7.8 - Minimize Maximum Absolute Difference

Question (General)

You are given n points in a 2-D plane, $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$. Find a line $a x+b y=c$ such that

$$
\max _{i \in 1,2, \ldots n}\left|a x_{i}+b y_{i}-c\right|
$$

is minimized. Formulate this as a linear programming problem.

Solution (General)

To formulate this question as a linear program, we need to deal with the nonlinear max function. It is really difficult to find a linear system that is equivalent to $g=\max _{i \in 1,2, \ldots n}\left|a x_{i}+b y_{i}-c\right|$, but it is possible to find some linear constraints that are equivalent to $g \geq \max _{i \in 1,2, \ldots n}\left|a x_{i}+b y_{i}-c\right|$.

In fact, (1) and (2) below are equivalent.

$$
\begin{gather*}
g \geq \max _{i \in 1,2, \ldots n}\left|a x_{i}+b y_{i}-c\right| \tag{1}\\
g \geq\left|a x_{i}+b y_{i}+c\right| \text { for each } i \in 1,2, \ldots n \tag{2}
\end{gather*}
$$

Since we know $g \geq|q|$ is equivalent to $g \geq q$ and $g \leq-q$, we can formulate the restraint $g \geq$ $\max _{i \in 1,2, \ldots n}\left|a x_{i}+b y_{i}-c\right|$ linearly as the following:

$$
\left\{\begin{array}{l}
g \geq a x_{i}+b y_{i}-c \tag{3}\\
g \leq-a x_{i}-b y_{i}+c
\end{array} \quad \text { for each } i \in 1,2, \ldots n\right.
$$

Now, given the restraints in (3), if a, b and c are fixed as constant, minimizing g using linear programming algorithm will yield the maximum absolute difference, which is $\max _{i \in 1,2, \ldots n}\left|a x_{i}+b y_{i}-c\right|$. If we treat a, b and c as free variables, minimizing g will yield the minimum value of maximum absolute difference which is as same as the question above.

To formulate the question above formally:

$$
\begin{aligned}
\operatorname{minimize} & \\
\text { subject to } g & \geq a x_{i}+b y_{i}-c \text { for each } i \in 1,2, \ldots n \\
& g \leq-a x_{i}-b y_{i}+c \text { for each } i \in 1,2, \ldots n
\end{aligned}
$$

g, a, b, c are all the free variables and x_{i}, y_{i} are the constants
The solution can end here since the question only asks for a linear program. For actually calculating the solution, we need to convert into a slack form. To accomplish that, we actually need some tricks (I summarize some of them at the end of the document).

We introduce slack variables ($p_{i}, q_{i}, a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$) as follows:

$$
\left\{\begin{array}{l}
p_{i}=g-a x_{i}-b y_{i}+c \text { for each } i \in 1,2, \ldots n \tag{4}\\
q_{i}=-g-a x_{i}-b y_{i}+c \text { for each } i \in 1,2, \ldots n \\
a_{1}-a_{2}=a \\
b_{1}-b_{2}=b \\
c_{1}-c_{2}=c
\end{array}\right.
$$

The slack form can be obtained as the following:

$$
\begin{aligned}
\operatorname{maximize} & -g \\
\text { subject to } p_{i} & =g-\left(a_{1}-a_{2}\right) x_{i}-\left(b_{1}-b_{2}\right) y_{i}+\left(c_{1}-c_{2}\right) \text { for each } i \in 1,2, \ldots n \\
q_{i} & =-g-\left(a_{1}-a_{2}\right) x_{i}-\left(b_{1}-b_{2}\right) y_{i}+\left(c_{1}-c_{2}\right) \text { for each } i \in 1,2, \ldots n \\
g & a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \geq 0 \text { and } p_{i}, q_{i} \geq 0 \text { for each } i \in 1,2, \ldots n
\end{aligned}
$$

After solving this LP, the optimal solution obtained ($\bar{g}, \overline{a_{1}}, \overline{a_{2}}, \overline{b_{1}}, \overline{b_{2}}, \overline{c_{1}}, \overline{c_{2}}$) will represent the optimal line $\left(\overline{a_{1}}-\overline{a_{2}}\right) x+\left(\overline{b_{1}}-\overline{b_{2}}\right) y+\left(\overline{c_{1}}-\overline{c_{2}}\right)$ and the minimized maximum deviation from the n points will be \bar{g}.

7.3 - Cargo Plane

Question

There are three types of materials to be transported. You may choose to carry any amount of each, upto the maximum available limits given below.

- Material 1 has density 2 tons/cubic meter, maximum available amount 40 cubic meters, and revenue $\$ 1,000$ per cubic meter.
- Material 2 has density 1 ton/cubic meter, maximum available amount 30 cubic meters, and revenue $\$ 1,200$ per cubic meter.
- Material 3 has density 3 tons/cubic meter, maximum available amount 20 cubic meters, and revenue $\$ 12,000$ per cubic meter.
Besides the limit for each individual material, the total weight limit is 100 tons and the total volume limit is 60 cubic meters. Write a linear program that optimizes revenue within the constraints.

Solution

Let x_{1} be the volume of Material 1 to be carried, x_{2} be the volume of Material 2 to be carried, x_{3} be the volume of Material 3 to be carried.

