. For all f : {0, 1}n × {0, 1}n → {0, 1}, ε ≥ 0, r ∈ N we have

ICpriv
µ (f, ε) ≥ ICµ(f, ε)

ICpub
µ (f, ε) ≥ ICµ(f, ε)

ICr
µ(f, ε) ≥ ICµ(f, ε)

We shall also need the following definition:

Definition 1.5.8. Let f : {0, 1}k×{0, 1}k → {0, 1} be a function, µ be a distribution

on {0, 1}k × {0, 1}k and ε ∈ [0, 1] be a parameter. Define

ICall
µ (f, ε) = inf

π
ICµ(π),

where the infimum is taken over all protocols π such that for all inputs (x, y) ∈
{0, 1}k × {0, 1}k the probability that π makes a mistake on (x, y) is at most ε.



16

In particular the main difference of the above definition from ICµ(f, ε) is that in

the latter definition the error of the protocol is measured with respect to µ.

Next we describe how a protocol can be viewed as a random walk on the space of

distributions for the purpose of information cost. Let π be a protocol on the input

space {0, 1}n × {0, 1}n. Let µ ∈ ∆({0, 1}n × {0, 1}n) be a distribution. With each

partial transcript t ∈
⋃CC(π)
i=0 {0, 1}i we can associate a distributions µt, where

µt(x, y) = P(X,Y )∼µ(X = x, Y = y|Π(X, Y )≤|t| = t).

Both players can compute the distribution µt given the partial transcript t. A par-

ticular µt represents the belief of the players about the distribution on the inputs

after the communication transcript t. In defining µt we do not condition on any

input of the players, since otherwise the players would not be able to consistently

update their beliefs about the inputs. Thus, for the purpose of updating their be-

liefs, the players “forget” their actual input. The probability that players end up in

a particular µt is equal to P (Π(x, y)≤|t| = t). Then π can be viewed as a random

walk on ∆({0, 1}n × {0, 1}n) as follows: both players set µ as the current location

in ∆({0, 1}n × {0, 1}n). After each bit of communication, the players update their

current location to µt, where t is the partial transcript so far. Once the players reach

|t| = CC(π), they terminate the random walk.

The walk defined above is random for the following reason: suppose that t is

the partial transcript so far, and Alice is about to send the next bit B. Then with

probability P (B = 0|X = x,Π(X, Y )≤|t| = t) the players move from µt to µt0 and with

probability P (B = 0|X = x,Π(X, Y )≤|t| = t) the players move from µt to µt1. Note

that if π solves some function f with 0 error, it means that the random walk must

always terminate in a distribution µt such that R(f |supp(µt), 0) = 0. In later sections,

we shall rely heavily on this view of a protocol. In particular, we shall prove that the

information cost of a protocol is a function of the distribution on final distributions

µt only (where t is the entire transcript of π). In other words, it does not matter how

the players perform the walk on the space ∆({0, 1}n × {0, 1}n) – as long as they end

up in the same final distributions with the same probability – the information cost
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remains the same.

1.6 Discussion of Generalizations of Communication

Complexity and Information Complexity

In Sections 1.3 and 1.5 various notions of information and communication complexities

were defined for Boolean functions on Boolean cubes. One obvious generalization is

to consider functions of the form f : X × Y → Z with an arbitrary range Z and an

arbitrary domain X ×Y . The definitions for this general case are obtained via trivial

modifications of the definitions given in the above sections. We gave the definitions

for Boolean functions on Boolean cubes for two reasons: (1) to keep the notation to

the bare minimum, and (2) to concentrate on this setting, as it is the main setting for

the applications of the information complexity theory. At times it becomes necessary

to consider the more general setting in this thesis. For instance, the direct sum of a

Boolean function f has a multiple-bit output and therefore is not Boolean. Working

with Boolean functions on Boolean cubes is essentially without loss of generality, as

all the definitions and results carry over to the general setting in a trivial manner.

We shall continue to work in the Boolean setting whenever it is convenient.

Another generalization is to consider partial functions f : X × Y → Z and (par-

tial) relations R ⊆ X × Y × Z. This generalization is much more subtle than the

one described in the previous paragraph. A complexity measure can be significantly

smaller for a partial function versus its total extension. Thus, when proving lower

bounds, one has to be extra careful with partial functions. Therefore, we shall explic-

itly mention when we deal with partial functions in this thesis. Similar considerations

apply to relations.

Another generalization is to consider a communication problem with input dis-

tributed among k ≥ 3 players, a.k.a. multiparty communication. There are two main

communication models for k ≥ 3 players – “number-in-hand” (NIH) and “number-

on-forehead” (NOF) models. For the definitions and general background we refer the

interested reader to the book by Kushilevitz and Nisan [33] and references therein.

NOF model is notoriously difficult with regards to obtaining strong lower bounds in
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this model. In fact, one of the major open problems in information complexity theory

is to even define a reasonable notion of information complexity in the NOF setting.

We shall not discuss these models in this thesis beyond this. Other modifications of

Yao’s communication model, such as quantum communication complexity, are also

beyond the scope of this thesis.



CHAPTER 2

COMMUNICATION COMPLEXITY BOUNDS VIA

INFORMATION COMPLEXITY

2.1 Introduction

The results of this chapter are based on the joint work of the author with Braverman,

Garg, and Weinstein and have appeared in [9].

In this chapter we shall study communication complexity and information com-

plexity of several explicit functions. For easy reference, we list these functions here.

Definition 2.1.1. The two-bit AND function, denoted by AND : {0, 1} × {0, 1} →
{0, 1}, is defined as

AND(x, y) = x ∧ y.

Definition 2.1.2. The (set) disjointness function, denoted by DISJn : {0, 1}n ×
{0, 1}n → {0, 1}, is defined as

DISJn(x, y) = ¬
n∨
i=1

xi ∧ yi.

Definition 2.1.3. The k-set disjointness partial function is denoted by DISJkn. Let

S = {x ∈ {0, 1}n | the Hamming weight of x is at most k}. The k-set disjointness

is the partial function DISJkn : {0, 1}n × {0, 1}n → {0, 1} such that DISJkn|S×S =

DISJn|S×S.

Definition 2.1.4. The set intersection function, denoted by SETINTn : {0, 1}n ×
{0, 1}n → {0, 1}n, is the function with multiple bit output defined as follows

SETINTn(x, y) = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn).

19
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The set disjointness function DISJn is one of the oldest and most studied func-

tions in communication complexity [33]. In the set disjointness problem (see Def-

inition 2.1.2), Alice and Bob are given x, y ∈ {0, 1}n, respectively, where x and y

are characteristic vectors of subsets of [n]. The players need to output 1 if the sets

corresponding to x and y do not intersect, and 0 otherwise. In the deterministic

communication complexity model, it is easy to show that DISJn has communication

complexity n+1. In the randomized communication complexity model – which is the

focus of this chapter – an Ω(n) lower bound was first proved by Kalyanasundaram and

Schnitger [30]. The proof was combinatorial in its nature. A much simpler combina-

torial proof was given by Razborov a few years later [45]. In terms of upper bounds

on the randomized communication complexity of disjointness, an n+ 1 bound is triv-

ial. No better bound was known prior to [9]; although by examining the problem,

one can directly convince oneself that there is a protocol for DISJn that uses only

(1 − ε)n communication for some small ε > 0 – so that the deterministic algorithm

is suboptimal. Another set of techniques which were successfully applied to show

lower bounds on communication complexity of versions of disjointness, especially in

the quantum and multiparty settings [46, 21, 50], are analytic techniques. Analytic

techniques such as the pattern matrix method [49], allow one to further extend the

reach of combinatorial techniques.

The first information-theoretic proof of the Ω(n) lower bound on the randomized

communication complexity of DISJn was given by Bar-Yossef et al. [3]. While not ma-

terially improving the lower bound, the information-theoretic approach was extended

to the multiparty number-in-hand setting [17, 29] with applications to tight lower

bounds on streaming algorithms. At the core of the proof is a direct-sum reduction of

proving an Ω(n) bound on DISJn to proving an Ω(1) bound on the information com-

plexity of AND. The direct sum in this and other proofs follows from an application of

the chain rule for mutual information – one of the primary information-theoretic tools.

An information complexity view of disjointness lead to tight bounds on the ability

of extended formulations by linear programs to approximate the CLIQUE problem

[11]. This suggests that information complexity and a better understanding of the

disjointness problem may have other interesting implications within computational
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complexity.

The set intersection function SETINTn (see Definition 2.1.4) is closely related to

the disjointess function. Now instead of determining whether sets corresponding to

x and y intersect, Alice and Bob need to learn the characteristic vector of the whole

intersection (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn). For this problem, a lower bound of n bits

on the communication is trivial even in the randomized setting. Fix x = (1, 1, . . . , 1)

and observe that in this special case the set intersection problem will amount to Bob

sending his input to Alice, which clearly requires ≥ n bits. Thus the randomized com-

munication complexity of this problems lies somewhere between n and 2n – the trivial

upper and lower bounds. Note that the intersection problem is nothing but n copies

of the two-bit AND function. Therefore, determining the communication complexity

of SETINTn is equivalent to determining the information complexity of the two-bit

AND function by the “information = amortized communication” connection [12].

Essentially independently of the communication complexity line of work described

above, a study of the AND/intersection problem has recently originated in the in-

formation theory community. A series of papers by Ma and Ishwar [36, 38] develops

techniques and characterizations which allow one to rigorously calculate tight bounds

on the communication complexity of SETINTn and other amortized functions on the

condition that one only considers protocols restricted to r rounds of communication.

These techniques allow one to numerically (and sometimes analytically) compute the

information complexity of the two-bit AND function – although the numerical com-

putation is not provably correct for the most general unbounded-round case since

the rate of convergence of r-round information complexity down to the true infor-

mation complexity is unknown. Furthermore, their results about the AND function

are non-constructive in the sense that they do not exhibit a protocol achieving their

bounds. Nonetheless, numerical calculations produced by Ma and Ishwar do point at

convergence to 1.4923 bits for the AND function [28]. As discussed below, our tight

upper and lower bounds are consistent with this evidence.

The main result of this chapter and [9] is giving tight bounds on the information

and communication complexity of the AND, SETINTn, and DISJn functions. Be-

ing able to obtain tight bounds is a benefit provided by information theory – one
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that has been largely untapped by the communication complexity community. We

give a (provably) information-theoretic optimal protocol for the two-bit AND func-

tion. This optimality gives a tight optimal randomized protocol for SETINTn that

uses C∧n ± o(n) bits of communication and fails with a vanishing probability. Here

C∧ ≈ 1.4923 is an explicit constant given as a maximum of a concave analytic func-

tion. We then apply the same optimal result to obtain the optimal protocol for set

disjointness, showing that the best vanishing error randomized protocol for DISJn will

take CDISJn ± o(n) bits of communication, where CDISJ ≈ 0.4827 is another explicit

constant (which we found to be surprisingly low). The fact that we need the bounds

to be exact throughout requires us to develop some technical tools for dealing with

information complexity in this context. For example, we show that unlike commu-

nication complexity, the randomized ε-error information complexity converges to the

0-error information complexity as ε→ 0.

Applying what we have learned about the AND function to the sparse sets regime,

we are able to determine the precise communication complexity of disjointness DISJkn

where the sets are restricted to be of size at most k (see Definition 2.1.3). H̊astad

and Wigderson [26] showed that the randomized communication complexity of this

problem is Θ(k). We sharpen this result by showing that for vanishing error the

communication complexity of DISJkn is 2
ln 2
k ± o(k) ≈ 2.885k ± o(k).

Interestingly the optimal protocol we obtain for AND is not an actual protocol

in the strict sense of communication protocols definitions. One way to visualize it is

as a game show where Alice and Bob both have access to a “buzzer” and the game

stops when one of them “buzzes in”. The exact time of the “buzz in” matters. If we

wanted to simulate this process with a conventional protocol, we’d need the time to

be infinitely quantized, with Alice and Bob exchanging messages of the form “no buzz

in yet”, until the buzz in finally happens. Thus the optimal information complexity

of AND is obtained by an infimum of a sequence of conventional protocols rather

than by a single protocol.

It turns out that the unlimited number of rounds is necessary, both for the AND

function and for DISJn. Our understanding of information complexity in the context

of the AND function allows us to lower bound the amount of communication needed
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for DISJn if we restrict the number of rounds of interaction between players to r.

Rr(DISJn, ε) ≥ (CDISJ+Ω(1/r2))·n. In particular, any constant bound on the number

of rounds means a linear loss in communication complexity. There are well-known

examples in communication complexity where adding even a single round causes an

exponential reduction in the amount of communication needed [41]. There are also

examples of very simple transmission problems where it can be shown that two rounds

are much better than one, and more than two are better yet [42, 43]. However, to

our knowledge, together with a very recent independently obtained result on rounds

in the communication complexity of small set intersection [16, 47], this is the first

example of a “natural” function where an arbitrary number of additional rounds is

provably helpful.

2.2 Main Results of this Chapter

Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. Our first contribution is a charac-

terization of ICµ(f, 0) in terms of local concavity constrains as follows.

Definition 2.2.1 ([9]). Fix a function f : {0, 1}n × {0, 1}n → {0, 1}. Define C(f) to

be the family of functions C : ∆({0, 1}n × {0, 1}n) → R≥0 that satisfy the following

constraints:

• for all µ ∈ ∆({0, 1}n × {0, 1}n) if R(f |supp(µ), 0) = 0 then C(µ) = 0,

• for all µ, µA0 , µ
A
1 ∈ ∆({0, 1}n×{0, 1}n) if there exists a bit B that Alice can send

starting from µ such that P (B = 0) = P (B = 1) = 1/2, µA0 (x, y) = P (X =

x, Y = y|B = 0), and µA1 (x, y) = P (X = x, Y = y|B = 1) then

C(µ) ≤ C(µA0 )/2 + C(µA1 )/2 + I(X;B|Y ),

• for all µ, µB0 , µ
B
1 ∈ ∆({0, 1}n×{0, 1}n) if there exists a bit B that Bob can send

starting from µ such that P (B = 0) = P (B = 1) = 1/2, µB0 (x, y) = P (X =
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x, Y = y|B = 0), and µB1 (x, y) = P (X = x, Y = y|B = 1) then

C(µ) ≤ C(µB0 )/2 + C(µB1 )/2 + I(Y ;B|X).

• for all µ, C(µ) ≤ 2n.

Remark 2.2.1. The condition R(f |supp(µ), 0) = 0 means that both parties can deter-

mine the function’s output under µ by considering their own input only. This does

not mean that the function is determined under µ from an external point of view.

The example f(0, 0) = 0, f(1, 1) = 1, µ(0, 0) = µ(1, 1) = 1/2 illustrates this point.

Lemma 2.2.1 ([9]). For all f : {0, 1}n×{0, 1}n → {0, 1} and for all µ ∈ ∆({0, 1}n×
{0, 1}n) we have

ICµ(f, 0) = max
C∈C(f)

C(µ).

In particular, this lemma says that every C ∈ C(f) is a lower bound on the zero-error

information complexity of f . Of course, for a general function f it is not obvious how

to find even a single nontrivial element of C(f). However, if one guesses such an ele-

ment C, it is easy to verify that C ∈ C(f) by checking the local concavity constraints

from Definition 2.2.1. In this chapter we consider f = AND and successfully apply

the “guess-and-verify” approach as just described. In fact, the element C ∈ C(AND)

that we guess is defined by the zero-error information complexity of a certain proto-

col for AND. Thus, we immediately conclude that C is also an upper bound on the

information complexity, so C must be equal to the information complexity of AND.

This also implies that the protocol that gives rise to C is optimal for AND. Since we

derive an explicit formula for C, we are able to prove the following results.

Theorem 2.2.2 ([9]).

IC(AND, 0) = C∧ ≈ 1.4923

ICext(AND, 0) = log2 3 ≈ 1.58496
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We analyze the rate of convergence of ICr
µ(AND, 0) to ICµ(AND, 0), as the number of

rounds r increases, and derive the following tight bound on the rate of convergence.

Theorem 2.2.3 ([9]). Let µ be a distribution on {0, 1} × {0, 1} with full support.

Then we have

ICr
µ(AND, 0) = ICµ(AND, 0) + Θµ

(
1

r2

)
.

Moreover, the lower bound holds even for µ such that µ(1, 1) = 0.

The above exact information complexity results lead to exact communication com-

plexity bounds for the disjointness function and its variants in the regime of error tend-

ing to 0. Suppose that we have a protocol π that computes DISJn = ¬
∨
i∈[n] xi ∧ yi

correctly on all inputs. Then we can extract a protocol for the two-bit AND(x, y)

from π by sampling inputs for coordinates j ∈ [n]− {i} randomly, embedding (x, y)

into coordinate i, and running π on thus created input. The output of π on this input

will be exactly AND(x, y) provided that the sampled parts do not influence the out-

put of DISJn. We can guarantee this by sampling inputs for coordinates j ∈ [n]−{i}
from a distribution µ such that supp(µ) ⊆ f−1(0). This reduction allows us to ap-

ply direct-sum type arguments to compute communication complexity of DISJn from

ICµ(AND, 0) where µ is the worst distributions such that µ(1, 1) = 0. This approach

is more general and motivates the following definition.

Definition 2.2.2 ([9]). Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. Define

ICzero(f, 0) = max
µ

inf
π

ICµ(π),

where the maximum ranges over distributions µ with supp(µ) ⊆ f−1(0) and the

infimum ranges over all protocols π that compute f with 0 error on every input. Note

that we could also write ICzero(f, 0) = maxµ ICall
µ (f, 0), where the maximum is over

all µ with supp(µ) ⊆ f−1(0).

The following theorem characterizes the exact randomized communication complexity

of
∨

-type functions with error tolerance tending to zero in terms of ICzero(f, 0).
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Theorem 2.2.4 ([9]). Let f : {0, 1}k×{0, 1}k → {0, 1} and gn : {0, 1}nk×{0, 1}nk →
{0, 1} be functions, such that gn(x, y) = ∨ni=1f(xi, yi), where x = {xi}ni=1, y = {yi}ni=1

and xi, yi ∈ {0, 1}k. Then for all ε > 0, there exists δ = δ(f, ε) > 0 such that δ → 0

as ε→ 0 and

(ICzero(f, 0)− δ)n ≤ R(gn, ε) ≤ ICzero(f, 0)n+ o(n)k.

We apply the above to DISJn, DISJkn, and SETINTn functions.

Theorem 2.2.5 ([9]). For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as

ε→ 0 and

(CDISJ − δ)n ≤ R(DISJn, ε) ≤ CDISJn+ o(n).

where CDISJ ≈ 0.4827 bits.

Theorem 2.2.6 ([9]). Let n, k be such that k = ω(1) and n/k = ω(1). Then for all

constant ε > 0,(
2

ln 2
−O(

√
ε)

)
k − o(k) ≤ R(DISJkn, ε) ≤

2

ln 2
k + o(k).

Theorem 2.2.7 ([9]). For all ε > 0, there exists δ = δ(ε) > 0 such that δ → 0 as

ε→ 0 and

(C∧ − δ)n ≤ R(SETINTn, ε) ≤ C∧n+ o(n).

In the process of proving the above results, we derive properties of information com-

plexity that may be of independent interest. One such property is the continuity of

the information complexity function at ε = 0:

Theorem 2.2.8 ([9]). For all f : {0, 1}n × {0, 1}n → {0, 1} and µ ∈ ∆(X × Y) we

have

lim
ε→0

ICµ(f, ε) = ICµ(f, 0)

lim
ε→0

ICext
µ (f, ε) = ICext

µ (f, 0).
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2.3 Characterization of Information Complexity via Local

Concavity Constraints

In this section we prove Lemma 2.2.1, a local characterization of the zero-error infor-

mation complexity. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. We shall prove

that each member of C(f) (see Definition 2.2.1) is a lower bound on the zero-error

information complexity I(µ) := ICµ(f, 0). It will be evident that I(µ) itself satisfies

the local concavity constraints, i.e., I ∈ C(f). Thus we obtain a new characterization

of the zero-error information complexity of f as the point-wise maximum over all

functions in the family C(f).

In the definition of C(f) each bit B sent by a player is uniformly distributed

from the external point of view, i.e., P (B = 0) = P (B = 1) = 1/2. We say that a

protocol is in the normal form if every bit sent by a player in the protocol is uniformly

distributed from the external point of view. More precisely:

Definition 2.3.1 ([9]). Let π be a protocol. We say that π is in the normal form if

for each fixing r of public randomness and for each node u in the protocol tree of πr

P (owner of u sends 0|players reach u in πr) = 1/2.

We show that an arbitrary protocol can be accurately simulated by a protocol in the

normal form of the same information cost.

Lemma 2.3.1 ([9]). Let π be a protocol with input space {0, 1}n × {0, 1}n. Let

µ ∈ ∆({0, 1}n × {0, 1}n). For every δ > 0 there exists a protocol πδ and a function χ

mapping transcripts of πδ to transcripts of π such that:

1. πδ is in the normal form,

2. P
(
Π(x, y) 6= χ(Πδ(x, y))

)
≤ δ,

3. ICµ(πδ) ≤ ICµ(π).

Proof. Let ` be such that CC(π)2−` ≤ δ. Let πδ be the π` constructed from π via

Algorithm 2. Let u be the current node in the simulation. Let q be the probability
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density function of ρ2. We shall analyze q when Alice is the owner of u. When Bob

is the owner of u the analysis is similar. Let

ppriv(x) = P (Alice sends 0 in Tr|players reached u,X = x)

ν(x) = P (X = x|players reached u).

From Algorithm 2 it follows that

q(t) =

{ ∑
x ν(x)ppriv(x)1

p
if t ∈ [0, p]∑

x ν(x)(1− ppriv(x)) 1
1−p if t ∈ (p, 1]

Since p = P (Alice sends 0 in Tr|players reached u) =
∑

x ppriv(x)ν(x), we have that

q(t) = 1 for t ∈ [0, 1]. Thus P2 is uniform and bits of P̃2 transmitted by Alice are

uniform too. This proves that πδ is in the normal form.

The simulation of π fails at node u if the first ` bits of ρ2 are equal to the first `

bits of p. This happens with probability 2−`. By union bound, the entire simulation

of π fails with probability at most CC(π)2−` ≤ δ. If the simulation does not fail then

it is obvious how to reconstruct the transcript of π from the transcript of πδ. This

defines the desired function χ such that P
(
Π(x, y) 6= χ(Πδ(x, y))

)
≤ δ.

Let B denote the bit (random variable) sent by Alice to Bob in π at node u.

Since P̃2 is a probabilistic function of B we can apply data processing inequality to

conclude that

I(P̃2;X|Y , players reached u) ≤ I(B;X|Y , players reached u).

We can prove a similar inequality for the nodes owned by Bob. Hence ICµ(πδ) ≤
ICµ(π).

Remark 2.3.1. Similar result holds for the external information cost.

Remark 2.3.2. We say that πδ δ-simulates π due to Condition 2 in Lemma 2.3.1.
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Algorithm 2 Constructing π` in the normal form out of arbitrary π

Require:
x ∈ {0, 1}n - known to Alice
y ∈ {0, 1}n - known to Bob
µ, ` - known to Alice and Bob

1: Players publicly sample r and construct Tr - tree representation of πr
2: Both players set the current node u to the root of Tr
3: while u is not a leaf do
4: if owner of u is Alice then
5: Both players set p = P (Alice sends 0 in Tr|players reached u)
6: Alice sets ppriv = P (Alice sends 0 in Tr|players reached u,X = x)
7: else
8: Both players set p = P (Bob sends 0 in Tr|players reached u)
9: Bob sets ppriv = P (Bob sends 0 in Tr|players reached u, Y = y)

10: Owner of u privately samples ρ1 ∈ [0, 1] uniformly at random
11: if ρ1 ≤ ppriv then
12: Owner of u privately samples ρ2 ∈ [0, p] uniformly at random
13: else
14: Owner of u privately samples ρ2 ∈ (p, 1] uniformly at random

15: Owner of u sends ρ̃2 = the first ` bits of binary expansion of ρ2

16: Both players know p̃ = the first ` bits of binary expansion of p
17: if ρ̃2 < p̃ then
18: Both players update u to the left child of current u
19: else if ρ̃2 > p̃ then
20: Both players update u to the right child of current u
21: else
22: Both players terminate the simulation and report an error

Lemma 2.3.2 ([9]). Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. Let C ∈ C(f)

and µ ∈ ∆({0, 1}n × {0, 1}n). Let π be a protocol in the normal form that solves

f |supp(µ) with 0 error. Then we have

C(µ) ≤ ICµ(π) + ER,T∼L(πR)(C(µR,T )),

where L(πr) is the distribution on the leaves of πr and µr,t(x, y) = P (X = x, Y =

y| players reach t in πr).

Proof by induction on c = CC(π). When c = 0 the claim is clearly true, since there
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is only one leaf t and µt = µ.

Assume the claim holds for all c-bit protocols where c ≥ 0. Consider a c + 1-bit

protocol π. Without loss of generality, assume that Alice sends the first bit B. Let

µAi (x, y) = P (X = x, Y = y|B = i) for i ∈ {0, 1}. Let πi denote the protocol obtained

from π by letting Alice send the first bit as i, i ∈ {0, 1}. Since π is in the normal

form, we have

I(Π;X|Y ) = I(Π;X|Y,B = 0)/2 + I(Π;X|Y,B = 1)/2 + I(B;X|Y )

I(Π;Y |X) = I(Π;Y |X,B = 0)/2 + I(Π;Y |X,B = 1)/2

Thus we have

ICµ(π) = ICµA0
(π0)/2 + ICµA1

(π1)/2 + I(X;B|Y )

≥ C(µA0 )/2− ER,T∼L(π0,R)(C(µA0,R,T )/2)+

+ C(µA0 )/2− ER,T∼L(π1,R)(C(µA1,R,T )/2) + I(X;B|Y ) (by induction)

= C(µA0 )/2 + C(µA0 )/2 + I(X;B|Y )− Er,t∼L(πr)(C(µr,t))

≥ C(µ)− ER,T∼L(πR)(C(µR,T )) (by properties of C)

Lemma 2.3.3 ([9]). Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. Let C ∈ C(f)

and µ ∈ ∆({0, 1}n × {0, 1}n). Let π be a protocol that solves f |supp(µ) with 0 error.

Then we have

C(µ) ≤ ICµ(π).

Proof. Fix arbitrary δ > 0. Let Gπr denote the set of leaves t of πr such that

R(f |supp(µr,t), 0) = 0 (see the notation introduced in Lemma 2.3.2). By Lemma 2.3.1

there exists a protocol πδ in the normal form, such that it δ-simulates π and ICµ(πδ) ≤
ICµ(π). Therefore:

∑
t∈Gπδ,r

P (players reach t in πδ,r) ≥ 1− δ.
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Moreover, by the definition of C(f) we have C(µr,t) = 0 for all t ∈ Gπδ,r and C(µ) ≤ 2n

for all µ. Thus by Lemma 2.3.3 it follows that that

C(µ) ≤ ICµ(πδ) + 2nδ ≤ ICµ(π) + 2nδ.

As δ > 0 was arbitrary, we have C(µ) ≤ ICµ(π).

From Lemma 2.3.1 it immediately follows that ICµ(f, 0) ∈ C(f). This observation

together with Lemma 2.3.3 prove Lemma 2.2.1. For convenience we list the main

conclusions in a single place in the following corollary:

Corollary 2.3.4 ([9]). For all f : {0, 1}n × {0, 1}n → {0, 1} we have

ICµ(f, 0) ∈ C(f)

ICµ(f, 0) ≥ C(µ) ∀µ∀C ∈ C(f)

ICµ(f, 0) = max
C∈C(f)

C(µ) ∀µ

Remark 2.3.3. The above definitions and claims can be repeated for the external infor-

mation cost. Replacing I(X;B|Y ) and I(Y ;B|X) with I(XY ;B) in Definition 2.3.1,

we obtain a class Cext(f) of lower bounds on the Iext(µ) := ICext
µ (f, 0). Repeating

the steps of Lemma 2.3.2 and Lemma 2.3.3 but replacing the internal information

cost with the external information cost, we arrive at similar conclusions as in Corol-

lary 2.3.4:

ICext
µ (f, 0) ∈ Cext(f)

ICext
µ (f, 0) ≥ C(µ) ∀µ∀C ∈ Cext(f)

ICext
µ (f, 0) = max

C∈Cext(f)
C(µ) ∀µ
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2.4 Continuity of ICµ(f, ε) at ε = 0

In [7] it was shown that the information complexity function ICµ(f, ε) is convex in

ε on the interval [0, 1]. An immediate corollary is that the information complexity

is continuous in ε on the open interval (0, 1). This left open whether ICµ(f, ε) is

continuous at ε = 0. In this section we prove that it is. This property is essential

for the rest of this chapter. We arrive at the result in two steps: (1) we describe a

matrix view of message transmission in communication protocols, which (2) lets us

exploit the rectangular nature of protocols. We show that protocols solving f with

small probability of error must terminate with a distribution on the inputs that with

high probability has almost all weight on monochromatic rectangles. To turn such a

protocol into a zero-error protocol, the players simply verify that their inputs belong

to such a rectangle. If so, the players know the answer; otherwise, they exchange the

inputs.

Let π be a communication protocol on the input space X ×Y . Let µ be a distribu-

tion on X×Y . Let t ∈ {0, 1}CC(π) be a particular transcript (without loss of generality,

we can assume that the transcript is of length CC(π)). For each i ∈ [CC(π)] define

µi as follows:

µi(x, y) = P (X = x, Y = y|Π(X, Y )≤i = t≤i),

where the probability is taken over (X, Y ) ∼ µ, public and private randomness of

π. Thus, we may associate the sequence of distributions µ1, . . . , µCC(π) with each

transcript t of π. As described in Section 1.2, each distribution can be viewed as a

matrix. The following lemma asserts that in the sequence of matrices arising out of a

communication transcript, the matrix µi+1 can be obtained from the matrix µi only

by either multiplying entire rows or entire columns by specific numbers.

Lemma 2.4.1 ([9]). Let µ, µ0, µ1 ∈ ∆(X × Y). The following two statements are

equivalent:

1. There exists a signal B that Bob can send starting from µ such that µi(x, y) =

P (X = x, Y = y | B = i) for i ∈ {0, 1}.

2. There exists t ∈ (0, 1) and δy0 ∈ [0, 1/t], δy1 ∈ [0, 1/(1− t)] (y ∈ Y) such that
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• µ = tµ0 + (1− t)µ1

• (∀i ∈ {0, 1})(∀(x, y) ∈ X × Y)(µi(x, y) = δyi µ(x, y)).

Similarly for Alice, but with rows.

Proof. (⇒) By definition, µi(x, y) = P (X = x, Y = y|B = i), which by Bayes’ rule

is equivalent to µi(x, y) = P (B = i|X = x, Y = y)P (X = x, Y = y)/P (B = i). Since

Bob is the speaker, P (B = i|X = x, Y = y) = P (B = i|Y = y). Thus we have

µi(x, y) =
P (B = i|Y = y)

P (B = i)
µ(x, y).

