Lecture 6: Signals

CSC 469H1F / CSC 2208 H1F
Fall 2007
Angela Demke Brown

Signals

• Software equivalent of hardware interrupts
• Allows process to respond to asynchronous external events (or synchronous internal events)
 • Process may specify its own signal handlers or may use OS default action
 • Defaults include
 • Ignoring the signal
 • Terminating all threads in the process (with or without a core dump)
 • Stopping all threads in the process
 • Resuming all threads in the process
• Provide a simple form of inter-process communication (IPC)

Signal Terminology

• Posting - action taken when event occurs that process needs to be notified of (aka signal generation)
• Delivery - action taken when process recognizes arrival of event (aka signal handling)
• Catching - if user-level signal handler is invoked, process is said to catch the signal
• Pending - signals that have been posted, but not yet delivered

User-Level View

• Write a signal handler function
 • E.g. handle SIGINT (interrupt signal) ourselves
 void sigint_handler(int sig) {
 fprintf(stderr,"Interrupted!\n");
 close(tmp_file_fd);
 unlink(tmp_file_name);
 }

• Install it:
 struct sigaction new_action, old_action;
 new_action.sa_handler = sigint_handler;
 sigaction(SIGINT, &new_action, &old_action);
Other user-level actions

- Block signal delivery by *masking* signals
 - Similar in spirit to disabling interrupts
 - `sigprocmask(int how, sigset_t *newset, sigset_t *oldset)`
- Specify that signal handlers run on separate stack
 - `sigaltstack(stack_t *signal_stack, stack_t *old_signal_stack)`
- Retrieve list of pending signals
 - `sigpending(sigset_t *signal_set)`
- Block process until signal is posted
 - `sigsuspend(setset_t *signal_mask)`
- Send signal to process
 - `kill(pid_t pid, int signal_number)`

Complications

- Handler may execute at any time
 - Need to be careful of manipulating global state in signal handler
- Signal delivery may interrupt execution of signal handler!
 - Code should be re-entrant
 - Should block signals if this is not acceptable
- In some implementations (System V Unix, older Linux kernel, libc4,5), handler is reset to default action when it is dispatched
 - Can lead to ugly races... default is often terminate process
- Only one signal handler per signal per process
 - Can’t use in library code
- In many implementations, no signal queuing

Kernel View

- Define fixed set of signals, identified numerically
 - E.g. `#define SIGKILL 9 /* kill program */`
 - Signal sets are bitvectors; each bit position gives the status of corresponding signal
- FreeBSD:
 - Process structure has field to mark pending signals
 - `sigset_t p_siglist;`
 - Thread structure field to mark pending signals for each thread
 - `sigset_t td_siglist;`
- Linux:
 - `task_struct` has field “struct sigpending pending”
 - List of signals and traditional `sigset_t` field

Signal Posting (FreeBSD)

- Mark bit for specified signal in process’ `p_siglist`, and set process to run
 - Process is woken up if in interruptible sleep
 - Many blocking system calls can be interrupted by signals!
- If process is multi-threaded, search for appropriate thread to post signal to
 - Synchronous signals (caused by thread’s execution) are posted only to that thread
 - Other signals search thread list for first thread not masking signal and add to that thread’s `td_siglist`
 - If all threads are masking signals, mark process `p_siglist`
- Some actions can be taken immediately
 - E.g., stopping or continuing the process
Signal Delivery (FreeBSD)

- Thread checks pending signals (at least once) each time it enters kernel
 - Often just before leaving kernel
- If user-level handler exists, arranges for that handler to be invoked
 - Saves signal state on stack
 - Sets up registers to begin executing user-mode signal handler *trampoline*
 - Trampoline calls signal handler function
 - When handler returns, trampoline makes *sigreturn()* system call
 - OS cleans up stack

Real-Time Signals (POSIX.4)

- Ordinary signals carry no information other than signal number
- Real-time signals can include a value as well
- POSIX defines *SIGRTMIN* and *SIGRTMAX* for range of real-time signals
 - All ignored by default - have no predefined meaning
- Linux queues real-time signals so they won't be lost or merged
 - Uses the "list" field of the sigpending struct

Using Signals

- Used to implement timers
 - E.g. send SIGALRM after N seconds
- Used in some programming language interpreters to implement language-defined exceptions
 - E.g. JamVM, SableVM (open source Java VMs) implement NULL pointer checks by catching the SIGSEGV that the access causes, and then handling it according to the Java specification
- Simple "X has occurred" communication between processes
 - E.g. parent forks child and wants to know when child has completed initialization before continuing, child sends signal to parent, or parent wants to tell all children to stop after a certain amount of time has elapsed
- Portability can be a concern as different systems have different signal behavior
 - E.g. Linux implements signal queues so multiple signals of the same time can be recorded, but FreeBSD just has the bit marking so repeated signals can be lost