
CSC373, Winter 2007 Tutorial 2 Notes Authors: Qiyang Li, Denis Pankratov

Important Concepts

In order for a problem to admit a greedy algorithm, it needs to satisfy two properties.

Optimal Substructure: an optimal solution of an instance of the problem contains within itself an
optimal solution to a smaller subproblem (or subproblems).

Greedy-choice Property: There is always an optimal solution that makes a greedy choice.

Solutions

16-1: Coin Changing

16-1a.

Coin change using US currency

Input: n - a positive integer.

Output: minimum number of quarters, dimes, nickels, and pennies to make change for n. We assume
that we have an infinite supply of coins of each denomination.

Consider the following natural greedy strategy:
Greedy strategy: To make change for n find a coin of maximum possible value ≤ n, include it in your
solution, continue recursively to solve the subproblem of making change for n minus the value of the coin
selected.
If we implement the above strategy naively then the runtime would be Θ(n). Observe that the above
strategy will keep including quarters until the value of the subproblem drops below 25. It will then
proceed onto dimes, nickels, and pennies. Thus, the above greedy strategy can be implemented in O(1)
time if we use the division and the modulus operations and assume that all arithmetic operations take
O(1) time. In other words, the strategy becomes:
Greedy strategy adapted to run in O(1) time for the US currency:

• use a1 = bn/25c quarters, let nq = n mod 25 be the remaining number of cents;

• use a2 = bnq mod 10c dimes, let nd = nq mod 10 be the remaining number of cents;

• use a3 = bnd/5c nickels, let nk = nd mod 5 be the remaining number of cents;

• use a4 = nk pennies.

Claim 0.1. Let n be the input. The greedy strategy above constructs a solution (a1, a2, a3, a4). Let
Si = (a1, . . . , ai). Then for all i ∈ {0, 1, 2, 3, 4} we can extend Si to an optimal solution using only
denominations following the ith one.

Proof. It is clear that we can extend S0 = ∅ to an optimal solution using all other denominations.
Normally we would prove the claim by induction on i, but we only need to consider finitely many values
of i, so the rest of the proof is given by the following case analysis:

Step 1: Let (a′1, a
′
2, a
′
3, a
′
4) be an optimal solution given by the above base case of S0. Note that due to

the choice of our algorithm a′1 ≤ a1. If a1 = a′1, we are done with this case, and can move on to the
next case. Otherwise, we have a′1 < a1, i.e., a suggested optimal solution uses less quarters than
our solution. Note than we have a1 > 0, so n ≥ 25. Consider the following subcases:

1 of 3



CSC373, Winter 2007 Tutorial 2 Notes Authors: Qiyang Li, Denis Pankratov

If a′3 >= 3, we can always replace 3 dimes with a quarter and a nickel to obtain a more optimal
solution → contradiction

If a′3 <= 2, similar to Step 2 below, we can break it down to prove that we can always replace
some combinations of nickels, pennies and dimes by a quarter.

Thus, we must have that our partial solution S1 = (a1) is extendable to some optimal solution
(a1, a

′
2, a
′
3, a
′
4) using only dimes, nickels, and pennies.

Step 2: Let (a1, a
′
2, a
′
3, a
′
4) be an optimal solution guaranteed by the previous step. Again, we have

a′2 ≤ a2 by the way that our algorithm chooses a2. If a2 = a′2, there is nothing to prove in this step,
and we can move on to the next one. We need to show that a′2 < a2 is impossible. Let’s argue by
contradiction. Note that we can only have a2 ∈ {0, 1, 2}. Assume that a′2 < a2. Then consider the
following subcases:

When a′2 = 1, a′1 ≥ 5, so we can replace 1 nickel and 5 pennies by 1 dime → contradicting the
assumption of optimality.

When a′2 = 0, a′1 = n ≥ 10, so we can replace 10 pennies with 1 dime → again contradicting the
assumption of optimality.

At this step, we have that the solution produced by the algorithm has to agree with some optimal
in the first two choices, i.e., there is an optimal solution of the form (a1, a2, a

′
3, a
′
4).

Step 3: Let (a1, a2, a
′
3, a
′
4) be an optimal solution obtained from Step 2. By the way our algorithm

chooses a3 we have a′3 ≤ a3. If a′3 = a3 we are done. Otherwise we have 0 = a′3 < a3 = 1. If a′3 = 0,
a′1 ≥ 5 so that we can replace 5 pennies with 1 nickel to get a better solution → contradicting
optimality.

Note that once a1, a2, a3 are fixed, a4 becomes determined. We have shown that there is an optimal
solution that agrees with the solution produced by our algorithm on a1, a2, a3 therefore it has to agree with
our solution on a4, as well. This shows that the solution found by the algorithm is, in fact, optimal.

16-1b.

Coin change using denominations that are powers of a fixed constant

Input: c > 1, k ≥ 1, n ≥ 1 - integers.

Output: minimum number of coins needed to make change for n. The denominations of coins are allowed
to be c0, c1, . . . , ck. We assume that we have an infinite supply of coins of each denomination.

Consider the same greedy strategy as the one presented in the previous part:
Greedy strategy: To make change for n find a coin of maximum possible value ≤ n, include it in your
solution, continue recursively to solve the subproblem of making change for n minus the value of the coin
selected.
The naive implementation of the above strategy requires runs in time Θ(kn), which is not even polynomial
in the size of the input. As before, the implementation can be improved to run in time Θ(k) (left as an
exercise for the reader) using the division and the modulus operations, assuming that all the arithmetic
operations run in constant time.

Claim 0.2. Let ai denote the number of coins of denomination ci (where i ∈ {0, 1, . . . , k}) used by the
greedy algorithm. We claim that there is a unique optimal solution that has to agree with the greedy
solution.

2 of 3



CSC373, Winter 2007 Tutorial 2 Notes Authors: Qiyang Li, Denis Pankratov

Proof. Let (a′0, a
′
1, . . . , a

′
k) denote an optimal solution. First note that a′i < c for all i < k. This is simply

because if we had a′i ≥ c for some i < k, we could replace c coins of denomination ci by a single coin of
denomination ci+1, improving upon an optimal - contradiction.

Next, we prove that a′i = ai for all i. Assume for contradiction that this is not the case. Let j be
the largest possible index such that a′j 6= aj . Note that by the way that our algorithm picks values ai

we have a′j < aj . Let N =
∑j

i=0 aic
i =

∑j
i=0 a

′
ic

i (the equality holds because the two solutions agree on
{aj+1, aj+2, . . . , ak} by assumption). Thus

N =

j−1∑
i=0

a′ic
i + a′jc

j ≤
j−1∑
i=0

(c− 1)ci + a′jc
j

= (c− 1)
cj − 1

c− 1
+ a′jc

j

= cj − 1 + a′jc
j

= cj(a′j + 1)− 1

≤ ajc
j − 1

≤
j∑

i=0

ajc
j − 1

= N − 1.

Contradiction.

Note that the above proof technique is not the standard proof technique for greedy algorithms. The
standard proof technique uses the loop invariant “partial solution can always be extended to some optimal
solution.” The above proof is shorter and simpler, and this is possible because the optimal solution is
unique in this problem, which is usually not the case for optimization problems. Thus, the above proof
technique belongs to the category of “ad-hoc” proofs.

16-1c. Suppose that we have only coins of denominations 1, 10, 25 and we need to make change for 30.
Then the greedy solution would use one quarter and five pennies - 6 coins overall. A non-greedy solution
that uses 3 dimes is strictly better.

3 of 3


