CMSC 451: SAT, Coloring, Hamiltonian
Cycle, TSP

Slides By: Carl Kingsford

.\i‘f.p-.:!:f}"}r
.

e
3 %

18 56
TRYLES
Department of Computer Science

University of Maryland, College Park

Based on Sects. 8.2, 8.7, 8.5 of Algorithm Design by Kleinberg & Tardos.



Boolean Formulas

Boolean Formulas:

Variables: xj,x2,x3 (can be either true or false)

Terms: t1,to, ..., ty: tj is either x; or X;
(meaning either x; or not x;).

Clauses: t; Vtp V---V t; (V stands for “OR")
A clause is true if any term in it is true.
Example 1: (X1 V )?2), ()?1 V )?3), (X2 \% \73)

Example 2: (X1 V Xo V )?3), ()?2 V Xl)



Boolean Formulas

Def. A truth assignment is a choice of true or false for each
variable, ie, a function v : X — {true, false}.

Def. A CNF formula is a conjunction of clauses:
CGGNANG, AN Cy

Example: (x1 Vx2) A (X1 V3) A (x2 V v3)

Def. A truth assignment is a satisfying assignment for such a
formula if it makes every clause true.



SAT and 3-SAT

Satisfiability (SAT)

Given a set of clauses (1, ..., Cx over variables X = {x1,...,xp} is
there a satisfying assignment?

y

Satisfiability (3-SAT)

Given a set of clauses (1, ..., Cx, each of length 3, over variables
X ={x1,...,Xn} is there a satisfying assignment?




Graph Coloring

Graph Coloring



Graph Coloring Problem

Graph Coloring Problem

Given a graph G, can you color the nodes with < k colors such
that the endpoints of every edge are colored differently?

Notation: A k-coloring is a function f : V — {1,..., k} such that
for every edge {u, v} we have f(u) # f(v).

If such a function exists for a given graph G, then G is k-colorable.



Graph Coloring is NP-complete

3-Coloring € NP: A valid coloring gives a certificate.

We will show that:
3-SAT <p 3-Coloring

Let x1,...,Xxn, C1,..., Cx be an instance of 3-SAT.

We show how to use 3-Coloring to solve it.



Reduction from 3-SAT

We construct a graph G that will be 3-colorable iff the 3-SAT
instance is satisfiable.

For every variable x;, create 2 nodes in G, one for x; and one for
X;. Connect these nodes by an edge:

Create 3 special nodes T, F, and B, joined in a triangle:

G.G



Connecting them up

Connect every variable node to B:




Properties

Properties:

e Each of x; and x; must get different colors
e Each must be different than the color of B.

e B, T, and F must get different colors.

Hence, any 3-coloring of this graph defines a valid truth
assignment!

Still have to constrain the truth assignments to satisfy the given
clauses, however.



Connect Clause (t, ty, t3) up like this:




Suppose Every Term Was False

What if every term in the clause was assigned the false color?



Connect Clause (t, ty, t3) up like this:




Connect Clause (t, ty, t3) up like this:




Connect Clause (t, ty, t3) up like this:




Connect Clause (t, ty, t3) up like this:




Suppose there is a 3-coloring

Top node is colorable iff one of its terms gets the true color.

Suppose there is a 3-coloring.

We get a satisfying assignment by:
e Setting x; = true iff v; is colored the same as T
Let C be any clause in the formula. At least 1 of its terms must be

true, because if they were all false, we couldn’'t complete the
coloring (as shown above).



Suppose there is a satisfying assignment

Suppose there is a satisfying assignment.

We get a 3-coloring of G by:

e Coloring T, F, B arbitrarily with 3 different colors

e If x; = true, color v; with the same color as T and v; with the
color of F.

o |f x; = false, do the opposite.

e Extend this coloring into the clause gadgets.

Hence: the graph is 3-colorable iff the formula it is derived from is
satisfiable.



General Proof Strategy

General Strategy for Proving Something is NP-complete:

@ Must show that X € NP. Do this by showing there is an
certificate that can be efficiently checked.

® Look at some problems that are known to be NP-complete
(there are thousands), and choose one Y that seems “similar”
to your problem in some way.

©® Show that Y <p X.



Strategy for Showing Y <p X

One strategy for showing that Y <p X often works:
@ Let /y be any instance of problem Y.

® Show how to construct an instance /x of problem X in
polynomial time such that:

e If [y €Y, then Ix € X
o If I[x e X, thenly €Y



