
SELF-ASSESSMENT PROCEDURE XXI 
A self-assessment procedure on 
concurrency 

by Brian A. Rudolph 

What is Self-Assessment Procedure XXI? 
This is the 21st self-assessment procedure. All the pre- 
vious ones are listed on the facing page. The first 13 are 
available from ACM* in a single loose-leaf binder to 
which later procedures may be added. 

This procedure is intended to allow computer profes- 
sionals to test their knowledge of the general concepts 
of concurrency, that is, the parallel execution of several 
processes or tasks. It includes questions concerning ter- 
minology, formal topics, specifying concurrency, pro- 
cess coordination, and classical problems. In all except 
a few cases, there is supposed to be only one correct 
answer for each of the multiple-choice questions. 

The next few paragraphs repeat the introduction 
and instructions given with earlier procedures. Those 
who read them before may advance directly to the 
questions. 

What is Self-Assessment? 
Self-assessment is based on the idea that a procedure 
can be devised that will help a person appraise and 
develop his or her knowledge about a particular topic. 
It is intended to be an educational experience for a 
participant. The questions are only the beginning of the 
procedure. They are developed to help the participant 
think about the concepts and decide whether to pursue 
the matter further. 
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The primary motivation of self-assessment is not for 
an individual to satisfy others about his or her knowl- 
edge; rather it is for a participant to appraise and de- 
velop his or her own knowledge. This means that there 
are several ways to use a self-assessment procedure. 
Some people will start with the questions. Others will 
read the answers and refer to the references first. These 
approaches and others devised by the participants are 
all acceptable if at the end of the procedure the partici- 
pant can say, “Yes, this has been a worthwhile experi- 
ence” or “I have learned something.” 

How to Use the Self-Assessment Procedure 
We suggest the following way of using the procedure, 
but as noted earlier, there are others. This is not a 
timed exercise; therefore, plan to work with the proce- 
dure when you have an hour to spare, or you will be 
shortchanging yourself on this educational experience. 
Go through the questions, and mark the responses you 
think are most appropriate. Compare your responses 
with those suggested by the Committee. In those cases 
where you differ with the Committee, look up the ref- 
erences if the subject seems pertinent to you. In those 
cases in which you agree with the Committee, but feel 
uncomfortable with the subject matter, and the subject 
is significant to you, look up the references. 

Some ACM chapters may want to devote a session to 
discussing this self-assessment procedure or the con- 
cepts involved. 

The Committee hopes some participants will send 
comments. 
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This self-assessment procedure is not sanctioned as a test or endorsed in any 
way by ACM. Any person using any of the questions in this procedure for the 
testing or certification of anyone other than him- or herself is violating the 
spirit of this self-assessment procedure and the copyright on this material. 

Contents 

Part I. Questions 
Part II. Suggested Responses 
Part III. References 

Part I. Questions 

GENERAL CONCEPTS 
The notion of a process (often termed a task) is difficult 
to capture precisely, while at the same time being of 
foremost importance in the study of concurrency. The 
first part of this self-assessment procedure is about 
fundamental processes and concurrency concepts. 

1. Processes may be described as physically concurrent 
or logically concurrent. The distinction between 
these types of concurrency is analogous to the 
distinction between: 

a. Synchronous processes and asynchronous 
processes. 

b. Real processors and virtual processors. 
c. Explicit parallelism and implicit parallelism. 
d. Batch processing and interactive processing. 

2. Physical concurrency in a uniprocessor system: 

a. Can occur among operating system routines. 
b. Can occur with peripherals that communi- 

cate via interrupts. 
c. Occurs through context switching. 
d. Cannot occur. 

3. Within a process, a critical section consists of any 
sequence of instructions that: 

a. Produce a result necessary for the successful 
completion of a subsequent instruction. 

b. Are frequently executed on behalf of the 
process. 

c. Must be accessed on a mutually exclusive 
basis. 

d. Have a high-priority value associated with 
them. 

