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Abstract

We use self-reduction methods to prove strong information lower bounds on two of the most studied
functions in the communication complexity literature: Gap Hamming Distance (GHD) and Inner Product
(IP). In our first result we affirm the conjecture that the information cost of GHD is linear even under
the uniform distribution, which strengthens the Ω(n) bound recently shown by [16], and answers an open
problem from [10]. In our second result we prove that the information cost of IPn is arbitrarily close
to the trivial upper bound n as the permitted error tends to zero, again strengthening the Ω(n) lower
bound recently proved by [9].

Our proofs demonstrate that self-reducibility makes the connection between information complexity
and communication complexity lower bounds a two-way connection. Whereas numerous results in the
past [12, 3, 4] used information complexity techniques to derive new communication complexity lower
bounds, we explore a generic way in which communication complexity lower bounds imply information
complexity lower bounds in a black-box manner.

1 Introduction

The primary objective of this paper1 is to continue the investigation of the information complexity vs. commu-
nication complexity problem. Informally, in a two-party setting, communication complexity (CC) measures
the number of bits two parties need to exchange to solve a certain problem. Information complexity (IC)
measures the average amount of information the parties need to reveal each other about their inputs in
order to solve it. IC is always bounded by CC from above. A key open problem surrounding information
complexity is actually understanding the gap between the two:

Problem 1.1. Is it true that for all functions f it holds that IC(f) = Ω(CC(f))?

The problem, and where it fits more broadly within communication complexity is discussed in [5]. The
above question is a natural question in the context of coding theory, where it can be re-interpreted as asking
whether an analogue of Huffman coding holds for interactive computation. Shannon’s original insight [20]
was that the (amortized) number of bits one needs to send in order to transmit a message X equals to the
amount of information it coveys – its entropy H(X). Huffman coding [15] can be viewed as a one-copy
version of this result: even when sending one instance of the message, we can guarantee expected cost
of ≤ H(X) + 1 – i.e. messages can be compressed into their information content plus at most one bit.
Problem 1.1 can be viewed as a quest for an interactive analogue of Huffman coding: can a long (interactive)
communication protocol that solves f but only conveys IC(f) information be compressed in a way that only
requires O(IC(f)) communication? While Problem 1.1 has been answered in the negative by [14], it still
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remains an open problem to understand the relation between communication and information complexity
in the full generality. For example, for what functions is the answer to Problem 1.1 positive? Is there
a polynomial (in the input size) factor gap between information and communication complexity for some
function?

Another direction which motivates Problem 1.1 are direct sum problems in randomized communication
complexity [12, 3, 4, 8]. It turns out that the analogue of the Shannon’s amortized coding theorem does in fact
hold for interactive computation [8], asserting that limk→∞ CC(fk)/k = IC(f). Thus, understanding the
relationship between IC(f) and CC(f) is equivalent to understanding the relationship between computing
one copy of f and the amortized cost of computing many copies of f in parallel, which is the essence of
the direct sum problem. Again the negative result in [14] rules out only the strongest possible direct sum
theorem (there result implies that there is a function f for which CC(fn) ≤ O( n

log(n)CC(f))), but does not

rule out somewhat weaker nontrivial direct sums.
Yet another motivation for considering the information complexity of tasks comes from the study of

private two-party computation [17, 19, 1]. In this setting Alice and Bob want to compute a function f(x, y)
on their private inputs x and y respectively without “leaking” too much information to each other. This can
be accomplished using cryptography, assuming Alice and Bob are computationally bounded. Without this
assumption, the amount of information that Alice and Bob must reveal to each other is exactly IC(f). In
this context, an affirmative answer for Problem 1.1 would mean that, up to a constant, a protocol minimizing
communication (with no special consideration for privacy) will reveal the same amount of information as
the most “private” protocol. Moreover, if for a family {fn} of functions we have that IC(fn)/CC(fn) → 1
as n → ∞, it means that as n grows, there is nothing the parties can do to perform the computation more
privately, and the most efficient protocol is also the most private. In this paper we show, for example,
that this is the case for the Inner Product function IPn, whose communication complexity is n, and whose
information complexity we show to be n− o(n) (for negligible error).

In this paper we develop a new self-reducibility technique for deriving information complexity lower
bounds from communication complexity lower bounds. The technique works for functions that have a “self-
reducible structure”. Informally speaking f has a self-reducible structure, if for large enough inputs, solving
fnk essentially amounts to solving fkn (fnk denotes the function f under inputs of length nk, while fkn denotes
k independent copies of f under inputs of size n). Our departing point is a communication complexity lower
bound for fnk (that may be obtained by any means). Assuming self-reducibility, the same bound applies to
fkn , which through the connection between information complexity and amortized communication complexity
[8], implies a lower bound on the information complexity of fn. In this paper we develop tools to make this
reasoning go through.

Ideas of self-reducibility are central in applications of information complexity to communication complex-
ity lower bounds, starting with the work of Bar-Yossef et al. [3]. These argument start with an information
complexity lower bound for a (usually very simple) problem, and derive a communication complexity bound
on many copies of the problem. The logic of this paper is reversed: we start with a communication complex-
ity lower bound, which we use as a black-box, and use self-reducibility to derive an amortized communication
complexity bound, which translates into an information complexity lower bound. An additional conceptual
take-away from the present paper is that to look for a counterexample for Problem 1.1, one would likely
need to consider problems that are highly non-self-reducible.

1.1 Results

We use the self-reducibility technique to prove results about the information complexity of Gap Hamming
Distance and Inner Product. We prove that the information complexity of the Gap Hamming Distance
problem with respect to the uniform distribution is linear. This was explicitly stated as an open problem
by Chakrabarti et al. [10]. Formally, let ICµ(GHDn,t,g, ε) denote the information cost of the Gap Hamming
promise problem, where inputs x, y are n-bit strings distributed according to µ, and the players need to
determine whether the Hamming distance between x and y is at least t+g, or at most t−g, with probability
of error at most ε under µ. We prove
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Theorem 1.2. There exists an absolute constant ε > 0 for which

ICU (GHDn,n/2,
√
n, ε) = Ω(n)

where U is the uniform distribution.

