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Abstract. Algorithms based on local search are popular for solving
many optimization problems including the maximum satisfiability prob-
lem (MAXSAT). With regard to MAXSAT, the state of the art in per-
formance for universal (i.e. non specialized solvers) seems to be variants
of Simulated Annealing (SA) and MaxWalkSat (MWS), stochastic lo-
cal search methods. Local search methods are conceptually simple, and
they often provide near optimal solutions. In contrast, it is relatively rare
that local search algorithms are analyzed with respect to the worst-case
approximation ratios. In the first part of the paper, we build on Mas-
trolilli and Gambardella’s work [14] and present a worst-case analysis
of tabu search for the MAX-k-SAT problem. In the second part of the
paper, we examine the experimental performance of determinstic local
search algorithms (oblivious and non-oblivious local search, tabu search)
in comparison to stochastic methods (SA and MWS) on random 3-CNF
and random k-CNF formulas and on benchmarks from MAX-SAT com-
petitions. For random Max-3-SAT, tabu search consistently outperforms
both oblivious and non-oblivious local search, but does not match the
performance of SA and MWS. Initializing with non-oblivous local search
improves both the performance and the running time of tabu search. The
better performance of the various methods that escape local optima in
comparison to the more basic oblivious and non-oblivious local search
algorithms (that stop at the first local optimum encountered) comes at
a cost, namely a significant increase in complexity (which we measure
in terms of variable flips). The performance results observed for the un-
weighted MAX-3-SAT problem carry over to the weighted version of the
problem, but now the better performance of MWS is more pronounced.
In contrast, as we consider Max-k-Sat as k is increased, MWS loses its
advantage. Finally, on benchmark instances, it appears that simulated
annealing and tabu search initialized with non oblivious local search out-
perform the other methods on most instances.

1 Introduction

The maximum satisfiability problem is of great interest in both theoretical[8]
and applied computer science[18]. The maximum satisfiability problem is NP-



hard. Current state-of-the-art algorithms can solve the problem optimally within
a reasonable amount of time only for input instances of moderate size[5]. These
methods are mostly based on branch and bound techniques with rather sophis-
ticated rules that try to exploit the structure of the problem. MAX-SAT appli-
cations often involve instances of far larger scale than what exact solvers can
handle. As a result, a number of approximation algorithms have been developed
[6]. Local search based algorithms have gained popularity for their conceptual
simplicity and approximation performance.

In the exact MAX-k-SAT problem each clause is restricted to have exactly
k literals, and the same variable cannot repeat within the same clause whether
negated or not. In the weighted version of the problem, each clause has a real-
valued positive weight and the objective is to find a truth assignment that max-
imizes the total weight of satisfied clauses.

A “basic” local search algorithm for the MAX-SAT problem starts with an
arbitrary truth assignment. The neighborhood of a solution consists of all the
truth assignments obtained by flipping the truth value of one or a small number
of the variables. Most local search algorithms simply use a Hamming distance
1 neighborhood. At each step, the basic local search algorithm looks through
the neighborhood for a truth assignment that increases the number of satisfied
clauses. If it finds such an assignment, the algorithm flips the value of the corre-
sponding variable(s) and continues. If it does not find an improving assignment,
the algorithm terminates.

Many heuristic methods are aimed at improving the performance of the basic
local search, such as tabu search, random restarts, plateau moves, boosting, and
other methods for escaping local optima [1]. In spite of the popularity and success
of local search methods, these algorithms are rarely analyzed with respect to
either worst-case or “average case” performance. Mastrolilli and Gambardella
seem to be the first to analyze the worst-case performance of tabu search for
the unweighted exact MAX-2-SAT problem[14]. In the first part of this paper,
we extend their work to the weighted exact MAX-k-SAT problem. Tabu search
guarantees a better approximation ratio than “oblivious local search” but loses
significantly ta the Khanna et al [13]) “non-oblivious local search” that uses a
related potential function to search through the neighborhood. In the second part
of the paper, we study the experimental performance of local search methods
for the MAXSAT problem. Our experiments indicate that tabu search and the
stochastic local search methods consistently outperform both the oblivious and
non-oblivious versions of basic local search. However, initializing tabu search
with the truth assignment obtained by non-oblivious local search leads to results
more competitive with the stochastic methods. But perhaps of equal interest is
the fact that tabu search and the stochastic methods require substantially more
time, and if the goal is simply to obtain a reasonable approximation then the
basic methods (and especially non-oblivious local search) have an advantage in
terms of significantly reduced time complexity.