Defining δyi = P (B = i|Y = y)/P (B = i) and t = P (B = 0) finishes the proof of

(1)⇒ (2).

(⇐) Define signal B by P (B = 0|Y = y) := tδy0 ∈ [0, 1] and P (B = 1|Y = y) :=

(1− t)δy1 ∈ [0, 1]. For each y such that
∑

x µ(x, y) > 0 this defines a valid distribution

on {0, 1}, because µ(x, y) = tµ0(x, y) + (1− t)µ1(x, y) = tδy0µ(x, y) + (1− t)δy1µ(x, y)

therefore tδy0 + (1− t)δy1 = 1.

Next, observe that

P (B = 0) =
∑
y

P (B = 0|Y = y)P (Y = y) =
∑
x,y

tδy0µ(x, y) =
∑
x,y

tµ0(x, y) = t.

Thus, we have defined the signal B in such a way that δyi = P (B = i|Y = y)/P (B =

i), and consequently we have µi(x, y) = P (X = x, Y = y|B = i) (following the steps

of (⇒) direction in reverse).

Corollary 2.4.2 ([9]). Let π be a protocol on the input space X × Y, let µ be a

distribution on X × Y, and t ∈ {0, 1}CC(π) – a transcript of π. Then there exist

vectors V t
r ∈

(
R≥0

)|X |
and V t

c ∈
(
R≥0

)|Y|
such that for all (x, y) ∈ X × Y we have

P (X = x, Y = y|Π(X, Y ) = t) = V t
r (x)V t

c (y)µ(x, y).

In the rest of this section we prove Theorem 2.2.8, which asserts that the infor-

mation complexities ICµ(f, ε) and ICext
µ (f, ε) are continuous at ε = 0. We shall prove
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this theorem for the internal information complexity only, because the proof for the

external information complexity is similar.

Clearly, by definition we have ICµ(f, ε) ≤ ICµ(f, 0). We need to show that the

reverse inequality holds up to a small additive error, i.e., ICµ(f, 0) ≤ ICµ(f, ε) + q(ε)

where q(ε)→0 as ε→ 0.

We first prove the theorem for full-support distributions µ. Later we will show

how to reduce the case of general distributions to the case of distributions with full

support. To facilitate the reduction, it will be useful to prove the full-support case

for the more general setting of (complete) relations rather than just functions.

Definition 2.4.1. A relation R ⊆ X × Y × Z is complete if for all (x, y) ∈ X × Y
there exists z ∈ Z such that (x, y, z) ∈ R.

Definition 2.4.2. Let R ⊆ X × Y × Z be a relation. We say that a combinatorial

rectangle G = A × B, where A ⊆ X and B ⊆ Y , is z-monochromatic with respect

to R if ∀(x, y) ∈ G we have (x, y, z) ∈ R. We say that G is monochromatic if there

exists z ∈ Z such that G is z-monochromatic.

Definition 2.4.3. Let R ⊆ X × Y × Z be a relation. Fix an ordering on Z. Let G

be a monochromatic rectangle with respect to R. The color of G is defined to be the

first z ∈ Z (in our fixed ordering) such that G is z-monochromatic.

Lemma 2.4.3 ([9]). Let R ⊆ X×Y×Z be a complete relation. Let µ be a distribution

on X × Y with full support. Let ρ = min(x,y) µ(x, y). Then for all sufficiently small

ε > 0 we have

ICµ(R, 0) ≤ ICµ(R, ε) + 2

(
H

(
1− 3|X ||Y|ε1/4

ρ

)
+ log(4|X ||Y|)3|X ||Y|ε1/4

ρ

)
.

Proof. Fix β > 0. Let π be a protocol solving R with error tolerance ε with respect

to µ such that ICµ(π) ≤ ICµ(R, ε)+β. By Corollary 2.4.2, for all t ∈ {0, 1}CC(π) there

exists V t
r ∈

(
R≥0

)|X |
and V t

c ∈
(
R≥0

)|Y|
such that for all (x, y) we have µt(x, y) :=

P (X = x, Y = y|Π(X, Y ) = t) = V t
r (x)V t

c (y)µ(x, y). Algorithm 3 shows how to

construct the 0-error protocol τ out of π using these vectors V t
c and V t

r .
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Algorithm 3 Converting an ε-error protocol π into a 0-error protocol τ

Require:
x ∈ X - known to Alice
y ∈ Y - known to Bob
R ⊆ X × Y × Z (complete relation), µ ∈ ∆(X × Y) (with full support), ρ =
min(x,y) µ(x, y), an ordering on Z - known to Alice and Bob

1: Players run π on (x, y). Let t be the resulting transcript.
2: Both players compute L = {x′ | V t

r (x′) > ε1/4/ρ1/2} and M = {y′ | V t
c (y′) >

ε1/4/ρ1/2}.
3: if L×M is a monochromatic rectangle then
4: Alice sends a bit A indicating if her input is in L.
5: Bob sends a bit B indicating if his input is in M .
6: if A = B = 1 then
7: Players output the color of L×M .
8: else
9: Players exchange inputs.

10: else
11: Players exchange the inputs

The intuition behind Algorithm 3 is that with high probability µt is concentrated

on monochromatic rectangles, thus the verification step (lines 4-5) does not reveal

much information about the inputs. All other events in the algorithm happen with

small probability, thus do not contribute much to the information cost of τ .

Now, we formalize the intuition. Let E be the event that π makes a mistake, and

let Et denote the event that π makes a mistake given that transcript is t. We have

P (E) = ET (P (ET )) ≤ ε and by Markov’s inequality it follows that

PT (P (ET ) > ε1/2) ≤ ε1/2.

For the remainder of the argument, consider a transcript t such that P (Et) ≤ ε1/2.

We begin with the following claim which upper bounds the maximal entry in V t
c , V

t
r :

Claim 2.4.4 ([9]). Without loss of generality, we may assume that V t
c and V t

r satisfy

the following:

1. ‖V t
r ‖∞ = ‖V t

c ‖∞,
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2. ‖V t
r ‖∞, ‖V t

c ‖∞ ≤ 1/
√
ρ.

Proof. (1) Let mc = maxy V
t
c (y) and mr = maxx V

t
r (x), and suppose that mc > mr.

Define d =
√
mr/mc. Define (V t

r )′ = V t
r /d and (V t

c )′ = dV t
c . Note that (V t

r )′ and (V t
c )′

satisfy the first condition, and we may use these vectors instead of V t
r and V t

c without

affecting the distribution µt (indeed, recall that µt(x, y) = V t
r (x)V t

c (y)µ(x, y)).

(2) Let x∗ and y∗ be some entries achieving the maximum values in V t
r and V t

c ,

respectively. By (1), V t
c (y∗) = V t

r (x∗). If this common value is larger than 1/
√
ρ then

µt(x
∗, y∗) = V t

c (y∗)V t
r (x∗)µ(x∗, y∗) > µ(x∗, y∗)/ρ ≥ 1, since ρ = min(x,y) µ(x, y) and µ

has full support. Contradiction.

Claim 2.4.5 ([9]). For a transcript t with P (Et) ≤ ε1/2, the rectangle L×M defined

in line 2 of Algorithm 3 satisfies the following properties:

1. L×M is monochromatic,

2. µt,A(L), µt,B(M) ≥ 1− |X ||Y|ε
1/4

ρ
,

where µt,A(x) =
∑

y µt(x, y) and µt,B(y) =
∑

x µt(x, y) denote the marginal distribu-

tions of µt.

Proof. Suppose that L × M is not monochromatic, then there exists some input

(x0, y0) ∈ L ×M such that (x0, y0, τt(x0, y0)) /∈ R. Therefore P (Et) ≥ µt(x0, y0) =

V t
r (x0)V t

c (y0)µ(x0, y0) > (ε1/2/ρ)ρ = ε1/2 (by the definition of L and M). This con-

tradicts the assumption that P (Et) ≤ ε1/2. This proves the first part of the claim.

Let x∗ /∈ L. Then we have

µt,A(x∗) =
∑
y

µt(x
∗, y)

=
∑
y

V t
r (x∗)V t

c (y)µ(x, y)

≤
∑
y

ε1/4

ρ1/2

1

ρ1/2
µ(x, y) by the definition of L and Claim 2.4.4

=
ε1/4

ρ
µA(x)
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Therefore µt,A(X − L) ≤ |X |ε1/4
ρ
≤ |X ||Y|ε1/4

ρ
. Similar argument shows that µt,B(Y −

M) ≤ |X ||Y|ε1/4
ρ

.

From Claim 2.4.5 it follows that for t with P (Et) ≤ ε1/2 we have

P(X,Y )∼µt((X, Y ) ∈ L×M) = µt,A(L) + µt,B(M)− P(X,Y )∼µt(X ∈ L or Y ∈M)

≥ µt,A(L) + µt,B(M)− 1

≥ 1− 2
|X ||Y|ε1/4

ρ

Let τ1 denote the part of the transcript of τ that corresponds to running π. Let

τ2 denote the remaining part of the transcript of τ . Let S be an indicator random

variable of the event “players do not exchange inputs in τ2”. For a transcript t of τ1

let Lt and Mt denote the sets constructed in line 2 of Algorithm 3. Then we have

P (S = 1) ≥ PT,(X,Y )∼µ(LT ×MT is monochromatic and (X, Y ) ∈ LT ×MT )

≥ PT (P (ET ) ≤ ε1/2)PT,(X,Y )∼µT ((X, Y ) ∈ L×M |P (ET ) ≤ ε1/2)

≥ (1− ε1/2)(1− 2|X ||Y|ε1/4/ρ)

≥ 1− 3|X ||Y|ε1/4/ρ

for all sufficiently small ε > 0. Since S is determined by τ2 we have

H(τ2) = H(τ2S) = H(S) +H(τ2|S)

= H(S) +H(τ2|S = 0)p(S = 0) +H(τ2|S = 1)p(S = 1)

= H(S) +H(τ2|S = 0)p(S = 0)

≤ H

(
1− 3|X ||Y|ε1/4

ρ

)
+ (log |X |+ log |Y|+ 2)

3|X ||Y|
ρ

ε1/4

where (1) H(τ2|S = 1) = 0, since when players do not exchange inputs τ2 =“11”,

(2) H(p) is a decreasing function for p ∈ [1/2, 1], and (3) H(τ2|S = 0) ≤ log |X | +
log |Y|+2, since when players exchange inputs they send messages of sizes dlog |X |e ≤
log |X |+ 1 and dlog |Y|e ≤ log |Y|+ 1.
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Now, we can relate information cost of τ to that of π:

ICµ(τ) = I(τ ;X|Y ) + I(τ ;Y |X)

= I(τ1τ2;X|Y ) + I(τ1τ2;Y |X)

= I(τ1;X|Y ) + I(τ2;X|Y τ1) + I(τ1;Y |X) + I(τ2;Y |Xτ1)

= ICµ(π) + I(τ2;X|Y τ1) + I(τ2;Y |Xτ1)

≤ ICµ(f, ε) + β + 2H(τ2).

The above inequality holds for all β > 0 and therefore the 0-error information com-

plexity of R is

ICµ(R, 0) ≤ ICµ(R, ε) + 2H(τ2)

≤ ICµ(R, ε) + 2

(
H

(
1− 3|X ||Y|ε1/4

ρ

)
+ log(4|X ||Y|)3|X ||Y|

ρ
ε1/4
)
.

as claimed.

Corollary of Lemma 2.4.3 is Theorem 2.2.8 for the case of distributions µ with full

support. We need the following lemma to complete the proof of Theorem 2.2.8 for

the case of general distributions.

Lemma 2.4.6 ([9]). Let ε ∈ [0, 1/2) be a parameter. Let µ1 and µ2 be distributions

on {0, 1}n × {0, 1}n such that |µ1 − µ2| ≤ ε. Let π be a protocol on the input space

{0, 1}n × {0, 1}n. Then we have

| ICµ1(π)− ICµ2(π)| ≤ 10εn+ 4H(2ε).

This means that ICµ(π) is continuous in µ for all protocols π.

Proof. Let (X̃, Ỹ , V ) be distributed uniformly over the space {0, 1}n×{0, 1}n× [0, 1].

Define the random variable F ∈ {0, 1, 2, 3} as follows

• F = 0, if V < min(µ1(X̃, Ỹ ), µ2(X̃, Ỹ ))
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• F = 1, if µ2(X̃, Ỹ ) ≤ V < µ1(X̃, Ỹ )

• F = 2, if µ1(X̃, Ỹ ) ≤ V < µ2(X̃, Ỹ )

• F = 3, otherwise

Define E = F |F ∈ {0, 1, 2}, and (X, Y ) = (X̃, Ỹ )|F ∈ {0, 1, 2}. Let µ be the

distribution of (X, Y ). Next, we list properties of X, Y and E.

P (X = x, Y = y|E ∈ {0, 1}) =
P (X = x, Y = y, E ∈ {0, 1})

P (E ∈ {0, 1})

=
µ1(x, y)/22n∑
x,y µ1(x, y)/22n

= µ1(x, y)

Thus, (X, Y )|(E ∈ {0, 1}) ∼ µ1. Similarly (X, Y )|(E ∈ {0, 2}) ∼ µ2. This means that

Iµ1(X; Π|Y ) = Iµ(X; Π|Y,E ∈ {0, 1}) and Iµ2(X; Π|Y ) = Iµ(X; Π|Y,E ∈ {0, 2}).

P (E = 1) =

∑
x,y max(µ1(x, y)− µ2(x, y), 0)/22n∑
x,y max(µ1(x, y), µ2(x, y))/22n

≤ ||µ1 − µ2|| ≤ ε.

Similarly, we have P (E = 2) ≤ ε. Define E{0,1} = E|(E ∈ {0, 1}) and E{0,2} =

E|(E ∈ {0, 2}). Note that

H(E{0,1}) = H(P (E = 1)/(1− P (E = 2)) ≤ H

(
ε

1− ε

)
≤ H(2ε)

The idea of the rest of the proof is to show that Iµ(X; Π|Y E{0,1}) is close to Iµ1(X; Π|Y )

and that Iµ(X; Π|Y E{0,2}) is close to Iµ2(X; Π|Y ). Then we can expand the expres-

sion Iµ(X; Π|Y E) over different values of E and rewrite it in two different ways:

one involving Iµ1(X; Π|Y ) and small additional terms, and one involving Iµ2(X; Π|Y )

and small additional terms. This demonstrates that the two quantities of interest

are equal up to small additional terms that vanish as ε → 0. We proceed with this

program.
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Start by expressing Iµ(X; ΠE{0,1}|Y ) in two ways as follows:

Iµ(X; ΠE{0,1}|Y ) = Iµ(X;E{0,1}|Y ) + Iµ(X; Π|Y E{0,1}) first way

= Iµ(X; Π|Y,E ∈ {0, 1}) + Iµ(X;E{0,1}|YΠ)

= Iµ1(X; Π|Y ) + Iµ(X;E{0,1}|YΠ) second way

Therefore, we have

|Iµ1(X; Π|Y )− Iµ(X; Π|Y E{0,1})| ≤ |Iµ(X;E{0,1}|Y )− Iµ(X;E{0,1}|YΠ)|

≤ H(E{0,1}) ≤ H(2ε)

This shows that Iµ1(X; Π|Y ) is close to Iµ(X; Π|Y E{0,1}). Similarly, we can derive

that

|Iµ2(X; Π|Y )− Iµ(X; Π|Y E{0,2})| ≤ H(2ε)

Define pi = P (E = i) for notational convenience. Now we proceed to the second

part of the plan and write Iµ(X; Π|Y E) in two ways. The first way of writing it is as

follows:

Iµ(X; Π|Y E) =
2∑
i=0

piIµ(X; Π|Y,E = i)

= p2Iµ(X; Π|Y,E = 2)+

+ (p0 + p1)
∑
i∈{0,1}

P (E{0,1} = i)Iµ(X; Π|Y,E{0, 1} = i)

= p2Iµ(X; Π|Y,E = 2) + (p0 + p1)Iµ(X; Π|Y E{0,1})

Similarly, we can rewrite Iµ(X; Π|Y E) as follows

Iµ(X; Π|Y E) = p1Iµ(X; Π|Y,E = 1) + (p0 + p2)Iµ(X; Π|Y E{0,2})
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Subtracting the right hand sides of the above two expressions and rearranging we get

p0(Iµ(X; Π|Y E{0,1})− Iµ(X; Π|Y E{0,2})) = p1Iµ(X; Π|Y,E = 1)+

+ p2Iµ(X; Π|Y E{0,2})−

− p2Iµ(X; Π|Y,E = 2)−

− p1Iµ(X; Π|Y E{0,1})

Since each of the informational terms on the right hand side is trivially bounded by

n and p1, p2 ≤ ε we conclude

|Iµ(X; Π|Y E{0,1})− Iµ(X; Π|Y E{0,2})| ≤ 4εn/p0 ≤ 4εn/(1− 2ε) ≤ 5εn

Combining this with our estimates on Iµ1(X; Π|Y ) and Iµ2(X; Π|Y ) from above we

obtain

|Iµ1(X; Π|Y )− Iµ2(X; Π|Y )| ≤ 2H(2ε) + 5εn

We can repeat the entire process exchanging X and Y to bound the difference in the

other term of the information cost. Overall, we get

| ICµ1(π)− ICµ2(π)| ≤ 4H(2ε) + 10εn.

Now, we finish the proof of Theorem 2.2.8 for the case of general distributions.

Proof. We show how to prove the first part of the theorem – the continuity of the

internal information complexity at error tolerance 0. Fix ε > 0. Let µ be a distribution

over X × Y (not necessarily with full support). Let π be an ε-error protocol for f

under µ.

Let U be the uniform distribution on X ×Y , and define µ′(x, y) := pU(x, y)+(1−
p)µ(x, y), where p = ε1/8. Then µ′ has full support, and for small enough ε, we have

ρ = min(x,y) µ
′(x, y) = p = ε1/8. Define the relation Rf ⊆ X × Y × {0, 1} as follows:

(x, y, f(x, y)) ∈ Rf for all (x, y) ∈ supp(µ), and (x, y, z) ∈ Rf where z = {0, 1} for all
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(x, y) /∈ supp(µ). Then Rf is trivially satisfied outside the support of µ, and it agrees

with f on the support of µ.

Clearly, π solves Rf under µ′ with error tolerance at most ε. By Lemma 2.4.3,

there is a zero-error protocol τ for Rf under µ′ such that

ICµ′(τ) ≤ ICµ′(π) + α,

where α = 2
(
H
(

1− 3|X ||Y|ε1/4
ρ

)
+ log(4|X ||Y|)3|X ||Y|

ρ
ε1/4
)
. Observe that α goes to 0

as ε goes to 0, since ρ = ε1/8. Also, note that τ is a zero-error protocol for f under µ.

Since ‖µ− µ′‖ ≤ p, Lemma 2.4.6 implies that

ICµ′(π) ≤ ICµ(π) + 5p log |X ||Y|+ 4H(2p)

and therefore ICµ′(τ) ≤ ICµ(π) + 5p log |X ||Y| + 4H(2p) + α. Using Lemma 2.4.6

again, we have

ICµ(τ) ≤ ICµ′(τ) + 5p log |X ||Y|+ 4H(2p)

≤ ICµ(π) + 10p(log |X ||Y|+ 8H(2p) + α

≤ ICµ(π) + 10ε1/8 log |X ||Y|+ 8H(2ε1/8) + α,

and clearly all the terms except ICµ(π) in the above expression tend to 0 when ε→ 0.

This finishes the proof of the first part of the statement.

The second part of the statement that deals with the external information com-

plexity is proved analogously.

2.5 Information Complexity of AND with Zero Error

Tolerance

In this section we shall compute the exact internal and the external information com-

plexities of the 2-bit AND function. We summarize our findings about the AND

function in Section 2.5.1. In Section 2.5.3 we present a clocked protocol π for the
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AND function, in which the parties use a continuous clock in an asynchronous fash-

ion (this will become clearer later). The protocol π is infeasible in the sense that no

finite-round protocol can simulate it; however, we may still analyze its information

cost as a function of the input distribution µ. We use the machinery developed in

the previous sections to demonstrate that the information cost function of π gives a

lower bound on the information complexity (Sections 2.5.6 and 2.5.8) of AND. Hence,

the information cost of π is precisely the information complexity of the AND func-

tion. The infeasibility of π is an expected side effect. The information complexity

of a function is the infimum over protocols, and thus may not be achievable by any

finite-round protocol. In Section 2.7 we describe a natural finite-round discretization

of π and analyze its rate of convergence (as a function of the number of rounds) to

the true unbounded-round information complexity of AND.

The protocol π suggests that the space of distributions on {0, 1}× {0, 1} is parti-

tioned into three regions - “Alice’s region”, “Bob’s region”, and a “diagonal” region

(corresponding to symmetric distributions). Section 2.5.4 describes the regions and

how together with the results from Section 2.5.2 they reduce the number of cases

necessary to consider in the analysis of the information cost function of π.

2.5.1 Summary of Results for AND

In Sections 2.5.5, 2.5.6, 2.5.7, and 2.5.8 we shall derive the exact closed-form formulas

for the internal and external 0-error information complexities of the AND function.

In this section we present the main results.

Theorem (Theorem 2.2.2 restated).

1. IC(AND, 0) = C∧ = 1.49238 . . .

2. ICext(AND, 0) = log 3 = 1.58396 . . .

Proof. 1. The precise number C∧ is obtained via numerical optimization of the

specific concave function obtained in Sections 2.5.5 and 2.5.6, using Wolfram
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Mathematica. The distribution that achieves this maximum is

µ =
0.0808931 . . . 0.264381 . . .

0.264381 . . . 0.390346 . . .
.

2. The external information complexity is concave, so the distribution that achieves

the maximum has to be symmetric. We first show an upper bound. That is

for every distribution µ =
α β

β δ
we have ICext

µ (AND, 0) ≤ log 3. Consider a

trivial protocol, in which Alice sends her bit X. Then if X turns out to be 1,

Bob sends his bit. The information cost of this protocol is

H(X) + p(X = 1)H(Y |X = 1) = (α + β) log
1

α + β
+ (β + δ) log

1

β + δ
+

+ (β + δ)

(
β

β + δ
log

β + δ

β
+

δ

β + δ
log

β + δ

δ

)
= (α + β) log

1

α + β
+ β log

1

β
+ δ log

1

δ
= H(µ′),

where µ′ is a distribution on a sample space with three elements 1, 2, 3 and

µ′(1) = α + β, µ′(2) = β, µ′(3) = δ. Since Shannon entropy is maximized for a

uniform distribution, we immediately get that the information cost of the above

protocol is at most log 3.

Now we turn to the lower bound. Consider the distribution

µ =
α β

β γ
.

From Sections 2.5.8 and 2.5.7, we have

ICext
µ (AND, 0) = (1−α−2β) log

1

1− α− 2β
+

β

ln 2
+
β

α
log β−(α + β)2

α
log(α+β).

By taking the limit of the above expression as α approaches 0, we obtain the fol-

lowing formula for the external information complexity of AND for distributions
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ν =
0 β

β 1− 2β
:

ICext
ν (AND, 0) = (1− 2β) log

1

1− 2β
− 2β log β.

Consider the particular ν1/3 =
0 1/3

1/3 1/3
:

ICext
ν1/3

(AND, 0) =
1

3
log 3− 2

3
log

1

3
= log 3.

This shows that log 3 is also a lower bound on ICext(AND, 0).

Remark 2.5.1. Observe that there is a symmetric distribution that achieves the

maximum of IC(AND, 0). This holds for all symmetric functions. Let f be a

symmetric function and µ be an arbitrary distribution on the inputs of f . Then

ICµ(f, 0) = ICµT (f, 0) and it is easy to see that the information complexity is a

concave function in µ. Thus for µ′ = µ/2 + µT/2, which is symmetric, we have

ICµ′(f, 0) ≥ ICµ(f, 0)/2 + ICµT (f, 0)/2 = ICµ(f, 0). The same holds for the external

information complexity.

When in later sections we consider the disjointness function, distributions µ that

place 0 mass on (1, 1) entry will play a crucial role. Note that for such distributions we

still insist that the protocol solving AND has 0 error on all inputs. The following two

claims describe the information complexity of AND with respect to such distributions.

These claims follow immediately from Sections 2.5.6 and 2.5.5.

Claim 2.5.1 ([9]). For symmetric distributions

µ =
α β

β 0
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we have

ICall
µ (AND, 0) =

β

ln 2
+
β2

α
log

β

α + β
+ α log

α + β

α
.

Claim 2.5.2 ([9]). For distributions

µ =
α β

γ 0

we have

ICall
µ (AND, 0) = (α + β)H

(
β

γ

α + γ

α + β

)
− αH

(
β

γ

)
+ t ICall

ν (AND, 0),

where

t = 2β +
αβ

γ

and

ν =
βα
γt

β
t

β
t

0

Now, the following theorem follows via numerical optimization of the above formulas.

Theorem 2.5.3.

lim
ε→0

max
µ:µ(1,1)≤ε

ICµ(AND, 0) = 0.482702 . . . .

We will also need the following claim about the information complexity of AND with

respect to symmetric distributions with non-zero mass on (1, 1).

Claim 2.5.4 ([9]). For a symmetric distribution µ =
α β

β δ
we have

ICµ(AND, 0) =
β

ln 2
+ 2δ log

β + δ

δ
+ +2β log

β + δ

β
+
β2

α
log

β

β + α
+ α log

α + β

α
.

In Section 2.7 we prove Theorem 2.2.3 - a tight bound on the rate of convergence

of the r-round information complexity of the AND function to the unbounded-round

information complexity:
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Theorem (Theorem 2.2.3 restated). Let µ be a distribution on {0, 1} × {0, 1} with

full support. Then we have

ICr
µ(AND, 0) = ICµ(AND, 0) + Θµ

(
1

r2

)
.

Moreover, the lower bound holds even for µ such that µ(1, 1) = 0.

2.5.2 Random Walk View of a Protocol: Distribution on

Distributions and Splitting Lemmas

A natural question, which arises when we view a communication protocol as a random

walk on ∆(X × Y) (see Section 1.5), is whether the amount of information revealed

in a single step of the random walk depends on how that step was performed. For

instance, suppose that in a single step the random walk moves from µ to µ0 with

probability p and µ1 with probability 1 − p. Furthermore, suppose that there is

a different random walk, such that after an entire sequence of steps it moves from

µ to µ0 with probability p and µ1 with probability 1 − p. Can we conclude that

the information revealed by the second random walk is the same as the information

revealed by the first random walk (when viewed as protocols)? The answer is yes,

and it is the first result of this section.

It will be convenient to collect all bits sent by the same player in one round into a

single message. Thus, each step of a protocol can be viewed as follows: starting from

a commonly known prior distribution µ ∈ ∆(X ×Y), the current speaker transmits a

message M ∈ {0, 1}` where ` is the largest length of a message for this step. When a

certain instance m of the message is communicated, the players update their common

prior distribution to µm(x, y) = P (X = x, Y = y|M = m).

Definition 2.5.1. For a message M we define the distribution on distributions for

M as follows: the sample space is Ω = {µm | m ∈ range(M)} and the distribution p

on Ω is p(µm) = P (µM = µm) =
∑

m̃:µm̃=µm
P (M = m̃), where the probability is over

the private randomness of the speaker and conditioned on the speaker’s input.

We shall use notation ({µ1, µ2, . . .}, {p1, p2, . . .}) to denote a particular distribution
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on distributions.

Now, we are ready to prove the first result of this section.

Lemma 2.5.5 (Distribution on Distributions Lemma, [9]). Let µ be a prior on inputs

X × Y. Suppose that in one protocol starting with µ Bob transmits B such that

µb(x, y) = P (X = x, Y = y | B = b) for b ∈ {0, 1}. Suppose that in another protocol

starting with µ Bob transmits a sequence of bits M such that

• µm(x, y) := P (X = x, Y = y|M = m),

• (∀m ∈ range(M))(µm ∈ {µ0, µ1}),

• P (Mb) = P (B = b), where Mb = {m|µm = µb} for b ∈ {0, 1}.

Then we have

I(Y ;M |X) = I(Y ;B|X).

Proof. For all b ∈ {0, 1} and for all m ∈ Mb we have µm = µb, i.e., P (X = x, Y =

y|M = m) = P (X = x, Y = y|B = b). Hence P (X = x|M = m) = P (X = x|B = b)

and consequently P (Y = y|X = x,M = m) = P (Y = y|X = x,B = b). We have

I(Y ;M |X) =

= Ex,m(D(Yxm||Yx)
=
∑

x,y,m P (X = x, Y = y,M = m) log P (Y=y|X=x,M=m)
P (Y=y|X=x)

=
∑

x,y,b

∑
m∈Mb

P (X = x, Y = y,M = m) log P (Y=y|X=x,B=b)
P (Y=y|X=x)

=
∑

x,y,b

∑
m∈Mb

µm(x, y)P (M = m) log P (Y=y|X=x,B=b)
P (Y=y|X=x)

=
∑

x,y,b µb(x, y)P (Mb) log P (Y=y|X=x,B=b)
P (Y=y|X=x)

=
∑

x,y,b P (X = x, Y = y|B = b)P (B = b) log P (Y=y|X=x,B=b)
P (Y=y|X=x)

= Ex,b(D(Yxb||Yx))
= I(Y ;B|X).

The tools introduced in this section shall be used later to reduce the number of

cases necessary to consider in the analysis of the information complexity of AND



49

function. One such tool is the distribution on distributions. Another tool is the

Splitting Lemma, which is the second result of this section: if a player can “split”

prior µ into µ0 and µ1 by transmitting a bit, then the same player can split any prior ρ

into any ρ0, ρ1 ∈ [µ0, µ1] satisfying ρ ∈ [ρ0, ρ1] by transmitting a bit. Here, “splitting

µ into µ0 and µ1” means that there exists a message consisting of a single bit B such

that the distribution on distributions of B is ({µ0, µ1}, {p0, p1}) for some p0, p1. We

formalize this below.

The proof of the Splitting Lemma uses the matrix view of message transmission

(Lemma 2.4.1). Since the transmitted bit B satisfies the assumptions of Lemma 2.4.1,

we may express µ0 and µ1 as µ with its columns (or rows, depending on the speaker)

scaled by certain scaling coefficients (direction (1) ⇒ (2) of Lemma 2.4.1). Every

distribution in the interval [µ0, µ1] is a linear combination of column-scaled (or row-

scaled) versions of µ, and thus is a column-scaled (or row-scaled) µ itself. Finding

scaling coefficients for ρ0, ρ1 and ρ we observe that ρ0 and ρ1 are, in fact, column-

scaled (or row-scaled) versions of ρ. Applying direction (2)⇒ (1) of Lemma 2.4.1 we

arrive at the desired conclusion.