The linear program can be formulated as follows:

$$
\begin{aligned}
& \operatorname{maximize} 1000 x_{1}+1200 x_{2}+12000 x_{3} \\
& \text { subject to } x_{1}+x_{2}+x_{3} \leq 60 \\
& 2 x_{1}+x_{2}+3 x_{3} \leq 100 \\
& x_{1} \leq 40 \\
& x_{2} \leq 30 \\
& x_{3} \leq 20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Converting to slack form:

$$
\left\{\begin{array}{l}
z=1000 x_{1}+1200 x_{2}+12000 x_{3} \tag{5}\\
x_{4}=60-x_{1}-x_{2}-x_{3} \\
x_{5}=100-2 x_{1}-x_{2}-3 x_{3} \\
x_{6}=40-x_{1} \\
x_{7}=30-x_{2} \\
x_{8}=20-x_{3}
\end{array}\right.
$$

Choose x_{3} as the entering variable and x_{8} as the leaving variable. We obtain our new slack form:

$$
\left\{\begin{array}{l}
z=240000+1000 x_{1}+1200 x_{2}-12000 x_{8} \tag{6}\\
x_{4}=40-x_{1}-x_{2}+x_{8} \\
x_{5}=40-2 x_{1}-x_{2}+3 x_{8} \\
x_{6}=40-x_{1} \\
x_{7}=30-x_{2} \\
x_{3}=20-x_{8}
\end{array}\right.
$$

Choose x_{2} as the entering variable and x_{7} as the leaving variable. We obtain our new slack form:

$$
\left\{\begin{array}{l}
z=276000+1000 x_{1}-1200 x_{7}-12000 x_{8} \tag{7}\\
x_{4}=10-x_{1}+x_{7}+x_{8} \\
x_{5}=10-2 x_{1}+x_{7}+3 x_{8} \\
x_{6}=40-x_{1} \\
x_{2}=30-x_{7} \\
x_{3}=20-x_{8}
\end{array}\right.
$$

Choose x_{1} as the entering variable and x_{5} as the leaving variable. We obtain our final slack form:

$$
\left\{\begin{array}{l}
z=28100-500 x_{5}-700 x_{7}-10500 x_{8} \tag{8}\\
x_{4}=5+0.5 x_{5}+0.5 x_{7}-0.5 x_{8} \\
x_{1}=5-0.5 x_{5}+0.5 x_{7}+1.5 x_{8} \\
x_{6}=35+0.5 x_{5}-0.5 x_{7}-1.5 x_{8} \\
x_{2}=30-x_{7} \\
x_{3}=20-x_{8}
\end{array}\right.
$$

Solve for x_{1}, x_{2} and x_{3} by making $x_{5}=x_{7}=x_{8}=0$. We get $x_{1}=5, x_{2}=30$ and $x_{3}=20$.
Therefore, the optimal solution is to carry 5 cubic meter Material 1, 30 cubic meter Material 2 and 20 cubic meter Material 3. The maximum revenue is $\$ 28100$.

Summary of Tricks for Converting to Slack Form

Consider a linear program:

$$
\begin{aligned}
\operatorname{maximize} x_{1}+x_{2}+x_{3} & \\
\text { subject to } x_{1}+x_{2}+x_{3} & \leq 10 \\
x_{1}-x_{2}-x_{3} & \geq 3 \\
x_{1}+2 x_{2}-x_{3} & =7 \\
x_{1} & \geq 0 \\
x_{2} & \leq 0
\end{aligned}
$$

We can examine them case by case.

Converting a " \leq " Constraint into Slack Form

In general, we can introduce one slack variable y to formulate the constraint:

$$
a^{T} x \leq b \Leftrightarrow y=b-a^{T} x \geq 0
$$

where y is the slack variable we create

Converting a " \geq " Constraint into Slack Form

Similar to the previous case, we have:

$$
a^{T} x \geq b \Leftrightarrow y=a^{T} x-b \geq 0
$$

where y is the slack variable we create

Converting a "=" Constraint into Slack Form

In this case, we can introduce two new slack variables. That is:

$$
a^{T} x=b \Leftrightarrow\left\{\begin{array}{l}
y_{1}=b-a^{T} x \geq 0 . \\
y_{2}=a^{T} x-b \geq 0 .
\end{array}\right.
$$

Dealing with Non-positive Variables

If a variable x is not restrained as $x \leq 0$ instead of $x \geq 0$, we can replace the variable x using a slack variable y :

$$
x \leq 0 \Leftrightarrow y=-x \geq 0
$$

Dealing with Free Variables

If a variable x itself is not restrained, we can replace the variable x using two slack variables y_{1} and y_{2} :

$$
x \text { as a free variable } \Leftrightarrow y_{1}-y_{2}=x \text {, where } y_{1}, y_{2} \geq 0
$$

Apply to the Example Above

By applying the techniques above, we introduce a new set of variables $y_{1}, y_{2}, \ldots, y_{8}$ such that the following equalities hold.

$$
\left\{\begin{array}{l}
y_{1}=10-x_{1}-x_{2}-x_{3}(\leq \text { case }) \tag{9}\\
y_{2}=x_{1}-x_{2}-x_{3}-3(\geq \text { case }) \\
y_{3}=7-x_{1}-2 x_{2}+x_{3}(=\text { case }) \\
y_{4}=x_{1}+2 x_{2}-x_{3}-7 \text { (= case) } \\
x_{1}=y_{5} \\
x_{2}=-y_{6} \text { (Non-positive variable) } \\
x_{3}=y_{7}-y_{8} \text { (Free variable) }
\end{array}\right.
$$

By rearranging and substituting the last three equations back into the first four equations, we can obtain the slack form below:

$$
\begin{aligned}
& \operatorname{maximize} y_{5}-y_{6}+y_{7}-y_{8} \\
& \text { subject to } y_{1}=10-y_{5}+y_{6}-y_{7}+y_{8} \\
& y_{2}=y_{5}+y_{6}-y_{7}+y_{8} \\
& y_{3}=7-y_{5}+2 y_{6}+y_{7}-y_{8} \\
& y_{4}=-7+y_{5}-2 y_{6}-y_{7}+y_{8} \\
& y_{1}, y_{2}, \ldots, y_{8} \geq 0
\end{aligned}
$$