2 Local Search Algorithms for MAX-k-SAT

The input for each of the following algorithms is a boolean formula in CNF with
m clauses over n variables. For weighted MAXSAT, a weight function is also
part of the input.

2.1 Oblivious Local Search

For a given truth assignment τ , its one-flip neighborhood is the set of all truth
assignments at Hamming distance one from τ . Oblivious local search starts with
an arbitrary fixed truth assignment. At each step, it searches the one-flip neigh-
borhood of the current assignment for neighbors that achieve a better value of
the given objective function. If such a neighbor exists, the algorithm replaces
the current truth assignment with a truth assignment from the one-flip neigh-
borhood that satisfies the most number of clauses. Ties are broken arbitrarily.
If such a neighbor does not exist, oblivious local search terminates.

For unweighted MAXSAT the objective function is simply the number of
satisfied clauses. The running time of oblivious local search is polynomial in
this case, as each step improves the value of the objective function by at least
one, and the optimal value is bounded above by m. For weighted MAXSAT
the objective function is the total weight of the satisfied clauses. Without any
restrictions on weights, the running time of oblivious local search is no longer
necessarily polynomial. This can be remedied by insisting that improvements at
each step are sufficiently large.

2.2 Non-Oblivious Local Search

The idea behind non-oblivious local search [13] is to introduce a related potential
function and use it in the neighborhood search. This potential function gives
preference to the clauses satisfied by many literals, as they are likely to stay
satisfied even if the algorithm flips many variables in the future. For example,
let Cj denote the set of clauses satisfied by j literals. Then the potential function
for MAX-2-SAT is 3/2|C1|+ 2|C2|. For the case of MAX-k-SAT with k > 2, the
reader is referred to Khanna et al paper [13]. Replacing |Cj | by the total weight
of Cj in the potential function provides a natural extension of this approach to
the weighted case of MAXSAT. The running time analysis of this algorithm is
similar to that of oblivious local search.

2.3 Tabu Search

Oblivious and non-oblivious local search terminate as soon as they achieve a local
optimum for the given objective (respectively, the related potential) function.
Tabu search offers a determinstic method for attempting to improve upon the
current local optimum. Each iteration of tabu search consists of two stages. In
the first stage, given a current truth assignment, oblivious local search is used



to compute a local optimum. In the second stage, tabu search maintains an
additional data structure - a list of size t. This list is commonly referred to as
a taboo list. and t is commonly called taboo tenure. When tabu search reaches a
local optimum, it tries to escape this local optimum in phase 2 as follows. The
algorithm records (xi, ti) pairs for the last t steps in the list, where xi is a variable
flipped at step ti. During some of these steps, the current truth assignment can
worsen, during other steps it can improve. If at some point, the current truth
assignment improves over the local optimum found in stage 1, then phase 1 is
repeated starting from the improved truth assignment. If during phase 2, tabu
search does not find a solution that improves over the current local optimum,
the algorithm terminates. Each step of tabu search in the escape phase consists
of flipping a variable. The algorithm follows the following rules (in given order)
to decide which variable to flip.

aspiration condition - if flipping a variable improves the best value of the
objective function found so far, then the best such variable is chosen;

taboo - if there are variables that appear in unsatisfied clauses and that were
not flipped in the last t steps, i.e. they are not in the taboo list, the algorithm
chooses the best such variable;

LRU - if all variables that appear in unsatisfied clauses also appear in the taboo
list, then the least recently used such variable is selected.