Lemma 2.5.6 (Splitting Lemma, [9]). ] Suppose that starting with µ ∈ ∆(X×Y) Bob

sends signal B such that µi(x, y) = P (X = x, Y = y | B = i). Let ρ0, ρ1 ∈ [µ0, µ1]

and ρ ∈ [ρ0, ρ1]. Then there exists signal B′ that Bob can send starting at distribution

ρ such that ρi(x, y) = P (X = x, Y = y | B′ = i). Similarly, when Alice sends bit B.

Proof. Since ρ0, ρ1 ∈ [µ0, µ1] there exist numbers t0, t1 ∈ [0, 1] such that ρ0 = t0µ0 +

(1−t0)µ1 and ρ1 = t1µ0 +(1−t1)µ1. Also, since ρ ∈ [ρ0, ρ1] we have ρ = tρ0 +(1−t)ρ1

for some t ∈ [0, 1]. By direction (1)⇒ (2) of Lemma 2.4.1 we have µi(x, y) = δyi µ(x, y)

for some δyi , i ∈ {0, 1}, y ∈ Y . Then we can express ρ0 and ρ1 in terms of µ as follows:

ρ0(x, y) = (t0δ
y
0 + (1− t0)δy1)µ(x, y),

ρ1(x, y) = (t1δ
y
0 + (1− t1)δy1)µ(x, y).

Define Cy
0 := t0δ

y
0 + (1− t0)δy1 and Cy

1 := t1δ
y
0 + (1− t1)δy1 . Then we have

ρ(x, y) = (tCy
0 + (1− t)Cy

1 )µ(x, y).
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Now, it is easy to see that ρ0 and ρ1 are “column-scaled” versions of ρ with scaling

coefficients defined by

δ̃yi :=
Cy
i

tCy
0 + (1− t)Cy

1

.

Overall, we have

1. ρ = tρ0 + (1− t)ρ1,

2. ρi(x, y) = δ̃yi ρ(x, y),

3. δ̃y0 =
Cy0

tCy0 +(1−t)Cy1
,

4. δ̃y1 =
Cy1

tCy0 +(1−t)Cy1

Thus by Lemma 2.4.1 there exists a signal B′ with the desired properties.

2.5.3 Information-Optimal Protocol for AND

In this section we present Protocol 4 - a zero-error protocol for AND : {0, 1}2 → {0, 1},
which achieves both the internal and the external information complexities of AND1.

The inputs (X, Y ) to AND are distributed according to µ =
α β

γ δ
. Protocol 4 gives

a formal description of our protocol. Below we provide a verbal explanation of each

of the steps. In the process, we try to describe some intuition as to how information

is revealed in this protocol, and why this protocol is a good candidate for being

information-optimal for AND.

Protocol 4 consists of two parts. In the first part (lines 1-8), Alice and Bob check

to see if µ is symmetric. If µ is not symmetric, the appropriate player sends a single

bit such that µ becomes symmetric conditioned on the value of that bit. We shall

refer to the first part of π as its non-symmetric part. In the second part (lines 9-

18), Alice and Bob start with a symmetric distribution and observe the clock as it

increases from 0 to 1. As the time passes, the distribution on the inputs is continuously

being updated by the players. During the update process, the distribution remains

1In general, there is no reason to believe that the protocol achieving the internal information
complexity of a function should also achieve its external information complexity.
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Protocol 4 Protocol for AND with optimal information complexity

Require:
x ∈ {0, 1} - known to Alice
y ∈ {0, 1} - known to Bob

µ =
α β
γ δ

- known to Alice and Bob

1: if β < γ then

2: Bob sends bit B as follows B =


1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

3: if B = 0 then
4: The protocol terminates, the players output 0

5: if β > γ then

6: Alice sends bit B as follows B =


1 if x = 1
0 with probability 1− γ/β if x = 0
1 with probability γ/β if x = 0

7: if B = 0 then
8: The protocol terminates, the players output 0.

9: if x = 0 then
10: Alice samples NA ∈R [0, 1) uniformly at random
11: else
12: Alice sets NA = 1
13: if y = 0 then
14: Bob samples NB ∈R [0, 1) uniformly at random
15: else
16: Bob sets NB = 1
17: Alice and Bob monitor the value of the clock C, which starts at 0.
18: The clock continuously increases to 1. If min(NA, NB) < 1, when the clock

reaches min(NA, NB) the corresponding player sends 0 to the other player, the
protocol ends, the players output 0. If min(NA, NB) = 1, once the clock reaches
1, Alice sends 1 to Bob, the protocol ends, and the players output 1.

symmetric throughout. Intuitively, as the time passes, each player becomes more and

more convinced that the other player has 1 as their input. The presence of the clock

enables “continuous leakage” of information, but makes this protocol infeasible in the

strict sense of communication protocols - no finite-round protocol can simulate it. A

finite-round protocol necessarily leaks bounded-from-zero amount of information in

each (non-redundant) round. In π when a player’s private number (NA or NB) is
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reached by the clock, the player “raises the hand” to indicate the end of the protocol.

The rules for picking the private numbers NA and NB can be intuitively justified by

the following two observations:

1. When a player has input 0, that player does not need to know the other player’s

input. However, the other player must become aware that the first player has

input 0, so that both players agree on the output of AND being 0.

2. When both players have 0 as input, their roles are completely symmetric, be-

cause AND is a symmetric function.

We shall refer to the second part of π as its symmetric part.

Remark 2.5.2. In a well-defined protocol, the order in which the players communicate

should depend solely on the previous communication. For our “clocked” protocol, it

is natural to require that the order should depend on the previous communication

and the value of the clock. This presents a small problem: in case NA = NB < 1 both

players transmit 0 simultaneously. However, the event “NA = NB < 1” happens with

probability 0, thus without loss of generality we may assume that it never happens.

From the description of Protocol 4, it is clear that it correctly solves AND on

all inputs. Analyzing its information cost requires careful calculations. This is what

the remaining part of this section is devoted to. The separation of the protocol into

non-symmetric and symmetric parts makes our calculations more modular. This

separation will be reflected in subsection structure of the remainder of this section.

2.5.4 Regions of ∆({0, 1} × {0, 1}) for the AND Function

Protocol 4 suggests that the space ∆({0, 1} × {0, 1}) of distributions µ =
α β

γ δ
on

{0, 1} × {0, 1} is partitioned into three regions for the AND function:

1. Bob’s region consisting of all distributions µ with β < γ,

2. Alice’s region consisting of all distributions µ with β > γ,

3. Diagonal region consisting of all symmetric distributions µ with β = γ.
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Bob’s region consists of all priors, for which Bob is more likely to have 0 as his input

than Alice, i.e.,

P (Y = 0) = α + γ > α + β = P (X = 0).

Similarly, Alice’s region consists of all priors, for which Alice is more likely to have 0

as her input. The diagonal region consists of all distributions, for which both players

are equally likely to have 0 as their inputs.

Recall that a communication protocol can be viewed as a random walk on the

space of distributions ∆({0, 1} × {0, 1}) (see Section 1.5), where at each step one of

the players notifies the other player of the new location in the space of distributions

chosen randomly based on the speaker’s input. Next, we interpret Protocol 4 as such

a random walk: if the random walk starts in Bob’s region, Bob makes a step that

places the current position either on the diagonal, or terminates the walk. Similarly,

if the random walk starts in Alice’s region, Alice makes a step that places the current

position either on the diagonal, or terminates the walk. If the current position is on

the diagonal, then the random walk proceeds along the diagonal to position
0 0

0 1
,

and at each step there is a chance that the protocol terminates when one of the players

declares that they have 0. Later we show that if in some protocol Alice speaks in

Bob’s region, then that particular step releases non-optimal amount of information

and may be improved by changing the speaker (see Sections 2.5.6 and 2.5.8). Bob

speaking in Alice’s region reveals non-optimal amount of information too.

In a feasible (i.e., finite-round) protocol, it is impossible to perform the random

walk perfectly along the diagonal – once the prior is on the diagonal, the next bit

of communication necessarily moves the prior off the diagonal with probability 1/2

(assuming normal form) into Alice’s region and probability 1/2 into Bob’s region,

making that step non-optimal no matter who the speaker is. If the players could

transmit infinitesimal amount of information at each step, they would be able to

maintain the prior on the diagonal. This is exactly what the clock in Protocol 4

achieves.

Example 2.5.2. In this example we shall consider product distributions parameter-
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ized by a := P (X = 0) and b := P (Y = 0), i.e.,

µa,b :=
ab a(1− b)

(1− a)b (1− a)(1− b)

Since product distributions are parameterized by two values, we can actually plot the

partition of the space of distributions in 2 dimensions. Figure 2.1 shows the space

of all product distributions partitioned into the three regions: Alice’s region, Bob’s

region, and the diagonal.

b

a

1

10

Diagonal

Alice’s Region

Bob’s Region

Figure 2.1: Partition of the space of product distributions into Alice’s region, Bob’s
region, and the diagonal.

In Sections 2.5.6 and 2.5.8 we prove that the information cost of Protocol 4 satisfies

Definition 2.2.1 and therefore is a lower bound on the information complexity of AND.

Recall that to prove that a function satisfies Definition 2.2.1, we need to prove that

the function satisfies certain concavity constraints arising out of all possible signals

that could be sent by players in a communication protocol. We claim that among

all possible signals that either Alice or Bob can send in Definition 2.2.1, it suffices to

consider just three cases for Bob and three cases for Alice. In the rest of the section

we shall only talk about the cases when Bob is the speaker, understanding that the
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analogous considerations immediately follow for the case when Alice is the speaker

by exchanging the roles of two players. Assume that the players start with a prior µ.

The three cases for Bob are as follows:

1. the prior µ is in Bob’s region, Bob sends a bit, each of the possible resulting

distributions either remains in Bob’s region or belongs to the diagonal,

2. the prior µ is in Alice’s region, Bob sends a bit, each of the possible resulting

distributions either remains in Alice’s region or belongs to the diagonal,

3. the prior µ is in the diagonal region, Bob sends a bit, one of the possible resulting

distributions falls in Alice’s region and the other possible resulting distribution

falls in Bob’s region.

The cases missing above are when Bob sends a bit and one of the possible resulting

distributions “crosses the diagonal” (i.e., if the players start in Bob’s region and end

up in Alice’s region or start in Alice’s region and end up in Bob’s region). We refer

to such bits as crossing bits, and bits of one of the forms above (1-3) as non-crossing

bits. In this section we show that we can omit checking crossing bits for the purpose

of Definition 2.2.1. At the end of the section we also show that we can omit checking

case (1) of the non-crossing bits too. The following claim establishes that we can

simulate every crossing bit with a sequence of non-crossing bits without increasing

the information cost of such a step.

Claim 2.5.7 ([9]). Any crossing bit B sent by Bob in an execution of a normal-form

protocol may be replaced by a sequence (B1, B2, . . .) of non-crossing bits (in normal

form) such that the distribution on distributions of (B1, B2, . . .) is the same as the

distribution on distributions of B.

Proof. Suppose that Bob’s signal B starts at µ and has a distribution on distributions

({µ0, µ1}, {1/2, 1/2}) and moreover [µ0, µ1] contains a symmetric distribution µD. We

shall replace B with a sequence (B1, B2, . . .) representing the random walk on [µ0, µ1]

where each step is as large as possible under a constraint of not crossing µD, µ0, and

µ1. If the random walk reaches µ0 or µ1 it terminates. Formally this simulation is

described in Protocol 5.
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Protocol 5 Protocol for simulating a crossing bit with non-crossing bits
1: Set µc ← µ
2: while µc 6= µ0 and µc 6= µ1 do
3: if (2µc − µD) ∈ [µ0, µ1] then
4: Bob sends Bi (by Lemma 2.5.6) splitting µc into 2µc − µD and µD
5: else if (2µc − µ0) ∈ [µ0, µ1] then
6: Bob sends Bi (by Lemma 2.5.6) splitting µc into 2µc − µ0 and µ0

7: else
8: Bob sends Bi (by Lemma 2.5.6) splitting µc into 2µc − µ1 and µ1

9: Update µc to the current distribution

Each bit sent in Protocol 5 is in normal form, hence the random walk on [µ0, µ1]

is unbiased. The optional stopping theorem from the theory of martingales implies

that the probability of random walk reaching µ0 is 1/2. Hence the distribution on

distributions is preserved.

Remark 2.5.3.

• By Distribution on Distributions Lemma 2.5.5, the message (B1, B2, . . .) in Pro-

tocol 5 carries exactly the same information as the crossing bit B.

• Protocol 5 may not terminate, but this happens with probability 0. This bad

behavior of our simulation can be handled via a standard argument – truncate

the protocol after a sufficiently large number of steps have been performed.

• The same argument holds for the external information cost.

Now we turn to showing that case (1) of the non-crossing bits can also be omitted.

Suppose that starting from µ in Bob’s regions Bob sends a non-crossing bit B and

then executes Protocol 4. The information about inputs revealed by these two steps

is exactly the same as if the players executed Protocol 4 from µ right away. We prove

this in the rest of this section. Let π denote Protocol 4. First we need the following

lemma.

Lemma 2.5.8 ([9]). Let µ be a non-symmetric distribution µ =
α β

γ δ
such that at

least one symmetric distribution is reachable from µ if only Bob speaks. Then there
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exists a unique symmetric distribution µD such that for any message M that Bob can

send we have (∀m ∈ range(M))(µmis symmetric⇒ µm = µD).

Proof. Suppose that γ < β. Bob sending a message is equivalent to multiplying the

columns of the matrix for µ by nonnegative numbers c0, c1. In order for Bob to arrive

at a symmetric distribution he must achieve c0γ = c1β. There are two possibilities:

1. γ = 0 then β 6= 0 (µ is not symmetric). There is only one possibility for the

resulting symmetric distribution
1 0

0 0
, which uniquely determines (c0, c1) =

(1/α, 0).

2. γ > 0 then we must have c0 > 1. But since the resulting matrix still has to

correspond to a valid distribution we have c0(α+γ)+ c1(β+δ) = 1. This forces

c1 < 1. Moreover, as c0 decreases, c1 increases. Thus, by continuity there is

only one solution (c0, c1) satisfying c0γ = c1β.

Claim 2.5.9 ([9]). If Bob sends a non-crossing signal B in normal form starting from

prior µ in Bob’s region and having a distribution on distributions ({µ0, µ1}, {1/2, 1/2})
then

ICµ(π) = ICµ0(π)/2 + ICµ1(π)/2 + I(B;Y |X).

In particular, constraint in Definition 2.2.1 is satisfied for such signals.

Proof. Define τ to be the following protocol:

1. Bob sends signal B as in the statement of the claim, resulting in distribution

µB

2. The players run π starting at µB

Observe that expanding the information cost of τ after step 1 above we obtain

ICµ(τ) = ICµ0(π)/2 + ICµ1(π)/2 + I(Y ;B|X)
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It is left to show that ICµ(τ) = ICµ(π).

Let π1 denote the non-symmetric part of π when it is executed on µ and π2

denote the remaining part of π. Let τ1 denote the part of τ corresponding to step

1 above together with the non-symmetric part of π from step 2. Let τ2 denote the

remaining part of τ . To finish the proof it suffices to show that Π1 and T1 have the

same distribution on distributions, because then the information content of messages

Π1 and T1 would be the same by Lemma 2.5.5, and Π2|Π1 would have the same

distribution as T2|T1 implying that ICµ(τ) = ICµ(π).

Suppose that the message Π1 has a distribution on distributions ({ν0, ν1}, {t, 1−
t}), i.e., µ = tν0 + (1 − t)ν1, where ν0 is the distribution after Bob sent 0 in the

non-symmetric part of π (note: Pν0(Y = 1) = 0) and ν1 is the distribution on the

diagonal.

Define random variables X0 = µ, X1 = µB - the updated distribution after Bob

sent bit B, and X2 = µT1 - the updated distribution after τ1 was executed. We have

1. E(X2) = X0 = µ, because X0, X1, X2 is a martingale by definition of µB and

µT1 , and

2. X2 ∈ {ν0, ν1} by Lemma 2.5.8 and a simple observation that there is a unique

distribution ν̃ reachable by Bob from µ such that Pν̃(Y = 1) = 0.

The above two facts imply that P (X2 = ν0) = t. So T1 has the same distribution on

distributions as Π1.

2.5.5 Internal Information Cost: Upper Bound

We start by analyzing the symmetric part of Protocol 4, i.e., we shall compute

ICν(π) where

ν =
α β

β 1− α− 2β

is a symmetric distribution.

Since ν is symmetric and the roles of Alice and Bob in Protocol 4 are symmetric,



59

we have

ICν(π) = I(X; Π|Y ) + I(Y ; Π|X) = 2I(X; Π|Y ).

Working from first principles, we obtain

I(X; Π|Y ) = (α + β)I(X; Π|Y = 0) + (1− α− β)I(X; Π|Y = 1)

= (α + β)I(X; Π|Y = 0) + (1− α− β)H(X|Y = 1)

= αD(ΠX=0,Y=0||ΠY=0) + βD(ΠX=1,Y=0||ΠY=0)

+ (1− α− β)H(X|Y = 1).

The second step follows from

I(X; Π|Y = 1) = H(X|Y = 1)−H(X|Π, Y = 1)

and H(X|Π, Y = 1) = 0, since given Y = 1 the transcript Π determines X.

A transcript of Π on (x, y) can be represented uniquely by the value c ∈ [0, 1] of

the clock when the protocol terminates together with a name of a player P ∈ {A,B},
whose random number is reached by the clock first. For x, y ∈ {0, 1} we have

D(Πxy||Πy) =
∑

P∈{A,B}

∫ 1

0

fx,y(c,P) log
fx,y(c,P)

fy(c,P)
dc,

where fx,y(c,P) is the probability density function (PDF) for Πxy and fy(c,P) is the

PDF for Πy.

We have

• f0,0(c, A) = f0,0(c, B) = 1− c for c ∈ [0, 1]

• f1,0(c, A) = 0 for c ∈ [0, 1) and f1,0(c, B) = 1 for c ∈ [0, 1)

• f0(c, A) = α
α+β

(1− c) for c ∈ [0, 1] and f0(c, B) = β
α+β

+ α
β+α

(1− c) for c ∈ [0, 1)



60

Overall we obtain

I(X; Π | Y ) = α

∫ 1

0

(1− c) log
α + β

α
+ (1− c) log

(1− c)(α + β)

β + (1− c)α
dc+

+ β

∫ 1

0

log
α + β

β + (1− c)α
dc+ (1− α− β)H

(
β

1− α− β

)
.

After using Wolfram Mathematica to simplify the expressions, we obtain:

ICν(π) =
β

ln 2
+ 2(1− α− 2β) log

1− α− β
1− α− 2β

+

+ 2β log
1− α− β

β
+
β2

α
log

β

β + α
+ α log

α + β

α
(2.1)

Now, we consider the non-symmetric part of Protocol 4 for the prior

µ =
α β

γ 1− α− β − γ
,

where β < γ. Recall that Bob sends bit B with distribution

B =


1 if y = 1

0 with probability 1− β/γ if y = 0

1 with probability β/γ if y = 0

The contribution of this bit to the internal information cost is

I(Y ;B|X) = H(B|X)−H(B|XY )

= (α + β)H

(
β

α + β
+
β

γ
· α

α + β

)
+

+ (γ + δ)H

(
δ

γ + δ
+
β

γ
· γ

γ + δ

)
−

− (α + γ)H

(
β

γ

)
. (2.2)
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Bob sends bit 1 with probability t = 1−α− γ + β +αβ/γ. In that case the protocol

continues on distribution

ν̃ =
(βα)/(γt) β/t

β/t (1− α− β − γ)/t
.

If Bob sends 0 the protocol terminates. Thus the overall internal information cost of

π for the case β ≤ γ is

ICµ(π) = I(Y ;B|X) + t ICν̃(π). (2.3)

Closed-form formula for the above equation may be obtained from (2.1) and (2.2).

Since the roles of Alice and Bob are symmetric, we have

ICµ(π) = ICµT (π).

This completes the analysis of ICµ(π) for all three cases β < γ, β = γ, β > γ.

2.5.6 Internal Information Cost: Lower Bound

In this section we shall show that Expression (2.3) is a lower bound on ICµ(AND, 0).

Let

µ =
α β

γ 1− α− β − γ

and suppose that Bob sends signal B with properties

• P (B = 1) = P (B = 0) = 1/2,

• P (B = 1 | Y = 1) = 1/2 + ε1/2,

• P (B = 0 | Y = 0) = 1/2 + ε0/2.

The resulting distributions are

• µ0 =
(1 + ε0)α (1− ε1)β

(1 + ε0)γ (1− ε1)(1− α− β − γ)
if Bob sends 0, and
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• µ1 =
(1− ε0)α (1 + ε1)β

(1− ε0)γ (1 + ε1)(1− α− β − γ)
if Bob sends 1.

Also note that ε1 = ε0
α+γ

1−α−γ .

Corollary 2.3.4 says that to demonstrate that ICµ(π) is a lower bound on ICµ(AND, 0)

it suffices to prove the following concavity constraint:

ICµ(π) ≤ ICµ0(π)/2 + ICµ1(π)/2 + I(B;Y |X),

where

I(B;Y |X) = H(B|X)−H(B|XY )

= (α + β)H(B | X = 0) + (γ + δ)H(B | X = 1)−

−
∑

i,j∈{0,1}

H(B | X = i, Y = j)

= (α + β)H

(
α

α + β
(1/2− ε0/2) +

β

α + β
(1/2 + ε1/2)

)
+

+ (γ + δ)H

(
γ

γ + δ
(1/2− ε0/2) +

δ

γ + δ
(1/2 + ε1/2)

)
−

− (α + γ)H(1/2 + ε0/2)− (β + δ)H(1/2 + ε1/2)

By Claims 2.5.7 and 2.5.9, to demonstrate that ICµ(π) is a lower bound on I(AND) :=

ICµ(AND, 0) it suffices to consider only two types of non-crossing signals B that are

sent by Bob:

1. The prior µ is in Alice’s region, i. e., β > γ. Using Wolfram Mathematica we

obtain

ICµ0(π)/2 + ICµ1(π)/2 + I(Y ;B|X)− ICµ(π) =

α(β − γ)

(α + β)(1− α− γ)2 ln 4
ε20 +O(ε30),

which is > 0 for small enough ε0.

2. The prior µ is in the diagonal region, i. e., β = γ. Using Wolfram Mathematica
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we obtain

ICµ0(π)/2 + ICµ1(π)/2 + I(Y ;B|X)− ICµ(π) =

αβ

12(α + β)(1− α− β)3 ln 2
ε30 +O(ε40),

which is > 0 for small enough ε0.

Also, note that trivially ICµ(π) ≤ 2, as the players learn at most each others bits

during the execution of π. Hence Expression (2.3) satisfies all the constraints of

Definition 2.2.1 and thus is a lower bound on ICµ(AND, 0) by Corollary 2.3.4.

2.5.7 External Information Cost: Upper Bound

We start by analyzing the symmetric part of Protocol 4, i.e., we shall compute

ICext
ν (π) where

ν =
α β

β 1− α− 2β

is a symmetric distribution.

Working from first-principles, we obtain

ICext
ν (π) = I(XY ; Π)

= Ex,y(D(Πxy||Π))

= αD(ΠX=0,Y=0||Π) + βD(ΠX=0,Y=1||Π)+

+ βD(ΠX=1,Y=0||Π) + (1− α− 2β)D(ΠX=1,Y=1||Π).

A transcript of Π on x, y is determined by the value c ∈ [0, 1] of the clock when the

protocol is terminated together with a name of a player P ∈ {A,B}, whose random

number is reached by a counter first. For x, y ∈ {0, 1} we have

D(Πxy||Π) =
∑

P∈{A,B}

∫ 1

0

fx,y(c,P) log
fx,y(c,P)

f(c,P)
dc,

where fx,y(c,P) is the pdf for Πxy and f(c,P) is the PDF for Π.

We have
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• f0,0(c, A) = f0,0(c, B) = 1− c for c ∈ [0, 1]

• f0,1(c, A) = 1 for c ∈ [0, 1) and f0,1(c, B) = 0 for c ∈ [0, 1]

• f1,1(c, A) = f1,1(c, B) = 0 for c ∈ [0, 1) and P (ΠX=1,Y=1 = (1, A)) = 1

• f(c, A) = f(c, B) = α(1− c) + β for c ∈ [0, 1) and P (Π = (1, A)) = 1− α− 2β

After plugging in the above PDFs in the expression for ICext
ν (π) and using Wolfram

Mathematica to simplify the expressions, we obtain:

ICext
ν (π) = 2α

∫ 1

0

(1− c) log
(1− c)

α(1− c) + β
dc+ 2β

∫ 1

0

log
1

α(1− c) + β
dc+

+ (1− α− 2β) log
1

1− α− 2β

= (1− α− 2β) log
1

1− α− 2β
+

β

ln 2
+
β2

α
log β − (α + β)2

α
log(α + β).

Now, we consider the non-symmetric part of Protocol 4 for the prior

µ =
α β

γ 1− α− β − γ
,

where β < γ. Bob sends bit B with distribution

B =


1 if y = 1

0 with probability 1− β/γ if y = 0

1 with probability β/γ if y = 0

The contribution of this bit to the external information cost is

I(XY ;B) = H(B)−H(B | XY )

= H(B)−H(B | Y )

= H((1− α− γ) + (β/γ)(α + γ))− (α + γ)H(β/γ).
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Bob sends bit 1 with probability t = 1−α− γ + β +αβ/γ. In that case the protocol

continues on distribution

ν̃ =
βα/(γt) β/t

β/t (1− α− β − γ)/t
.

If Bob sends 0 the protocol terminates. Thus the overall external information cost

of π for the case β ≤ γ is as follows (once again, Wolfram Mathematica was used to

simplify the expressions):

ICext
µ (π) = I(XY ;B) + t ICext

ν̃ (π)

=
β

ln 2
+ β log

1

β
+ (1− α− β − γ) log

1

1− α− β − γ
+

+
β(α + γ)

α
log γ +

(α + β)(α + γ)

α
log

1

α + γ
. (2.4)

Since the roles of Alice and Bob are symmetric, we have

ICext
µ (π) = ICext

µT (π).

This completes the analysis of ICext
µ (π) for all three cases β < γ, β = γ, β > γ.

Remark 2.5.4. Observe that if α = 0, i. e.,

µ =
0 β

γ 1− β − γ
,

the expression of ICext
µ (π) simplifies to

ICext
µ (π) = β log

1

β
+ γ log

1

γ
+ (1− β − γ) log

1

1− β − γ
= H(µ).
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2.5.8 External Information Cost: Lower Bound

In this section we shall show that Expression (2.4) is a lower bound on ICext
µ (AND, 0).

Let

µ =
α β

γ 1− α− β − γ

and suppose that Bob sends signal B with properties

• P (B = 1) = P (B = 0) = 1/2,

• P (B = 1 | Y = 1) = 1/2 + ε1/2,

• P (B = 0 | Y = 0) = 1/2 + ε0/2.

The resulting distributions are

• µ0 =
(1 + ε0)α (1− ε1)β

(1 + ε0)γ (1− ε1)(1− α− β − γ)
if Bob sends 0, and

• µ1 =
(1− ε0)α (1 + ε1)β

(1− ε0)γ (1 + ε1)(1− α− β − γ)
if Bob sends 1.

Also note that ε1 = ε0
α+γ

1−α−γ .

Remark 2.3.3 says that to demonstrate that ICext
µ (π) is a lower bound on ICext

µ (AND, 0)

it suffices to prove the following concavity constraint:

ICext
µ (π) ≤ ICext

µ0
(π)/2 + ICext

µ1
(π)/2 + I(XY ;B),

where

I(XY ;B)

= H(B)−H(B | XY )

= H(B)−H(B | Y )

= 1− ((α + γ)H(1/2 + ε0/2) + (1− α− γ)H(1/2 + ε1/2)) .
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By Claims 2.5.7 and 2.5.9, to demonstrate that ICext
µ (π) is a lower bound on Iext(AND) :=

ICext
µ (AND, 0) it suffices to consider only two types of non-crossing signals B that are

sent by Bob:

1. The prior µ is in Alice’s region, i. e., β > γ. Using Wolfram Mathematica we

obtain

ICext
µ0

(π)/2 + ICext
µ1

(π)/2 + I(XY ;B)− ICext
µ (π) =

α(β − γ)

(α + β)(1− α− γ)2 ln 4
ε20 +O(ε30),

which is > 0 for small enough ε0.

2. The prior µ is in the diagonal region, i. e., β = γ. Using Wolfram Mathematica

we obtain

ICext
µ0

(π)/2 + ICext
µ1

(π)/2 + I(XY ;B)− ICext
µ (π) =

αβ

12(α + β)(1− α− β)3 ln 2
ε30 +O(ε40),

which is > 0 for small enough ε0.

Also, note that trivially ICext
µ (π) ≤ 2, as the players learn at most each others bits

during the execution of π. Hence Expression (2.4) satisfies all the constraints of

Definition 2.2.1 and thus is a lower bound on ICµ(AND, 0) by Remark 2.3.3.

2.6 Partial Differential Equation Formulation of

Information Complexity

In this section we show how to derive a system of partial differential equations, such

that information complexity is a local solution to this system. This gives an alter-

native way of deriving formulas for the information complexity of AND function. In

Subsection 2.6.1 we derive the system of PDEs for the information complexity of AND
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function with respect to product distributions. Moreover, we solve this system of dif-

ferential equations and plot the solution in 3-dimensional space. In Subsection 2.6.2

we generalize the system of PDEs from Subsection 2.6.1 to general distributions and

arbitrary functions.

2.6.1 Information Complexity of AND under Product Distributions

via PDEs

Notation: in this section we shall only consider product distributions parameterized

by a := P (X = 0) and b := P (Y = 0), i.e.,

µa,b :=
ab a(1− b)

(1− a)b (1− a)(1− b)

For convenience we shall write I(a, b) := ICµa,b(AND).

Definition 2.6.1. For ε ∈ [−1, 1] define BA(ε) to be the random variable such that

• P (BA(ε) = 0|X = 0) = 1
2

+ ε
2
,

• P (BA(ε) = 0) = P (BA(ε) = 1) = 1
2
.

Define BB(ε) similarly, that is P (BB(ε) = 0|Y = 0) = 1
2

+ ε
2
, and P (BB(ε) = 0) =

P (BB(ε) = 1) = 1
2
.

By Lemma 2.3.1 we may assume that in a nearly-optimal protocol Alice and Bob

send bits of the form BA(ε) and BB(ε), respectively. Previously we referred to such

protocols as being in normal form. We collect a few simple facts about BA(ε) in the

following lemma:

Lemma 2.6.1. Let µa,b be the prior distribution and let Alice send bit BA(ε) then

1. P (X = 0|BA(ε) = 0) = (1 + ε)a, P (Y = 0|BA(ε) = 0) = b, and

2. P (X = 0|BA(ε) = 1) = (1− ε)a, P (Y = 0|BA(ε) = 1) = b,

3. limε→0
−2I(BA(ε);X|Y )

ε2a2 = 1
a(a−1) ln 2

.
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Analogous statements hold for Bob’s bits.

Proof.

