CMSC 451: SAT, Coloring, Hamiltonian Cycle, TSP

Slides By: Carl Kingsford

Department of Computer Science University of Maryland, College Park

Based on Sects. 8.2, 8.7, 8.5 of *Algorithm Design* by Kleinberg & Tardos.

Boolean Formulas

Boolean Formulas:

```
Variables: x_1, x_2, x_3 (can be either true or false)

Terms: t_1, t_2, \ldots, t_\ell: t_j is either x_i or \bar{x}_i (meaning either x_i or not x_i).

Clauses: t_1 \lor t_2 \lor \cdots \lor t_\ell (\lor stands for "OR")

A clause is true if any term in it is true.
```

Example 1: $(x_1 \lor \bar{x_2}), (\bar{x_1} \lor \bar{x_3}), (x_2 \lor \bar{v_3})$

Example 2: $(x_1 \lor x_2 \lor \bar{x_3}), (\bar{x_2} \lor x_1)$

Boolean Formulas

Def. A truth assignment is a choice of true or false for each variable, ie, a function $v: X \to \{\text{true}, \text{false}\}.$

Def. A CNF formula is a conjunction of clauses:

$$C_1 \wedge C_2, \wedge \cdots \wedge C_k$$

Example: $(x_1 \lor \bar{x_2}) \land (\bar{x_1} \lor \bar{x_3}) \land (x_2 \lor \bar{v_3})$

Def. A truth assignment is a satisfying assignment for such a formula if it makes every clause **true**.

SAT and 3-SAT

Satisfiability (SAT)

Given a set of clauses C_1, \ldots, C_k over variables $X = \{x_1, \ldots, x_n\}$ is there a satisfying assignment?

Satisfiability (3-SAT)

Given a set of clauses C_1, \ldots, C_k , each of length 3, over variables $X = \{x_1, \ldots, x_n\}$ is there a satisfying assignment?

Graph Coloring

Graph Coloring

Graph Coloring Problem

Graph Coloring Problem

Given a graph G, can you color the nodes with $\leq k$ colors such that the endpoints of every edge are colored differently?

Notation: A k-coloring is a function $f: V \to \{1, \ldots, k\}$ such that for every edge $\{u, v\}$ we have $f(u) \neq f(v)$.

If such a function exists for a given graph G, then G is k-colorable.

Graph Coloring is NP-complete

3-Coloring \in **NP**: A valid coloring gives a certificate.

We will show that:

$$3-SAT \leq_P 3-Coloring$$

Let $x_1, \ldots, x_n, C_1, \ldots, C_k$ be an instance of 3-SAT.

We show how to use 3-Coloring to solve it.

Reduction from 3-SAT

We construct a graph G that will be 3-colorable iff the 3-SAT instance is satisfiable.

For every variable x_i , create 2 nodes in G, one for x_i and one for $\bar{x_i}$. Connect these nodes by an edge:

Create 3 special nodes T, F, and B, joined in a triangle:

Connecting them up

Connect every variable node to B:

Properties

Properties:

- Each of x_i and $\bar{x_i}$ must get different colors
- Each must be different than the color of B.
- B, T, and F must get different colors.

Hence, any 3-coloring of this graph defines a valid truth assignment!

Still have to constrain the truth assignments to satisfy the given clauses, however.

What if every term in the clause was assigned the false color?

Suppose there is a 3-coloring

Top node is colorable iff one of its terms gets the **true** color.

Suppose there is a 3-coloring.

We get a satisfying assignment by:

• Setting $x_i = \mathbf{true}$ iff v_i is colored the same as T

Let C be any clause in the formula. At least 1 of its terms must be true, because if they were all false, we couldn't complete the coloring (as shown above).

Suppose there is a satisfying assignment

Suppose there is a satisfying assignment.

We get a 3-coloring of G by:

- Coloring T, F, B arbitrarily with 3 different colors
- If $x_i = \mathbf{true}$, color v_i with the same color as T and \overline{v}_i with the color of F.
- If $x_i =$ false, do the opposite.
- Extend this coloring into the clause gadgets.

Hence: the graph is 3-colorable iff the formula it is derived from is satisfiable.

General Proof Strategy

General Strategy for Proving Something is NP-complete:

1 Must show that $X \in \mathbf{NP}$. Do this by showing there is an certificate that can be efficiently checked.

2 Look at some problems that are known to be NP-complete (there are thousands), and choose one Y that seems "similar" to your problem in some way.

3 Show that $Y \leq_P X$.

Strategy for Showing $Y \leq_P X$

One strategy for showing that $Y \leq_P X$ often works:

- 1 Let I_Y be any instance of problem Y.
- 2 Show how to construct an instance I_X of problem X in polynomial time such that:
 - If $I_Y \in Y$, then $I_X \in X$
 - If $I_X \in X$, then $I_Y \in Y$