In the above rules, the best variable means that flipping it results in the
largest increase of the objective function, or smallest decrease in the objective
function, if no variable can improve it. All ties are broken arbitrarily. Taboo
tenure controls the number of allowed steps during the escape phase. Mastrolilli
and Gambardella argued that n is a reasonable choice for taboo tenure. The proof
of a worst-case approximation ratio of tabu search relies on this requirement.

The same algorithm can be used for solving the weighted MAX-k-SAT prob-
lem, except that the weights of clauses are used in consideration of which variable
to flip. In the unweighted case, it is easy to see that tabu search with taboo tenure
of n runs in polynomial time. It improves the objective by at least one in every
n steps, and m is a bound on the optimal value of the objective function. As
before, in the weighted case we can guarantee strongly polynomial running time
by considering only large enough improvement for the stopping conditions in
phase 1.

2.4 Simulated Annealing

We present a version of simulated annealing (SA) that appears in [17] and was
found to work well for the satisfiability problem. a randomized algorithm. SA
was motivated by an analogous physical process, and the parameters of this al-
gorithm have a corresponding semantic meaning. SA keeps track of the current
“temperature”. Initially, the temperature is high and the algorithm explores the
solution space uniformly at random. As the temperature starts to cool down, SA
gradually starts to prefer solutions that achieve better values of the objective



function, concentrating on more promising parts of the solution space. The rule
that specifies how temperature changes with time is called temperature sched-
ule. Our implementation is specified by three parameters: 1) MT - maximum
temperature that the algorithm starts with, 2) DR - decay rate, which con-
trols by how much the temperature drops from step to step, 3) mT - minimum
temperature, at which SA stops. SA is initialized with an arbitrary truth as-
signment and proceeds in steps. At step s SA computes the current temperature
T = MT exp(−s ·DR). If T < mT , then SA terminates. Otherwise, it computes
pi = 1/(1+exp(−∆(i)/T )), where ∆(i) is the change in the objective function if
variable i is flipped. It then flips variable i with probability pi. After all variables
have been processed, SA moves to the next step s + 1. We use the parameters
MT = 0.3,mT = 0.01, and DR = 1/n as suggested in [17].

2.5 MaxWalkSat

There are many variants of maxwalksat algorithms. In general, given any current
truth assignment for the unweighted MAXSAT problem, an unsatisfied clause is
chosen uniformly at random among all unsatisfied clauses. Various heuristics are
then used to select a literal from this clause and the truth value of that literal
is flipped. Our experiments indicate that overall, the “productsum” heuristic
performs best, and hence we restrict our attention to this heuristic. Suppose
MWS decides to choose a literal in a clause C = z1 ∨ z2 . . . ∨ zk. Let b(i) =
the number of clauses that become unsatisfied if the literal zi is flipped. Then

“productsum” assigns a value vi =
(

∏

j 6=i b(j)
) (

∑

j 6=i b(j)
)

for each literal zi in

clause C and the flips literal zi with probability vi
P

1≤j≤k
vj

. In the weighted case,

MWS considers clauses of highest weight to be “hard” clauses. Given any truth
assignment, it chooses a random unsatisfied hard clause and applies “pickprod-
uctsum” heuristic to it with b(i) = the weight of clauses that become unsatisfied
if zi is flipped. If all hard clauses are satisfied, MWS chooses a random unsatis-
fied clause and applies “pickproductsum” heuristic. After this step, some hard
clauses might become unsatisfied, and MWS will try to fix them in the very next
step.

3 Background

Unless otherwise stated, MAX-k-SAT will mean exact MAX-k-SAT. Oblivious
local search with 1-flip neighborhood achieves the approximation ratio of k

k+1

for the unweighted (and weighted) MAX-k-SAT problem, and this ratio is tight

[8]. Non-oblivious local search provides a better worst-case guarantee of 2
k−1

2k for
the same problem [13]. For the MAX-2-SAT problem, tabu search was shown
to have the tight approximation ratio of 3

4
[14]. This ratio matches that of non-

oblivious local search for MAX-2-SAT, which raises a question as to whether
the two algorithms have the same approximation ratio for MAX-k-SAT for all
k ≥ 2. This paper answers this qusestion in negative, showing that tabu search



has a weaker approximation guarantee than non-oblivious local search for MAX-
k-SAT with k > 2.