1. Straightforward computation via Bayes’ theorem.

2. Same as above.

3. First compute

I(BA(ε);X|Y ) = I(BA(ε);X) X,Y indep.

= H(BA(ε))−H(BA(ε)|X)

= 1− aH
(

1+ε
2

)
− (1− a)H

(
1−(1+ε)a

2(1−a)

)
Repeated application of L’Hôpital’s rule gives the result.

Note that analogous lemma holds for Bob sending bit BB(ε) by exchanging the roles

of Alice and Bob. Henceforth, we shall only work with Alice’s bits, tacitly assuming

analogous results for Bob’s bits.

Definition 2.6.2. BA(ε) is optimal at µa,b if the following equality holds:

I(a, b) =
1

2
I((1 + ε)a, b) +

1

2
I((1− ε)a, b) + I(BA(ε);X|Y ).

Optimality for BB(ε) is defined analogously.

In other words, BA(ε) is optimal at µa,b if for every δ > 0 there exists a protocol

π such that ICµa,b(π) − I(a, b) < δ and the first bit of π is BA(ε), or, intuitively, we

can assume that Alice sends BA(ε) in an “optimal” protocol.

Lemma 2.6.2. If for some ε > 0 BA(ε) is optimal at µa,b then BA(ε′) is optimal at

µa,b for all ε′ ∈ [0, ε]. Analogous statement holds for Bob’s bits.

Proof. Straightforward verification.
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Lemma 2.6.3. If ∂2I
∂a2 exists at (a, b) and for some ε > 0 BA(ε) is optimal at µa,b

then
∂2I
∂a2

∣∣∣∣
a,b

=
1

a(a− 1) ln 2
.

Analogous statement holds for Bob’s optimal bits.

Proof. Using Definition 2.6.2 we have

I(BA(ε);X|Y ) = I(a, b)− I((1 + ε)a, b) + I((1− ε)a, b)
2

Let f(x) = I(x, b). Then by Taylor’s theorem we have

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + o((x− a)2),

Therefore

f(a± εa) = f(a) + f ′(a)(±εa) +
f ′′(a)

2
(±εa)2 + o((±εa)2)

Thus

f(a)− f(a+ εa) + f(a− εa)

2
= −ε2a2f

′′(a)

2
+ o(ε2a2)

It follows that

f ′′(a) = lim
ε→0

−2

ε2a2

(
f(a)− f(a+ εa) + f(a− εa)

2

)
Note that Lemma 2.6.2 justifies taking the limit above. Translating the above state-

ment in terms of I(a, b) and applying Lemma 2.6.1, we finally obtain:

∂2I
∂a2

∣∣∣∣
a,b

= lim
ε→0

−2I(BA(ε);X|Y )

ε2a2
=

1

a(a− 1) ln 2

Definition 2.6.3. We define Alice’s regions RA to be the following set of distribu-

tions:

RA := {µa,b | ∃ε > 0 BA(ε) is optimal at µa,b}
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We define Bob’s region RB similarly. We also define the diagonal region ∆ = {µa,a}.

In words, RA consists of distributions, starting at which Alice sends a small signal in

some “optimal” protocol. This definition of regions matches the definitions given in

Section 2.5.4. See Figure 2.1 for a pictorial depiction of the regions.

Definition 2.6.4. We say that IA : [0, 1]2 → R is Alice’s extension function if

1. IA|RA = I|RA

2. ∀a, b ∈ (0, 1) we have ∂2IA
∂a2

∣∣∣
(a,b)

= 1
a(a−1) ln 2

Bob’s extension function is defined similarly.

Assuming that I(a, b) has second partial derivatives on (0, 1)2 in order to find I(a, b)

we need to find a pair of extension functions IA and IB that satisfy the following

conditions:

IA ◦ q(t) = IB ◦ q(t) (2.5)

∂iIA
∂xi

∣∣∣∣
q(t)

=
∂iIB
∂xi

∣∣∣∣
q(t)

i ∈ {1, 2}, x ∈ {a, b} (2.6)

∂2IA
∂a2

∣∣∣∣
a,b

=
1

a(a− 1) ln 2
(2.7)

∂2IB
∂b2

∣∣∣∣
a,b

=
1

b(b− 1) ln 2
(2.8)

IA(1, b) = IB(a, 1) = 0 (2.9)

IA(0, 0) = IB(0, 0) = 0 (2.10)

In the above q(t) = (t, t).

Theorem 2.6.4. The above system has a unique solution:

IA(a, b) =

(
b log

1− b
b

+
1

ln 2
b

)
(1− a) +H(a),

IB(a, b) =

(
a log

1− a
a

+
1

ln 2
a

)
(1− b) +H(b).
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Proof. Integrating (3) twice with respect to a we get

(∃C1, C2 : [0, 1]→ R) (IA(a, b) = C1(b) + C2(b)a+H(a))

Using (5) we have C1(b) = −C2(b). Thus we can write

IA(a, b) = C(b)(1− a) +H(a)

for some C : [0, 1] → R. Similarly, we get IB(a, b) = D(a)(1 − b) + H(b) for some

D : [0, 1] → R. In fact, by (1) we have C(t) = D(t) for t ∈ [0, 1) and hence

C(t) = D(t) on [0, 1] by continuity. By (2) and (4) we have

C ′′(t) =
−1

t(1− t)2 ln 2

Solving this ODE, we get

(∃c0, c1 ∈ R)

(
C(t) = t log

1− t
t

+ tc0 + c1

)
It follows from (6) that c1 = 0. Then by (2) we get

−t log
1− t
t
− tc0 + log

1− t
t

=

(
−1

(1− t) ln 2
+ log

1− t
t

+ c0

)
(1− t)

Upon simplification the above gives c0 = 1
ln 2

.

Corollary 2.6.5.

I(a, b) =

{ (
b log 1−b

b
+ 1

ln 2
b
)

(1− a) +H(a) if a ≥ b(
a log 1−a

a
+ 1

ln 2
a
)

(1− b) +H(b) if a < b

Since the input to IA, IB, and I is 2-dimensional, we can plot graphs of these functions

in Euclidean 3-dimensional space. See Figures 2.2, 2.3, 2.4, and 2.5.
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Figure 2.2: Graph of Alice’s ex-
tension IA.

Figure 2.3: Graph of Bob’s exten-
sion IB.

Figure 2.4: The combination of
both extensions gives the actual
information complexity.

Figure 2.5: Better view of the ac-
tual information complexity.

2.6.2 System of PDEs for Information Complexity of General

Functions

The main purpose of this section is to generalize the analysis performed in the previous

section and state a system of PDEs together with boundary conditions that, we

conjecture, characterize the information complexity of general functions. At present,

nothing is known about solutions to this system of PDEs, so we limit our discussion to

the motivation behind the statement of the system and the statement of the system.

Notation:

• For convenience we shall consider functions f of the form f : [N ]×[N ]→ {0, 1}.
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• For probability distribution µ on [N ]× [N ] we define µA(i) :=
∑N

j=1 µ(i, j) and

µB(j) :=
∑N

i=1 µ(i, j).

• We shall write µ to refer to the distribution as well as its N ×N matrix.

• We shall use [µ] to denote the linearization of the matrix µ, i.e., [µ] is the N2×1

column vector indexed by (i, j). We shall omit the square brackets when there

is little chance of ambiguity.

• We use Ei,j to denote the N×N matrix that is 0 everywhere except entry (i, j),

which is 1.

• We define I(µ) := ICµ(f, 0), and we consider it as a function of N2 (in reality

only N2−1) variables, where we denote an individual variable by its index (i, j).

• Hes I(µ) refers to the Hessian of the function I at µ, i.e., it is the N2 × N2

matrix such that the entry at the intersection of row (i1, j1) and column (i2, j2)

is ∂2I
∂(i1,j1)∂(i2,j2)

∣∣∣
µ
.

Definition 2.6.5. For ε ∈ [−1, 1], i, j ∈ [N ] define BA(ε, i, j) to be the random

variable such that

• P (BA(ε, i, j) = 0|X = i) = 1
2

+ ε
2
,

• P (BA(ε, i, j) = 0|X = j) = 1
2
− εµA(i)

2µA(j)
,

• P (BA(ε, i, j) = 0|X = k) = 1
2

for k 6= i, j,

• P (BA(ε, i, j) = 0) = P (BA(ε, i, j) = 1) = 1
2
.

BB(ε, i, j) is defined analogously.

Definition 2.6.6. We say BA(ε, i, j) is optimal at µ if the following equality holds

I(µ) =
1

2
I(µ0) +

1

2
I(µ1) + I(BA(ε, i, j);X|Y ),

where µz(x, y) = P (X = x, Y = y|BA(ε, i, j) = z) for z ∈ {0, 1}. We define optimality

of BB(ε, i, j) at µ analogously.
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A quick calculation reveals:

µ0(x, y) =
P (BA(ε, i, j) = 0|X = x, Y = y)

P (BA(ε, i, j) = 0)
µ(x, y) Bayes’ thm

=
P (BA(ε, i, j) = 0|X = x)

P (BA(ε, i, j) = 0)
µ(x, y) independence

=


(1 + ε)µ(x, y) x = i(

1− ε µA(i)
µA(j)

)
µ(x, y) x = j

µ(x, y) x 6= i, j

Similarly, we have

µ1(x, y) =


(1− ε)µ(x, y) x = i(

1 + ε µA(i)
µA(j)

)
µ(x, y) x = j

µ(x, y) x 6= i, j

Using the notation introduced at the beginning of this section we can write

µz = µ+ (−1)zε

(
Ei,i −

µA(i)

µA(j)
Ej,j

)
µ

Lemma 2.6.6. If the second derivative of I exists at µ and ∃ε > 0 such that BA(ε, i, j)

is optimal at µ then

lim
ε→0

−2I(BA(ε, i, j);X|Y )

ε2
=

[(
Ei,i −

µA(i)

µA(j)
Ej,j

)
µ

]t
Hes I(µ)

[(
Ei,i −

µA(i)

µA(j)
Ej,j

)
µ

]
Analogous statement holds for Bob’s optimal bits.

Proof. Applying Taylor’s theorem for I at µ we have

I(ν) = I(µ) +∇I(µ) · [(ν − µ)] +
1

2
[(ν − µ)]t Hes I(µ)[(ν − µ)] + o(||ν − µ||22)

Using the above statement with ν = µz, plugging the resulting formulas into Defini-

tion 2.6.6, rearranging, taking limits, and simplifying gives the desired conclusion.

We need a few last definitions before we can state the system of PDEs:
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Definition 2.6.7. We define Alice’s boundary conditions BoundA to be the following

set

BoundA = {µ | ∀i, j1, j2 ∈ [N ] (i, j1), (i, j2) ∈ supp(µ)⇒ f(i, j1) = f(i, j2)}

We define Bob’s boundary conditions BoundB analogously.

Definition 2.6.8. We define the internal boundary of regions of Alice and Bob as

RAB = {µ | supp(µ) = [N ]× [N ] and

∀ε ∈ (0, 1], i, j ∈ [N ] neither BA(ε, i, j) nor BB(ε, i, j) is optimal at µ}

Finally, we are ready to state the system of PDEs for the information complexity

of general functions. The two unknown functions are going to be IA and IB, which

should be thought of as Alice’s and Bob’s extensions of I, respectively.

System of PDEs for information complexity of general functions:[(
Ei,i −

µA(i)

µA(j)
Ej,j

)
µ

]t
Hes IA(µ)

[(
Ei,i −

µA(i)

µA(j)
Ej,j

)
µ

]
=

= lim
ε→0

−2I(BA(ε, i, j);X|Y )

ε2
∀i, j ∈ [N ][(

Ei,i −
µB(i)

µB(j)
Ej,j

)
µ

]t
Hes IB(µ)

[(
Ei,i −

µB(i)

µB(j)
Ej,j

)
µ

]
=

= lim
ε→0

−2I(BB(ε, i, j);X|Y )

ε2
∀i, j ∈ [N ]

IA(µ) = H(i,j)∼µ(f(i, j)) ∀µ ∈ BoundA

IB(µ) = H(i,j)∼µ(f(i, j)) ∀µ ∈ BoundB

DzIA(µ) = DzIB(µ) ∀z ∈ {0, 1, 2} ∀µ ∈ RAB

2.7 Rate of Convergence of ICr
µ(AND, 0) to ICµ(AND, 0)

In this section we prove that for most distributions µ the rate at which ICr
µ(AND, 0)

converges to ICµ(AND, 0) is Θ(1/r2). The empirical evidence that the rate of con-

vergence is Θ(1/r2) has appeared in the information theory literature prior to our
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work. In [37], Ma and Ishwar consider the task f of computing AND when only

Bob is required to learn the answer. They derive an explicit formula for ICµ(f) for

product distributions µ and design an algorithm that computes ICr
µ(f) to within a

desired accuracy. Ishwar and Ma generously provided their scripts, which we used to

generate Figure 2.6 (it is a variant of Figure 4(a) from [37]). Figure 2.6 demonstrates

that maxµ - product ICr
µ(f)− ICµ(f) asymptotically behaves like Θ(1/r2).

Figure 2.6: Empirical evidence that rate of convergence is Θ(1/r2). The log-log scale
figure shows the graph of maxµ - product ICr

µ(f)−ICµ(f) for a range of values r together
with the line 1/(16r2). The x-axis is the number of rounds r. The y-axis is the change
in the information cost maxµ - product ICr

µ(f)− ICµ(f).

Our proof consists of two main parts: (1) the lower bound Ω(1/r2) on the rate of

convergence and (2) the matching upper bound of O(1/r2). The high-level idea for

the lower bound is to show that any r-round protocol, when viewed as a random walk

on ∆(X × Y) (see Section 1.5), has to travel a large distance in the wrong region.

In other words, Alice often speaks in Bob’s region, and Bob often speaks in Alice’s

region. Then we can use the formulas from Section 2.5.6 to conclude that each such

step wastes a lot of information as compared to the optimal protocol. Aggregating

this wastage over all rounds, Ω(1/r2) information has to be wasted overall. The
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upper bound is obtained by carefully analyzing a discretized version of our infeasible

protocol for AND from Section 2.5.3. Both upper and lower bounds require a number

of technical lemmas, which we also include in the text.

The rest of this section is organized as follows. In Subsection 2.7.1 we prove

the lower bound on the rate of convergence modulo two technical lemmas. Subsec-

tion 2.7.2 contains the proof of the first lemma, which quantifies how much informa-

tion is wasted by a feasible protocol versus an optimal infeasible one in terms of the

distance traveled in the wrong region. Subsection 2.7.3 proves the second technical

lemma from the lower bound on the rate of convergence. The second lemma gives a

lower bound on the distance traveled in the wrong region by a protocol that solves

the AND function. Finally, in Subsection 2.7.4 we prove the upper bound on the rate

of convergence.

In this section it will be easier for us to work with general protocols and forgo the

normal-form assumption.

2.7.1 Lower Bound on the Rate of Convergence

We say that a message M crosses the diagonal if this message starts at prior µ, has

distribution on distributions ({µm}, {pm}), and there exists m such that the interval

[µ, µm] intersects the diagonal region, i.e., the interval [µ, µm] contains a symmetric

distribution.

We begin by showing that we can split a message that crosses the diagonal into

two that do not cross the diagonal.

Lemma 2.7.1 ([9]). Let M be a message sent by one of the players such that M

crosses the diagonal. There exists two messages M1 and M2 such that neither M1,

nor M2 crosses the diagonal, and (M1,M2) has the same distribution on distributions

as M .

Proof. The idea of the proof is that each message M is simply a sequence of bits, so

the player can generate M bit by bit until there is a danger of the next bit crossing

the diagonal. If the player is about to generate a crossing bit, the player will instead

split that bit into two using the Splitting Lemma (Lemma 2.5.6). The split happens
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in such a way that after the first bit is sent the player either ends up on the diagonal,

or moves away from the diagonal. If the player does not jump to the diagonal, then

the process continues in the same way. If the player happens to jump to the diagonal

that signifies the end of message M1 and beginning of M2.

All that is left to show is that a crossing bit may be split into two non-crossing

bits while preserving the distribution on distributions. Suppose that the player sends

a bit B starting at prior µ and splitting µ into µ0 and µ1, such that [µ, µ1] contains a

symmetric distribution µD. Since µ ∈ [µ0, µD] there is a signal B1 that splits µ into

µ0 and µD (by the Splitting Lemma). Also, since µD ∈ [µ0, µ1] there is a signal B2

that splits µD into µ0 and µ1. Now instead of sending bit B, the player first sends

B1. If B1 = 0 the message is terminated, otherwise the player sends B2. This new

message induces the same distribution on distributions as B, because (B1, B2) and B

express µ as a convex combination of µ0, µ1, which is unique. Note that we allow B,

B1 and B2 be biased.

Theorem 2.7.2 ([9]). For all µ =
α β

γ δ
with {α, β, γ} ⊆ supp(µ) we have

ICr
µ(AND, 0) = ICµ(AND, 0) + Ωµ

(
1

r2

)
.

Proof. Fix an arbitrary r-round protocol π that solves AND with 0-error and distri-

bution µ =
α β

γ δ
with α, β, γ 6= 0. Using Lemma 2.7.1 we obtain a protocol π′ with

m ≤ 2r messages, such that no message crosses the diagonal and ICµ(π′) = ICµ(π).

We shall view π′ as a random walk on the set of distributions ∆({0, 1}× {0, 1}). For

technical reasons we shall restrict this random walk to the subset S of ∆({0, 1}2)

defined as follows

S := {µ′ | α′ ≥ 0.01α and min(β′, γ′) ≥ 0.01 min(β, γ)} .

Using ideas from the proof of Lemma 2.7.1 we can always impose a constraint that

π′ does not make steps that cross from S into S without stopping at the boundary
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of S. We let π′′ denote such a modification of π′. Clearly, ICµ(π′′) = ICµ(π′) and the

number of messages in the first part of π′′ that proceeds only until the boundary of

S is at most m.

We shall show that ICµ(π′′) = ICµ(AND, 0) + Ωµ

(
1
r2

)
by showing that the part of

π′′ until the boundary of S already wastes Ωµ

(
1
r2

)
amount of information as compared

to the optimal protocol.

Let Ti denote the ith message of π′′ for i ≤ m. Then the whole transcript T until

the boundary of S is T1T2 · · ·Tm.

A transcript t gives rise to m + 1 distributions µ
t≤0

0 , µ
t≤1

1 , . . . , µ
t≤m
m traced out by

the protocol π when viewed as a random walk on ∆(X × Y) (see Section 1.5). We

write µ
t≤0

0 = µ. We define the central object of this proof: δ
t≤i
i - the distance traveled

by a player in the wrong region during the ith round. More formally

δ
t≤i
i =


‖[µt≤i−1

i−1 , µ
t≤i
i ] ∩∆A‖ if the ith message is

transmitted by Bob,

‖[µt≤i−1

i−1 , µ
t≤i
i ] ∩∆B‖ if the ith message is

transmitted by Alice.

In the above ∆A denotes Alice’s region, and ∆B denotes Bob’s region (see Sec-

tion 2.5.4). The lower bound Ωµ(1/r2) on the overall wastage of protocol π′′ follows

from two crucial observations:

Lemma 2.7.3 ([9]).

ICµ(π′′)− ICµ(AND, 0) = Ωµ

(
m∑
i=1

(Etδ
t≤i
i )3

)
.

Lemma 2.7.4 ([9]).

Et

(
m∑
i=1

δ
t≤i
i

)
= Ωµ(1).

We prove the above lemmas later in Subsections 2.7.2 and 2.7.3. Now, by Hölder’s
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inequality we have

m∑
i=1

(
Etδ

t≤i
i

)3

≥

(
Et

(
m∑
i=1

δ
t≤i
i

))3

/m2 = Ωµ(1/r2),

where the last step follows from Lemma 2.7.4 and the fact that m ≤ 2r. This finishes

the proof by Lemma 2.7.3.

2.7.2 Informational Wastage

The goal of the current subsection is to prove Lemma 2.7.3 that appears in the proof of

the lower bound on the rate of convergence. For definitions of relevant mathematical

objects see Subsection 2.7.1. Recall that Lemma 2.7.3 asserts that the information

wasted by an m-message protocol as compared to the optimal infeasible protocol is

roughly the sum of the cubed distances traveled in the wrong region. The proof of

this lemma consists of a sequence of reductions. We start with analyzing how much

information is wasted by a single bit and gradually build up the result to the entire

protocol.

We start by formally defining what it means for a particular step in a protocol,

which consists of one of the players sending a message, to waste information.

Definition 2.7.1 ([9]). Suppose that Bob sends message M with distribution on

distributions ({µm}, {pm}) from prior µ. The informational wastage of M is defined

as

IW(µ,M) :=

 ∑
m∈range(M)

pm ICµm(AND, 0)

+ I(M ;Y |X)− ICµ(AND, 0).

The informational wastage of Alice’s messages is defined analogously.

The information wasted is how much extra information is revealed by a protocol

that sends message M and then proceeds optimally versus the protocol that proceeds

optimally from the start.
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When the message is a single bit B sent by Bob from a symmetric prior µ, the

above definition simplifies to

IW(µ,B) = p ICµ0(AND, 0) + (1− p) ICµ1(AND, 0) + I(B;Y |X)− ICµ(AND, 0),

where µ0 := P (X = x, Y = y|B = 0) belongs to Bob’s region and µ1 := P (X =

x, Y = y|B = 1) belongs to Alice’s region.

Observe that the formulas from Section 2.5.6 imply that for a uniform bit B and

symmetric prior µ we have

IC(µ,B) ≥ C(µ)||µ1 − µ||3 = Ω(||µ1 − µ||3), (2.11)

where C(µ) = αβ
12(α+β)(1−α−β)3 is a continuous positive function of µ. In other words,

the information wasted is roughly the cube of the distance traveled in the wrong

region.

Remark 2.7.1. In what follows we only consider the information wasted from a sym-

metric prior, because the information wasted when a player speaks starting in the

wrong region is strictly larger (see formulas at the end of Section 2.5.6).

Now we extend this result to nonuniform bits. As expected, for a nonuniform bit

the cube of the distance traveled in the wrong region gets scaled by the probability

of jumping into the wrong region.

Lemma 2.7.5 ([9]). Suppose that Bob sends bit B from symmetric prior µ with

distribution on distributions ({µ0, µ1}, {p, 1 − p}). If µ1 + 2p(µ0 − µ1) ∈ ∆({0, 1} ×
{0, 1}) then

IW(µ,B) ≥ C(µ)(1− p)||µ1 − µ||3 = Ω((1− p)||µ1 − µ||3),

where C(µ) = αβ
12(α+β)(1−α−β)3 . Similarly for Alice.

Proof. Case p ≤ 1/2. Let µ′0 := µ1 + 2p(µ0 − µ1) ∈ [µ0, µ1]. Then we have µ =

(1/2)µ1 + (1/2)µ′0, so there exists signal B′ that Bob can send with distribution on
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distributions ({µ′0, µ1}, {1/2, 1/2}). Clearly, we have IW(µ,B) ≥ IW(µ,B′). Finally,

from Equation (2.11) we obtain IW(µ,B′) ≥ C(µ)||µ1−µ||3 ≥ C(µ)(1−p)||µ1−µ||3.
Case p > 1/2. Let µ′0 := µ1 + 2p(µ0 − µ1). By conditions of the lemma, µ′0 is

a valid distribution. Then we have µ0 := ((1 − p)/p)µ′0 + ((2p − 1)/p)µ, so there

exists bit B′ that Bob can send from prior µ0 with distribution on distributions

({µ′0, µ}, {(1− p)/p, (2p− 1)/p}). By Claim 2.5.9 we have IW(µ0, B
′) = 0 thus

IW(µ,B) = IW(µ,B) + p IW(µ0, B
′) = IW(µ,M),

where M is message (B,B′) that has distribution on distributions ({µ′0, µ, µ1}, {1 −
p, 2p − 1, 1 − p}). Since µ = (1/2)µ′0 + (1/2)µ1 there exists the signal B′′ with

distribution on distributions ({µ′0, µ1}, {1/2, 1/2}).
Define I(ν) := ICν(AND, 0). Then we have

IW(µ,M) = (1− p)I(µ′0) + (1− p)I(µ1) + (2p− 1)I(µ) + I(M ;Y |X)− I(µ)

= 2(1− p)[(1/2)I(µ′0) + (1/2)I(µ1) + I(M ;Y |X)/(2(1− p))− I(µ)]

= 2(1− p)[(1/2)I(µ′0) + (1/2)I(µ1) + I(B′′;Y |X)− I(µ)]

= 2(1− p) IW(µ,B′′)

≥ 2(1− p)C(µ)||µ1 − µ||3,

I(M ;Y |X)/(2(1 − p)) = I(B′′;Y |X), since sending M and staying at prior µ with

probability 2(1− p) and otherwise sending B′′ induce the same distribution on distri-

butions.The last step follows from Equation (2.11).

The next step is to extend our lower bound on the information wasted in a single

step of a protocol to messages. Suppose that Bob sends a message M with distribution

on distributions ({µm}, {pm}) from symmetric prior µ. Define sets M1 := {m |
µm(0, 1) > µm(1, 0)} and M2 := {m | µm(0, 1) ≤ µm(1, 0)}. The set M1 contains all

the messages that lead to Alice’s region and M2 contains all the messages that lead

to Bob’s region. Let µ1 be the average of µm ∈ M1 and µ0 to be the average of µm

in M2. If µ1 + 2p(µ0 − µ1) ∈ ∆({0, 1}2) then the information wasted by sending M
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is at least Ω(P (m ∈M1)||µ1 − µ||3) = Ω((Em||[µm, µ] ∩∆A||)3).

Lemma 2.7.6 ([9]). Suppose that the conditions specified in the above paragraph hold

for a message M sent by Bob, then we have

IW(µ,M) ≥ C(µ)(Em||[µm, µ] ∩∆A||)3,

where C(µ) = αβ
12(α+β)(1−α−β)3 . Similar inequality holds for Alice.

Proof. Define the indicator random variable Z as follows

Z =

{
1 if µM(0, 1) > µM(1, 0)

0 otherwise

In other words, Z indicates if after sending M the players end up in Alice’s region.

Consider the two protocols:

1. π1 - Bob first sends M and then players proceed optimally.

2. π2 - Bob first sends Z, then M |Z and then players proceed optimally.

Clearly, sending Z followed by M |Z produces the same distribution on distribu-

tions as simply sending M , thus π1 and π2 have the same information cost. Therefore

they have the same informational wastage. Observe that if Bob sends Z = 1 then the

players update their distribution µ to distribution µ1 = Em∼M |Z=1(µm). It is easy to

see that ||µ1 − µ|| = Em∼M |Z=1(||µm − µ||) (note that this matches the definition of

µ1 we gave in a paragraph prior to the statement of this lemma). Now we are in a

position to apply Lemma 2.7.5 to the bit Z. All in all, we have IW(µ, (Z,M |Z)) ≥
IW(µ, Z) ≥ P (Z = 1)C(µ)||µ1 − µ||3 ≥ C(µ)(P (Z = 1)Em∼M |Z=1(||µm − µ||))3 ≥
C(µ)(Em||[µm, µ] ∩∆A||)3.

Now we are in a position to prove Lemma 2.7.3.

Lemma (2.7.3 restated,[9]).

ICµ(π′′)− ICµ(AND, 0) = Ωµ

(
m∑
i=1

(Etδ
t≤i
i )3

)
.
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Proof of Lemma 2.7.3. By Lemma 2.7.6 the informational waste of the ith message

Ti given a fixed partial transcript t≤i−1 is at least

C(µ
t≤i−1

i−1 )(Eti∼Ti|t≤i−1
(δ
t≤i
i ))3 ≥ (0.01α)(0.01 min(β, γ))

12
(Eti∼Ti|t≤i−1

(δ
t≤i
i ))3,

where the last step follows from the fact that µ
t≤i−1

i−1 ∈ S and C(µ′) ≥ α′β′

12
(see proof

of Theorem 2.7.2 for the relevant definitions). Aggregating this over all messages Ti

we finish the proof of the lemma

ICµ(π′′)− ICµ(AND, 0) ≥ (0.01α)(0.01 min(β, γ))

12

(
m∑
i=1

(Etδ
t≤i
i )3

)
.

2.7.3 Distance Traveled in the Wrong Region

The goal of the current subsection is to prove Lemma 2.7.4 appearing in the proof

of the lower bound on the rate of convergence. See Subsection 2.7.1 for the relevant

definitions. Lemma 2.7.4 asserts that when a protocol is viewed as a random walk

on the space of distributions, the protocol has to spend non-trivial amount of time in

the wrong region if it solves the AND function.

The proof relies on the following observation. Consider a protocol that solves AND

correctly on all inputs. We view it as a random walk on the space of distributions

(see Section 1.5). Recall that a single move multiplies rows or columns of the current

distribution. Thus if the random walk starts from a non-trivial distribution (i.e., the

players cannot derive the answer to AND from it immediately), the protocol would

have to multiply some row or column by 0. This immediately implies that a protocol

solving AND correctly has to travel statistical distance at least min(β, γ) overall. A

more careful analysis reveals that in fact such a protocol has to travel min(β, γ) in

the “wrong region”. This is proved in this section via an invariant argument (see

Lemma 2.7.8). We start by proving the following lemma, which shows that a certain

process defined by a random walk of the protocol is a supermartingale.
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Lemma 2.7.7 ([9]). Let π be a protocol that starts at prior µ. For a (partial) tran-

script t, let µt =
αt βt

γt δt
denote the resulting distribution arising from t. Then βTγT

is a supermartingale.

Proof. Let B be a bit sent by Bob from µ. Then µi(x, y) = P (X = x, Y = y|B = i)

for i ∈ {0, 1}. We need to show that

Eb∼B(βbγb) ≤ βγ.

Let p := P (B = 0). Recall that the jth column of µi is simply a multiple of the

jth column of µ. We can write µ0 =
C0α C1β

C0γ C1δ
and µ1 =

D0α D1β

D0γ D1δ
, where

Ci = P (B = 0|Y = i)/P (B = 0) and Di = P (B = 1|Y = i)/P (B = 1). Observe that

Di = (1− Cip)/(1− p). Therefore we have

Eb∼B(βbγb) = pC0C1βγ + (1− p)D0D1βγ

= βγ(pC0C1 + (1− C0p)(1− C1p)/(1− p))

= βγ((1− p)pC0C1 + (1− C0p)(1− C1p))/(1− p)

= βγ(1− p+ (C1 − 1)(C0 − 1)p)/(1− p)

= βγ(1 + (C1 − 1)(C0 − 1)p/(1− p))

≤ βγ,

where the last step follows from the fact that Ci ≤ 1 ⇐⇒ C1−i ≥ 1, so (C1−1)(C0−
1) ≤ 0.

The next lemma proves an invariant of a protocol solving the AND function. The

lemma says that in order for a protocol to decrease the value of min(β, γ) by a certain

amount, the protocol has to spend an equivalent amount of time in the wrong region.

Lemma 2.7.8 ([9]).