For the Inner Product, we prove a stronger bound on its information complexity. Formally

Theorem 1.3. For every constant δ > 0, there exists a constant ε > 0, and n0 such that ∀ n ≥ n0,
ICU (IPn, ε) ≥ (1− δ)n. Here U is the uniform distribution over {0, 1}n × {0, 1}n.

Note that ICU (IPn, ε) ≤ (1−2ε)(n+1), since the parties can always give a random output with probability
2ε, and with probability 1− 2ε, have one of the parties send its entire input and the other party send back
the output. Also it is known that ICU (IPn, ε) ≥ Ω(n), for all ε ∈ [0, 1/2) [9]. We prove that the information
complexity of IPn can be arbitrarily close to the trivial upper bound n as we keep decreasing the error
(though keeping it a constant).

1.2 Discussion and open problems

Although in complexity theory we often don’t care about the constants (and often it is not necessary),
proving theorems with the right constants can often lead to deeper insights into the mathematical structure
of the problem [6, 7]. There are few techniques that allow us to find the right constants and there are fewer
problems for which we can. We believe that answering the following problem will lead to development of
new techniques and also reveal interesting insights into the problem of computing the XOR of n copies of a
function.

Open Problem 1.4. Is it true that for small constants ε and sufficiently large n, ICU (IPn, ε) ≥ (1− 2ε−
o(ε))n? As before U is the uniform distribution. If this is false, is there a different constant α > 2 such that
as ε→ 0 we get ICUn(IPn, ε) ≥ (1− α · ε)n?

Solving this problem may require shedding new light on the rate of convergence of the ICµ(•, ε) to
ICµ(•, 0) as ε→ 0, and better understanding the role error plays in information complexity.

It is somewhat difficult to define the exact meaning of the “right” constant for the Gap Hamming Distance
problem, since it is a promise problem defined by two parameters (gap and error). Nonetheless, there is a
very natural regime in which understanding the exact information complexity of GHDn is a natural and
interesting problem. Namely:

Open Problem 1.5. Is it true that for all ε > 0, there is a δ > 0 and a distribution µ such that
ICµ(GHDn,n/2,δ

√
n, δ) > (1− ε)n?

In other words, does the information complexity of GHDn tend to the trivial upper bound as we tighten
the gap and error parameters? This is related to the same (but weaker) question one can ask about the
communication complexity of GHDn in this regime.

2 Preliminaries

In this section we briefly survey the necessary background for this paper on information theory and commu-
nication complexity. For a more thorough treatment of these subjects see [8] and references therein. Unless
specified otherwise, all logarithms will be taken to the base 2. Also we will always work with probability
distributions over discrete spaces. We will also maintain the convention that 0 log(1/0) = 0.

Notation. We will mostly use capital letters for random variables, calligraphic letters for sets, and small
letters for elements of sets. For random variables A and B and an element b we write Ab to denote the
random variable A conditioned on the event B = b. If S is a set, then we will use the notation s ∈R S to
denote a randomly chosen element from the set.
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2.1 Information Theory

Definition 2.1. The entropy of a random variable X, denoted by H(X), is defined as H(X) =
∑
x Pr[X =

x] log(1/Pr[X = x]). The conditional entropy of X given Y , denoted by H(X|Y ), is Ey[H(X|Y = y)].

Definition 2.2. The mutual information between two random variables A,B, denoted I(A;B), is defined
to be the quantity H(A) − H(A|B) = H(B) − H(B|A). The conditional mutual information I(A;B|C) is
H(A|C)−H(A|BC).

Fact 2.3 (Chain Rule). Let A1, A2, B,C be random variables. Then I(A1A2;B|C) = I(A1;B|C)+I(A2;B|A1C).

Definition 2.4. Kullback-Leibler Divergence between probability distributionsA andB is defined as D(A||B) =∑
xA(x) log A(x)

B(x) .

Fact 2.5. For random variables A,B, and C we have I(A;B|C) = Eb,c(D(Abc||Ac)).

Fact 2.6. Let X and Y be random variables. Then for any random variable Z we have Ex[D(Yx||Y )] ≤
Ex[D(Yx||Z)].

Fact 2.7. Let A,B,C,D be four random variables such that I(B;D|AC) = 0. Then I(A;B|C) ≥ I(A;B|CD)

Fact 2.8. Let A,B,C,D be four random variables such that I(A;C|BD) = 0. Then I(A;B|D) ≥ I(A;C|D)

Definition 2.9. The statistical distance (total variation) between random variables D and F taking values

in a set S is defined as |D − F |def
= maxT ⊆S(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1

2

∑
s∈S |Pr[D = s]− Pr[F = s]|.

2.2 Communication Complexity

We use standard definitions of the two-party communication model that was introduced by Yao in [21]:

Definition 2.10. The distributional communication complexity of f : X × Y → Z with respect to a distri-
bution µ on X × Y and error tolerance ε > 0 is the least cost of a deterministic protocol computing f with
error probability at most ε when the inputs are sampled according to µ. It is denoted by Dµ(f, ε).

Definition 2.11. The randomized communication complexity of f : X ×Y → Z with error tolerance ε > 0,
denoted by Rε(f), is the least cost of a public-coin protocol computing f with error at most ε on every input.

For a thorough treatment of pre-1997 results in communication complexity see an excellent monograph by
Kushilevitz and Nisan [18].

2.3 Information + Communication: The Information Cost

We consider protocols with both private and public randomness. Let Π(X,Y ) (random variable) denote the
transcript, i. e., the concatenation of the public randomness with all the messages sent during the execution
of π on (X,Y ). When X = x, Y = y, we write Π(x, y). When (X,Y ) or (x, y) are clear from the context,
we shall omit them and simply write Π for the transcript.

The notion of internal information cost was implicit in [3] and was explicitly defined in [4] as follows:

Definition 2.12. The internal information cost of a protocol π over inputs drawn from a distribution µ on
X × Y, is given by:

ICµ(π) := I(Π;X|Y ) + I(Π;Y |X).

Intuitively, the information cost captures the amount of information the two parties learn about each oth-
ers’ inputs during communication. Note that the information cost of a protocol π depends on the prior
distribution µ. Naturally, the information cost of a protocol over any distribution is a lower bound on the
communication cost.
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Lemma 2.13. [8] For any distribution µ we have ICµ(π) ≤ CC(π).