A general inapproximability result says that if P 6= NP , then 2
k−1

2k is (es-
sentially) the best possible approximation ratio achievable by any polynomial
time algorithm for MAX-k-SAT with k > 2 [9]. A simple randomized algorithm,

the one that picks a truth assignment uniformly at random, satisfies 2
k−1

2k of all
clauses in the exact MAX-k-SAT formula in expectation. Derandomization of
this algorithm leads to a simple greedy algorithm achieving the approximation

ratio of 2
k−1

2k [11]. The case k = 2 is special in the MAX-SAT world. Currently,
the best approximation ratio for MAX-2-SAT is .931 (Feige and Goemans[7])
using an algorithm based on semidefinite programming relaxation and round-
ing. An inapproximability result for MAX-2-SAT states that for any ǫ > 0 it is
NP-hard to approximate MAX-2-SAT within a factor of 21

22
+ ǫ ≈ 0.955 + ǫ[9].

A natural extension of the 1-flip neighborhood is a larger p-flip neighborhood
for p > 1. The size of this neighborhood is

∑p

j=1

(

n

j

)

for a formula over n vari-
ables. Even for “small” constant values of p, it still requires a substantial amount
of time to search through the entire neighborhood, and experimentally the qual-
ity of solutions seems to be not much better than those obtained through a 1-flip
neighborhood. From the worst-case point of view, [13] shows that oblivious local
search with an o(n)-flip neighborhood has the tight approximation ratio of 2

3
for

MAX-2-SAT - the same as achieved with a 1-flip neighborhood. In general, these
larger neighborhoods are not practical, and so this paper focuses on algorithms
with the 1-flip neighborhood.

The second part of this paper deals with an empirical evaluation of different
algorithms based on local search. We consider both benchmark examples from
the “Second Evaluation” of MAX-SAT solvers (see [10] for a detailed description
of these benchmark instances) and random k SAT instances. Random exact k
SAT instances were generated by choosing formulas uniformly at random with
the clause density around the estimated phase transition. There is a discrepency
between what has been proven rigorously about the threshold values for k SAT in
contrast to what has been experimentally shown (and justified by well motivated
analysis). See [4], [15] and [3] for current results concerning threshold values. The
situation for 3-SAT represents a glaring gap in our current knowledge. namely,
the best lower bound c3 (for which clause density c < c3 implies satisfiability with
high probability) is a constructive bound c3 > 3.52 obtained by a myopic (i.e.
greedy) algorithm [12]. The provable upper bound is c3 < 4.51. Experimentally,
the conjectured threshold is approximately 4.24 (see [16]).

4 Worst-Case Analysis of Tabu Search

Our version of tabu search, as described in Section 2, uses the length of taboo
list equal to the number of variables. Tabu search contains oblivious local search
as a subroutine, so an analysis of oblivious local search occurs as a part of
worst-case analysis of tabu search. In the unweighted (and also weighted) case
of the exact MAX-k-SAT problem, oblivious local search achieves a worst-case



approximation ratio of k
k+1

. In fact, Khanna et al [8] prove the following stronger
result on the “totality ratio”.

Lemma 1 At a local optimum, oblivious local search satisfies at least k
k+1

of the
total number of clauses in the formula.

Khanna et al show that the k
k+1

bound is tight. Adapting the proof of Lemma

1 to tabu search, Mastrolilli and Gambardella showed a 3

4
approximation guar-

antee of tabu search for the MAX-2-SAT problem. We extend their result to the
MAX-k-SAT problem for all k ≥ 2.

Theorem 1 Tabu search outputs a truth assignment that satisfies at least k+1

k+2

of the total number of clauses.

