CLRS 34-1 (a)

Definition 0.1. Let $G=(V, E)$ be an undirected graph. A subset $S \subseteq V$ is an independent set in G if there are no edges between vertices in S.

Independent Set Problem

Input: G - undirected graph.
Output: S - largest independent set in G.

Independent Set Problem, Decision Version

Input: G - undirected graph, $k \in \mathbb{N}$
Output: 1, if there exists an independent set of size k in $G ; 0$, otherwise.

$$
L_{\mathrm{IS}}=\{\langle G, k\rangle \mid G \text { has independent set of size } k\} .
$$

Claim 0.1. $L_{I S}$ is NP-complete
Proof. (1) $L_{\mathrm{IS}} \in \mathrm{NP}$ - certificate is a set $S \subseteq V(G)$. The verifier checks that size of S is k and that each edge of G has at most one endpoint in S. Clearly, the certificate is of polynomial size in G and the verifier runs in polynomial time.
(2) $L_{\text {CLIQUE }} \leq_{p} L_{\mathrm{IS}}$. Given graph $G=(V, E)$ and a number k, we need to construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and k^{\prime} in polytime such that G has a clique of size k if and only if G^{\prime} has an independent set of size k. Construction is very simple, take the complement graph, i.e., $V^{\prime}=V, E^{\prime}=\binom{V}{2} \backslash E$ and $k^{\prime}=k$. Note that set S is a clique in G if and only if S is an independent set in G^{\prime}. Clearly, G^{\prime} and k^{\prime} can be computed in polytime.

CLRS 34.5-1

Definition 0.2. Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E\right)$ are isomorphic if there exists a bijection $f: V_{1} \rightarrow V_{2}$ such that $\{u, v\} \in E_{1}$ if and only if $\{f(u), f(v)\} \in E_{2}$. The bijection f is called isomorphism between G_{1} and G_{2}.

Example:
The following graphs are isomorphic by an isomorphism $f(1)=a, f(2)=b, f(3)=c, f(4)=d$.

The following two graphs are not isomorphic, because the second graph has a vertex of degree 1 and the first graph has only vertices of degree 2 and isomorphisms preserve degrees.

The following two graphs are not isomorphic because they do not have the same number of vertices.

Subgraph Isomorphism Problem

Input: G_{1}, G_{2} - two undirected subgraphs
Ouput: 1, if G_{1} is isomorphic to a subgraph of $G_{2} ; 0$, otherwise
$L_{\text {SUB-ISO }}=\left\{\left\langle G_{1}, G_{2}\right\rangle \mid G_{1}\right.$ is isomorphic to a subgraph of $\left.G_{2}\right\}$.
Claim 0.2. $L_{S U B-I S O}$ is NP-complete.

Proof. (1) $L_{\text {SUB-ISO }} \in$ NP - the certificate is a subgraph $\widetilde{G} \subseteq G_{2}$ of G_{2} and an isomorphism f between G_{1} and \widetilde{G}. Clearly, the size of the certificate is polynomial in the size of the input. The verifier can check in polynomial time that \widetilde{G} is a valid subgraph of G_{2}, and that f is a valid isomorphism. It simply verifies that f is a bijection - onto and one-to-one, and that f preserves the edges.
(2) $L_{\text {CLIQUE }} \leq_{p} L_{\text {SUB-ISO }}$. Given an instance of the clique problem, $\langle G, k\rangle$ we define G_{1} to be a complete graph on k nodes, and let $G_{2}=G$. Observe that G_{1} is isomorphic to a subgraph of G_{2} precisely when the corresponding sugraph is a k-clique. Thus, we have a valid reduction. Clearly, G_{1} and G_{2} can be computed in polynomial time.

Extra problems if you have time:

- CLRS 34.5-8.
- Prove that exact 4-SAT is NP-complete (reduce from exact 3-SAT).
- CLRS 34.4-6.

