Lecture 14: Practical, transparent operating system support for superpages

Juan Navarro · Sitaram Iyer
Peter Druschel · Alan Cox

Rice University
(slides adapted from OSDI 2002 presentation)

Overview

- Increasing cost in TLB miss overhead
 - growing working sets
 - TLB size does not grow at same pace
- Processors now provide superpages
 - one TLB entry can map a large region
- OSs have been slow to harness them
 - no transparent superpage support for apps

How to increase TLB coverage

- Typical TLB coverage ≈ 1 MB
- Use superpages!
 - Both large and small pages - power-of-2 size
 - 1 TLB entry per superpage
 - Contiguous, and virtually and physically aligned
 - Uniform attributes (protection, valid, ref, dirty)
- Benefit: Increase TLB coverage
 - no increase in TLB size
 - no internal fragmentation

If only large pages: larger working sets, more I/O.
The Superpage Problem

- Main Issues
 - Allocation
 - Promotion
 - Demotion
 - Fragmentation

Why multiple superpage sizes

<table>
<thead>
<tr>
<th>bench</th>
<th>64KB</th>
<th>512KB</th>
<th>4MB</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>1%</td>
<td>0%</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td>galgel</td>
<td>28%</td>
<td>28%</td>
<td>1%</td>
<td>29%</td>
</tr>
<tr>
<td>mcf</td>
<td>24%</td>
<td>31%</td>
<td>22%</td>
<td>68%</td>
</tr>
</tbody>
</table>

• Different apps have different "best" size
 • Different data structures in a single app have different "best" size

Issue 1: superpage allocation

- How / when / what size to allocate?
Issue 2: promotion

- Promotion: create a superpage out of a set of smaller pages
 - mark page table entry of each base page
- When to promote?
 - Forcibly populate pages? May cause internal fragmentation.
 - Create small superpage? May waste overhead.
 - Wait for app to touch pages? May lose opportunity to increase TLB coverage.

Issue 3: demotion

- Demotion: convert a superpage into smaller pages
 - when page attributes of base pages of a superpage become non-uniform
 - during partial pageouts

Issue 4: fragmentation

- Memory becomes fragmented due to
 - use of multiple page sizes
 - persistence of file cache pages
 - scattered wired (non-pageable) pages
- Contiguity: contended resource
- OS must
 - use contiguity restoration techniques
 - trade off impact of contiguity restoration against superpage benefits

Previous research approaches

- Reservations
 - Talluri & Hill "Surpassing the TLB performance of superpages with less operating system support"
 - one superpage size only, designed to work with proposed partial sub-block TLBs
- Relocation
 - move pages at promotion time
 - must recover copying costs
 - E.g. Romer, et al. "Reducing TLB and memory overhead using online superpage promotion"
- Not known to be implemented in non-research OS
Prior commercial OS approaches

- Eager superpage creation (IRIX, HP-UX)
 - Superpage is allocated at page fault time
 - Size specified by user: non-transparent
 - IRIX
 * can select different page size for any suitably-aligned range of the virtual address space
 * OS maintains list of free pages of each size, coalescing daemon periodically tries to refresh
 * Large pages can be demoted under memory pressure
 - HP-UX
 * Can select different sizes for text and data segment only
 * Hint is associated with binary, not selectable at run-time

Design

- Now look in detail at Navarro et al.’s design decisions for
 - Allocation
 - Promotion
 - Demotion
 - Fragmentation control

Superpage allocation

Use preemptible reservations

How much do we reserve?
Goal: good TLB coverage, without internal fragmentation.

Key observation

Once an application touches the first page of a memory object then it is likely that it will quickly touch every page of that object

- Example: array initialization
- Opportunistic policies
 - superpages as large and as soon as possible
 - as long as no penalty if wrong decision
- Q: What is a memory object to the OS?
Allocation: reservation size

Opportunistic policy
- Go for biggest size that is no larger than the memory object (e.g., file)
- If size not available, try preemption before resigning to a smaller size
 - preempted reservation had its chance

Allocation: managing reservations

Incremental promotions

Promotion policy: opportunistic
- Superpage is created whenever any superpage-sized and aligned extent within a reservation is fully populated.

Speculative demotions

- One reference bit per superpage
 - How do we detect portions of a superpage not referenced anymore?
- On memory pressure, demote superpages when resetting ref bit
- Re-promote (incrementally) as pages are referenced
Demotions: dirty superpages

- One dirty bit per superpage
 - what’s dirty and what’s not?
 - page out entire superpage
- Demote on first write to a clean superpage
 -
 ![Diagram: Superpage Demotion]
 - Re-promote (incrementally) as other pages are dirtied

Fragmentation control

- Modified page daemon
 - restore contiguity
 - move clean, inactive pages to the free list
 - minimize impact
 - prefer pages that contribute the most to contiguity
 - keep contents for as long as possible (even when part of a reservation: if reactivated, break reservation)
 - Cluster wired pages

Experimental setup

- FreeBSD 4.3
- Alpha 21264, 500 MHz, 512 MB RAM
- 8 KB, 64 KB, 512 KB, 4 MB pages
- 128-entry DTLB, 128-entry ITLB
- Unmodified applications

Best-case benefits

- TLB miss reduction usually above 95%
- SPEC CPU2000 integer
 - 11.2% improvement (0 to 38%)
- SPEC CPU2000 floating point
 - 11.0% improvement (-1.5% to 83%)
- Other benchmarks
 - FFT (200^3 matrix): 55%
 - 1000x1000 matrix transpose: 655%
 - 30%+ in 8 out of 35 benchmarks
 - Modest slowdown (speedup ~0.99) in 2
Fragmentation control

- Normalized contiguity of free memory
- Comparison between no fragmentation control and full fragmentation control
- Graph showing speedup over time for various tasks: web server and FFT

Conclusions

- Superpages: 30%+ improvement
 - Transparently realized; low overhead
- Contiguity restoration is necessary
 - Sustains benefits; low impact
- Multiple page sizes are important
 - Scales to very large superpages
- Source code and more info at:
 - www.cs.rice.edu/~jnavarro/superpages
- Several Linux efforts underway
 - Complicated by Linux page table design