Definition 2.14. The information complexity of f with respect to distribution µ and error tolerance ε ≥ 0
is defined as

ICµ(f, ε) = inf
π

ICµ(π),

where the infimum ranges over all randomized protocols π solving f with error at most ε when inputs are
sampled according to µ.

3 Information complexity of Gap Hamming Distance

Given two strings x, y ∈ {0, 1}n, the hamming distance x and y is defined to be HAM(x, y) = |{i |xi 6= yi}|.
In the Gap Hamming Distance (GHD) problem, Alice gets a string x ∈ {0, 1}n and Bob gets a string
y ∈ {0, 1}n. They are promised that either HAM(x, y) ≥ n/2 +

√
n or HAM(x, y) ≤ n/2 −

√
n, and they

have to find which is the case. We can define a general version GHDn,t,g, where Alice and Bob have to
determine if HAM(x, y) ≥ t + g or HAM(x, y) ≤ t − g, but the parameters t = n/2 and g =

√
n are the

most natural as discussed in [11]. In a technical tour-de-force, it was proved in [11] that the randomized
communication complexity of the Gap Hamming Distance problem is linear. Formally,

Theorem 3.1. For all constants γ > 0, and ε ∈ [0, 1/2), Rε(GHDn,n/2,γ
√
n) ≥ Ω(n).

One can extend the formulation of GHD beyond the promise-problem setting. This particularly makes
sense in a distributional-complexity setting. In this setting, we allow f to take the value ?, which means
that we don’t care about the output. The error in this model is aggregated only over points on which the
value of f is not ?. Chakrabarti and Regev [11] also prove a distributional version of the linear lower bound
over the uniform distribution U . Specifically, they prove

Theorem 3.2. [11] There exists an absolute constant ε > 0 for which

DU (GHDn,n/2,
√
n, ε) = Ω(n).

Kerenidis et al. [16] proved that the information complexity of Gap Hamming Distance is also linear, at
least with respect to some distribution. The proof of Kerenidis et al. relies on a reduction that shows that a
large class of communication complexity lower bound techniques also translate into information complexity
lower bounds – including the lower bound for GHD:

Theorem 3.3. [16] There exists a distribution µ on {0, 1}n × {0, 1}n and an absolute constant ε > 0 such
that

ICµ(GHDn,n/2,
√
n, ε) = Ω(n).

Interestingly, while this approach yields an analogue of Theorem 3.1 for information complexity, it does
not seem to yield an analogue of the stronger Theorem 3.2, i.e. a lower bound on information complexity
under the uniform distribution.

We give an alternate proof of the linear information complexity lower bound for GHD using the self-
reducibility technique. Unlike the proof in [16] we do not need to dive into the details of the proof of the
communication complexity lower bound for GHD. Rather, our starting point is Theorem 3.2, which we use
as a black-box.

In fact, we will prove a slightly weaker lemma, with Theorem 1.2 following by a reduction. The reduction
is conceptually very simple, but the details are somewhat tedious.

Lemma 3.4. There exists absolute constants ε > 0 and γ > 0 for which

ICU (GHDn,n/2,γ
√
n, ε) = Ω(n).
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4 Proof of Theorem 1.2

4.1 Proof Idea

We use the self-reducibility argument. Assume that for some ε > 0, ICU (GHDn, ε) = o(n). Then using
“information = amortized communication”, we can get a protocol τ that solves N copies of GHDn with
o(nN) communication. The heart of the argument is to use this to solve GHDnN with o(nN) communication,
which is a contradiction. Say that Alice and Bob are given x, y ∈ {0, 1}nN respectively. They sample c · nN
random coordinates (for some constant c) and then divide these into cN blocks and run GHDn on them all
in parallel using o(nN) communication. If HAM(x, y) = nN/2+

√
nN , then the expected hamming distance

of each block is n/2 +
√
n/N . Although the gain over n/2 is small, the hamming distance is still biased

towards being > n/2. We will see that on each instance the protocol for GHDn must gain an advantage of
Ω(1/

√
N) over random guessing. This in turn implies that cN copies suffice to get the correct answer with

high probability.

4.2 Formal Proof of Lemma 3.4

Assume that for some ρ sufficiently small (to be specified later), ICU (GHDn,n/2,
√
n, ρ) = o(n). Thus ∀α > 0,

and for sufficiently large n, ICU (GHDn,n/2,
√
n, ρ) ≤ αn. We will need the following theorem from [5, 8]:

Theorem 4.1. [5, 8] Let f : X × Y → {0, 1} be a (possibly partial) function, let µ be any distribution
on X × Y , and let I = ICµ(f, ρ), then for each δ1, δ2 > 0, there is an N = N(f, ρ, µ, δ1, δ2) such that for
each n ≥ N , there is a protocol πn for computing n instances of f with the following properties: let µn
be any distribution over Xn × Y n s.t. the marginal on each coordinate is µ. The protocol πn has expected
communication cost < n(1 + δ1)I w.r.t. µn. Moreover, if we let π be any protocol for computing f with
information cost ≤ (1 + δ1/3)I w.r.t. µ, then we can design πn so that for each set of inputs, the statistical
distance between the output of πn and πn is < δ2, where πn denotes n independent executions of π.

In other words, Theorem 4.1 allows us to take a low-information protocol for f and turn it into a low-
communication protocol for (sufficiently) many copies of f .

Step 1: From GHD to a tiny advantage.
In the first step we show that a protocol for GHD over the uniform distribution has a small but detectable

advantage in distinguishing inputs from two distributions that are very close to each other. Denote by µη
the distribution where X ∈ {0, 1}n is chosen uniformly, and Y is chosen so that Xi ⊕ Yi ∼ B1/2+η are i.i.d.
Bernoulli random variables with bias η. Note that in this language the GHD problem is essentially about
distinguishing µ−1/

√
n from µ1/

√
n.