Et

(
min(βtm, γ

t
m)−min(β, γ) +

m∑
i=1

δ
t≤i
i

)
≥ 0.
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Proof. We prove the claim for all m-message protocols π and for all distributions µ

by induction on m.

Base case is obvious, because it happens when m = 0 and we have min(βt0, γ
t
0) =

min(β, γ).

Now, consider the inductive step. We have

Et(min(βtm, γ
t
m)−min(β, γ) +

m∑
i=1

δ
t≤i
i )

= Et(min(βtm, γ
t
m)−min(βt11 , γ

t1
1 ) +

m∑
i=2

δ
t≤i
i + min(βt11 , γ

t1
1 )−min(β, γ) + δt11 )

≥ Et1(min(βt11 , γ
t1
1 )−min(β, γ) + δt11 ),

where the last step follows by induction. To complete the inductive step it is left to

show that Et1(min(βt11 , γ
t1
1 ) − min(β, γ) + δt11 ) ≥ 0. We shall assume that the first

message is sent by Bob. The case when Alice sends the first message is similar.

There are two possibilities, which we analyze separately.

First possibility is that µ is not a symmetric prior. So µ either belongs to Bob’s

region, or Alice’s region. Consider the case when µ belongs to Bob’s region (γ > β).

Then min(β, γ) = γ. Moreover, since the messages in our protocol do not cross the

diagonal, we have that γt11 ≥ βt11 for all t1 ∈ T1. Consequently min(βt11 , γ
t1
1 ) = γt11 .

Since γTii is a martingale, we have

Et1(min(βt11 , γ
t1
1 )−min(β, γ)) = 0.

Adding Et1(δt11 ) to the above only increases the right-hand side. Similar calculation

works for the case when µ belongs to Alice’s region.

Second possibility is that µ is a symmetric prior, i.e., γ = β. Recall that the prior

gets modified by multiplying the columns:

µt11 (x, y) = P (X = x, Y = y|T1 = t1)

= P (T1=t1|X=x,Y=y)
P (T1=t1)

P (X = x, Y = y)

= P (T1=t1|Y=y)
P (T1=t1)

µ(x, y).
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Thus on the first message t1 the first column of µ gets multiplied by Ct1
0 := P (T1 =

t1|Y = 0)/P (T1 = t1) and the second column gets multiplied by Ct1
1 := P (T1 =

t1|Y = 1)/P (T1 = t1). Next we define two sets of messages S := {t1|Ct1
0 < Ct1

1 }
and R := {t1|Ct1

0 ≥ Ct1
1 }. Observe that Ct1

0 P (Y = 0) + Ct1
1 P (Y = 1) = 1. Hence if

Ct1
0 < Ct1

1 then Ct1
0 < 1 and Ct1

1 > 1; similarly, if Ct1
0 > Ct1

1 then Ct1
0 > 1 and Ct1

1 < 1,

Observe that

• (∀t1 ∈ R)(δt11 = 0),

• (∀t1 ∈ S)(δt11 = (1− Ct1
0 )(α + β) + (Ct1

1 − 1)(β + δ)),

• (∀t1 ∈ R)(min(βt11 , γ
t1
1 ) = Ct1

1 β), and

• (∀t1 ∈ S)(min(βt11 , γ
t1
1 ) = Ct1

0 β).

Introduce notation pt1 := P (T1 = t1). Then we have

Et1
(
min(βt11 , γ

t1
1 ) + δt11

)
=
∑
t1∈S

pt1C
t1
0 β +

∑
t1∈R

pt1C
t1
1 β +

∑
t1∈S

pt1((1− Ct1
0 )(α + β) + (Ct1

1 − 1)(β + δ))

≥
∑
t1∈S

pt1C
t1
0 β +

∑
t1∈R

pt1C
t1
1 β +

∑
t1∈S

pt1(1− Ct1
0 )β +

∑
t1∈S

pt1(Ct1
1 − 1)β

=
∑
t1∈S

pt1C
t1
1 β +

∑
t1∈R

pt1C
t1
1 β

= β.

Finally we are in a position to prove Lemma 2.7.4.

Lemma (2.7.4 restated,[9]).

Et

(
m∑
i=1

δ
t≤i
i

)
= Ωµ(1).
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Proof of Lemma 2.7.4. By Lemma 2.7.7 βTii γ
Ti
i is a supermartingale. Therefore−2βTii γ

Ti
i =

(βTii − γ
Ti
i )2 − (βTii )2 − (γTii )2 is a submartingale. By optional stopping theorem we

have

Et
(
(βTm − γTm)2 − (βTm)2 − (γTm)2

)
≥ (β − γ)2 − β2 − γ2.

Rearranging we get

Et
(
(βTm − γTm)2 − (β − γ)2

)
≥ Var(βTm) + Var(γTm).

By definition of S, when transcript t is observed exactly one of the following three

cases happens:

1. βtm = 0.01 min(β, γ)

This transcript contributes at least (0.99 min(β, γ))2 to Var(βTm).

2. γtm = 0.01 min(β, γ)

This contributes at least (0.99 min(β, γ))2 to Var(γTm).

3. αtm = 0.01α

We do not have a guarantee on the contribution to Var(βTm) or Var(γTm), but

since αTim is a martingale we have Et(αtm) = α. In addition, αtm ≤ 1. Thus

P (αTm > 0.01α) ≥ 0.99α.

From the above it follows that

Var(βTm) + Var(γTm) ≥ (0.99α)(0.99 min(β, γ))2 =: cµ.

Consequently

Et
(
(βtm − γtm)2 − (β − γ)2

)
≥ cµ. (2.12)

Observe that |βtm − γtm|+ |β − γ| ≤ 2. Thus

|βtm − γtm| − |β − γ| ≥ ((βtm − γtm)2 − (β − γ)2)/2.
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Taking expectation of both sides and using inequality (2.12) we obtain

Et(|βtm − γtm| − |β − γ|) ≥ cµ/2. (2.13)

By Lemma 2.7.8 we have

Et

(
min(βtm, γ

t
m)−min(β, γ) +

m∑
i=1

δ
t≤i
i

)
≥ 0.

Using min(a, b) = (a+ b)/2− |a− b|/2 we derive

Et

(
βtm + γtm

2
− |β

t
m − γtm|

2
− β + γ

2
+
|β − γ|

2
+

m∑
i=1

δ
t≤i
i

)

= Et

(
−|β

t
m − γtm|

2
+
|β − γ|

2
+

m∑
i=1

δ
t≤i
i

)
≥ 0,

where the first step follows from the fact that βTii and γTii are martingales. Rearranging

and applying inequality (2.13) we finally arrive at the conclusion of the statement.

Et

(
m∑
i=1

δ
t≤i
i

)
≥ (1/2)Et(|βtm − γtm| − |β − γ|) ≥ cµ/4.

2.7.4 Upper Bound on the Rate of Convergence

In this subsection we present an r-round discretization (see Protocol 6) of our optimal

protocol (see Protocol 4) for AND. We shall prove that the discretized AND protocol

achieves O(1/r2) upper bound on the rate of convergence. This matches the lower

bound on the rate of convergence proven in Subsection 2.7.1.

Recall that the informational wastage is how much extra information a particular

bit, or message, or a protocol reveals when compared to the optimal protocol.

The most natural way to discretize our continuous AND protocol would be to

sample numbers NA and NB uniformly at random from the set {0, . . . , r−1} when the
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Protocol 6 Discretized r-round protocol πr for the AND function

Require:
x ∈ {0, 1} - known to Alice
y ∈ {0, 1} - known to Bob

µ =
α β
γ δ

, r ∈ N - known to Alice and Bob

1: if β < γ then

2: Bob sends bit B as follows B =


1 if y = 1
0 with probability 1− β/γ if y = 0
1 with probability β/γ if y = 0

3: if B = 0 then
4: The protocol terminates, the players output 0

5: if β > γ then

6: Alice sends bit B as follows B =


1 if x = 1
0 with probability 1− γ/β if x = 0
1 with probability γ/β if x = 0

7: if B = 0 then
8: The protocol terminates, the players output 0.

9: if x = 0 then
10: Alice samples NA ∈ {0, 1, . . . , r − 1} with P (NA = i) = 2r−2i−1

r2

11: else
12: Alice sets NA = r
13: if y = 0 then
14: Bob samples NB ∈ {0, 1, . . . , r − 1} with P (NB = i) = 2r−2i−1

r2

15: else
16: Bob sets NB = r
17: Both players set C to 0
18: while C ≤ r − 1 do
19: if C = NA then
20: Alice sends 1 to Bob, protocol terminates, players output 0
21: else
22: Alice sends 0 to Bob
23: if C = NB then
24: Bob sends 1 to Alice, protocol terminates, players output 0
25: else
26: Bob sends 0 to Alice
27: Both players update C to C + 1

28: Protocol terminates, players output 1
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corresponding player(s) have 0 as input. While analyzing this option, we discovered

that this discretization wastes increasing amounts information in later rounds as the

counter C approaches r. This leads to a total information wasted ≈ 1
r2

∑r
i=1

1
i

=

Θ
(

log r
r2

)
. A natural remedy is to select numbers NA and NB non-uniformly, assigning

less probability mass to the later rounds. Indeed, Protocol 6 assigns probability

2r−2i−1
r2 to the ith value of NA and NB leading to the correct O( 1

r2 ) bound on the

total information wasted. In the rest of this section we prove this claim formally.

We start with two technical lemmas.

Lemma 2.7.9 ([9]). Suppose that Alice sends bit B distributed as follows

B =


1 if X = 1

0 with probability ψ if X = 0

1 with probability 1− ψ if X = 0

from prior µ =
α β

β δ
. Then the informational wastage of B is

O

(
αβ

α + β
ψ3 +

2αβ(β2 + 3αβ + 2α2)

(1− ψ)3β3
ψ4

)
.

Proof. The informational wastage of bit B is

IW(α, β, ψ) = I(B;X|Y ) + P (B = 1) ICµ′(AND, 0)− ICµ(AND, 0),

where

µ′ =
(1− ψ)α/t (1− ψ)β/t

β/t δ/t
,

and t = (1− ψ)α + (2− ψ)β + δ. Furthermore, we have

I(B;X|Y ) = H(B|Y )−H(B|XY )

= (α + β)H

(
α

α + β
ψ

)
+ (β + δ)H

(
β

β + δ
ψ

)
− (α + β)H(ψ).
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Writing Taylor series for IW(α, β, ψ) for ψ around 0 we obtain

∃ζ ∈ [0, ψ] s.th. IW(α, β, ψ) =
αβ

(α + β) ln 64
ψ3 +R(ζ)

ψ4

24
,

where R(ζ) = 2αβ(β2+3αβ(1−ζ)+α2(2−3ζ+ζ3))
(1−ζ)3(α+β−αζ)3 ln 2

.

The above expressions were obtained with help from Wolfram Mathematica. The

statement of the lemma follows immediately.

Suppose that players start with a symmetric prior µ =
α β

β δ
. Observe that the

counter C in Protocol 6 can be viewed as a discrete implementation of a continuous

clock from Protocol 4. The hand of our clock now moves in discrete steps from position

z to position z + φ where z = 1−
(
r−i
r

)2
and φ = 2r−2i−1

r2 for i ∈ {0, . . . , r − 1}. We

now analyze how a single such move is accomplished by Alice and Bob in our protocol

and how much information is wasted during this move.

At time z the prior µ becomes µz =
(1− z)2α (1− z)β

(1− z)β δ
normalized. Thus,

when the players move from time z to time z+φ it is equivalent to first Alice sending

bit B as in Lemma 2.7.9 with ψ = φ
1−z followed by a similar bit B′ sent by Bob.

Note that after Alice sends bit B, the prior moves into Bob’s region. In the optimal

protocol, Bob would send exactly bit B′. Hence Bob’s bit wastes no information.

Therefore the total informational wastage incurred while moving clock hand from

time z to time z + φ in 2 rounds of communication comes from bit B.

Lemma 2.7.10 ([9]). Let µ =
α β

β δ
be a distribution with full support. When

Alice and Bob in 2 rounds of communication advance the clock from position z to

z + φ with φ
1−z ≤

2
3

they waste a total of Oµ

(
φ3

1−z

)
information.

Proof. As discussed in the paragraph before the statement of the lemma, we simply

have to apply Lemma 2.7.9 to Alice’s signal B with ψ = φ
1−z and distribution

µz =
(1− z)2α/n (1− z)β/n

(1− z)β/n δ/n
,
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where n = (1 − z)2α + 2(1 − z)β + δ. Note that by assumptions of the lemma we

have ψ ≤ 2/3, therefore we have 1/(1 − ψ)3 ≤ 27. Furthermore we have n ≥ δ and

φ ≤ 1− z. Plugging all this in Lemma 2.7.9 and simplifying we obtain that the total

information wasted is big-Oh of the following expression:

(1− z)3αβ

n((1− z)2α + (1− z)β)

φ3

(1− z)3
+

+ 27
2(1− z)3αβn3

(1− z)3β3n2

(1− z)2β2 + 3(1− z)3αβ + 2(1− z)4α

n2

φ4

(1− z)4

= O

(
α

δ

φ3

1− z
+

α

δβ2

φ4

(1− z)2

)
= Oµ

(
φ3

1− z

)
.

Now we are in a position to prove the main result of this subsection.

Theorem 2.7.11 ([9]). For distributions µ =
α β

γ δ
with full support we have

ICr
µ(AND, 0)− ICµ(AND, 0) = Oµ

(
1

r2

)
.

Proof. Let πr denote Protocol 6 and π denote Protocol 4. In the first stage of protocol

πr the player who is more likely to have 0 sends a bit that either terminates the

protocol or moves the prior to the diagonal. This stage is exactly the same in protocol

π. Thus the difference in the information cost of the two protocols arises only from

the second (which we previously called symmetric) stage of π and πr. Thus for the

rest of the proof we shall assume that µ is symmetric, i.e., β = γ.

Observe that for the ith jump of the clock we have φi = 2r−2i−1
r2 and zi = 1−

(
r−i
r

)2
.

Therefore φi
1−zi = 2r−2i−1

(r−i)2 ≤ 2
r−i . Hence φi

1−zi ≤ 2/3 for all i except i ∈ {r − 2, r − 1}.
The later event happens with probability O(1/r2) conditioned on Alice having 0 as

input. In addition if X = 1, Alice learns the entire Bob’s bit. Hence the difference

in the information cost of πr and π arises from the events when Alice or Bob have 0

as input. Consequently we may ignore the last two movements of the clock as they
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contribute at most O(1/r2) to the informational wastage. For the rest of the clock

movements we may apply Lemma 2.7.10 which says that the information wasted in

the ith movement is Oµ

(
φ3
i

1−zi

)
. Aggregating it over the first r − 2 movements of the

clock we get the total amount of information wasted is

Oµ

(
r−3∑
i=0

(2r − 2i− 1)3r2

r6(r − i)2

)
= Oµ

(
r−3∑
i=0

(r − i)
r4

)
= Oµ

(
1

r2

)
.

2.8 Communication Complexity of
∨

-type Functions

The main result of this section is a characterization of the randomized communication

complexity of
∨

-type functions in terms of a certain version of information complexity.

Definition 2.8.1. A function g is called
∨

-type if it can be written as g = ∨ni=1f(xi, yi)

for some function f .

Definition 2.8.2 ([9]). We shall call a protocol π good for f if π solves f correctly

on all inputs. Let U0 and U1 be the sets of distributions supported on f−1(0) and

f−1(1) respectively. Define

ICzero(f, 0) = inf
π good for f

max
µ∈U0

ICµ(π)

ICone(f, 0) = inf
π good for f

max
µ∈U1

ICµ(π)

Remark 2.8.1.

• ICzero(f, 0) and ICone(f, 0) measure the zero-error information complexity of f

with respect to restricted families of distributions.

• The maximum in the above definitions is allowed since the corresponding sets

of distributions are compact and information cost is continuous in the input

distribution.
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• In spite of measuring information cost of the protocol with respect to restricted

sets of distributions, we still require that the protocol is correct on all inputs.

• ICone(f, 0) = ICzero(¬f, 0).

We start by establishing the following theorem via a minimax argument similar

to the one in [7].

Theorem 2.8.1 ([9]). Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. Then

ICzero(f, 0) = inf
π good for f

max
µ∈U0

ICµ(π) = max
µ∈U0

inf
π good for f

ICµ(π)

Similarly, we have

ICone(f, 0) = inf
π good for f

max
µ∈U1

ICµ(π) = max
µ∈U1

inf
π good for f

ICµ(π)

Proof. Clearly, we have ICzero(f, 0) ≥ maxµ∈U0 infπ good for f ICµ(π). We shall establish

the reverse inequality. Let G be the set of protocols that are good for f .

Lemma 2.8.2. Let H be any finite subset of G. Then for any α such that

α ≥ max
µ∈U0

min
π∈H

ICµ(π)

there exists a protocol τ ∈ G such that ∀µ ∈ U0 we have ICµ(τ) ≤ α.

We define the following zero-sum two-player game G0. Player A will come up with

a randomized two-party protocol π ∈ H. Player B will come up with a distribution

µ ∈ U0. Player B’s payoff is given by:

PB(π, µ) = ICµ(π).

Then we have:

Claim 2.8.3. The value VB(G0) ≤ α.

Proof. Let νB be a probability distribution representing a mixed strategy for player

B. Thus, νB is a distribution on probability distributions µ over X × Y . We need
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to show that there exists a zero-error protocol τ ∈ H such that Eµ∼νB(ICµ(τ)) ≤ α.

Let µ̄ be a distribution on X × Y that is obtained by taking the average of µ ∼ νB.

Formally,

µ̄(x, y) := Eµ∼νB(µ(x, y)).

Since all distributions µ are in U0, we have µ̄ ∈ U0. Since α ≥ maxµ∈U0 minπ∈H ICµ(π),

there exists a protocol τ ∈ H such that ICµ̄(τ) ≤ α. By the concavity of information

cost, it holds that

Eµ∼νB (ICµ(τ)) ≤ ICµ̄(τ).

Thus, the value of the game is bounded by α.

The minimax theorem holds for our game by an ε-net argument and continuity of

ICµ(π). By the minimax theorem, there is a mixed strategy for player A such that

for each response by player B the value of the game for player B is at most α. A

mixed strategy for player A is a distribution νA on protocols. In other words,

∀µ ∈ U0 Eπ∼νA(PB(π, µ)) ≤ α. (2.14)

Let π̄ be the randomized protocol obtained by publicly sampling π ∼ νA and then

applying π to the inputs. We claim that π̄ is the protocol we are looking for. In other

words, the randomized protocol π̄ has the desired payoff properties. Clearly π̄ ∈ G.

Claim 2.8.4. For all µ ∈ U0 we have ICµ(π̄) ≤ α.

Proof. We shall prove that

I(X,Y )∼µ(Π̄(X, Y );X|Y ) ≤ EΠ∼νA
(
I(X,Y )∼µ(Π(X, Y );X|Y )

)
. (2.15)

In other words, the amount of information revealed by π̄ is bounded by the average

amount of information revealed by Π that is drawn according to νA.

To establish (2.15), consider the following four random variables. Let S be a “se-

lector” random variable, that picks the protocol Π to run according to the distribution

νA. Let (X, Y ) be inputs distributed according to µ independently of S. Finally, let
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Π = π(X, Y ) be the transcript of the selected protocol executed on X and Y . We

have:

EΠ∼νA
(
I(X,Y )∼µ(Π(X, Y );X|Y )

)
= I(Π;X|Y S),

and

I(X,Y )∼µ(Π̄(X, Y );X|Y ) = I(Π;X|Y ).

Since the protocol Π is selected independently of the inputs, we have I(X;S|ΠY ) = 0.

By substituting A = Π, B = X, C = Y , and D = S into Proposition 1.4.3 we get

I(Π;X|Y ) ≤ I(Π;X|Y S), (2.16)

establishing (2.15). Similarly to (2.15), the following inequality can be established:

I(X,Y )∼µ(Π̄(X, Y );Y |X) ≤ EΠ∼νA
(
I(X,Y )∼µ(Π(X, Y );Y |X)

)
. (2.17)

Together, (2.15) and (2.17) imply

ICµ(π̄) ≤ EΠ∼νA (ICµ(π)) . (2.18)

We use a compactness argument to complete the proof. Fix any α such that

α > max
µ∈U0

inf
π∈G

ICµ(π).

Define

A(π) := {µ ∈ U0 : ICµ(π) ≥ α}

Then ∩π∈GA(π) = ∅. Since U0 is compact and the sets A(π) are closed because of

the continuity of IC(π), we get that there is a finite set of protocols H ⊂ G such

that ∩π∈HA(π) = ∅. Thus, ∀µ ∈ U0 we have that minπ∈H ICµ(π) < α. Then by

Lemma 2.8.2, there exists a protocol τ ∈ G such that ∀µ ∈ U0 we have ICµ(τ) ≤ α.
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Thus

inf
π∈G

max
µ∈U0

ICµ(π) ≤ max
µ∈U0

inf
π∈G

IC(π)

which completes the proof.

Next, we show that in the definition of ICzero(f, 0) we could replace distributions

with 0 mass on f−1(1) and protocols that are correct on all inputs with distributions

that place ε mass on f−1(1) and protocols that are correct on the support of µ.

Theorem 2.8.5 ([9]). For all f : {0, 1}k × {0, 1}k → {0, 1} we have

(1) lim
ε→0

max
µ:µ(f−1(1))≤ε

ICµ(f, 0) = lim
ε→0

max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π)

(2) ICzero(f, 0) = lim
ε→0

max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π)

Proof. (1) We have the following

max
µ:µ(f−1(1))≤ε

ICµ(f, 0) = max
µ:µ(f−1(1))≤ε

inf
π solves f on supp(µ)

ICµ(π)

≤ max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π)

The above inequality holds since the second infimum is over a smaller set of protocols.

Taking the limits, we obtain:

lim
ε→0

max
µ:µ(f−1(1))≤ε

ICµ(f, 0) ≤ lim
ε→0

max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π)

Next, we show the reverse inequality. Fix ε > 0 and δ > 0, and let ν be the distribution

that maximizes maxµ:µ(f−1(1))≤ε infπ solves f on all inputs ICµ(π). Let U denote the uniform

distribution on {0, 1}k × {0, 1}k and define νε = εU + (1 − ε)ν. A protocol solves f

on all inputs if and only if that protocol solves f on the support of νε. Therefore, we

have

ICνε(f, 0) = inf
π solves f on all inputs

ICνε(π).
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Putting it all together, we have

max
µ:µ(f−1(1))≤2ε

ICµ(f, 0) ≥ ICνε(f, 0) (since νε(f
−1(1)) ≤ 2ε)

= inf
π solves f on all inputs

ICνε(π) (by above)

= inf
π solves f on all inputs

ICν(π) +O(
√
ε) (by Lemma 2.4.6)

= max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π) +O(
√
ε)

(by choice of ν)

Taking the limit as ε→ 0 on both sides finishes the proof of the other inequality and

the first part of the theorem.

(2) Fix ε > 0, then

max
µ:µ∈U0

inf
π solves f on all inputs

ICµ(π) ≤ max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π),

since the maximum on the right hand side is taken over a larger set. Taking the limit

as ε→ 0 shows that

ICzero(f, 0) ≤ lim
ε→0

max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π).

Next, we prove the reverse inequality. For a distribution µ we define

µzero(x, y) =
χ((x, y) ∈ f−1(0))µ(x, y)

µ(f−1(0))
,

where χ is the indicator function of the event specified in brackets. If µ(f−1(1)) ≤ ε

then we have

|µzero(x, y)− µ(x, y)| ≤

{
ε

1−εµ(x, y) (x, y) ∈ f−1(0)

µ(x, y) (x, y) ∈ f−1(1)
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Therefore, |µzero − µ| ≤ ε+ ε
1−ε ≤ 3ε assuming ε ≤ 1/2. Then

max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµ(π) ≤ max
µ:µ(f−1(1))≤ε

inf
π solves f on all inputs

ICµzero(π) +O(
√
ε)

≤ max
µ∈U0

inf
π solves f on all inputs

ICµ(π) +O(
√
ε)

= ICzero(f, 0) +O(
√
ε)

In the above, the first inequality is due to Lemma 2.4.6 and the second inequality

is due to the fact that for all µ we have µzero ∈ U0. Taking the limit as ε → 0

on both sides finishes the proof of the reverse inequality and the second part of the

theorem.

In the rest of this section we prove Theorem 2.2.4 and apply it to the DISJn function.

For convenience, we restate Theorem 2.2.4 below.

Theorem (Theorem 2.2.4 restated, [9]). Let f : {0, 1}k × {0, 1}k → {0, 1} and gn :

{0, 1}nk × {0, 1}nk → {0, 1} be functions, such that gn(x, y) = ∨ni=1f(xi, yi), where

x = {xi}ni=1, y = {yi}ni=1 and xi, yi ∈ {0, 1}k. Then for all ε > 0, there exists δ =

δ(f, ε) > 0 such that δ → 0 as ε→ 0 and

(ICzero(f, 0)− δ)n ≤ R(gn, ε) ≤ ICzero(f, 0)n+ o(n)k.

Remark 2.8.2. Theorem 2.2.4 is stated for
∨

-type functions, but an analogous result

immediately follows (via De Morgan’s laws) for
∧

-type functions with ICzero(f, 0)

replaced by ICone(f, 0).

2.8.1 Lower Bound on Communication Complexity of
∨

-type

Functions

In this subsection we prove the ’≥’ direction of Theorem 2.2.4.

Lemma 2.8.6 ([9]). For all ε > 0, there exists δ = δ(f, ε) > 0 such that δ → 0 as

ε→ 0 and R(gn, ε) ≥ (ICzero(f, 0)− δ)n.
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The idea of the proof. We reduce f to gn with a factor of n less information complexity

with respect to a restricted family of distributions. This kind of a reduction was

first introduced in [3]. It has since been used in a number of works (for example,

see [4, 12, 7]) in the context of direct sums for information complexity. Since we start

with a protocol that solves gn with some non-zero error, our reduction produces a

protocol for f with non-zero error also. We then use the continuity of information

complexity at error tolerance 0 (see Section 2.4) to reach the desired conclusion.

Proof. Let π be a protocol for computing gn that is provided by the definition of

R(gn, ε). That is π computes gn with error probability at most ε on all inputs and

has communication cost R(gn, ε). Fix ν ∈ U0. Let τ denote the protocol described in

Protocol 7.

For all x, y ∈ {0, 1}k we have

P (T(x, y) 6= f(x, y)) =

= P(Xi,Yi)∼ν,J∈[n] (Π(X<JxX>j, Y<JyY>J) 6= f(x, y))

= P(Xi,Yi)∼ν,J∈[n]

(
Π(X<JxX>j, Y<JyY>J) 6=

∨
i 6=J

f(Xi, Yi) ∨ f(x, y)

)
(since (Xi, Yi) ∼ ν and supp(ν) ∈ f−1(0))

= P(Xi,Yi)∼ν,J∈[n] (Π(X<JxX>j, Y<JyY>J) 6= g(X<JxX>j, Y<JyY>J))

≤ ε (by the choice of π)

Therefore τ solves f with probability of error at most ε on all inputs. Moreover,

measuring information cost of τ with respect to ν we obtain:

Lemma 2.8.7 (Theorem 3.17 in [12]).

ICν(τ) ≤ ICνn(π)

n
≤ R(gn, ε)

n

By the continuity of information complexity at error 0 (see Theorem 2.2.8) we have

ICν(τ) ≥ ICν(f, 0)− δ(f, ε), where δ(f, ε)→ 0 as ε→ 0. Putting this all together we
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have:

R(gn, ε) ≥ n ICν(τ) ≥ n(ICν(f, 0)− δ(f, ε)).

Since ν ∈ U0 is arbitrary, we can take the maximum over ν ∈ U0 and apply Theo-

rem 2.8.1 to reach the desired conclusion:

R(gn, ε) ≥ n(ICzero(f, 0)− δ(f, ε)).

Protocol 7 Protocol τ for f that is constructed out of the protocol π for gn.

Require:
x ∈ {0, 1}k - known to Alice
y ∈ {0, 1}k - known to Bob
ν ∈ U0, π - known to Alice and Bob

1: Both players use public randomness to sample J ∈ [n] uniformly at random.
2: Both players use public randomness to sample X1, . . . , XJ−1, YJ+1, . . . , Yn accord-

ing to the marginals of ν. Each coordinate is sampled independently.
3: For k ∈ {J + 1, . . . , n} Alice privately samples Xk from ν conditioned on Yk.
4: For k ∈ {1, . . . , J − 1} Bob privately samples Yk from ν conditioned on Xk.
5: Both players execute

π((X1, . . . , XJ−1, x,XJ+1, . . . , Xn), (Y1, . . . , YJ−1, y, YJ+1, . . . , Yn))

6: Output of π is declared to be the output of the current protocol.

2.8.2 Upper Bound on Communication Complexity of
∨

-type

Functions

In this section we prove an upper bound on the communication complexity of
∨

-type

functions. We start by upper bounding the information complexity of gn.

Lemma 2.8.8 ([9]). Let f : {0, 1}k × {0, 1}k → {0, 1} and gn : {0, 1}nk × {0, 1}nk →
{0, 1} be functions such that gn(x1, x2, . . . xn, y1, y2, . . . yn) = ∨ni=1f(xi, yi), where xi, yi ∈
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{0, 1}k. Then we have

IC(gn, 0) ≤ n ICzero(f, 0) +O(n2/3 log(n)k).

The idea of the proof. For i ∈ [n] let νi(xi, yi) =
∑

x<i,y<i,x>i,y>i
µ(x, y) denote the

marginal distribution of µ on the ith input. If many of the νi place sufficient mass

on f−1(1) then Alice and Bob can compute the value of gn with little communication

(and hence information) by sampling and exchanging inputs on a few of the i. We

can make the communication cost (and hence the information cost) of this step as

low as O(n2/3 log(n)k). Thus, for hard distributions µ most of the νi have little mass

on f−1(1). To deal with such distributions we run n copies of a low information

protocol provided by the definition of ICzero(f, 0). The information cost of this step

is n ICzero(f, 0). Combining these two steps we can handle arbitrary distributions µ.

Proof. Fix δ > 0. Let π be a protocol that solves f with 0 error on all inputs and

such that maxµ∈U0 ICµ(π) ≤ ICzero(f, 0) + δ. Consider the protocol πn described in

Protocol 8

Protocol 8 Protocol πn for computing gn that is based on protocol π for f .

Require:
x ∈ {0, 1}nk - known to Alice
y ∈ {0, 1}nk - known to Bob
π - known to Alice and Bob

1: Both players use public randomness to sample n2/3 random coordinates i ∈ [n]
independently and uniformly at random.

2: Let J denote the multiset of coordinates sampled in the above step.
3: For all i ∈ J Alice sends xi to Bob.
4: For all i ∈ J Bob sends yi to Alice.
5: if ∃i ∈ J f(xi, yi) = 1 then
6: Both players output 1, protocol terminates.
7: else
8: for i ∈ [n] do
9: Both players run π(xi, yi)
10: if π(xi, yi) outputs 1 then
11: Both players output 1, protocol terminates.

