8 Knapsack

In Chapter 1 we mentioned that some NP-hard optimization problems allow
approximability to any required degree. In this chapter, we will formalize this
notion and will show that the knapsack problem admits such an approxima-
bility.

Let IT be an NP-hard optimization problem with objective function fr;.
We will say that algorithm A is an approzimation scheme for II if on input
(I,¢€), where [is an instance of IT and € > 0 is an error parameter, it outputs
a solution s such that:

e fr(I,s) < (1+¢)-OPT if IT is a minimization problem.
o fri(I,s) > (1 —¢)-OPT if IT is a maximization problem.

A will be said to be a polynomial time approzimation scheme, abbreviated
PTAS, if for each fized € > 0, its running time is bounded by a polynomial
in the size of instance I.

The definition given above allows the running time of A to depend arbi-
trarily on . This is rectified in the following more stringent notion of approx-
imability. If the previous definition is modified to require that the running
time of A be bounded by a polynomial in the size of instance I and 1/¢, then
A will be said to be a fully polynomial approximation scheme, abbreviated
FPTAS.

In a very technical sense, an FPTAS is the best one can hope for an NP-
hard optimization problem, assuming P # NP; see Section 8.3.1 for a short
discussion on this issue. The knapsack problem admits an FPTAS.

Problem 8.1 (Knapsack) Given a set S = {a1,...,a,} of objects, with
specified sizes and profits, size(a;) € Z™ and profit(a;) € ZT, and a “knapsack
capacity” B € Z™", find a subset of objects whose total size is bounded by B
and total profit is maximized.

An obvious algorithm for this problem is to sort the objects by decreasing
ratio of profit to size, and then greedily pick objects in this order. It is easy
to see that as such this algorithm can be made to perform arbitrarily badly
(Exercise 8.1).

8.2 An FPTAS for knapsack 69

8.1 A pseudo-polynomial time algorithm for knapsack

Before presenting an FPTAS for knapsack, we need one more concept. For
any optimization problem II, an instance consists of objects, such as sets or
graphs, and numbers, such as cost, profit, size, etc. So far, we have assumed
that all numbers occurring in a problem instance I are written in binary. The
size of the instance, denoted |I], was defined as the number of bits needed
to write I under this assumption. Let us say that I, will denote instance I
with all numbers occurring in it written in unary. The unary size of instance
I, denoted |I,], is defined as the number of bits needed to write I,,.

An algorithm for problem I is said to be efficient if its running time on
instance I is bounded by a polynomial in |I|. Let us consider the following
weaker definition. An algorithm for problem I7 whose running time on in-
stance I is bounded by a polynomial in |I,,| will be called a pseudo-polynomial
time algorithm.

The knapsack problem, being NP-hard, does not admit a polynomial
time algorithm; however, it does admit a pseudo-polynomial time algorithm.
This fact is used critically in obtaining an FPTAS for it. All known pseudo-
polynomial time algorithms for NP-hard problems are based on dynamic
programming.

Let P be the profit of the most profitable object, i.e., P = max,eg profit(a).
Then nP is a trivial upperbound on the profit that can be achieved by any
solution. For each i € {1,...,n} and p € {1,...,nP}, let S; , denote a subset
of {ai,...,a;} whose total profit is exactly p and whose total size is mini-
mized. Let A(¢,p) denote the size of the set S;, (A(4, p) = oo if no such set
exists). Clearly A(1,p) is known for every p € {1,...,nP}. The following
recurrence helps compute all values A(i,p) in O(n?P) time:

A(i+1,p) =
min {A(4,p), size(a;+1) + A(é,p — profit(a;+1))} if profit(a;+1) < p
A(i+1,p) = A(i,p) otherwise

The maximum profit achievable by objects of total size bounded by B is
max {p| A(n,p) < B}. We thus get a pseudo-polynomial algorithm for knap-
sack.

8.2 An FPTAS for knapsack

Notice that if the profits of objects were small numbers, i.e., they were
bounded by a polynomial in n, then this would be a regular polynomial
time algorithm, since its running time would be bounded by a polynomial in
|7]. The key idea behind obtaining an FPTAS is to exploit precisely this fact:
we will ignore a certain number of least significant bits of profits of objects

70 8 Knapsack

(depending on the error parameter £), so that the modified profits can be
viewed as numbers bounded by a polynomial in n and 1/e. This will enable
us to find a solution whose profit is at least (1 — <) - OPT in time bounded
by a polynomial in n and 1/e.

Algorithm 8.2 (FPTAS for knapsack)

1. Given e >0, let K = %.

2. For each object a;, define profit’(a;) = L%J

3. With these as profits of objects, using the dynamic programming

algorithm, find the most profitable set, say S’
4. Output .

Lemma 8.3 Let A denote the set output by the algorithm. Then,

profit(A) > (1 —¢) - OPT.

Proof: Let O denote the optimal set. For any object a, because of rounding
down, K - profit’(a) can be smaller than profit(a), but by not more than K.
Therefore,

profit(O) — K - profit’(0) < nK.

The dynamic programming step must return a set at least as good as O under
the new profits. Therefore,

profit(S’) > K - profit’(O) > profit(O) — nK = OPT — P
>(1-¢)-OPT,

where the last inequality follows from the observation that OPT > P. a

Theorem 8.4 Algorithm 8.2 is a fully polynomial approximation scheme for
knapsack.

Proof: By Lemma 8.3, the solution found is within (1 — ¢) factor of OPT.
Since the running time of the algorithm is O (n2 L%J) =0 (n2 L%J), which
is polynomial in n and 1/¢, the theorem follows. O