Proof. Suppose, oblivious local search is given a formula φ in k-CNF form with
m clauses over n variables. The initial truth assignment is X0. Let Xs be the
truth assignment output by tabu search and let Ct

j denote the set of clauses that
have exactly j literals satisfied by Xs at step t. By the halting condition, the
algorithm terminated at step s+n. There exist t, such that 0 < t ≤ n, and each
variable from an unsatisfied clause at step s + t was flipped exactly once during
the last t steps. To prove this claim, consider two possibilities at step s + n. If n
variables were flipped during last n steps, then the claim follows trivially with
t = n. If less than n variables were flipped between steps s and s+n, then by the
pigeonhole principle at least one variable was flipped twice during last n steps.
In this case, choose a variable that is flipped the second time at the earliest step
and let that step be s + d + 1.

Then t = d satisfies the claim. To see that, consider step s + d. This is the
step immediately before the chosen variable was flipped the second time. The
algorithm had to repeat a variable, because all variables from unsatisfied clauses
were in the taboo list at step s + d. In particular, each of these variables was
flipped at least once during the d last steps. The truth values could not be flipped
more than once, since the earliest step, when a variable is flipped for the second
time, is s + d + 1. Then at step s + d all the variables occuring in unsatisfied
clauses were flipped exactly once during last d steps, as required.

Taking t as in the above claim, a clause with an unsatisfied literal at step s is
satisfied by that literal at step s+t. Then a clause at step s+t is unsatisfied by all
literals only if it is satisfied by all literals at step s, i.e. Cs+t

0 ⊆ Cs
k. This provides

a lower bound on the number of Ck-clauses at the solution: |Cs
0 | ≤

∣

∣Cs+t
0

∣

∣ ≤
|Cs

k|, where the first inequality follows because the solution does not improve in
between steps s and s + n. Together with Xs being a local optimum and the
Lemma 1 , we get m = Σk

i=0 |C
s
i | ≥ |Cs

0 | + |Cs
1 | + |Cs

k| ≥ |Cs
0 | + k |Cs

0 | + |Cs
0 | =

(2 + k) |Cs
0 |. Thus |Cs

0 | ≤
m

k+2
and the theorem follows.

The approximation ratio guaranteed by tabu search for MAX-2-SAT matches
that of non-oblivious local search, suggesting that tabu search might have the
same worst-case performance as non-oblivious local search. However, we show
that for k > 2, although tabu search improves over oblivious local search, it has
a significantly weaker approximation guarantee than non-oblivious local search.



Theorem 2 The worst-case approximation (and totality) ratio of tabu search
with tabu tenure n is at most 3k−3

3k−2
of the total number of clauses.

Proof. Fix k. The goal is to construct a satisfiable formula, such that the truth
assignment that tabu search finds satisfies 3k−3

3k−2
of the total number of clauses in

the formula. The formula is over 2k−1 variables, which we denote x1, x2, . . . , x2k−1.
The formula consists of 5 sets of clauses:

S1 = {x̄1 ∨ x̄2 ∨ . . . ∨ x̄k},

S2 =
k
⋃

i=1

{xi ∨
k+i−1

∨

j=i+1

x̄j},

S3 =
2k−2
⋃

i=k+1

{xi ∨
2k−1
∨

j=i+1

x̄j ∨
k−i
∨

j=1

xj},

S4 =
k−2
⋃

i=1

{x̄i ∨
i+k−1

∨

j=i+1

xj},

S5 = {x1 ∨ x2 ∨ . . . ∨ xk−1 ∨ x2k−1}.
Once this formula is given, the adversary chooses the initial truth assignment

and a variable to flip in case of a tie. The initial truth assignment is the one
with all variables set to true. Under this truth assignment one clause from S1 is
unsatisfied, and all the other clauses in the formula are satisfied. The claim is
that during the next n = 2k − 1 steps tabu search does not improve upon the
initial truth assignment, i.e. at least one clause remains unsatisfied at all times.
This would prove the theorem, since tabu search stops after n steps, the formula
contains |S1| + |S2| + |S3| + |S4| + |S5| = 1 + k + (k − 2) + (k − 2) + 1 = 3k − 2
clauses, and an optimal truth assignment satisfies all the clauses. For example,
the truth assignment that assigns value true to x1 and false to all the other
variables is an optimal one, as can be readily checked.