12: Both players output 0, protocol terminates.
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It is clear that πn solves gn correctly on all inputs, since π solves f correctly on

all inputs. To finish the proof we shall show that for an arbitrary µ – distribution on

{0, 1}nk × {0, 1}nk – we have ICµ(πn) ≤ n ICzero(f, 0) +O(n2/3 log(n)k).

Let µ be a distribution on {0, 1}nk ×{0, 1}nk. Let (X, Y ) ∼ µ denote the random

inputs to πn. Then the public randomness concatenated with the transcript of πn is

Πn = JΠ1
nΠ2

n, where J denotes the publicly sampled random coordinates, Π1
n denotes

the inputs corresponding to J that are exchanged by the players in πn, and Π2
n denotes

the rest of the transcript of πn. Let E denote the indicator random variable for the

event “∃i ∈ J f(Xi, Yi) = 1.” We have

I(Πn;X|Y ) = I(JΠ1
nΠ2

n;X|Y )

= I(J ;X|Y ) + I(Π1
nΠ2

n;X|Y J)

= I(Π1
nΠ2

n;X|Y J) (since J is indep. of X|Y )

= I(Π1
n;X|Y J) + I(Π2

n;X|Y JΠ1
n)

≤ 2kn2/3 + I(Π2
n;X|Y JΠ1

n) (|Π1
n| ≤ 2kn2/3)

≤ 2kn2/3 + I(Π2
n;X|Y JΠ1

nE) (E is a function of J,Π1
n)

= 2kn2/3 +H(Π2
n|Y JΠ1

nE)−H(Π2
n|XY JΠ1

nE)

≤ 2kn2/3 +H(Π2
n|Y E)−H(Π2

n|XY JΠ1
nE) (conditioning)

= 2kn2/3 +H(Π2
n|Y E)−H(Π2

n|XY E) (Π2
n is indep. of J,Π1

n|E)

= 2kn2/3 + I(Π2
n;X|Y E)

= 2kn2/3 + P (E = 0)I(Π2
n;X|Y,E = 0) |Π2

n| = 0 if E = 1

If P (E = 0) ≤ 1/n1/3, then P (E = 0)I(Π2
n;X|Y,E = 0) ≤ n2/3k and the claim

follows. Therefore, we assume that P (E = 0) ≥ 1/n1/3.

For x, y ∈ {0, 1}nk we define N(x, y) = |{(xi, yi) | f(xi, yi) = 1}|. Abusing the

notation, we write

µ(d) = P(X,Y )∼µ(N(X, Y ) = d).

Let µ′ = µ|(E = 0). For (x, y) such that N(x, y) = d the probability of sampling

n2/3 coordinates and not hitting any (xj, yj) such that f(xj, yj) = 1 is bounded by
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exp(−2d2/n4/3) by the Chernoff bound. Thus

µ′(d) ≤ µ(d) exp(−2d2/n4/3)

P (E = 0)

≤ µ(d) exp(−2d2/n4/3)n1/3

Thus for d ≥ n2/3 log(n), µ′(d) is small. Hence

E(X,Y )∼µ′(N(X, Y )) ≤ O(n2/3 log(n))

Let µ′i denote the marginal distribution of µ′ on the ith block. Define

εi = P(Xi,Yi)∼µ′i(f(Xi, Yi) = 1).

The following lemma states that the information cost of a protocol π, that runs a

protocol τ independently on many copies, is less than the sum of the information

costs of the protocol τ on different copies w.r.t the marginal distributions.

Lemma 2.8.9 (Theorem 4.2) in [7]). Let µ be a distribution on {0, 1}nk × {0, 1}nk.
Divide the input into n blocks of size k each and let µi denote the marginal distribution

on the ith block. Let τ be a protocol on the input space {0, 1}k × {0, 1}k. Then

ICµ(τn) ≤
∑n

i=1 ICµi(τ).

Let ν = (
∑n

i=1 µ
′
i)/n. We have

I(Π2
n;X|Y,E = 0) + I(Π2

n;Y |X,E = 0) ≤
n∑
i=1

ICµ′i
(π) (by Lemma 2.8.9)

≤ n ICν(π) (by the concavity of IC)

By the linearity of expectation we have

n∑
i=1

εi = E(X,Y )∼µ′(N(X, Y )) ≤ O(n2/3 log(n))

Thus ν = (
∑n

i=1 µ
′
i)/n has O(log(n)/n1/3) mass on f−1(1) and hence is O(log(n)/n1/3)
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close to distribution ν ′ in U0. Using Lemma 2.4.6 along with the fact that ICν′(π) ≤
ICzero(f, 0) + δ gives us that

ICν(π) ≤ ICzero(f, 0) + δ +O(log(n)/n1/3k) +H(O(log(n)/n1/3)).

Hence

I(Π2
n;X|Y,E = 0) + I(Π2

n;Y |X,E = 0)

≤ n(ICzero(f, 0) + δ) +O(n2/3 log(n)k)

Thus we get that IC(gn, 0) ≤ n(ICzero(f, 0) + δ) + O(n2/3 log(n)k). Since δ > 0 is

arbitrary, the claim follows.

The next theorem proves the upper bound on the communication complexity of

gn.

Theorem 2.8.10 ([9]). For any ε > 0 we have R(gM , ε) ≤M ICzero(f, 0) + o(M)k.

We will need the following non-distributional version of “information equals amor-

tized communication” from [7].

Theorem 2.8.11 ([7]). Let g : X × Y → {0, 1} be a function, and let IC(g, 0) = I.

Then for each δ1, δ2 > 0, there exists C = C(g, δ1, δ2) such that for all N ≥ C, there

exists a protocol πN = πN((x1, x2, . . . , xN), (y1, y2, . . . , yN)) for computing N instances

of g. The protocol has communication complexity < NI(1 + δ1) and answers on all

coordinates correctly except with probability δ2.

Proof. (of Theorem 2.8.10) We shall prove the statement for all sufficiently large M .

We do not specified what “sufficiently large” means explicitly. Fix such an integer

M . Choose n to be the largest integer such that nC(gn, 1/n, ε) ≤ M , where the

function C is guaranteed by Theorem 2.8.11. Without loss of generality, assume that

nC(gn, 1/n, ε) = M , and let N = C(gn, 1/n, ε). By Theorem 2.8.11, there exists a

protocol πN for solving N instances of gn with communication < N IC(gn, 0)(1 +

1/n) and solving all instances correctly except with probability ε. Now consider the

protocol τ for solving gM described in Protocol 9.
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Protocol 9 Protocol τ for computing gM that is based on protocol πN for gN .

Require:
x ∈ {0, 1}M - known to Alice
y ∈ {0, 1}M - known to Bob
πN - known to Alice and Bob

1: Players divide the input into N blocks of size n each.
2: Players run πN to solve these N instances of gn.
3: Players output 1 if πN outputs 1 on some instance.

Clearly the protocol has error ≤ ε. The communication cost of the protocol is at

most :

N IC(gn, 0)(1 + 1/n) ≤ N(n ICzero(f, 0) +O(n2/3 log(n)k))(1 + 1/n)

≤M ICzero(f, 0) + o(M)k

2.8.3 Application: Exact Communication Complexity of DISJn

In this section we show how our previous results of this chapter imply Theorem 2.2.5.

The negation of disjointness is an
∨

-type function with f being the AND function.

The tools obtained in Section 2.5 enable us to compute ICzero(AND, 0). Therefore,

we can use Theorem 2.2.4 to obtain the exact randomized communication complexity

of DISJn with error tending to 0.

Theorem (Theorem 2.2.5 restated, [9]). For all ε > 0, there exists δ = δ(ε) > 0 such

that δ → 0 as ε→ 0 and

(CDISJ − δ)n ≤ R(DISJn, ε) ≤ CDISJn+ o(n).

where CDISJ ≈ 0.4827 bits.

Note that the reductions in the proof of the upper bound and lower bound of

Theorem 2.2.4 preserve the number of rounds. Hence, by Theorem 2.2.3, an r-round
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protocol for DISJn is suboptimal, when compared to an unbounded round protocol,

by at least Ω(n/r2) communication.

Proof. Theorem 2.5.3 says that

lim
ε→0

max
µ:µ(1,1)≤ε

ICµ(AND, 0) = CDISJ ≈ 0.4827 . . . .

By Theorem 2.8.5 it follows that ICzero(AND, 0) = CDISJ. Now, Theorem 2.2.5 follows

immediately from Theorem 2.2.4.

2.9 Exact Communication Complexity of DISJkn

We also study the DISJn problem with the promise that both Alice and Bob have

sets of size ≤ k. Recall from Section 2.1 that this partial function is denoted by

DISJkn. This problem was studied in [26]. It is also one of the problems that gives a

separation between deterministic communication complexity and average-case 0-error

communication complexity (e.g. see [33]). In [26] they proved the following theorem:

Theorem 2.9.1 ([26]). For ε > 0 we have

R(DISJkn, ε) ≤ O(k).

A lower bound of Ω(k) is immediate from the Ω(n) lower bound on the commu-

nication complexity of DISJn. We are able to determine the exact communication

complexity of this problem except for some regimes.

Theorem 2.9.2 ([9]). Let n, k be such that k = ω(1) and n/k = ω(1). Then for all

ε > 0, we have(
2

ln 2
−O(

√
ε)

)
k − o(k) ≤ R(DISJkn, ε) ≤

2

ln 2
k + o(k).

The following subsections are devoted to proving this theorem. In the next sub-

section we shall start with the lower bound.
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2.9.1 Lower Bound

Lemma 2.9.3 ([9]). Let n, k be such that k = ω(1) and n/k = ω(1). Then

R(DISJkn, ε) ≥
(

2

ln 2
−O(

√
ε)

)
k − o(k).

Proof. Similar to the proof of the lower bound for
∨

-type functions, we will reduce

the AND function to DISJkn. Let π be a protocol such that π solves DISJkn with

error probability at most ε on all inputs and communication cost of π is R(DISJkn, ε).

Consider the following distribution µ on the input space {0, 1} × {0, 1}:

µ =
1− 2(k − k2/3)/(n− 1) (k − k2/3)/(n− 1)

(k − k2/3)/(n− 1) 0

Let τ be the protocol obtained by applying Protocol 7 to π with distribution ν equal

to µ as above. As before, we have

ICµ(τ) ≤ ICµn(π)

n
≤ CC(π)

n
=

R(DISJkn, ε)

n
.

Recall that in τ the players sample ((Xi, Yi) ∼ µ)i 6=J and apply the protocol π to

(X<JxX>J , Y<JyY>J). Since µ puts 0 mass on (1, 1) entry for AND, the value of

DISJkn is determined by the value of x∧y provided that the number of ones appearing

in X<JX>J is at most k, as well as the number of ones appearing in Y<JY>J . Note

that P (Xi = 1) = k−k2/3

n−1
. Let S =

∑
i 6=J Xi. By the multiplicative Chernoff bound

we have

P (S > k − 1) ≤ exp

((
k2/3 − 1

k − k2/3

)2

(k − k2/3)/3

)
≤ exp

(
−k

1/3

3

)
.

By the union bound, we have that the probability of either Alice or Bob sampling over

k − 1 ones in the coordinates other than J is at most 2 exp(−k1/3/3). Provided that

Alice and Bob sample at most k− 1 ones in the coordinates other than J , protocol π

outputs the correct value of DISJkn, and therefore x ∧ y, with probability ≤ ε. Thus,
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for all inputs (x, y) protocol τ computes the value of AND(x, y) with probability of

error at most ε+ exp
(
−kΩ(1)

)
. Overall, we have:

R(DISJkn, ε) ≥ n ICµ(τ) ≥ n ICall
µ

(
AND, ε+ exp

(
−kΩ(1)

))
.

To finish the proof we would like to apply a continuity argument to relate ICall
µ (AND, 0)

to ICall
µ (AND, ε+ exp

(
−kΩ(1)

)
and use Claim 2.5.1. Unfortunately, we cannot simply

apply Theorem 2.2.8, since the convergence rate guaranteed by that theorem depends

on the distribution µ and in our case µ depends on n. Thus Theorem 2.2.8 is not

fine enough to let us control the convergence rate times n. Thus, we need to obtain

a stronger convergence rate for this particular case:

Lemma 2.9.4 ([9]). Let ν =
1− 2k/n k/n

k/n 0
, then we have

ICall
ν (AND, 0) = ICall

ν (AND, ε) +O

(
k

n

√
ε

)
.

We shall prove this lemma at the end of this subsection. Now, we finish the proof

of the current lemma assuming Lemma 2.9.4. By Claim 2.5.1 we have

ICall
µ (AND, 0) =

β

ln 2
+
β2

α
log

β

β + α
+ α log

α + β

α

=
2

ln 2

k

n− 1
± o

(
k

n− 1

)
Thus by Lemma 2.9.4

R(DISJkn, ε) ≥ n ICall
µ

(
AND, ε+ exp

(
−kΩ(1)

))
= n

(
ICall

µ (AND, 0)−O
(

(k − k2/3)

n− 1

√
ε+ exp (−kΩ(1))

))
= n

(
2

ln 2

k

n− 1
+ o

(
k

n− 1

)
−O

(
(k − k2/3)

n− 1

√
ε+ exp (−kΩ(1))

))
≥
(

2

ln 2
−O

(√
ε
))

k − o(k)
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In the rest of this subsection we prove Lemma 2.9.4. We shall need the following

proposition:

Proposition 2.9.5 ([9]). Let χ =
α β

γ 0
be a distribution on {0, 1} × {0, 1} such

that β ≤ γ. Then we have

ICall
χ (AND, 0) ≤ O(β log(2γ/β)).

Proof. Let us first consider the information complexity of AND with respect to a

symmetric distribution. Consider the distribution ν =
α β

β 0

By Claim 2.5.1 we have

ICall
ν (AND, 0) =

β

ln 2
+
β2

α
log

β

β + α
+ α log

α + β

α

≤ 2β

ln 2

By Claim 2.5.2 ICall
µ (AND, 0) consists of the information cost of the symmetrization

step plus t times the information complexity of AND with respect to the resulting

symmetric distribution, which is ≤ tO(β/t) ≤ O(β). As for the symmetrization step,

its information cost is

(α + β)H

(
β

α + β
+
β

γ
· α

α + β

)
− αH

(
β

γ

)
= (α + β)H

(
β

γ
+

β

α + β

(
1− β

γ

))
− αH

(
β

γ

)
≤ (α + β)

(
H

(
β

γ

)
+

β

α + β

(
1− β

γ

)
H ′
(
β

γ

))
− αH

(
β

γ

)
= βH

(
β

γ

)
+ β

(
1− β

γ

)(
log

(
1− β

γ

)
− log

(
β

γ

))
= β log

(
γ

β

)
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The inequality in the above follows from the concavity of the entropy function. This

finishes the proof of this proposition.

Now we are ready to prove Lemma 2.9.4. Fix δ > 0 and let π be a protocol such

that on all inputs π solves AND correctly except with probability of error at most

ε and ICν(π) ≤ ICall
ν (AND, ε) + δ. Let σ be the protocol obtained from π and ν as

described in Protocol 10. It is clear that σ solves AND correctly on all inputs. It is

left to analyze the information cost of σ with respect to ν.

Protocol 10 Protocol σ for computing AND with 0 error that is based on ε-error
protocol π for AND.

Require:
x ∈ {0, 1} - known to Alice
y ∈ {0, 1} - known to Bob
π, ν - known to Alice and Bob

1: Players tun the protocol π on x and y.
2: Upon reaching a leaf `, players run a protocol τ such that ICν`(τ) ≤

ICall
ν`

(AND, 0) + δ and τ solves AND on all inputs with 0 error. Here, ν` is ν
conditioned on reaching ` in π.

3: Players output according to the output of τ .

Alice and Bob start with the distribution ν =
1− 2k/n k/n

k/n 0
. Let ` be a leaf

in the communication tree of π. Let p` denote the probability of reaching ` in π,

where the probability is taken over the inputs (X, Y ) ∼ ν and the randomness of the

protocol. Let ν` be the distribution on the players’ inputs conditioned on reaching the

leaf `. Since the initial distribution ν places 0 mass on (1, 1) entry, the distribution

ν` also places 0 mass on (1, 1) entry (by Corollary 2.4.2). In particular, ν` has the

following form:

ν` =
α` β`

γ` 0
.

By Proposition 2.9.5, the amount of extra information leaked by σ as compared to π

is

O

( ∑
`:β`≤γ`

p`β` log
2γ`
β`

+
∑

`:β`>γ`

p`γ` log
2β`
γ`

)
.
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Thus, we need to show that the above expression is O
(
k
n

√
ε
)
. We shall upper bound

the terms with β` ≤ γ`, since the other terms can be upper bounded similarly. There-

fore, for the rest of the argument we shall assume that β` ≤ γ`. First, we establish

the probability of π reaching a certain leaf.

Claim 2.9.6 ([9]).

1. P(X,Y )∼ν(Π(X, Y ) reaches leaf ` | X = 1, Y = 1) = p`
β`
k/n

γ`
k/n

1−2k/n
α`

.

2. P(X,Y )∼ν(Π(X, Y ) reaches leaf ` | X = 1, Y = 0) = p`
γ`
k/n
.

Note: the above probabilities are also taken over the randomness of π, but for brevity

purposes we suppress that notation.

Proof. By the Bayes’ rule we have

P(X,Y )∼ν(Π(X, Y ) reaches leaf ` | X = a, Y = b)

=
P(X,Y )∼ν(X = a, Y = b | Π(X, Y ) reaches leaf `)P(X,Y )∼ν(Π(X, Y ) reaches leaf `)

P(X,Y )∼ν(X = a, Y = b)

=
ν`(a, b)p`
ν(a, b)

In particular, P(X,Y )∼ν(Π(X, Y ) reaches leaf ` | X = 1, Y = 0) = p`
γ`
k/n

, which estab-

lishes the second part of the claim. Also, we have P(X,Y )∼ν(Π(X, Y ) reaches leaf ` |
X = 0, Y = 1) = p`

β`
k/n

and P(X,Y )∼ν(Π(X, Y ) reaches leaf ` | X = 0, Y = 0) =

p`
α`

1−2k/n
.

Let L denote the set of all leaves of π. Due to the rectangular nature of com-

munication protocols (see [3]), there exists functions pA : {0, 1} × L → [0, 1] and

pB : {0, 1} × L → [0, 1] such that

P(X,Y )∼ν(Π(X, Y ) reaches leaf ` | X = a, Y = b) = pA(a, `)pB(b, `).
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Using this notation, we restate the results from the beginning of the proof as follows:

pA(1, `)pB(0, `) = p`
γ`
k/n

pA(0, `)pB(1, `) = p`
β`
k/n

pA(0, `)pB(0, `) = p`
α`

1− 2k/n

Finally, we have

pA(1, `)pB(1, `) =
pA(1, `)pB(0, `)pA(0, `)pB(1, `)

pA(0, `)pB(0, `)

=

(
p`

γ`
k/n

)(
p`

β`
k/n

)
/

(
p`

α`
1− 2k/n

)
= p`

β`
k/n

γ`
k/n

1− 2k/n

α`
,

which establishes the first part of the claim.

We shall require one other claim:

Claim 2.9.7 ([9]). For β ≤ γ we have either β log(2γ/β) < 4
√

2ε or β log(2γ/β) <
βγ√
2ε

.

Proof. We shall prove this statement by contradiction. Assume that

1. β log(2γ/β) ≥ 4
√

2ε, and

2. β log(2γ/β) ≥ βγ√
2ε

.

Since β ≤ γ there exists q ≥ 1 such that 2γ
β

= 2q. Then we can rewrite the above

inequalities as follows:

1. βq ≥ 4
√

2ε, and

2.
√

2ε ≥ γ
q
.

Combining the above inequalities we obtain q2 ≥ 2q+1. Contradiction.
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For i ∈ {0, 1} define Li = {` | β` ≤ γ` and π outputs i on `}. By Claim 2.9.6 the

probability of π making a mistake on (1, 1) entry is

∑
`∈L0

p`
β`
k/n

γ`
k/n

1− 2k/n

α`
≤ ε (π is ε-error)

=⇒
∑
`∈L0

p`
β`
k/n

γ`
k/n
≤ 2ε (k/n = o(1))

Define β′` = β
k/n

and γ′` = γ
k/n

.The contribution of extra information cost from leaves

from L is

∑
`∈L0

p`β` log
2γ`
β`

=
k

n

∑
`∈L0

p`β
′
` log

2γ′`
β′`

≤ k

n

(
4
√

2ε+
∑
`∈L0

p`
β′`γ

′
`√

2ε

)
(by Claim 2.9.7)

≤ k

n

(
4
√

2ε+ 2ε/
√

2ε
)

(by above)

=
k

n
(5
√

2ε)

This proves that the extra information contributed by all leaves in L0 is O(k
√
ε/n),

as claimed.

Now, we consider leaves in L1. If a leaf in L1 is reached on input X = 1 and

Y = 0 then the protocol π makes a mistake. Since π has at most ε error on all inputs,

it follows by Claim 2.9.6 that ∑
`∈L1

p`
γ`
k/n
≤ ε
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The contribution of the leaves from L1 to the extra information cost is

∑
`∈L1

p`β` log(2γ`/β`)) =
k

n

∑
`∈L1

p`β
′
` log(2γ′`/β

′
`))

≤ k

n

∑
`∈L1

p`2γ
′
` (since β′` log(2γ′`/β

′
`) ≤ 2γ′`)

≤ k

n
(2ε)

This completes the proof of Lemma 2.9.4.

2.9.2 Upper Bound

Now we prove the upper bound on the communication complexity of DISJkn. We start

by proving an upper bound on the 0-error information complexity of the problem.

Notation: we let Skn = {(x, y) | x, y ∈ {0, 1}n, |x|, |y| ≤ k} ⊆ {0, 1}n × {0, 1}n.

Lemma 2.9.8 ([9]). Let n and k be such that k = ω(1) and n/k = ω(1). Then there

exists a protocol πn such that

1. for all (x, y) ∈ Skn protocol πn correctly outputs DISJkn(x, y), and

2. for all distributions µ over {0, 1}n × {0, 1}n if supp(µ) ⊆ Skn then ICµ(πn) ≤
2

ln 2
k + o(k).

Remark 2.9.1. If there exists a protocol πn that solves DISJkn on inputs of size exactly

k with information cost 2
ln 2
k+ o(k) then there exists a protocol π′n that solves DISJkn

on inputs of size ≤ k with the same information cost. Let x and y be inputs to

Alice and Bob in π′n such that |x|, |y| ≤ k. Alice appends k + |x| zeroes followed by

k − |x| ones to x and calls it x′, and Bob appends k − |y| ones followed by k + |y|
zeroes and calls it y′. Then players run πn+2k on (x′, y′) and output whatever πn+2k

outputs. Since |x|, |y| ≤ k we have DISJkn(x, y) = DISJkn+2k(x
′, y′). Moreover, since

the information cost of πn does not depend on the universe size, the information

cost of π′n is the same as that of πn. Therefore, without loss of generality we may

assume that players receive inputs of size exactly k. The same argument holds for

communication complexity.
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Proof. By the above remark, assume that Alice and Bob both have sets of size exactly

k.

Let τ denote the protocol solving AND correctly on all inputs and having infor-

mation cost ICall
ν (AND, 0), where

ν =
1− 2k/n k/n

k/n 0

For the clarity of exposition, we shall ignore the issue of information complexity not

being achievable by a single protocol. If we wanted to, we could deal with this issue

in a standard way – if the optimal information complexity is I then for all δ > 0 there

exists a protocol of information cost I + δ. Fix such a protocol, and carry out the

whole argument with this δ additive term. At the end of the argument the δ term

would disappear, since δ > 0 is arbitrary.

Let σ be the 0-error protocol for the equality function EQ (EQ(x, y) = 1 if and

only if x = y) described in [7]. In [7] it is proved that σ has constant information

cost independent of the size of the universe. Let πn be the protocol described in

Protocol 11.

It is clear that for all (x, y) ∈ Skn we have πn(x, y) = DISJkn(x, y), which establishes

the first part of the lemma. Next, we analyze the information cost of this protocol.

Let µ be a distribution on {0, 1}n × {0, 1}n such that supp(µ) ⊆ Skn \ Sk−1
n . Let

(X, Y ) ∼ µ denote the input random variables. We can write Πn = JΠ1
nΠ2

n, where

J denotes the random coordinates sampled at the beginning of πn, Π1
n denotes the

transcript corresponding to Step 1 (lines 3-7) of πn and Π2
n denotes the transcript for

Step 2 (lines 8-12) of the protocol. Then

ICµ(πn) = I(Πn;X|Y J) + I(Πn;Y |XJ)

= I(Π1
n;X|Y J) + I(Π1

n;Y |XJ)

+ I(Π2
n;X|Y JΠ1

n) + I(Π2
n;Y |XJΠ1

n)
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Protocol 11 Protocol π for computing DISJkn that is based on protocol τ for AND
and σ for EQ.

Require:
x ∈ {0, 1}n, |x| = k - known to Alice
y ∈ {0, 1}n, |y| = k - known to Bob
τ, σ - known to Alice and Bob

1: Alice samples a set SA ⊆ [n] of n/k2/3 coordinates using public randomness.
2: Bob samples a set SB ⊆ [n] of n/k2/3 coordinates using public randomness.
3: for a ∈ SA ∩ x do
4: for b ∈ SB ∩ y do
5: Alice and Bob run σ on (a, b)
6: if σ(a, b) = 1, i.e, a = b then
7: Players output 0, protocol terminates.

8: for i ∈ [n] do
9: Players run τ on (xi, yi)
10: if τ(xi, yi) = 1, i.e., xi ∧ yi = 1 then
11: Players output 0, protocol terminates.

12: Players output 1, protocol terminates

Claim 2.9.9 ([9]).

I(Π1
n;X|Y J) + I(Π1

n;Y |XJ) = O(k2/3)

Proof. We have

I(Π1
n;X|Y J) = I(Π1

n;X|Y (SB ∩ Y )J) (J and Y determine SB ∩ Y )

= I(Π1
n;X(SA ∩X)|Y (SB ∩ Y )J) (J and X determine SA ∩X)

= I(Π1
n; (SA ∩X)|Y (SB ∩ Y )J)

≤ I(Π1
n; (SA ∩X)|(SB ∩ Y )J)

(last two steps are due to Π1
n being determined by SB ∩ Y, SA ∩X)

Similarly, we have I(Π1
n;Y |XJ) ≤ I(Π1

n; (SA ∩ Y )|(SB ∩X)J). Now, we have

I(Π1
n;A|BJ) + I(Π1

n;B|AJ) = EJ(I(Π1;A|BJ) + I(Π1;B|AJ))
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Since σ is a 0-error protocol for EQ that has O(1) information cost with respect to

every distribution (Proposition 3.21 in [7]), we have

I(Π1
n;A|BJ) + I(Π1

n;B|AJ) = EJ (O(|SA ∩X||SB ∩ Y |))

Let Ai denote the indicator random variable for the event that ith sampled element

is in Alice’s set. Define Bi, analogously, for Bob.

EJ(|SA ∩X||SB ∩ Y |) = EJ(|SA ∩X|)EJ(|SB ∩ Y |) (indep.)

= E

n/k2/3∑
i=1

Ai

n/k2/3∑
i=1

Bi


=

(
k

n

n

k2/3

)2

= k2/3

This completes the proof of the claim.

Next, we analyze the information cost of Step 2 of πn. Let E denote the indicator

random variable for the event that the players find a common element in Step 1.

Since E is determined by J and Π1
n, we have

I(Π2
n;X|Y JΠ1

n) = I(Π2
n;X|Y JΠ1

nE)

= P (E = 0)I(Π2
n;X|Y JΠ1

n, E = 0)

≤ P (E = 0)I(Π2
n;X|Y,E = 0) (2.19)

The last inequality follows from the fact that J,Π1
n are independent of Π2

n conditioned

on E = 0.

We shall need the following proposition :

Proposition 2.9.10 ([9]). Let ν =
α β

β γ

Then ICν(AND, 0) = O(β + γ)
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Proof. Follows from Claim 2.5.4 and the fact that ln(1 + x) ≤ x.

Now let µ′ = µ|(E = 0) and let µ′i denote the marginal distribution of µ′ on the

ith coordinate. Then using Lemma 2.8.9, we get that

I(Π2
n;X|Y,E = 0) + I(Π2

n;Y |X,E = 0)

≤
n∑
i=1

ICµ′i
(τ) ≤ n IC∑n

i=1 µ
′
i/n

(τ) (2.20)

where the last inequality follows from the concavity of information cost. Define

N(a,b)(x, y) = |{ i s.t. xi = a, yi = b }|. Let ν = (
∑n

i=1 µ
′
i)/n. Then ν(a, b) =

E(X,Y )∼µ′(N(a,b)(X, Y )/n). Since we assumed that both Alice and Bob have sets of

size k, we get that ν(1, 0) + ν(1, 1) = k/n and ν(0, 1) + ν(1, 1) = k/n. Thus by

Proposition 2.9.10, ICν(τ) ≤ O(k/n) (note that the information optimal protocol τ

for AND is the same with respect to all symmetric distributions). Thus

I(Π2;X|Y,E = 0) + I(Π2;Y |X,E = 0) ≤ O(k)

Now, if P (E = 0) ≤ 1/k1/3, then from equation (2.19) and Claim 2.9.9 it follows

that information cost of the entire protocol is O(k2/3) and we are done. Therefore,

we assume that P (E = 0) ≥ 1/k1/3 for the rest of the argument.

Abusing the notation, we let µ(d) denote the mass on strings such thatN(1,1)(x, y) =

d. Observe that µ(> k) = 0. Now

µ′(d) =
µ(d)P (E = 0|d common elements)

P (E = 0)

By the multiplicative Chernoff bound, we have

P (E = 0|d common elements) ≤ e−d/2k
2/3

Thus for d ≥ k3/4, we have

µ′(d) ≤ µ(d)e−k
Ω(1)

k1/3
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This implies that ν(1, 1) = E(X,Y )∼µ′(N(1,1)(X, Y )/n) ≤ k3/4/n. Now, consider the

information complexity of AND with respect to ν. By Claim 2.5.4, the information

complexity is at most

β

ln 2
+ 2γ log

β + γ

γ
+ 2β log

β + γ

β
+ α log

α + β

α

where k/n − k3/4 ≤ β ≤ k/n, γ ≤ k3/4/n and α = 1 − 2β − γ. It is easy to observe

that this is ≤ 2
ln 2

k
n

+ o
(
k
n

)
. Thus, the contribution from Step 2 of πn is ≤ 2

ln 2
k+ o(k)

by (2.19) and (2.20). This finishes the proof of the lemma.

In fact, using the above arguments, we can get the following stronger lemma :

Lemma 2.9.11 ([9]). Let n and k be such that k = ω(1) and n/k = ω(1). Then there

exists a protocol πn such that

1. πn solves SETINTn correctly on all inputs (x, y) ∈ Skn with |x ∧ y| = o(k), and

2. for all distributions µ over {0, 1}n × {0, 1}n if supp(µ) ⊆ Skn then ICµ(πn) ≤
2

ln 2
k + o(k).