Lemma 4.2. There exists absolute constants τ > 0, γ > 0 and ρ > 0 with the following property. Suppose
that for all n large enough there is a protocol πn that solves GHDn,n/2,γ

√
n with error ρ w.r.t the uniform

distribution. Then for all n large enough for all ε < 1/n2 we have

Pr(x,y)∼µε [πn(x, y) = 1]− Pr(x,y)∼µ0
[πn(x, y) = 1] > τ · ε ·

√
n, (1)

and
Pr(x,y)∼µ−ε [πn(x, y) = 0]− Pr(x,y)∼µ0

[πn(x, y) = 0] > τ · ε ·
√
n. (2)

Proof. Note that we can assume that the protocol πn is symmetric w.r.t the hamming distance, i.e. its
behavior depends just on the hamming distance between x and y. This is because Alice and Bob can start
with applying a random permutation and a random XOR on their inputs i.e. they sample (using public
randomness) a permutation π ∈ Sn and r ∈ {0, 1}n and change their inputs to π(x⊕ r) and π(y ⊕ r). Note
that the information cost of the protocol remains the same.

We will establish (1), with (2) established identically. We first focus on the region where HAM(x, y) ≥
n/2 and show that its contribution to (1) is at least Ω(ε

√
n). We break the region into two further regions:

(I) (x, y) with n/2 < H(x, y) < n/2 + γ
√
n; (II) (x, y) with n/2 + γ

√
n ≤ H(x, y) for appropriately chosen
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γ. We show that the contribution of region (II) is Ω(ε
√
n), while the fact that the contribution of region (I)

is positive is easy to see.
Denote by pi the probability that πn returns 1 on an input of hamming distance n/2+i. The contribution

of the region where H(x, y) = n/2 + i is equal to

pi · (Prµε [H(x, y) = n/2 + i]− Prµ0
[H(x, y) = n/2 + i]) =

pi · Prµ0
[H(x, y) = n/2 + i] ·

(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
.

Now (1 − 4ε2)n/2−i ≥ 1 − 2ε/n and (1 + 2ε)2i ≤ e2 (since ε < 1/n2). Thus
∑n/2
i=0 pi · Prµ0

[H(x, y) =
n/2 + i] · (2ε/n) · (1 + 2ε)2i = O(ε/n) and therefore

n/2∑
i=0

pi · Prµ0
[H(x, y) = n/2 + i] ·

(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)
≥

n/2∑
i=0

pi · Prµ0
[H(x, y) = n/2 + i] ·

(
(1− 4ε2)n/2−i(1 + 2ε)2i − 1

)

−
n/2∑
i=0

pi · Prµ0
[H(x, y) = n/2 + i] ·

(
(1 + 2ε)2i − 1

)
≥ −O(ε/n)

Thus the contribution from region (I) is ≥ −O(ε/n).
This leaves us with region (II), where we need to show that we actually get a non-negligible advantage.

Let T be an appropriately chosen constant, so that Prµ0 [γ
√
n ≤ H(x, y) − n/2 ≤ T

√
n] = Ω(1). The

advantage

n/2∑
i=γ
√
n

pi · Prµ0
[H(x, y) = n/2 + i] ·

(
(1 + 2ε)2i − 1

)
≥

T
√
n∑

i=γ
√
n

pi · Prµ0 [H(x, y) = n/2 + i] · 4iε =

T
√
n∑

i=γ
√
n

Prµ0 [H(x, y) = n/2 + i] · 4iε

−
T
√
n∑

i=γ
√
n

(1− pi) · Prµ0
[H(x, y) = n/2 + i] · 4iε ≥ Θ(ε

√
n)− ρ× 4Tε

√
n

since (1 − pi) is the probability that the protocol errs when the hamming distance is n/2 + i and average
error is guaranteed to be ≤ ρ. By making ρ small enough we can get noticeable advantage Θ(ε

√
n) in this

region.
We now consider the region HAM(x, y) ≤ n/2 and show that the absolute value of the contribution of this

region can be made arbitrarily small w.r.t. ε
√
n by appropriate choices of ρ, γ and T which will complete the

proof. Let us break this region into three further regions : (I) (x, y) with n/2− γ
√
n < HAM(x, y) ≤ n/2;

(II) (x, y) with n/2 − T
√
n ≤ HAM(x, y) < n/2 − γ

√
n; (III) (x, y) with HAM(x, y) < n/2 − T

√
n for

appropriately chosen T and γ. Denote by qi the probability that πn returns 1 on an input of hamming
distance n/2− i. The absolute value of the contribution of the region where HAM(x, y) = n/2− i is equal
to

qi · (Prµ0
[HAM(x, y) = n/2− i]− Prµε [HAM(x, y) = n/2− i]) =

qi · Prµ0
[HAM(x, y) = n/2− i] · (1− (1− 4ε2)n/2−i(1− 2ε)2i)

As before, we can ignore the term (1 − 4ε2)n/2−i. In region (I) the negative contribution is bounded in
absolute terms by:

1− (1− 2ε)2γ
√
n < 4γε

√
n.
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In region (III) the contribution is again bounded by

n/2∑
i=T
√
n

Prµ0
[HAM(x, y) = n/2 − i] · (1 − (1 − 2ε)2i) <

n/2∑
i=T
√
n

Prµ0
[HAM(x, y) = n/2 − i] · 4iε.

By a standard Chernoff bound2, the probability Prµ0 [HAM(x, y) = n/2− i] is dominated by e−Ω(i2/n), and
thus the sum can be made into an arbitrarily small multiple of ε

√
n by choosing T large enough. For region

(II) the advantage

T
√
n∑

i=γ
√
n

qi · Prµ0
[HAM(x, y) = n/2− i] · (1− (1− 2ε)2i) ≤

T
√
n∑

i=γ
√
n

qi · Prµ0
[HAM(x, y) = n/2− i] · 4iε ≤ 4Tε

√
n

T
√
n∑

i=γ
√
n

qi · Prµ0
[HAM(x, y) = n/2− i]

≤ 4Tρε
√
n.

By making ρ small enough we can make the absolute contribution of this region small relative to ε
√
n. This

completes the proof.

Step 2: From tiny advantage to low-communication GHD.
We can now apply Lemma 4.2 together with Theorem 4.1 to show that a low-information solution to

GHDn,n/2,γ
√
n with respect to the uniform distribution contradicts the communication complexity lower

bound of Theorem 3.2.