To prove the claim, we trace the execution of tabu search step by step.

Table 1. Execution of tabu search step by step

Step No Allowed variables to flip Chosen variable Taboo list

0 x1, x2, . . . , xk x1 ∅
1 ≤ i ≤ k xi+1, xi+2, . . . , xi+k−1 xi+1 {x1, . . . , xi}

k + 1 ≤ i ≤ 2k − 2 xi+1, xi+2, . . . , x2k−1 xi+1 {x1, . . . , xk, . . . , xi}

In Table 1, allowed variables to flip are the variables that occur in unsatisfied
clauses, but not in the taboo list. The chosen variable is the one chosen by the
adversary. It is straightforward to verify that at each step exactly one clause is
unsatisfied, that flipping any of the allowed variables does not change this con-
dition, and that aspiration conditions never hold. During the execution of tabu
search, the truth values of variables will be flipped in order x1, x2, . . . , x2k−1.
In general, S1 contains an initially unsatisfied clause. Clauses from S2 are re-
quired for flipping truth assignments of variables x1, . . . , xk. Clauses from S3 are



required for flipping truth values of variables xk+1, . . . , x2k−1. Clauses from S4

guarantee that aspiration conditions are never met. Finally, the clause from S5

is unsatisfied after the execution of tabu search, proving the claim.

5 Experimental Results

In addition to the three deterministic and two randomized algorithms specified in
section 2, we also consider tabu search when first initialized with a truth assign-
ment found by non-oblivious local search 3. We consider a system-independent
definition of the running time of a local search algorithm, namely simply count-
ing the number of variable flips. The complexity of our determinstic algorithms
is determined when a local optimum is reached. In contrast, for simulated an-
nealing (SA), the complexity is bounded by the setting of parameters and for
MaxWalkSat (MWS), the stopping time is determined by an ad-hoc limit on the
number of flips. All algorithms will immediately terminate if a satisfying assign-
ment is found. Termination for the SA and MWS algorithms does not generally
coincide with a local optimum.

The relative performance of all algorithms is evaluated with respect to both
benchmark and random exact MAX-k-SAT instances. To generate a random
formula, we first fix n = number of variables, m = number of clauses, and
k = number of literals per clause. Then for each clause, k variables are chosen
uniformly at random without replacement, and each of these variables is negated
with probability 1

2
.

We first compare the performance of algorithms for random instances of the
unweighted MAX-3-SAT problem. The number of variables in a formula varies
from 50 to 1100 in increments of 50. The number of clauses m is always chosen to
be slightly above the conjectured phase transition for 3-SAT, more specifically,
m = 4.25n. For a given n, the performance of each algorithm is averaged over 500
trials. Each trial is an execution of the algorithm on a random formula starting at
the all-variables-false truth assignment. For large n, it is not feasible to compute
the exact solution and, consequently, the true approximation ratio. Instead, we
calculate the “totality ratio” of the satisfied clauses by a given algorithm to the
total number of clauses. This is only a lower bound on the approximation ratio,
but given our choice of clause density around the phase transition, the formulas
are “almost” satisfiable, so the true maximum is around m, and the computed
bound is a good estimate of the true approximation ratio. All algorithms are
excuted on the same formulas with the same initial truth assignment which
allows for a relative comparison of performance. Given that the totality ratios
are close to 1, we compare performance in terms unsat ratio, the “unsatisfiability
ratio” defined as the ratio of the number of unsatisfied clauses to the total number
of clauses.

