CSC 373: Algorithm Design and Analysis Lecture 3

Allan Borodin

January 11, 2013

Interval colouring

Interval Colouring Problem

- Given a set of intervals, colour all intervals so that intervals having the same colour do not intersect
- Goal: minimize the number of colours used.

We use 4 colors in this example. Question: Is this optimal?

Interval colouring

Interval Colouring Problem

- Given a set of intervals, colour all intervals so that intervals having the same colour do not intersect
- Goal: minimize the number of colours used.

Greedy interval colouring

- Consider the EST (earliest starting time) for interval colouring.
- Sort the intervals by non decreasing starting times
- Assign each interval the smallest numbered colour that is feasible given the intervals already coloured.
- Recall that EST is a terrible algorithm for ISP.
- Note: this algorithm is equivalent to LFT (latest finishing time first).

Theorem

EST is optimal for interval colouring

Greedy Interval Colouring

1: Sort intervals so that $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$
2: for $i=1$ to n do
3: $\quad k:=\min \left\{\ell: \ell \neq \chi(j)\right.$ for all $j<i$ such that the $j^{\text {th }}$ interval intersects the $i^{\text {th }}$ interval $\}$
4: $\quad \sigma(i):=k$
${ }^{*}$ * the $i^{\text {th }}$ interval is greedily coloured by the smallest non conflicting colour */
5: end for

An example of interval colouring

- We use the colors in the following order: red, yellow, blue, green

Idea of optimality proof

Look at the interval that (first) caused the largest colour, say k, to be used by EST. Then there must be k intervals containing a given "time" x and hence k colours are required.