Proof. (of Lemma 3.4). Assume for the sake of contradiction that for each α there are infinitely many n
and a protocol πn (different for each n) with ICU (πn) < αn and which solves GHDn,n/2,γ

√
n with error ρ,

where the parameters γ and ρ are from Lemma 4.2. Let N > max(n7, N(GHDn,n/2,γ
√
n, ρ,U , δ1, δ2)), where

δ1 = 1 and δ2 = ε/2, where ε is the error parameter in Theorem 3.2. Denote the protocol obtained from
Theorem 4.1 (for compressing cN copies of GHDn,n/2,γ

√
n, ρ,U , δ1, δ2)) as π′cN .

Let t = Pr(x,y)∼U [πn(x, y) = 1]. W.l.o.g. we assume t = 1/2 (otherwise we can use a thresholdtcN instead
of majority in the protocol). Consider the protocol depicted in Figure 1.

Input: A pair x, y ∈ {0, 1}nN .
Output: GHDn·N,n·N/2,

√
n·N .

1. Create cN instances of GHDn by sampling n random coordinates each time (with replacement):
(x1, y1), . . . , (xcN , ycN ) ∈ {0, 1}n × {0, 1}n.

2. Run π′cN on (x1, y1), . . . , (xcN , ycN ) for 10αcNn
ε steps, otherwise abort. (c and α are constants to be

chosen later). π′cN outputs answers b1, . . . , bcN , one for each coordinate.

3. Return MAJORITY (b1, . . . , bcN ).

Protocol 1: The protocol ΠnN (x, y)

Let us first analyze the success probability of the protocol ΠnN . We will do this in three steps:

2See e,g [2].
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1. First let us analyze the success probability of ΠnN if we use πcNn in the second step i.e. πn run
independently on each coordinate. Suppose that the hamming distance between x and y is nN/2 +

`
√
nN , where ` > 1. Note that ` < n except with probability e−Ω(n2) (over the uniform distribution).

The samples (xi, yi) are drawn iid according to the distribution µ
`·
√

1/(nN)
. Since N > n7 we have

` ·
√

1/nN < 1/n2. By Lemma 4.2, the output of πn on each copy is thus τ · `/
√
N -biased towards 1.

By Chernoff bounds, the probability that the protocol ΠnN outputs 1 is at least 1− e−2τ2`2c.

2. Now let us analyze the success probability of ΠnN if we didn’t abort in the second step. For each set of
inputs, the statistical distance between the output of π′cN and πcNn is at most ε/2, therefore, for (x, y)

such that the hamming distance between x and y is nN/2 + `
√
nN , 1 < ` < n, ΠnN with no abort

outputs 1 w.p. at least 1 − e−2τ2`2c − ε/2. The case when the hamming distance between x and y is
nN/2− `

√
nN can be handled similarly.

3. Now let us analyze the success probability of ΠnN . Note that for each coordinate i, (xi, yi) is distributed
according to the uniform distribution. Therefore the expected communication cost of π′cN is less than
2αcNn. Therefore the probability that it exceeds 10αcNn

ε is at most ε/5. Therefore the overall error

of ΠnN is at most e−2τ2`2c + ε/2 + ε/5 + 2e−Ω(n2) which is less than ε for c and n large enough.

Now for α small enough, the communication cost of ΠnN can be made arbitrarily small w.r.t. nN which
contradicts Theorem 3.2 since ΠnN solves GHDn·N,n·N/2,

√
n·N with error ≤ ε w.r.t. the uniform distribution.

Note that we got a randomized protocol for solving GHDn·N,n·N/2,
√
n·N but we can fix the randomness to

get a deterministic protocol.

4.3 The reduction from a small-gap instance to a large-gap instance

Now we complete the proof of Theorem 1.2 by providing the details of the reduction. We will start by
proving a few technical lemmas.

Lemma 4.3. Let α > 1 be an integer. Let Un be the uniform distribution over {0, 1}n × {0, 1}n. Let
X,Y ∼ Un. Define a distribution µ over {0, 1}αn×{0, 1}αn by picking αn random coordinates of X,Y (with
replacement) and then taking an XOR with a random string r ∈R {0, 1}αn (let U ′, V ′ be the strings obtained
by sampling αn random coordinates of X,Y . Then U = U ′ ⊕ r, V = V ′ ⊕ r are the final strings sampled).
Then for all ε > 0 and n large enough, there exists a constant Mε and a distribution µε such that

1. |µ− µε| ≤ ε

2. µε ≤Mε · Uαn

Proof. It is easy to see that the distribution µ is symmetric w.r.t the hamming distance i.e. if x, y ∈ {0, 1}αn×
{0, 1}αn, and x′, y′ ∈ {0, 1}αn×{0, 1}αn such that HAM(x, y) = HAM(x′, y′), then µ(x, y) = µ(x′, y′). This
is because µ is invariant under the application of a random permutation and a random XOR i.e. if π ∈R Sn
and r′ ∈R {0, 1}n, then µ(x, y) = µ(π(x ⊕ r′), π(y ⊕ r′)). With a slight abuse of notation let µ(d) denote
the probability mass on strings of hamming distance d, and let Uαn(d) denote the probability mass w.r.t the
uniform distribution. Let N = αn.

For ε > 0, let µε be the truncations of the distribution µ to the interval [N/2−Cε
√
N,N/2+Cε

√
N ] for a

Cε to be chosen later. Note that |µ−µε| = |1−µ([N/2−Cε
√
N,N/2+Cε

√
N ])|. So we will choose Cε such that

|1−µ([N/2−Cε
√
N,N/2+Cε

√
N ])| ≤ ε. By Chernoff bounds Pr[HAM(X,Y ) /∈ [n/2−β

√
n, n/2+β

√
n]] ≤

2e−2β2

. Now if we pick N random coordinates distributed according to B 1
2 +p, where |p| ≤ β/

√
n, then the

expected number of 1’s ∈ [N/2−β
√
α
√
N,N/2+β

√
α
√
N ]. Thus by another application of Chernoff bounds,

we get that Pr[HAM(U, V ) /∈ [N/2−Cε
√
N,N/2 +Cε

√
N ]] ≤ 2e−2β2

+ 2e−2(Cε−β
√
α)2 . Now β = 1

2 ln(4/ε)

and Cε = 1
2 ln(4/ε)(1 +

√
α) suffices to ensure that Pr[HAM(U, V ) /∈ [N/2− Cε

√
N,N/2 + Cε

√
N ]] ≤ ε.
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We will show that there exists a constant Mε such that µε ≤ Mε · Uαn. Note that by the symmetry
properties of µ, it suffices to prove that for all d, µε(d) ≤Mε · Uαn(d). Now