We shall need this lemma later. Next, we prove the upper bound on the commu-

nication complexity of DISJkn.

Theorem 2.9.12 ([9]). Let M and k be such that k = ω(1) and M/k = ω(1). Then

for all ε > 0 we have R(DISJkM , ε) ≤ 2
ln 2
k + o(k).

We prove this theorem via self-reducibility. Since DISJkn is a partial function (=

promise problem), we start by generalizing the information complexity to promise

problems.

Definition 2.9.1. Let f : X × Y → {0, 1} be a function. Let S ⊆ X × Y . The

promise problem associated with f and S, denoted by fS, is to compute f via a

communication protocol that is correct only on inputs from S and outputs whatever

it wants on inputs from X × Y \ S. Let us call a protocol good for fS if it answers

correctly on all inputs in S. Then the 0-error information complexity of the promise

problem fS s defined as follows: IC(fS, 0) = infπ good maxµ∈∆(S) ICµ(π)
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The following non-distributional version of ”information equals amortized commu-

nication” for promise problems follows from the same techniques as in Theorem 2.8.11

from [7].

Theorem 2.9.13 ([7]). Let f : X × Y → {0, 1} be a function, let S ⊆ X × Y. let

fS be the corresponding promise problem. Let IC(fS, 0) = I. Let P ⊆ XN × YN be

the subset of inputs such that promise holds at each coordinate i.e. (xi, yi) ∈ S for all

i. Then for each δ1, δ2 > 0, there exists C = C(fS, δ1, δ2) such that for each N ≥ C,

there exists a protocol πN = πN((x1, x2, . . . , xN), (y1, y2, . . . , yN)) for computing N

instances of fS. The protocol has communication complexity < NI(1 + δ1) and for all

inputs in P the protocol πN answers on all coordinates correctly except with probability

δ2.

We will prove prove the upper bound in several steps. Initially, we will prove it for

the values of k that are close to the universe size. After that, we shall generalize this

upper bound to all values of k such that k = ω(1). Let ε > 0. Let t(M) = the largest

n ∈ N such that nC(DISJn
3/4

n , 1/n, ε − 1/n) ≤ M . Note that t(M) is an extremely

slowly growing function of M but still it goes to infinity with M .

Lemma 2.9.14 ([9]). For all ε > 0, k, and M such that ω(1) ≤ M/k ≤ t(M)3/4 we

have R(DISJkM , ε) ≤ 2
ln 2
k + o(k).

Proof. Let n = t(M)3/4 and N ≥ C(DISJn
3/4

n , 1/n, ε − 1/n) be the largest integer

such that nN ≤ M . We can assume that nN = M . We shall prove the Lemma

for M/k = t(M)3/4. The Lemma for M/k ≤ t(M)3/4 can be proved by the same

argument by taking a smaller yet super-constant n and a larger N . Let ` = n3/4+n2/3.

Using Theorem 2.9.13, there exists a protocol πN for solving N copies of DISJ`n with

communication < N IC(DISJ`n, 0)(1 + 1/n) such that if all copies have sets of size

≤ `, then πN answers correctly on all copies, except with probability ε − 1/n. Now

consider Protocol 12 for solving DISJkM .

First, lets see what the error of the protocol is. Note that Alice and Bob both

have sets of size M/n1/4. Consider a particular block B. Define a super-martingale

sequence X0, X1, . . . , Xn as follows : X0 = 0, Xi = (number of elements in the first
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Protocol 12 Protocol π for computing DISJkM that is based on protocol πN for N
copies of DISJ`n.

Require:
x ∈ {0, 1}M , |x| = k - known to Alice
y ∈ {0, 1}M , |y| = k - known to Bob
πN ,M = nN - known to Alice and Bob

1: Alice and Bob use public randomness to divide their inputs randomly into N
blocks of size n.

2: Alice computes cA – the number of blocks that contain more than ` elements of
her input. Such blocks are called bad for Alice.

3: Bob computes cB – the number of blocks that contain more than ` elements of
his input. Such blocks are called bad for Bob.

4: if cA ≥ Nn2 exp(−2n1/3) ∨ cB ≥ Nn2 exp(−2n1/3) then
5: Players outputs a random bit as the answer of the protocol. Protocol termi-

nates.
6: Alice creates a string qA ∈ {0, 1}N where (qA)i = 1 if and only if the ith block is

bad for Alice.
7: Bob creates a string qB ∈ {0, 1}N where (qB)i = 1 if and only if the ith block is

bad for Bob.
8: Alice sends qA to Bob.
9: Bob sends qB to Alice.
10: Alice and Bob use brute force protocol to solve DISJn on blocks that are bad for

at least one of them.
11: Alice and Bob use πN to solve DISJ`n on the rest of the blocks.
12: The players output 0 if either brute force or πN outputs 0 on any single block;

otherwise they output 1. The protocol terminates.

i coordinates of B) − i M
n1/4(M−n)

. It is clear that this is a super-martingale since

conditioned on X0, . . . , Xi−1, the probability of the ith coordinate of B being an

element of Alice is at most M
n1/4(M−n)

. Also we have |Xi − Xi−1| ≤ 1. Therefore, by

the Azuma’s inequality we have:

P
(
Xn ≥ n2/3

)
≤ exp(−2n1/3)

Thus, except with probability exp(−2n1/3), the number of elements of Alice in block

B is ≤ n3/4 + n2/3 (we are ignoring the M
M−n = N

N−1
factor, since it is almost 1).

By Markov’s inequality, the probability that the number of bad blocks for Alice
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≥ Nn2 exp(−2n1/3) is ≤ 1/n2. Hence the probability that either Alice or Bob have

a large number of bad blocks ≤ 2/n2 ≤ 1/n. Now πN answers correctly except with

probability ε− 1/n, thus the total error ≤ ε. The total communication cost is

< N IC(DISJ`n, 0)(1 + 1/n) +Nn3 exp(−2n1/3) +O(N)

= N

(
2

ln 2
n3/4 + o(n3/4)

)
+No(n3/4)

=
2

ln 2
k + o(k)

Using the stronger lemma about the information complexity of the set intersection

problem, Lemma 2.9.11, we get the following stronger lemma:

Lemma 2.9.15 ([9]). For all ε > 0, k, and M such that ω(1) ≤ M/k ≤ t(M)3/4,

there exists a protocol π with communication ≤ 2
ln 2
k+o(k) such that if Alice and Bob

both have sets of size ≤ k and the size of their intersection is o(k), then π outputs

the intersection, otherwise it outputs that the intersection is large.

Next, we generalize the upper bound for all values of k and M such that k = ω(1)

and M/k = ω(1).

Proof of Theorem 2.9.12. The central idea of the proof is to reduce the size of the

universe by hashing and then apply Lemma 2.9.15. Let ` be such that `
k

= t(`)3/4.

Consider the following protocol :

It is clear that the protocol is correct with high probability. If |X ∩ Y | > k3/4

then the probability of each element in the intersection to survive selection in the first

sampling step is k−1/2, and thus the parties output 0 except with an exponentially

small probability plus the probability that the H̊astad-Wigderson protocol fails a

majority of times, which is bounded by 1/k. In all other cases the protocol will only

fail if π returns that the intersection is too large or if the number of elements in

the intersection bins exceeds k
√
k√
`

. This happens if the number of collisions between

elements of h(X) and h(Y ) is very large (Ω(k
√
k√
`

)). The expected number of collisions
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Protocol 13 Protocol π for computing DISJkn.

Require:
x ∈ {0, 1}n, |x| = k - known to Alice
y ∈ {0, 1}n, |y| = k - known to Bob

1: Alice and Bob each sample k3/4 elements from their sets and then they run the
H̊astad-Wigderson protocol (Theorem 2.9.1) Ω(log k) times in O(k3/4 log k) com-
munication. If the majority output is 0, the parties output 0. The protocol
terminates.

2: Alice and Bob choose a uniformly random hash function h : [M ] → [`] and hash
the universe into ` bins. If Alice and Bob have sets X and Y , they run the
protocol π from Lemma 2.9.15 on h(X) and h(Y ). If π returns that the sets are
disjoint, then they output 1.

3: If π says that the intersection is too large, or if the number of elements in the in-

tersection bins exceeds k
√
k√
`

, the parties output a random answer and the protocol
terminates. Otherwise the players continue.

4: Alice and Bob run the H̊astad-Wigderson protocol on each of ` bins that have both
Alice’s and Bob’s elements. Players output 1 if they don’t find an intersection
among any of the bins.

is bounded by |X ∩ Y | + k2/`. Thus, by the Markov’s inequality, the probability of

an abort in this step is O(
√
k/`) (in fact, due to concentration, it is much lower).

Therefore, the protocol succeeds except with probability o(1).

It remains to analyze the communication complexity of this protocol. First

step has communication complexity O(k3/4) = o(k). The last step uses at most

O(k
√
k/`) = o(k) communication. Finally the bulk of the communication occurs in

the middle of the protocol, where by Lemma 2.9.15, the communication is bounded

by 2
ln 2
k + o(k).



CHAPTER 3

INFORMATION COMPLEXITY BOUNDS VIA

COMMUNICATION COMPLEXITY

The results of this chapter are based on the joint work of the author with Braverman,

Garg, and Weinstein and have appeared in [10].

In this chapter we shall study communication complexity and information com-

plexity of several explicit functions. For easy reference, we list these functions here.

Definition 3.0.2. Let x, y ∈ {0, 1}n. The Hamming distance between x and y,

denoted by HAM(x, y), is defined by:

HAM(x, y) = |{i | xi 6= yi}|.

Definition 3.0.3. Let n, t, g ∈ N. The Gap Hamming Distance partial function with

respect to parameters n, t, and g, denoted by GHDn,t,g : {0, 1}n×{0, 1}n → {0, 1}, is

defined by:

GHDn,t,g(x, y) =

{
1 if HAM(x, y) ≥ t+ g

0 if HAM(x, y) ≤ t− g

If the parameters t and g are omitted, then they are assumed to be n/2 and
√
n,

respectively. In other words, we write

GHDn(x, y) = GHDn,n/2,
√
n(x, y).

Note that the Gap Hamming Distance is a partial function (promise problem).

Definition 3.0.4. The Inner Product function, denoted by IPn : Fn2 × Fn2 → F2, is

defined by:

IPn(x, y) =
n∑
i=1

xiyi mod 2.

127
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3.1 Introduction

In this chapter we develop a new self-reducibility technique for deriving information

complexity lower bounds from communication complexity lower bounds. The tech-

nique works for functions that have a “self-reducible structure”. Informally speaking

f has a self-reducible structure, if for large enough inputs, solving fnk essentially

amounts to solving fkn (fnk denotes the function f under inputs of length nk, while

fkn denotes k independent copies of f under inputs of size n). Our departing point

is a communication complexity lower bound for fnk (that may be obtained by any

means). Assuming self-reducibility, the same bound applies to fkn , which through the

connection between information complexity and amortized communication complex-

ity (see [12]), implies a lower bound on the information complexity of fn. In this

chapter we show how to make this reasoning go through for two functions: the Gap

Hamming Distance, and the Inner Product.

Ideas of self-reducibility are central in applications of information complexity to

communication complexity lower bounds, starting with the work of Bar-Yossef et

al. [3]. These argument start with an information complexity lower bound for a (usu-

ally very simple) problem, and derive a communication complexity bound on many

copies of the problem. We saw such an application in Chapter 2. The logic of this

chapter is reversed: we start with a communication complexity lower bound, which

we use as a black-box, and use self-reducibility to derive an amortized communication

complexity bound, which translates into an information complexity lower bound.

3.2 Main Results of this Chapter

We prove that the information complexity of the Gap Hamming Distance problem

with respect to the uniform distribution is linear. This was explicitly stated as an

open problem by Chakrabarti et al. [18]. We prove

Theorem 3.2.1 ([10]). There exists ε > 0 such that

ICU(GHDn, ε) = Ω(n),
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where U is the uniform distribution.

For the Inner Product, we prove a stronger bound on its information complexity.

Formally, we show

Theorem 3.2.2 ([10]). For every δ > 0, there exists ε > 0, and n0 such that ∀n ≥ n0

we have

ICU(IPn, ε) ≥ (1− δ)n,

where U is the uniform distribution.

Note that ICU(IPn, ε) ≤ (1 − 2ε)(n + 1), since the parties can always give a

random output with probability 2ε (this corresponds to error ε), and use the brute

force protocol to compute IPn otherwise. It is known that for all ε ∈ [0, 1/2) we have

ICU(IPn, ε) = Ω(n) (see [13]). We prove that the information complexity of IPn can

be made arbitrarily close to the trivial upper bound n by decreasing the error (but

keeping the error constant).

3.3 Information Complexity of Gap Hamming Distance

In a technical tour-de-force, Chakrabarti and Regev [19] proved that the randomized

communication complexity of the Gap Hamming Distance problem is linear. Formally,

they showed that

Theorem 3.3.1 ([19]). For all γ > 0 and ε ∈ [0, 1/2) we have

R(GHDn,n/2,γ
√
n, ε) ≥ Ω(n).

Chakrabarti and Regev [19] also proved the linear lower bound on the distribu-

tional communication complexity with respect to the uniform distribution U . Specif-

ically, they proved

Theorem 3.3.2 ([19]). There exists ε > 0 such that

DU(GHDn,n/2,
√
n, ε) = Ω(n),
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where U is the uniform distribution.

Kerenidis et al. [32] proved that the information complexity of the Gap Hamming

Distance is also linear with respect to some implicitly defined distribution. The proof

of Kerenidis et al. relies on a reduction that shows that many of the communication

complexity lower bound techniques translate to information complexity lower bounds

– including the lower bound for the Gap Hamming Distance:

Theorem 3.3.3 ([32] ). There exists a distribution µ on {0, 1}n × {0, 1}n and ε > 0

such that

ICµ(GHDn,n/2,
√
n, ε) = Ω(n).

Interestingly, while this approach yields an analogue of Theorem 3.3.1 for informa-

tion complexity, it does not seem to yield an analogue of the stronger Theorem 3.3.2.

In other words this approach does not immediately yield a lower bound on the in-

formation complexity of the Gap Hamming Distance with respect to the uniform

distribution.

We present an alternative proof of the linear lower bound on the information

complexity of GHD using the self-reducibility technique. Unlike the proof in [32], we

do not need to dive into the details of the proof of the communication complexity

lower bound for GHD. Rather, our starting point is Theorem 3.3.2, which we use as

a black-box.

In fact, we shall prove a slightly weaker lemma, from which Theorem 3.2.1 follows

via a reduction.

Lemma 3.3.4 ([10]). There exists ε > 0 and γ > 0 such that

ICU(GHDn,n/2,γ
√
n, ε) = Ω(n),

where U is the uniform distribution.

The idea of the proof. We use the self-reducibility argument described at the beginning

of this chapter. Assume that for some ε > 0 we have ICU(GHDn, ε) = o(n). Using

“information = amortized communication” there exists a protocol τ that solves N
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copies of GHDn with o(nN) communication. Using τ we construct a protocol that

solves GHDnN with o(nN) communication, which contradicts Theorem 3.3.1. Next,

we describe the protocol. Alice and Bob are given x, y ∈ {0, 1}nN , respectively.

They sample cnN random coordinates (for some constant c). Alice and Bob divide

the sampled coordinates into cN blocks and run GHDn on each block using o(nN)

communication in total. If HAM(x, y) = nN/2 +
√
nN , then the expected Hamming

distance of the inputs restricted to each block is n/2 +
√
n/N . Although the gain

over n/2 is small, the Hamming distance is still biased towards being > n/2. We shall

see that on each block, the protocol for GHDn must gain an advantage of Ω(1/
√
N)

over random guessing. This in turn implies that cN copies suffice to get the correct

answer with high probability.

3.3.1 Information Complexity of Small-Gap Instances

Assume that for some sufficiently small ρ > 0 (to be specified later) we have

ICU(GHDn,n/2,
√
n, ρ) = o(n).

Thus ∀α > 0 and for sufficiently large n we have

ICU(GHDn,n/2,
√
n, ρ) ≤ αn.

We shall need the following theorem from [12]:

Theorem 3.3.5. [12] Let f : X × Y → {0, 1} be a (possibly partial) function, let µ

be a distribution on X ×Y, let ρ > 0, and let I = ICµ(f, ρ). Then for each δ1, δ2 > 0

there exists an N = N(f, ρ, µ, δ1, δ2) such that for each n ≥ N , there is a protocol πn

for computing n instances of f over µn such that the error probability for each copy

is ≤ ρ. The communication cost of the protocol is < n(1 + δ1)I. Moreover, if we let

π be any protocol for computing f with information cost ≤ (1 + δ1/3)I with respect to

µ then we can design πn so that for each set of inputs, the statistical distance between

the output of πn and πn is < δ2, where πn denotes n independent executions of π.
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In other words, Theorem 3.3.5 allows us to take a low-information protocol for f

and turn it into a low-communication protocol for sufficiently many copies of f .

Step 1: From GHD to a tiny advantage.

In the first step we show that a protocol for GHD over the uniform distribution

has a small but detectable advantage in distinguishing inputs from two distributions

that are close to each other. Denote by µη the distribution such that X ∈ {0, 1}n

is chosen uniformly, and Y is chosen so that Xi ⊕ Yi ∼ B1/2+η is an i.i.d. Bernoulli

random variable with bias η. In this language the GHD problem is essentially about

distinguishing µ−1/
√
n from µ1/

√
n.

Lemma 3.3.6 ([10]). There exist τ > 0, γ > 0 and ρ > 0 with the following property.

Suppose that for all large enough n there exists a protocol πn such that πn solves

GHDn,n/2,γ
√
n with error ρ with respect to the uniform distribution. Then for all large

enough n and for all ε < 1/n2 we have

P(X,Y )∼µε(πn(X, Y ) = 1)− P(X,Y )∼µ0(πn(X, Y ) = 1) > τε
√
n, (3.1)

and

P(X,Y )∼µ−ε(πn(X, Y ) = 0)− P(X,Y )∼µ0(πn(X, Y ) = 0) > τε
√
n. (3.2)

Proof. Note that we can assume that the protocol πn is symmetric with respect to the

Hamming distance, i.e., its behavior depends just on the Hamming distance between

x and y. This is because Alice and Bob can start by applying a random permutation

and a random XOR to their inputs i.e. they sample (using public randomness) a

permutation σ ∈ Sn and r ∈ {0, 1}n and change their inputs to σ(x⊕ r) and σ(y⊕ r).
Note that the information cost of the protocol remains the same.

We will establish (3.1), with (3.2) established similarly. We first focus on the

region where HAM(x, y) ≥ n/2 and show that its contribution to (3.1) is at least

Ω(ε
√
n). We break the region into two further subregions: (I) (x, y) with n/2 <

HAM(x, y) < n/2 + γ
√
n; (II) (x, y) with n/2 + γ

√
n ≤ HAM(x, y) for appropriately

chosen γ. We show that the contribution of region (II) is Ω(ε
√
n), while the fact that

the contribution of region (I) being positive is easy to see.
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Denote by pi the probability that πn returns 1 on an input of Hamming distance

n/2 + i. The contribution of the region where HAM(x, y) = n/2 + i is equal to

pi(Pµε(HAM(X, Y ) = n/2 + i)− Pµ0(HAM(X, Y ) = n/2 + i))

= piPµ0(HAM(X, Y ) = n/2 + i)
(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
.

Now (1− 4ε2)n/2−i ≥ 1− 2ε/n and (1 + 2ε)2i ≤ e2 (since ε < 1/n2). Thus, we have

n/2∑
i=0

piPµ0(HAM(X, Y ) = n/2 + i)(2ε/n)(1 + 2ε)2i ≤ O(ε/n).

Therefore, we can ignore the term (1− 4ε2)n/2−i since then

n/2∑
i=0

piPµ0(HAM(X, Y ) = n/2 + i)
(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
−

n/2∑
i=0

piPµ0(HAM(X, Y ) = n/2 + i)
(
(1 + 2ε)2i − 1

)
≤ O(ε/n)

After ignoring the term, the contribution in region (I) is positive .

This leaves us with region (II), where we need to show that we actually get a non-

negligible advantage. Let T be an appropriately chosen constant, so that Pµ0(
√
n ≤
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HAM(X, Y )− n/2 ≤ T
√
n) = Ω(1). The advantage

n/2∑
i=γ
√
n

piPµ0(HAM(X, Y ) = n/2 + i)
(
(1 + 2ε)2i − 1

)
≥

T
√
n∑

i=γ
√
n

piPµ0(HAM(X, Y ) = n/2 + i)4iε

=

T
√
n∑

i=γ
√
n

Pµ0(HAM(X, Y ) = n/2 + i)4iε

−
T
√
n∑

i=γ
√
n

(1− pi)Pµ0(HAM(X, Y ) = n/2 + i)4iε

≥ Θ(ε
√
n)− 4Tρε

√
n

since (1− pi) is the probability that the protocol errs when the Hamming distance is

n/2 + i and average error is guaranteed to be ≤ ρ. By making ρ small enough we can

get noticeable advantage (Θ(ε
√
n)) in this region.

We now consider the region HAM(x, y) ≤ n/2 and show that the absolute value

of the contribution of this region can be made arbitrarily small with respect to ε
√
n

by appropriate choices of ρ, γ and T which will complete the proof. Let us break this

region into three further regions : (I) (x, y) with n/2−γ
√
n < HAM(x, y) ≤ n/2; (II)

(x, y) with n/2 − T
√
n ≤ HAM(x, y) < n/2 − γ

√
n; (III) (x, y) with HAM(x, y) <

n/2 − T
√
n for appropriately chosen T and γ. Denote by qi the probability that

πn returns 1 on an input of Hamming distance n/2 − i. The absolute value of the

contribution of the region where HAM(x, y) = n/2− i is equal to

qi(Pµ0(HAM(X, Y ) = n/2− i)− Pµε(HAM(X, Y ) = n/2− i))

= qiPµ0(HAM(X, Y ) = n/2− i)(1− (1− 4ε2)n/2−i(1− 2ε)2i)

As before, we can ignore the term (1−4ε2)n/2−i. In region (I) the negative contribution
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is bounded in absolute terms by:

1− (1− 2ε)2γ
√
n < 4γε

√
n.

In region (III) the contribution is again bounded by

n/2∑
i=T
√
n

Pµ0(HAM(X, Y ) = n/2− i)(1− (1− 2ε)2i)

<

n/2∑
i=T
√
n

Pµ0(HAM(X, Y ) = n/2− i)4iε.

By the Chernoff bound, the probability Pµ0(HAM(X, Y ) = n/2− i) is dominated by

e−Ω(i2/n), and thus the sum can be made into an arbitrarily small multiple of ε
√
n by

choosing T large enough. For region (II) the advantage

T
√
n∑

i=γ
√
n

qiPµ0(HAM(X, Y ) = n/2− i)(1− (1− 2ε)2i)

≤
T
√
n∑

i=γ
√
n

qiPµ0(HAM(X, Y ) = n/2− i)4iε

≤ 4Tε
√
n

T
√
n∑

i=γ
√
n

qiPµ0(HAM(X, Y ) = n/2− i)

≤ 4Tρε
√
n.

By making ρ small enough we can make the absolute contribution of this region small

relative to ε
√
n. This completes the proof.

Step 2: From tiny advantage to low-communication GHD.

We can now apply Lemma 3.3.6 together with Theorem 3.3.5 to show that ex-

istence of a low-information protocol for GHDn,n/2,γ
√
n with respect to the uniform

distribution contradicts the communication complexity lower bound of Theorem 3.3.2.

Proof of Lemma 3.3.4. Assume for the sake of contradiction that for each α there
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exists n and a protocol πn with ICU(πn) < αn and which solves GHDn,n/2,γ
√
n with

error ρ, where the parameters γ and ρ are from Lemma 3.3.6. Let

N > max(n7, N(GHDn,n/2,γ
√
n, ρ,U , δ1, δ2)),

where δ1 = 1 and δ2 = ε/2, where ε is the error parameter in Theorem 3.3.2. Then

using Theorem 3.3.5, for each c > 1, cN copies of πn can be executed with commu-

nication < 2αcnN (as long as the inputs to each πn are distributed according to U)

such that on each copy the error is at most ρ with respect to U . Also for each set of

inputs, the statistical distance between the output of the execution and πcNn ≤ ε/2.

Let t = P(X,Y )∼U(πn(X, Y ) = 1). Without loss of generality, we assume t = 1/2

(otherwise we can use a thresholdtcN instead of majority in the protocol). We solve

GHDnN,nN/2,
√
nN over the uniform distribution with a small constant error ε using the

protocol depicted in Protocol 14.

Protocol 14 The protocol πnN(x, y)

Require:
x ∈ {0, 1}nN - known to Alice
y ∈ {0, 1}nN - known to Bob

1: Players create cN instances of GHDn by sampling n random coordinates each time
(with replacement) using public randomness: (x1, y1), . . . , (xcN , ycN) ∈ {0, 1}n ×
{0, 1}n.

2: Players use compression (Theorem 3.3.5) to run πn(x1, y1), . . . , πn(xcN , ycN) in
communication 2αcNn.

3: Players return MAJORITY(πn(x1, y1), . . . , πn(xcN , ycN)).

The communication cost upper bound follows from the way the protocol πnN(x, y)

is constructed. To finish the proof we need to analyze its success probability. Suppose

that the Hamming distance between x and y is nN/2+`
√
nN , where ` > 1. Note that

` < n except with probability e−Ω(n2). The samples (xi, yi) are drawn iid according to

the distribution µ
`
√

1/(nN)
. Since N > n7 we have `

√
1/nN < 1/n2. By Lemma 3.3.6,

the output of πn on each copy is thus τ`/
√
N -biased towards 1. An application of the

Chernoff bound along with the fact that, for each set of inputs, the statistical distance

between the output of the execution and πcNn ≤ ε/2, implies that the probability that
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the protocol πnN outputs 1 is at least 1 − e−2τ2`2c − ε/2. For constant τ , we can

make this expression as close to 1− ε/2 as we like by letting c be a sufficiently large

constant. But this means that for an arbitrarily small constant α > 0, πnN(x, y) will

solve GHDnN,nN/2,
√
nN with error ≤ ε (the case when the Hamming distance between

x and y is nN/2 − `
√
nN is symmetric) in communication O(αcNn), which can be

made arbitrarily small relatively to Nn, leading to a contradiction. Note that we got

a randomized protocol for solving GHDnN,nN/2,
√
nN but we can fix the randomness to

get a deterministic algorithm.

3.3.2 The Reduction from a Small-Gap instance to a Large-Gap

instance

Now we complete the proof of Theorem 3.2.1 by providing the details of the reduction.

We will start by proving a few technical lemmas.

Lemma 3.3.7 ([10]). Let α > 1 be an integer. Let Un be the uniform distribution over

{0, 1}n × {0, 1}n. Let (X, Y ) ∼ Un. Define a distribution µ over {0, 1}αn × {0, 1}αn

by picking αn random coordinates of X, Y (with replacement) and then taking XOR

with a random string r ∈R {0, 1}αn (let U ′, V ′ be the strings obtained by sampling

αn random coordinates of X, Y . Then U = U ′ ⊕ r, V = V ′ ⊕ r are the final strings

sampled). Then for all ε > 0 and n large enough, there exists a constant Mε and a

distribution µε such that

1. |µ− µε| ≤ ε

2. µε ≤MεUαn

Proof. It is easy to see that the distribution µ is symmetric with respect to the

Hamming distance i.e., if (x, y) ∈ {0, 1}αn×{0, 1}αn, and (x′, y′) ∈ {0, 1}αn×{0, 1}αn

such that HAM(x, y) = HAM(x′, y′), then µ(x, y) = µ(x′, y′). This is because µ is

invariant under the application of a random permutation and a random XOR i.e., if

σ ∈R Sn and r′ ∈R {0, 1}n, then µ(x, y) = µ(σ(x⊕ r′), σ(y⊕ r′)). With a slight abuse

of notation let µ(d) denote the probability mass on strings of Hamming distance d,
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and let Uαn(d) denote the probability mass with respect to the uniform distribution.

Let N = αn.

The distribution µε will be the restriction of the distribution µ to the interval

[N/2−C
√
N,N/2+C

√
N ]. Let T be the random variable that equals to HAM(X, Y ).

Then by the Chernoff bound we have

P (T /∈ [n/2− β
√
n, n/2 + β

√
n]) ≤ 2e−2β2

.

If we pick N random coordinates distributed according to B 1
2

+p, where |p| ≤ β/
√
n,

then the expected number of 1’s ∈ [N/2 − β
√
α
√
N,N/2 + β

√
α
√
N ]. Thus by

another application of the Chernoff bound and taking C large enough, we can make

the statistical distance between µε and µ small enough.

Let µ′ be the distribution µ restricted to the interval [N/2−C
√
N,N/2 +C

√
N ]

for some constant C with a slight scaling (it is easy to see that the scaling will be

at most 2 for large enough C), which we can ignore. We will show that there exists

a constant M such that µ′ ≤ MUαn. By the symmetry properties of µ, it suffices to

prove that for all d, µ′(d) ≤MUαn(d). We have

µ′(d)/Uαn(d) ≤ 2
n∑
k=0

(
n

k

)
2−n

(
2k

n

)d(
2(n− k)

n

)N−d

Let d = N/2 + T , where |T | ≤ C
√
N . Also we will just concentrate on the sum

for k ≥ n/2. The lower half is analogous. Also it is easy to see that the sum from
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k = 3n/4 to k = n is small. So we consider

3n/4∑
k=n/2

(
n

k

)
2−n

(
2k

n

)d(
2(n− k)

n

)N−d

=

3n/4∑
k=n/2

(
n

k

)
2−n

(
2k

n

)T (
2(n− k)

n

)−T (
4k(n− k)

n2

)N/2

≤
3n/4∑
k=n/2

(
n

k

)
2−n

(
k

n− k

)T

If T < 0, then we are done. So assume T > 0. For n/2 ≤ k ≤ 3n/4, k
n−k =

1 + 2k−n
n−k ≤ 1 + 8(k−n/2)

n
. For k ≤ n/2 +T , the sum is small as k

n−k is small. Otherwise

(1 + 8(k−n/2)
n

)T . (1 + 8T
n

)k−n/2. Then the sum

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)(
1 +

8T

n

)k−n/2

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)(
1 +

8T

n

)k−n/2(
1− 8T

n

)n/2−k

=≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)(
1 +

8T

n

)k (
1− 8T

n

)n−k (
1 +

8T

n

)−n/2(
1− 8T

n

)n/2

Now
∑3n/4

k=n/2+T

(
n
k

) (
1 + 8T

n

)k (
1− 8T

n

)n−k ≤ 2n by the binomial theorem. Since T ≤
C
√
N for some constant C, the following quantity is a constant, too:

(
1 +

8T

n

)−n/2(
1− 8T

n

)n/2
=

(
1− 64T 2

n2

)−n/2
.