3 We excluded experimental results of a simple greedy algorithm based on de-
randomizing the naive randomized method since the greedy algorithm did not com-
pare favorably to any of the other methods. Furthermore initalizing other methods
using this greedy algorithm did not substantially improve performance.
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Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local
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Fig. 2. Average completion time for executing on random instances of Max-3-Sat.

search and the hybrid method might be efficient choices when only a “good”
approximation is needed.
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Fig. 3. In this experiment, algorithms run for exactly the same number of flips as the
specified deterministic algorithm

We next consider weighted MAX-3-SAT instances. Here we fix the number of
variables to be n = 500, and the number of clauses is again 4.25× n. A random
formula is generated, and then for each clause a weight value is chosen uniformly
at random between one and a prescribed maximum weight value. The unsat ratio
now refers to the ratio of the weight of unsatisfied clauses to the total weight of
all clauses. This maximum weight will be the only parameter that varies in figure
4. As before, the performance of each algorithm is averaged over 500 trials. We
observe that the performance of MWS now becomes dramatically better than
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Fig. 4. Average performance when executing on random weighted instances of exact
Max-3-Sat.

the other algorithms. As explained in section 2.5, MWS is designed to focus
on weighted clauses and is successful in this regard. The unsat ratio is for the
most part decreasing as a function of the specified max weight W having (for
example) ratio .000245 at W = 10 and ratio .000153 at W = 100.

The performance of all deterministic methods and MWS improves as the
maximum weight attainable in a formula increases from 1 to 30. In contrast,
over the same range of maximum weight values the performance of simulated
annealing declines, and as the weights grow, the deterministic hydrid method
slightly outperforms SA although it remains significantly worse that MWS. An-
other phenomenon concerns relative performances of oblivious and non-oblivious
local searche. Oblivious local search somewhat outperforms its non-oblivious
counterpart in formulas with large enough weights. As the weights of clauses
grow, the scaling weights used in the potential function have less and less effect,
to the point that they hurt the performance of the algorithm.

Finally with regard to random SAT instances we consider Max-k-Sat for
k > 3. Similar to the random Max-3-Sat instances, we choose the number of
clauses to be m = c ·n where c is slightly larger that ck, the estimated threshold
[15] for random k-SAT. Achlioptas et al [2] analyze how random 3-SAT differs
from larger values of k as the landscape of satisfiable random k-SAT formulas
fracture (into many small connected components) around the threshold value
for larger values of k. We observe in figure 5 a dramatic change in the relative
performance of algorithms as k increases. Of course, for large k, since a random
assignment will (in expectation) satisfy all but a fraction 1

2k of the clauses in
an exact k-SAT formula, the unsat ratio approaches 0 as k grows. For k ≥ 5,
tabu search and the hybrid method outperform all other methods. As further
evidence that the performace of MWS suffers as k increases, in figure ?? we
consider weighted instances of Max-k-Sat with weights chosen uniformly in the
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Fig. 5. Average performance when executing on random instances around the threshold
of exact k-SAT (3 ≤ k ≤ 7).

range [1, 10]. Again in marked contrast to the weighted Max-3-Sat case, MWS
begins to be outperformed at k ≥ 5 and again tabu search and the hybrid method
yield the best performance. The alternating performance (between even and odd
k) performance of non oblivious local search is an interesting phenomena that is
overcome when followed by tabu search.

Moving away from random SAT instances we considered the relative perfor-
mance of algorithms on benchmark instances. In contrast to many of the results
concerning random instances, MWS does not fare as well as SA or our hybrid
algorithm. We ran the six algorithms on the benchmarks from the Second Evalu-
ation of MAX-SAT Solvers (MAX-SAT 2007) and recorded how many times one
technique improved over another one. The benchmarks contain instances gener-
ated in many different ways. Some are random just like the ones considered in
the previous experiments, others were obtained by encoding different problems
(for example, MAX-CUT) as an instance of the MAX-SAT problem. In con-
trast to many of the results concerning random instances, MWS does not fare
as well as SA or our hybrid algorithm. In table 5 we see two off-diagonal zeros
where one technique is subsumed by the other, namely, oblivious local search
is a part of tabu search, and non-oblivious local search is a part of the hybrid
algorithm. All the other off-diagonal entries are non-zero. For some instances
even oblivious local search, arguably the weakest of the considered algorithms,
improves over simulated annealing and MWS, arguably the strongest of the
algorithms for random 3 SAT instances. The hybrid algorithm improves over
the basic non-oblivious local search in most instances, which shows the useful-
ness of the tabu phase. As for the two major rivals, simulated annealing and
the hybrid algorithm, their performances are similar with simulated annealing
having an advantage. The hybrid method improves over oblivious local search.
non-oblivious local search and MWS slightly more often than does simulated
annealing while simulated annealing improves over tabu search more often than
the hybrid method.



OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

6 Future work

We conclude with several open questions suggested by this work. A tight bound
on the approximation or totality ratio of tabu search still requires closure. For
all local search methods, rather than worst case approximation (totality) ratios,
it would be more insightful to be able to computer expected ratios where the
expectation is taken over random initial assignments. A more challenging di-
rection is to provide theoretical results corresponding to the experiments from
the second part of the paper. For example, what is the expected approximation
ratio achieved by any of the deterministic local search based methods under a
uniform random model of k SAT formulas with clause densities near the hypoth-
esized threshold? In particular, for densities above the known algorithmic lower
bound [12] can anything be said about the expected MAXSAT approximation?
If the length of the taboo list is infinite, tabu search enters a cycle. What is the
expected number of steps that tabu search makes before entering a cycle and
what is the expected length of a cycle? Is there a theoretical explanation for
why non-oblivious local search seems to provide such a subtantial improvement
when used to initialize tabu search but does not seem to help (for example)
MaxWalkSat.
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7 Appendix

Appendix
There are many additional experiments that we performed that have not

been included because of space limitations.

7.1 Many random initializations

A deterministic local search algorithm starts with an initial assignment and then
converges to a local optimum. If the same method is initialized with many dif-
ferent random truth assignments, it may converge to better local optimum. To
normalize the performance of our deterministic methods agianst that of Sim-
ulated Annealing, we ran the deterministic methods on many initial random
assignments so as to match the number of flips by SA. iFor small n, this simple
randomization does improve the performance of the considered algorithms, as
Figure 6 shows. However, with growing n the search space becomes exponen-
tially large. Each technique requires many executions with different initial truth
assignments to explore such a search space with any thoroughness and it would
appear that “good initializations” are not very dense in the space of all solutions.
Simulated Annealing (and also MaxWalkSat) has a more intelligent guidance in
its search through the solution space, so it uses computational resources effi-
ciently. Figure 6 shows that SA achieves a better approximation ratio than any
of the deterministic algorithms with multiple restarts for values of n larger than
200.

7.2 Lenthening the taboo list

One of the reasons why non-oblivious local search followed by tabu search failed
to perform as well as MaxWalkSat in the previous experiment is that random
restarts do not take into account previous search history. Tabu search algorithms
have one extra parameter that may affect both the running time and the approx-
imation ratio. This parameter is the length of taboo list. In our next experiment,
the length of taboo list for the two tabu search methods is adjusted to guaran-
tee that each technique performs at least as many computations as simulated
annealing does.

Increasing the length of taboo list does not improve the performance of the al-
gorithms. Recall that the version of tabu search considered in this paper records
only recently flipped variables in the taboo list. Thus, the algorithm might enter
a loop long before visiting every truth assignment in the search space. To see
that this is exactly what happens in this experiment, we modified the stopping
condition of tabu search, so that it terminates when a loop is detected. Theoret-
ically this makes the worst-case running time exponential, although in practice
the modified algorithms always terminated quickly. The altered tabu search has
a longer running time than simulated annealing, but even for the formulas with
500 variables, the modified tabu search terminated in about 25,000,000 compu-
tations of the delta function, which is nowhere close to the worst-case running
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Fig. 6. Performance of simulated annealing versus other techniques with multiple
restarts.

time of 2500. The performance of the altered algorithms did not change com-
pared to their standard implementations described in Section 2. This suggests
that the length of taboo list does not provide a smooth tradeoff between the
running time and the performance of a tabu search algorithm.