µε(d)/Uαn(d) =
1

µ([N/2− Cε
√
N,N/2 + Cε

√
N ])

µ(d)/Uαn(d)

≤ 2µ(d)/Uαn(d)

= 2

∑n
k=0

(
n
k

)
· 2−n ·

(
αn
d

)
·
(
k
n

)d · (n−kn )N−d(
αn
d

)
2−αn

= 2 ·
n∑
k=0

(
n

k

)
· 2−n ·

(
2k

n

)d
·
(

2(n− k)

n

)N−d
Let d = N/2 + T , where |T | ≤ Cε

√
N . Also we will just concentrate on the sum for k ≥ n/2. The lower half

is analogous. Also it is easy to see that the sum from k = 3n/4 to k = n is small. So we consider

3n/4∑
k=n/2

(
n

k

)
· 2−n ·

(
2k

n

)d
·
(

2(n− k)

n

)N−d

=

3n/4∑
k=n/2

(
n

k

)
· 2−n ·

(
2k

n

)T
·
(

2(n− k)

n

)−T
·
(

4k(n− k)

n2

)N/2

≤
3n/4∑
k=n/2

(
n

k

)
· 2−n ·

(
k

n− k

)T

If T < 0, then we are done. So assume T > 0. For n/2 ≤ k ≤ 3n/4, k
n−k = 1 + 2k−n

n−k ≤ 1 + 8(k−n/2)
n . For

k ≤ n/2 + T , the sum is small as k
n−k is small. Otherwise (1 + 8(k−n/2)

n )T . (1 + 8T
n )k−n/2. Then the sum

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)
·
(

1 +
8T

n

)k−n/2

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)
·
(

1 +
8T

n

)k−n/2(
1− 8T

n

)n/2−k

≤ 2−n
3n/4∑

k=n/2+T

(
n

k

)
·
(

1 +
8T

n

)k (
1− 8T

n

)n−k (
1 +

8T

n

)−n/2(
1− 8T

n

)n/2

Now
∑3n/4
k=n/2+T

(
n
k

)
·
(
1 + 8T

n

)k (
1− 8T

n

)n−k ≤ 2n by binomial theorem, and
(
1 + 8T

n

)−n/2 (
1− 8T

n

)n/2
=(

1− 64T 2

n2

)−n/2
is a constant, since T ≤ Cε

√
N . This completes the proof.

The next lemma relates the information cost of a protocol w.r.t two distributions that are close in
statistical distance. We haven’t seen the lemma in this specific form elsewhere. Nevertheless it is not hard
to prove.

Lemma 4.4. Let ε < 1/2. Let µ1 and µ2 be distributions on {0, 1}N × {0, 1}N such that |µ1 − µ2| ≤ ε, and
fix a protocol π. Then |IC(π, µ1)− IC(π, µ2)| ≤ 4Nε+ 2H(2ε). If ε is a constant and N large enough, then
|IC(π, µ1) − IC(π, µ2)| ≤ 5Nε. In general for distributions over X × Y, we get |IC(π, µ1) − IC(π, µ2)| ≤
2ε log(|X | · |Y|) + 2H(2ε).
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Proof. We will design random variables X,Y,E such that X,Y ∈ {0, 1}N and E ∈ {0, 1, 2}, X,Y |E ∈
{0, 1} ∼ µ1, X,Y |E ∈ {0, 2} ∼ µ2 and Pr[E = 1] = Pr[E = 2] ≤ ε. First let us see how this helps. Let Π
denote the random variable for the transcript of the protocol when the inputs are X,Y . Let X1Y1 ∼ µ1 and
X2Y2 ∼ µ2. Also let Π1 and Π2 denote the random variables for the transcript in these cases respectively.

I(Π;X|Y E) = Pr[E = 0] · I(Π;X|Y,E = 0) + Pr[E = 1] · I(Π;X|Y,E = 1) + Pr[E = 2] · I(Π;X|Y,E = 2)

= Pr[E ∈ {0, 1}] · I(Π;X|Y,E{0,1}) + Pr[E = 2] · I(Π;X|Y,E = 2).

Here conditioning on E{0,1} means that E ∈ {0, 1} and that both Alice and Bob know the value of E i.e.
I(Π;X|Y,E{0,1}) = I(Π;X|Y,E,E ∈ {0, 1}). Now I(Π;X|Y,E ∈ {0, 1}) ≤ I(Π;X|Y,E{0,1}) + H(E|E ∈
{0, 1}) = I(Π;X|Y,E{0,1}) + C1, where C1 ≤ H(ε/(1 − ε)) ≤ H(2ε). Also I(Π;X|Y,E = 2) ≤ N and
I(Π;X|Y,E ∈ {0, 1}) = I(Π1;X1|Y1). Thus

I(Π;X|Y E) = (1− Pr[E = 2]) · (I(Π1;X1|Y1) + C1) + Pr[E = 2] · C2

where C1 ≤ 1 and C2 ≤ N . Similarly

I(Π;X|Y E) = (1− Pr[E = 1]) · (I(Π2;X2|Y2) + C3) + Pr[E = 1] · C4

where C3 ≤ H(2ε) and C4 ≤ N . Equating the two we get that

(1− Pr[E = 1]) · (I(Π1;X1|Y1)− I(Π2;X2|Y2)) = Pr[E = 1] · (C4 − C3) + (1− Pr[E = 1]) · (C2 − C1)

Since Pr[E = 1] ≤ ε ≤ 1/2, we get that

|I(Π1;X1|Y1)− I(Π2;X2|Y2)| ≤ 2Nε+H(2ε)

and hence |IC(π, µ1)− IC(π, µ2)| ≤ 4Nε+ 2H(2ε).
Now let us see how to design random variables X,Y,E satisfying the given conditions. Let U, V, P denote

the random variables obtained by sampling uniformly from {0, 1}N × {0, 1}N × [0, 1]. Let G denote the
event that P < max(µ1(U, V ), µ2(U, V )). Let X,Y = U, V |G. Also define a random variable F ∈ {0, 1, 2} as
follows :

• F = 0, if P < min(µ1(U, V ), µ2(U, V ))

• F = 1, if µ2(U, V ) ≤ P < µ1(U, V )

• F = 2, if µ1(U, V ) ≤ P < µ2(U, V )

Now define E = F |G. Let us verify that X,Y,E satisfy the conditions.