This completes the proof.

We need a lemma that relates the information cost of a protocol with respect

to one distribution to the information cost of the same protocol with respect to a

distribution subsuming the first distribution. Formally, the statement of the lemma
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is as follows:

Lemma 3.3.8 ([10]). Let µ1 and µ2 be distributions over {0, 1}N ×{0, 1}N such that

µ1 ≤ Mµ2 for some constant M . Let f be a function (possibly partial) with domain

{0, 1}N × {0, 1}N and let π be a protocol for solving it. Then ICµ1(π) ≤M ICµ2(π).

Proof. Let (X1, Y1) ∼ µ1 and Π1 denote the random variable for the transcript when

inputs are (X1, Y1). Let (X2, Y2) ∼ µ2 and define Π2 similarly. Now

I(Π1;X1|Y1) = E(X,Y )∼µ1(D(Π1|(X,Y )||Π1|Y )) = EY (EX(D(Π1|(X,Y )||Π1|Y )))

By Fact 1.4.6, EX(D(Π1|X,Y ||Π1|Y )) ≤ EX(D(Π1|X,Y ||Π2|Y )). Also Π1|X,Y = Π2|X,Y .

Thus

I(Π1;X1|Y1) ≤ E(X,Y )∼µ1(D(Π2|X,Y ||Π2|Y )) ≤ME(X,Y )∼µ2(D(Π2|X,Y ||Π2|Y )

= MI(Π2;X2|Y2)

Hence ICµ1(π) ≤M ICµ2(π).

The next lemma says that if the information complexity of a function with respect

to the distribution µ from Lemma 3.3.7 is high, then the information complexity with

respect to the uniform distribution is high as well.

Lemma 3.3.9 ([10]). Let f : {0, 1}N × {0, 1}N → {0, 1} be a function (possibly

partial). Let µ be a distribution over {0, 1}N × {0, 1}N , as defined in Lemma 3.3.7.

If ICµ(f, δ) = Ω(N), for some δ > 0, then ICUN (f, η) = Ω(N), for some η > 0.

Proof. Let π be a protocol for computing f with error η with respect to the distri-

bution UN , and let I = ICUN (π). Let ε > 0. Then by Lemma 3.3.7, for N large

enough there exists a distribution µε over {0, 1}N × {0, 1}N such that |µ − µε| ≤ ε

and µε ≤ MεUN for some constant Mε. Then the error probability of the protocol π

with respect to µ is ≤ Mεη + ε. Also the information cost of π with respect to µ is

≤MεI + 5Nε (by Lemmas 2.4.6 and 3.3.8). If Mεη+ ε ≤ δ then MεI + 5Nε ≥ cN for

some constant c. Take ε = min(δ/2, c/10) and η = (δ − ε)/Mε. Then I ≥ cN/2Mε.

Thus, we have ICUN (f, η) = Ω(N).



141

Proof of Theorem 3.2.1. Note that because of Lemma 3.3.9, we just need to prove

that ICµ(GHDN , ε) = Ω(N) for some ε > 0 for the distribution µ in Lemma 3.3.7.

Assume that for all ε > 0 we have ICµ(GHDN , ε) = o(N). That is for all β, ε, and

for N sufficiently large, ICµ(GHDN , ε) ≤ βN . By Lemma 3.3.4, there exist constants

ε′ > 0, γ > 0 and c > 0 such that ICUn(GHDn,n/2,γ
√
n, ε
′) ≥ cn.

Let α be a large enough integer to be determined later. Set N = αn. Let πN be a

protocol that solves GHDN with error ≤ ε with respect to µ, and let the information

cost of πN with respect to µ be ≤ βN . Consider the following protocol πn(x, y) for

GHDn,n/2,γ
√
n: players pick N random coordinates of x, y, call them u′, v′. Players

pick a random string r ∈R {0, 1}N and set u = u′ ⊕ r and v = v′ ⊕ r. Players run πN

on u, v. Let (X, Y ) ∼ Un be the inputs for πn. Let U, V denote the random variables

denoting the sampled coordinates. Note that (U, V ) ∼ µ. Let Π denote the random

variable for the transcript of running πN on U, V . Then the transcript of running

πn on X, Y is ΠR, where R denotes the public randomness involved in sampling u, v

from x, y. Now

I(ΠR;X|Y ) = I(R;X|Y ) + I(Π;X|Y R) = I(Π;X|Y R) = I(Π;X|V Y R)

The last equality follows from the fact that V is a deterministic function of Y R. Note

that Π is a probabilistic function of U, V , and the internal randomness of the protocol

Π is independent of X, Y and R. Thus I(Π;XY R|UV ) = 0. Since

I(Π;XY R|UV ) = I(Π;Y R|UV ) + I(Π;X|UV Y R)

and I(Π;Y R|UV ) = 0, I(Π;X|UV Y R) = 0. Applying Fact 1.4.4, with A = Π,

B = U , C = X and D = V Y R, we get that I(Π;X|V Y R) ≤ I(Π;U |V Y R). Also

I(Π;Y R|UV ) = 0. Applying Fact 1.4.3 with A = U , B = Π, C = V and D = Y R,

we get I(Π;U |V ) ≥ I(Π;U |V Y R). This implies that I(ΠR;X|Y ) ≤ I(Π;U |V ).

A similar argument shows that I(ΠR;Y |X) ≤ I(Π;V |U) and hence ICUn(πn) ≤
ICµ(πN).

Let us calculate the error probability of the protocol πn. If HAM(x, y) ≥ n/2 +
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γ
√
n, then for a random coordinate ` we have P (x`⊕y` = 1) ≥ 1/2+γ/

√
n. Then the

expected Hamming distance of N random coordinates is N/2+γ
√
α
√
N . Probability

that the Hamming distance is ≤ N/2 + γ
√
α

2

√
N is bounded by e−

αγ2

2 . Similarly for

the lower case. Choose α so that γ
√
α ≥ 2 and e−

αγ2

2 ≤ ε′/2. Then

error(πn) =
∑

x,y:HAM(x,y)≥n/2+γ
√
n

Un(x, y)P (πn outputs 0 on input x, y)

+
∑

x,y:HAM(x,y)≤n/2−γ
√
n

Un(x, y)P (πn outputs 1 on input x, y)

We have

P (πn outputs 0 on input x, y) =
∑
u,v

µ(u, v|x, y)P (πN outputs 0 on input u, v),

where µ(u, v|x, y) the probability of getting u, v when coordinates are sampled from

x, y. For x, y such that HAM(x, y) ≥ n/2 + γ
√
n, we have

∑
u,v

µ(u, v|x, y)P (πN outputs 0 on input u, v)

≤
∑

u,v:HAM(u,v)≥N/2+
√
N

µ(u, v|x, y)P (πN outputs 0 on input u, v) + ε′/2

Doing a similar calculation for the other half, we get that

error(πn) ≤
∑

u,v:HAM(u,v)≥N/2+
√
N

µ(u, v)P (πN outputs 0 on input u, v)

+
∑

u,v:HAM(u,v)≤N/2−
√
N

µ(u, v)P (πN outputs 1 on input u, v) + ε′/2

= error(πN) + ε′/2

Choosing ε = ε′/2 and β = c/2α, we get a protocol πn with error ≤ ε′ and information

cost ≤ βαn ≤ cn/2, which is a contradiction.
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3.4 Information Complexity of Inner Product

The proof of Theorem 3.2.2 exploits the self-reducible structure of the Inner Product

function. Since IPn is a highly sensitive function, we shall first prove a lower bound

on its 0-error information complexity. We shall use the continuity of information

complexity at 0 error to to finish the argument regarding the ε-error information

complexity of IPn.

We shall need the following lemma from [12]. It is similar to Theorem 3.3.5. The

difference is that when dealing with 0 error we cannot ensure that the probability of

error on each copy is 0. We just control the overall error, which is the error incurred

if the compression fails.

Lemma 3.4.1 ([12]). Let f : X×Y → {0, 1} be a function, and let µ be a distribution

over the input space X × Y. Let π be a protocol that computes f with 0 error with

respect to µ. Let I = ICµ(π). Then for all δ, ε > 0 there exists a protocol πn for

computing fn with error ε with respect to µn such that the worst case communication

cost of π is

= n(I + δ/4) +O(
√

CC(π)n(I + δ/4)) +O(log(1/ε)) +O(CC(π))

≤ n(I + δ) (for n sufficiently large)

The following lemma from [4] relates the information complexity of computing

XOR of n copies of a function f to the information complexity of a single copy.

Lemma 3.4.2 ([4]). Let f : X ×Y → {0, 1} be a function, and let µ be a distribution

over the input space X × Y. Then we have

ICµn(⊕nf, ε) ≥ n(ICµ(f, ε)− 2)

The next lemma says that there is no 0-error protocol for IPn which conveys

slightly less information than the trivial protocol.
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Lemma 3.4.3 ([10]). For all n we have

ICUn(IPn, 0) ≥ n,

where Un is the uniform distribution over {0, 1}n × {0, 1}n

Proof. It is known that DUn(IPn, ε) ≥ n − cε, for all constant ε ∈ (0, 1/2), where

cε is a constant depending just on ε [33, 22]. Assume that for some n we have

ICUn(IPn, 0) ≤ n − c . Then using Lemma 3.4.1 with δ = c/2 and ε = 1/3, we can

get a protocol π for solving N copies of IPn with overall error 1/3 with respect to

UNn , and CC(π) ≤ N(n− c+ c/2). This gives us a protocol π′ for solving IPNn with

error 1/3 with respect to the uniform distribution and CC(π′) ≤ Nn−Nc/2 (divide

the inputs into N chunks, solve the N chunks using π and XOR the answers). But

CC(π′) ≥ Nn− c1/3, a contradiction.

Proof of Theorem 3.2.2. Given δ > 0, let ` = d3
δ
e. Then

ICU`(IP`, 0) ≥ ` ≥ (1− δ)`+ 3

By Theorem 2.2.8, we have limε→0 ICU`(IP`, ε) = ICU`(IP`, 0). Thus, there exists

ε(`, δ) = ε(δ) such that

ICU`(IP`, ε) ≥ (1− δ)`+ 2

Now using Lemma 3.4.2, we get that ICUN` (⊕N IP`, ε) ≥ (1− δ)N`. Thus we have

ICUN`(IPN`, ε) ≥ (1− δ)N`.

Thus for sufficiently large n we have ICUn(IPn, ε) ≥ (1− δ)n.



CHAPTER 4

PUBLIC VS. PRIVATE RANDOMNESS IN

INFORMATION COMPLEXITY

4.1 Introduction

Based on the definitions given in Section 1.3 it is easy to see that for every f :

{0, 1}n × {0, 1}n → {0, 1} and for every ε ≥ 0 we have

R(f, ε) ≤ Rpriv(f, ε).

Ilan Newman [40] showed that the reverse inequality holds up to constant multiplica-

tive factors and a logarithmic additive term. More precisely, he showed

Theorem 4.1.1 (Newman [40]). ∀f : {0, 1}n × {0, 1}n → {0, 1},∀ε ∈ [0, 1/2),∀δ ∈
(0, 1], we have

Rpriv(f, (1 + δ)ε) = O
(

R(f, ε) + log
n

εδ

)
.

In other words, for the purpose of minimizing communication complexity it is

always beneficial to have public randomness instead of private randomness; how-

ever, asymptotic improvements in communication are only possible for functions of

sublogarithmic complexity. For the rest of the discussion, we shall need the following

definition.

Definition 4.1.1. Let π be a protocol with public and private randomness. Define

πr to be the protocol obtained from π by fixing public randomness to r. Note that

πr is a protocol that uses only private randomness.

The value of public vs. private randomness for the purpose of minimizing in-

formation complexity is reversed. More specifically, for the purpose of minimizing

information complexity it is always beneficial to have private randomness. Formally,

we have the following folklore fact.

145
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Fact 4.1.2. For all functions f : {0, 1}n × {0, 1}n → {0, 1}, distributions µ on

{0, 1}n × {0, 1}n, and ε ≥ 0, we have

ICpriv
µ (f, ε) = ICµ(f, ε).

Proof. The inequality ICpriv
µ (f, ε) ≥ ICµ(f, ε) is clear from the definition, since the

infimum on the right hand side is over a larger set of protocols. Now, let π be a

protocol nearly achieving ICµ(f, ε). The protocol π might use publicly-known random

string R. Now, let π′ be the following protocol that uses only private randomness:

Alice uses her private randomness to sample R, then Alice sends R to Bob, and both

players run πR in such a way that Alice never reuses her private random bits that were

used to generate R. Clearly, the first message of Alice carries 0 information about

her input in π′. Therefore ICµ(π′) = ICµ(π). This establishes ICpriv
µ (f, ε) ≤ ICµ(f, ε),

completing the proof.

This establishes that ICpriv
µ (f, ε) is the same as ICµ(f, ε). A natural question is how

close ICpub
µ (f, ε) is to ICµ(f, ε)? In general, the answer to this question is not known.

The special case of 1-round protocols was answered by Braverman and Garg [8]. They

proved that IC1,pub
µ (f, ε) ≤ IC1

µ(f, ε) + log IC1
µ(f, ε) + O(1). The general form of the

question was considered in [44]. We showed that if ICpub
µ (f, ε) is close to ICµ(f, ε)

then a strong compression of communication to information follows. This result was

independently discovered in [15]. In the rest of this chapter we prove this result. We

shall need the following definition and fact.

Definition 4.1.2. Let π be a protocol with public and private randomness. Define

πr to be the protocol obtained from π by fixing public randomness to r.

Fact 4.1.3 (Barack et al. [4]). Let π be a protocol with public and private randomness

on inputs {0, 1}n × {0, 1}n. Let µ ∈ ∆({0, 1}n × {0, 1}n). Then

ICµ(π) = Er(ICµ(πr)),

where the expectation is over public randomness r.
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Proof. For the purpose of this proof we shall write out public randomness R explicitly

in the definition of information cost. Consider the first term in the definition of ICµ(π).

I(X;RΠR(X, Y )|Y ) = H(RΠR(X, Y )|Y )−H(RΠR(X, Y )|Y X)

= H(R|Y ) +H(ΠR(X, Y )|Y R)−
−H(R|Y X)−H(ΠR(X, Y )|Y XR)

= I(R;X|Y ) + I(ΠR(X, Y );X|Y R)

= 0 + I(ΠR(X, Y );X|Y R).

Where I(R;X|Y ) = 0 because R and X are independent. Similarly, we obtain

I(Y ;RΠR(X, Y )|X) = I(ΠR(X, Y );Y |XR).

Finally, we have ICµ(π) = I(ΠR(X, Y );X|Y R) + I(ΠR(X, Y );Y |XR) = Er(ICµ(πr)).

4.2 Efficient Simulation of Private Randomness with Public

Randomness Leads to Strong Compression

In this section we prove the following lemma and investigate its consequences.

Lemma 4.2.1. Letl π be a protocol on inputs from {0, 1}n×{0, 1}n such that π uses

public randomness (R) only (no private randomness). Let µ ∈ ∆({0, 1}n × {0, 1}n),

γ ∈ (0, 1/2) and k ∈ N. Then there exists a protocol τk,γ with public randomness only

and an event E such that

• CC(τk,γ) = O
(
k log CC(π)

γ

)
• P(X,Y )∼µ,R∼R(E) ≤ ICµ(π)

k
+ kγ

• conditioned on ¬E and (x, y) Alice and Bob both output a transcript ∼ Π(x, y)

Overview of the proof. The proof of Lemma 4.2.1 proceeds by applying the compres-

sion scheme of [4] to a protocol π with public randomness only. In the compressed

protocol, the players try to guess a transcript of π without communication, and then

communicate to verify their guess. In most cases, their guess is likely to have a mis-

take. Fortunately, the players can reuse the part of their previous guess that did not
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contain a mistake to construct a new guess. The crucial observation is that the ex-

pected number of times that the players need to correct their guesses in order to create

a correct transcript of π is ICµ(π). This bound is only known to hold for protocols

without private randomness. Before we describe the formal proof of Lemma 4.2.1, we

mention a useful definition and a result that will be used for fixing players’ guesses.

Definition 4.2.1. The first difference function FDIFFn : {0, 1}n×{0, 1}n → {0, 1, . . . , n}
is defined as follows:

FDIFFn(x, y) =

{
min{i | xi 6= yi} if x 6= y,

0 otherwise.

Feige et al [24] showed that the first difference function can be computed with

logarithmic communication complexity. Feige et al [24] do not state this result in

terms of communication complexity, so we say that it appears there implicitly.

Lemma 4.2.2 (Feige et al [24] (implicit)).

R(FDIFFn, ε) = O (log(n/ε)) .

Proof of Lemma 4.2.1. For each fixing of public randomness r the protocol πr is de-

terministic. Recall that πr can be viewed as a complete binary tree Tr with additional

structure (see Section 1.3 and Algorithm 1). In particular, we associate the following

objects with each node u of Tr:

1. Owner of u, i.e., either Alice or Bob.

2. pu : {0, 1}n → {0, 1} - the function of owner’s input specifying the bit to be

transmitted by the owner of u upon reaching u.

The above tree with the entire additional structure is known to both players; however,

the players do not know the entire input. Therefore, in general only the owner of u

knows the true value of pu. In general, the non owner of u only has a guess about

the value of pu. This guess is based on the joint distribution µ from which the inputs

to the players were sampled. In particular, if µ is such that X and Y are highly
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correlated, the non owner of u can simply evaluate pu on their input and get a good

estimate on the true value of pu. We shall use p̃u to denote the non owner’s belief

that pu evaluates to 1. More precisely,

p̃u(x) = PY∼µx(pu(Y ) = 1|reached u,X = x) if Bob is owner of u,

p̃u(y) = PX∼µy(pu(X) = 1|reached u, Y = y) if Alice is owner of u.

With each path v = v0, v1, . . . , vk in Tr we associate a binary string 〈v〉 ∈ {0, 1}k in

a natural way: for all i ≥ 1 〈v〉i is 0 if vi is a left child of vi−1 and 1 otherwise.

Algorithm 15 shows how to construct a protocol τγ (that depends on the parameter

γ > 0) with communication cost similar to the information cost of π.

Define τk,γ to be the protocol obtained from τγ by restricting the number of iter-

ations of the while loop on line 4 to at most k times. By Lemma 4.2.2 we have

CC(τk,γ) = O

(
k log

CC(π)

γ
+ k

)
= O

(
k log

CC(π)

γ

)
.

It is left to analyze the simulation properties of Algorithm 15. Define E1 to be the

event that there exists at least one iteration in which players learned incorrect value

of j on line 24. Define E2 to be the event that τk,γ terminates without u being a leaf of

Tr. Finally, define E = E1 ∪ E2. To analyze P (E) we shall need the following lemma.

Lemma 4.2.3. Conditioned on all executions of FDIFF protocol being correct on

line 24, the expected number of times the while loop on line 4 is executed in τγ is at

most ICµ(π).

We defer the proof of Lemma 4.2.3 to finish the rest of the current proof. By

Markov’s inequality we have P (E2|¬E1) ≤ ICµ(π)

k
. By union bound, we have P (E1) ≤

kγ. Overall, we get that

P (E) = P (E1 ∪ E2) = P ((E1 ∪ E2) ∩ E1) + P ((E1 ∪ E2) ∩ ¬E1) ≤ P (E1) + P (E2|¬E1)

≤ ICµ(π)

k
+ kγ.

Finally, note that conditioned on ¬E the players end up with u being the correct leaf
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Algorithm 15 Constructing τγ out of π

Require:
x ∈ {0, 1}n - known to Alice
y ∈ {0, 1}n - known to Bob
µ,R - known to Alice and Bob

1: Using public randomness, players jointly sample r and construct Tr
2: Using public randomness, players jointly sample tu ∈ [0, 1] for each node u ∈ Tr
3: Both players set the current node u to the root of Tr
4: while u is not a leaf do
5: Alice builds a path a = a0, . . . , ak without communicating with Bob as follows
6: a0 ← u, i← 0
7: do
8: if owner of ai is Alice then
9: ai+1 ← left child of ai if pai(x) = 0 and right child of ai otherwise
10: else
11: ai+1 ← left child of ai if tai > p̃ai(x) and right child of ai otherwise

12: i← i+ 1
13: while ai is not a leaf
14: Bob builds a path b = b0, . . . , b` without communicating with Alice as follows
15: b0 ← u, i← 0
16: do
17: if owner of bi is Bob then
18: bi+1 ← left child of bi if pbi(y) = 0 and right child of bi otherwise
19: else
20: bi+1 ← left child of bi if tbi > p̃bi(y) and right child of bi otherwise

21: i← i+ 1
22: while bi is not a leaf
23: Players run protocol from Lemma 4.2.2 with error tolerance γ
24: Players learn j, such that j = FDIFF(〈a〉, 〈b〉) with probability 1− γ
25: if j = 0 then
26: Protocol terminates
27: else
28: Owner of aj−1(= bj−1) sends the true value of paj−1

29: if the true value is 0 then
30: Players update u to the left child of aj−1

31: else
32: Players update u to the right child of aj−1
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of Tr reached from the given inputs. Since leaves are in one-to-one correspondence

with transcripts of π we are done.

Proof of Lemma 4.2.3. Let τk,γ,r denote the protocol obtained from τk,γ after line 1

has been executed, i.e., after public randomness r has been sampled. Let Si,r be the

indicator random variable indicating whether a mistake occurred at depth i of Tr,

where i ∈ [CC(π)].

Suppose that the current node in the execution of τk,γ,r(x, y) is u and that depth

of u is i. Without loss of generality, assume that u is owned by Alice and pu(x) = 1.

The probability that Bob guesses the incorrect child of node u is

1− p̃u(y) ≤ ln

(
1

p̃u(y)

)
< log

(
1

p̃u(y)

)
.

Let πir(x, y) denote the ith bit sent during the execution of protocol πr on input

(x, y). Note that πir(x, y) is not random. When (parts of) the input (X, Y ) is a

random variable, Πi
r(X, Y ) becomes a random variable, so we denote it by a capital

letter. Let π<ir (x, y) denote the concatenation of the first i − 1 bits sent during the

execution of protcol πr on input (x, y). Then we have

D(πir(x, y)||(Πi
r(X, y)|Π<i

r (X, y) = π<ir (x, y))) = log

(
1

p̃u(y)

)
.

Combining the above equations, we get that Bob guesses the incorrect child of u with

probability at most D(πir(x, y)||(Πi
r(X, y)|Π<i

r (X, y) = π<ir (x, y))). The same conclu-

sion holds in case pu(x) = 0. Similarly, if Bob owns node u, then Alice makes the

incorrect guess at node u with probability at most D(πir(x, y)||(Πi
r(x, Y )|Π<i

r (x, Y ) =

π<ir (x, y))). Therefore, we get the following:

Ex,y,{tu}(Si,r) ≤ Ex,y
(
D(πir(x, y)||(Πi

r(X, y)|Π<i
r (X, y) = π<ir (x, y)))

)
+

+ Ex,y
(
D(πir(x, y)||(Πi

r(x, Y )|Π<i
r (x, Y ) = π<ir (x, y)))

)
= I(X; Πi

r(X, Y )|YΠ<i
r (X, Y )) + I(Y ; Πi

r(X, Y )|XΠ<i
r (X, Y )).



152

Applying the chain rule for mutual information, we obtain

Ex,y,{tu}

CC(π)∑
i=1

Si,r

 =

CC(π)∑
i=1

Ex,y, ~tu(Si,r)

≤
CC(π)∑
i=1

I(X; Πi
r(X, Y )|YΠ<i

r (X, Y ))+

+

CC(π)∑
i=1

I(Y ; Πi
r(X, Y )|XΠ<i

r (X, Y ))

= I(X; Πr(X, Y )|Y ) + I(Y ; Πr(X, Y )|X)

= ICµ(πr).

Let Si be the indicator random variable indicating that a mistake occurs at step i

during the execution of τγ. Using Fact 4.1.3 we obtain

Ex,y,{tu},r

CC(π)∑
i=1

Si

 = Ex,y,{tu},r

CC(π)∑
i=1

Si,r

 ≤ Er(ICµ(πr)) = ICµ(π).

The following theorem follows easily from Lemma 4.2.1.

Theorem 4.2.4. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function, µ ∈ ∆({0, 1}n ×
{0, 1}n), and ε ∈ (0, 1/2) be a parameter. Let π be a communication protocol with

public randomness only that solves f with probability of error ≤ ε when inputs are

sampled from µ. Then we have

Dµ(f, 3ε) = O

(
ICµ(π)

ε
log

CC(π) ICµ(π)

ε2

)
.

Consequently, there exists µ such that R(f, 3ε) = O
(

infπ
ICµ(π)

ε
log CC(π) ICµ(π)

ε2

)
.

Proof. Let k = ICµ(π)

ε
and γ = ε2

ICµ(π)
. Apply Lemma 4.2.1 to π to get τk,γ with k and
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γ as specified. Thus, we have that

CC(τk,γ) = O

(
ICµ(π)

ε
log

CC(π) ICµ(π)

ε2

)
and

Px,y,{tu},r(τk,γ,r(x, y) 6= πr(x, y)) ≤ ICµ(π)

ICµ(π)/ε
+

ICµ(π)

ε

ε2

ICµ(π)
≤ 2ε.

Given that Px,y,r(πr(x, y) 6= f(x, y)) ≤ ε we get that Px,y,{tu},r(τk,γ,r(x, y) 6= f(x, y)) ≤
3ε. In particular, there exists a fixing of {tu} and r such that Px,y(τk,γ,r(x, y) 6=
f(x, y)) ≤ 3ε. Thus Dµ(f, 3ε) = O

(
ICµ(π)

ε
log CC(π) ICµ(π)

ε2

)
. The consequence part of

the statement of the theorem follows from Yao’s minimax principle.



CHAPTER 5

CONCLUSIONS

5.1 Open Problems

In this section we list several open problems inspired by the results described in pre-

vious chapters. We list the problems in a perceived order of increasing abstractness.

We derived exact and closed-form formulas for the information complexity of the

AND function with error tolerance 0. A natural question is whether this method can

be adapted to the information complexity of the AND function with some fixed error

tolerance ε > 0. This task will likely require new techniques. While the approach

from Chapter 2 should work in theory, it becomes intractable in practice with an

increased number of parameters of the information complexity function.

Open Problem 5.1.1. Compute ICµ(AND, ε) for ε > 0 exactly.

Another open problem is to extend the techniques of Chapter 2 to handle functions

with alternating levels of
∨

and
∧

.

Open Problem 5.1.2. Compute the exact communication complexity of functions with

alternating levels of
∨

and
∧

, e.g.,
∨√n
i=1

∧√n
j=1 xij ∨ yij.

With regards to Chapter 3, resolving the following problem would likely lead to

new insights in connection to the information complexity of XOR of n copies of a

function.

Open Problem 5.1.3. What is the best value of α > 0 such that ICU(IPn, ε) ≥ (1 −
αε)n?

For the Gap Hamming Distance problem, the question of interest is whether its

information complexity approaches the trivial bound as the error tolerance goes to 0

under a natural setting of parameters.

154
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Open Problem 5.1.4. Is it true that for all ε > 0 there exist δ > 0 and measure µ such

that ICµ(GHDn,n/2,δ
√
n, ε) ≥ (1− ε)n?

With regards to Chapter 4 the main open problem is to find the exact relationship

between ICpub
µ (f, ε) and ICµ(f, ε).

Open Problem 5.1.5. Quantify the relationship between ICpub
µ (f, ε) and ICµ(f, ε).

In Chapter 2 we described a partial differential equation formulation of information

complexity. We believe that this observation deserves further attention. The following

questions need to be addressed first:

Open Problem 5.1.6. Does the system of PDEs describing information complexity

always have a solution? Is the solution unique? If the system of PDEs is, in fact, a

reasonable characterization of information complexity, then what properties of infor-

mation complexity can be inferred from the rich area of elliptic PDEs?

As we briefly mentioned in the introduction, it is rather difficult to obtain strong

lower bounds in the number-on-the-forehead (NOF) multiparty communication com-

plexity model. The only known methods for such lower bounds are based on combina-

torial and analytic techniques. In particular, at present there are no viable candidates

for the concept of information complexity in the NOF setting. There are some known

obstacles towards this goal. If one tries to preserve the direct sum property when

extending the definition of information complexity from 2 players to k playes, one

is led to the notion of randomness-on-the-forehead. However, it is known that with

randomness-on-the-forehead information complexity trivializes – it becomes constant

for all functions. Thus, the following open problem is one of the central ones in the

area of information complexity.

Open Problem 5.1.7. Define a notion of information complexity for the NOF multi-

party communication complexity. This notion should obey the direct sum property,

or some reasonable weakening of the direct sum property, and it should provide a

reasonable lower bound for the k-party AND function – for example, Ω(1/2k).

We finish with the most abstract and ambitious open problem. A posteriori,

one can view the development of information complexity as the following program:
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consider a complexity measure – communication complexity, define a lower bound in

terms of informational quantities such that this lower bound has nice properties (e.g.,

direct sum), use techniques from information theory (e.g., chain rule) to reprove

and improve the known results regarding the original complexity measure, prove

new results regarding the complexity measure. The ambitious open problem is to

implement this program for other complexity measures in other areas of complexity

theory.

Open Problem 5.1.8. Reprove (improve?) known lower bounds in other areas of

complexity theory via information-theoretic arguments. Find suitable information-

theoretic measures for computational models other than communication.

5.2 Conclusions

We described three contributions that establish new connections between communi-

cation complexity and information complexity.

In the first contribution, we computed the information complexity of the smallest

nontrivial two-party function: the AND function. This led to new techniques in

communication complexity and information complexity and ultimately allowed us to

compute the exact communication complexity of several functions on n-bit inputs.

Among other results, we showed that the exact communication complexity of the set

disjointness function on n-bit inputs is CDISJn + o(n), where CDISJ ≈ 0.4827. Such

precise statements are quite common in the area of information theory, but were not

known in the area of communication complexity prior to this work. The significance

of this result is that information complexity exactly captures the minimum amount

of communication that is necessary and sufficient to solve a whole class of functions

– the
∨

-type functions.

In the second contribution, we show that lower bounds on communication com-

plexity of self-reducible functions imply lower bounds on the information complexity

in a black-box manner. Numerous previous works used information complexity as

a lower bound method for communication complexity, and we demonstrate that the

connection between information complexity and communication complexity is a two-
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way connection for the self-reducible functions. We highlighted this connection by

proving strong lower bounds on the information complexity of GHD and IP functions.

In the third contribution, we proved that protocols using only public randomness

and having small information cost can be efficiently compressed in terms of communi-

cation. This implies that if one hopes to prove strong separations between information

and communication complexities, then one has to crucially rely on private random-

ness, as in [25]. If one wishes to disprove strong separations between information and

communication complexities (to the extent not ruled out by [25]) then it suffices to

show how to simulate private randomness with public randomness without increasing

information complexity too much.

The first and second contributions are based on the joint work with Braverman,

Garg, and Weinstein. The third contribution is my work alone.
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