Pr[X = x, Y = y|E ∈ {0, 1}] =
Pr[U = x, V = y, F ∈ {0, 1}, G]

Pr[F ∈ {0, 1}, G]

=
1

22N µ1(x, y)∑
x,y

1
22N µ1(x, y)

= µ1(x, y)

Thus X,Y |E ∈ {0, 1} ∼ µ1. Similarly X,Y |E ∈ {0, 2} ∼ µ2. Also

Pr[E = 1] = Pr[F = 1|G] =
∑
x,y

Pr[U = x, V = y|G]Pr[F = 1|G,U = x, V = y]

=
∑

x,y s.t. µ1(x,y)>µ2(x,y)

1
22N max(µ1(x, y), µ2(x, y))

1
22N

∑
x,y max(µ1(x, y), µ2(x, y))

· µ1(x, y)− µ2(x, y)

max(µ1(x, y), µ2(x, y))

=

∑
x,y s.t. µ1(x,y)>µ2(x,y)(µ1(x, y)− µ2(x, y))∑

x,y max(µ1(x, y), µ2(x, y))
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Thus Pr[E = 1] = |µ1−µ2|∑
x,y max(µ1(x,y),µ2(x,y)) ≤ |µ1 − µ2| ≤ ε. Similarly Pr[E = 2] = |µ1−µ2|∑

x,y max(µ1(x,y),µ2(x,y)) .

Hence Pr[E = 1] = Pr[E = 2] ≤ ε. This completes the proof. The general form can be proved in a similar
manner.

We also need a lemma which relates the information cost of distributions which are not very skewed w.r.t
to each other. Formally

Lemma 4.5. Let µ1 and µ2 be distributions over {0, 1}N ×{0, 1}N such that µ1 ≤M ·µ2 for some constant
M . Let f be a function (possibly partial) with domain {0, 1}N × {0, 1}N and let π be a protocol for solving
it. Then IC(π, µ1) ≤M · IC(π, µ2).

Proof. Let X1, Y1 ∼ µ1 and Π1 denote the random variable for the transcript when inputs are X1, Y1. Let
X2, Y2 ∼ µ2 and define Π2 similarly. Now

I(Π1;X1|Y1) = Ex,y∼µ1
D[Π1|x,y||Π1|y] = Ey(ExD[Π1|x,y||Π1|y])

By Fact 2.6, ExD[Π1|x,y||Π1|y] ≤ ExD[Π1|x,y||Π2|y]. Also Π1|x,y = Π2|x,y. Thus

I(Π1;X1|Y1) ≤ Ex,y∼µ1
D[Π2|x,y||Π2|y] ≤M · Ex,y∼µ2

D[Π2|x,y||Π2|y]

= M · I(Π2;X2|Y2)

Hence IC(π, µ1) ≤M · IC(π, µ2).

The next lemma says that if the information cost w.r.t the distribution µ from Lemma 4.3 is high, then
the information cost w.r.t the uniform distribution is high as well.

Lemma 4.6. Let f : {0, 1}N ×{0, 1}N → {0, 1} be a function (possibly partial). Let µ be a distribution over
{0, 1}N × {0, 1}N , as defined in Lemma 4.3. If IC(f, µ, δ) ≥ Ω(N), for some δ > 0, then IC(f,UN , η) ≥
Ω(N), for some η > 0.

Proof. Let π be a protocol for computing f with error η w.r.t. the distribution UN , and information cost
IC(π,UN ) = I. Let ε > 0. Then by Lemma 4.3, for N large enough, there exists a distribution µε over
{0, 1}N ×{0, 1}N such that |µ−µε| ≤ ε and µε ≤Mε · UN for some constant Mε. Then error of the protocol
π w.r.t. µ is ≤ Mεη + ε. Also the information cost of π w.r.t. µ is ≤ MεI + 5Nε (using Lemmas 4.4 and
4.5). Now if Mεη + ε ≤ δ, then MεI + 5Nε ≥ c · N , for some constant c. Take ε = min(δ/2, c/10) and
η = (δ − ε)/Mε. Then I ≥ cN/2Mε. Thus IC(f,UN , η) ≥ Ω(N).

Proof. (of Theorem 1.2) Note that because of Lemma 4.6, we just need to prove that IC(GHDN,N/2,
√
N , µ, ε) =

Ω(N) for some ε > 0 for the distribution µ in Lemma 4.3. Assume that for all ε > 0, IC(GHDN,N/2,
√
N , µ, ε) =

o(N). That is for all β, ε, and for N sufficiently large, IC(GHDN,N/2,
√
N , µ, ε) ≤ β · N . By Lemma 3.4,

there exist constants ε′ > 0, γ > 0 and c > 0 such that IC(GHDn,n/2,γ
√
n,U , ε′) ≥ c · n.

Let α be a large integer to be determined later. Set N = α · n. Let πN be a protocol that solves
GHDN,N/2,

√
N with error ≤ ε w.r.t µ, and let the information cost of πN w.r.t µ be ≤ β ·N . Consider the

following protocol πn(x, y) for GHDn,n/2,γ
√
n : Pick N random coordinates of x, y, call them u′, v′. Now

pick a random string r ∈R {0, 1}N and set u = u′⊕ r and v = v′⊕ r. Run πN on u, v. Let X,Y ∼ Un be the
inputs for πn. Let U, V denote the random variables denoting the sampled coordinates. Note that U, V ∼ µ.
Let Π denote the random variable for the transcript of running πN on U, V . Then the transcript of running
πn on X,Y is ΠR, where R denotes the public randomness involved in sampling u, v from x, y. Now

I(ΠR;X|Y ) = I(R;X|Y ) + I(Π;X|Y R) = I(Π;X|Y R) = I(Π;X|V Y R)

The last equality follows from the fact that V is a deterministic function of Y R. Now Π is a probabilistic
function of U, V , and the internal randomness of the protocol πN is independent of X, Y and R. Thus
I(Π;XY R|UV ) = 0, as

I(Π;XY R|UV ) = I(Π;Y R|UV ) + I(Π;X|UV Y R)
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and I(Π;Y R|UV ) = 0, I(Π;X|UV Y R) = 0. Applying Fact 2.8, with A = Π, B = U , C = X and D = V Y R,
we get that I(Π;X|V Y R) ≤ I(Π;U |V Y R). Also I(Π;Y R|UV ) = 0. Applying Fact 2.7 with A = U , B = Π,
C = V and D = Y R, we get I(Π;U |V ) ≥ I(Π;U |V Y R). This implies that I(ΠR;X|Y ) ≤ I(Π;U |V ). A
similar argument shows that I(ΠR;Y |X) ≤ I(Π;V |U) and hence IC(πn,Un) ≤ IC(πN , µ).

Now let us calculate the error of the protocol πn. If HAM(x, y) ≥ n/2 + γ
√
n, then for a random

coordinate I, Pr[xI⊕yI = 1] ≥ 1/2+γ/
√
n. Then the expected hamming distance of N random coordinates

is N/2 + γ
√
α
√
N . Hence the probability that the hamming distance is ≤ N/2 + γ

√
α

2

√
N is bounded by

e−
αγ2

2 . The same holds for the probability that the hamming distance is ≥ N/2 − γ
√
α

2

√
N . Choose α so

that γ
√
α ≥ 2 and e−

αγ2

2 ≤ ε′/2. Then

error(πn) =
∑

x,y s.t.HAM(x,y)≥n/2+γ
√
n

Un(x, y) · Pr[πn outputs 0 on input x, y]

+
∑

x,y s.t.HAM(x,y)≤n/2−γ
√
n

Un(x, y) · Pr[πn outputs 1 on input x, y]

Now

Pr[πn outputs 0 on input x, y] =
∑
u,v

µ(u, v|x, y) · Pr[πN outputs 0 on input u, v]

where µ(u, v|x, y) the probability of getting u, v when coordinates are sampled from x, y. For x, y s.t.
HAM(x, y) ≥ n/2 + γ

√
n,∑

u,v

µ(u, v|x, y) · Pr[πN outputs 0 on input u, v] ≤

∑
u, v s.t. HAM(u, v) ≥ N/2 +

√
N

µ(u, v|x, y) · Pr[πN outputs 0 on input u, v] + ε′/2

Doing a similar exercise for the other half, we get that

error(πn) ≤
∑

u, v s.t. HAM(u, v) ≥ N/2 +
√
N

µ(u, v) · Pr[πN outputs 0 on input u, v]+

∑
u, v s.t. HAM(u, v) ≤ N/2−

√
N

µ(u, v) · Pr[πN outputs 1 on input u, v] + ε′/2

= error(πN ) + ε′/2

Choosing ε = ε′/2, and β = c/2α, we get a protocol πn with error ≤ ε′ and information cost ≤ βαn ≤ cn/2,
which is a contradiction.

5 Information Complexity of Inner Product

The inner product function IPn : {0, 1}n × {0, 1}n → {0, 1} is defined as follows:

IPn(x, y) =

n∑
i=0

xiyi (mod 2)

The proof exploits the self-reducible structure of the inner-product function. But since, IPn is such a
sensitive function, we will first prove a statement about the 0-error information cost, and then use continuity
of information cost to argue about non-zero errors.

We will need the following lemma from [8]. It is essentially the same as Theorem 4.1, only when dealing
with 0 error, we cannot ensure that error on each copy is 0. We just have an overall error which is the error
introduced if compression fails.
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Lemma 5.1. Let f : X × Y → {0, 1} be a function, and let µ be a distribution over the inputs. Let π be a
protocol computing f with error 0 w.r.t µ, and internal information cost ICµ(π) = I. Then for all δ > 0,
ε > 0, there is a protocol πn for computing fn with error ε w.r.t µn, with worst case communication cost

= n(I + δ/4) +O(
√
CC(π) · n · (I + δ/4)) +O(log(1/ε)) +O(CC(π))

≤ n(I + δ) (for n sufficiently large)

The following lemma from [4] relates the information cost of computing XOR of n copies of a function f
to the information cost of a single copy.

Lemma 5.2. Let f be a function, and let µ be a distribution over the inputs. Then ICµn(⊕nf, ε) ≥
n(ICµ(f, ε)− 2).

The next lemma says that there is no 0-error protocol for IPn which conveys slightly less information
than the trivial protocol.

Lemma 5.3. For all n, ICUn(IPn, 0) ≥ n, where Un is the uniform distribution over {0, 1}n × {0, 1}n.

Proof. It is known that DUnε (IPn) ≥ n − cε, for all constant ε ∈ (0, 1/2), where cε is a constant depending
just on ε [18, 13]. Assume that for some n, ICUn(IPn, 0) ≤ n − c . Then using, Lemma 5.1 with δ = c/2
and ε = 1/3, we can get a protocol π for solving N copies of IPn with overall error 1/3 w.r.t UNn , and
CC(π) ≤ N(n − c + c/2). This gives us a protocol π′ for solving IPNn with error 1/3 w.r.t the uniform
distribution, and CC(π′) ≤ Nn −Nc/2 (divide the inputs into N chunks, solve the N chunks using π and
XOR the answers). But CC(π′) ≥ Nn− c1/3, a contradiction.

Proof. (of Theorem 1.3) We use the continuity of (internal) information cost in the error parameter at ε = 0:

Theorem 5.4. ([6]) For all f : X × Y → Z and µ ∈ ∆(X × Y) we have

lim
ε→0

ICµ(f, ε) = ICµ(f, 0). (3)

Given δ > 0, let l = d 3
δ e. Then

ICUl(IPl, 0) ≥ l ≥ (1− δ)l + 3.

Since limε→0 ICUl(IPl, ε) = ICUl(IPl, 0), there exists ε(l, δ) = ε(δ) s.t.

ICUl(IPl, ε) ≥ (1− δ)l + 2.

Now using Lemma 5.2, we get that ICUNl (⊕NIPl, ε) ≥ (1 − δ)Nl. Thus

ICUNl(IPNl, ε) ≥ (1− δ)Nl. Thus for sufficiently large n, ICUn(IPn, ε) ≥ (1− δ)n.
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