4. When the result of a computation depends on the 
speed of the processes involved, there is said to be: 

a. Process syncopation. 
b. A time lock. 
c. Cycle stealing. 
d. A race condition. 
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5. The relative speed of a process in execution can- 
not reliably be determined due primarily to the 
variations in: 

The timing of context switching among 
processes. 
The speed of system hardware. 
The number of instructions included in a 
process. 
The types of the instructions included in a 
process. 

6. The major distinction between lightweight and 
heavyweight processes centers around: 

a. The amount of memory that must be 
allocated to the process. 

b. The average number of instructions exe- 
cuted by the process. 

c. The amount of overhead associated with 
process creation and context switching. 

d. The number of I/O requests made by the 
process. 

7. A technique which derives parallelism by decom- 
posing a task into a number of distinct stages 
which may be overlapped in an assembly-line 
fashion is called: 

a. Phase transition. 
b. Pipelining. 
c. Linear displacement. 
d. Fragmentation. 

FORMAL CONCURRENCY TOPICS 
The study of concurrency is based on formal models of 
concurrent computation and the properties of their par- 
allel algorithms. Many attempts have been made to in- 
troduce formalisms that are both sufficiently powerful 
and clear, but none have become dominant. This sec- 
tion focuses on a sampling of these models and on other 
formal aspects of concurrency. 

8. A sequential algorithm with input size i performs 
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W(i) operations in the worst case. Given a machine 
with n identical processors, the best worst case 
complexity of a parallel implementation of this 
algorithm would be on the order of: 

a. W(i)/log 17. 
b. W(i)/& 
c. W(i)/n 
d. W(i)/n’ 

9. Bernstein’s conditions use the concepts of read sets 
and write sets to determine: 

a. If a group of processes and resources have 
become involved in a deadlock. 

b. If there are any processes suffering from 
indefinite postponement. 

c. If a resource allocation request can be 
granted safely. 

d. If performing multiple operations in parallel 
will preserve determinacy. 

10. The NC problem class consists of problems that 
can be solved by a parallel algorithm with polyno- 
mially many processors in time proportional to a 
fixed power of the log of their input size. Which of 
the following problems is most likely not in class 
NC? 

a. Sorting a list of records on a particular key. 
b. Searching an unordered list for the record 

with the largest key. 
c. Weighted average computation. 
d. Finding the greatest common divisor of two 

integers. 

11. Flynn’s taxonomy of parallel computational 
models uses the concepts of instruction streams 
and data streams to determine classification. The 
conventional view is that no existing computers 
can be classified as: 

a. Single-instruction stream, single data stream 
(SISD). 

b. Single-instruction stream, multiple data 
stream (SIMD). 

c. Multiple-instruction stream, single data 
stream (h4ISD). 

d. Multiple-instruction stream, multiple data 
stream (h?IMD). 

12. The number of messages buffered in Hoare’s 
Communicating Sequential Processes is: 

a. Zero. 
b. One. 
c. Bounded by some n 2 1. 
d. Unbounded. 

13. Which of the following does not completely dis- 
tribute through the nondeterministic choice opera- 
tor under the laws established in Hoare’s text on 

14. 

15. 

16. 

17. 

communicating sequential processes? 

a. Recursion. 
b. Interleaving. 
c. Prefixing. 
d. Concealment. 

Petri nets provide a method to mathematically 
analyze systems that contain concurrent activities. 
Consider the two Petri net graphs in Figure 1. For 
an initial node marking of n tokens, which of the 
following observations regarding the execution of 
these two Petri nets is incorrect? 

All places in both Petri nets are n-safe. 
All places in both Petri nets will have been 
marked during execution. 
One of the two Petri nets is not strictly con- 
servative. 
Exactly n tokens will remain in each Petri 
net when execution halts. 

When message transmission systems send empty 
messages asynchronously, they are effectively 
equivalent to: 

a. Petri nets. 
b. Semaphore-based systems. 
c. Finite state machines. 
d. Turing machines. 

In the actor paradigm, computational agents called 
actors communicate by message passing and carry 
out their actions concurrently. Each actor has a 
mail address and an associated behavior. Which of 
the following does not characterize the behavior of 
an actor? 

An actor may process multiple communica- 
tions simultaneously. 
An actor may process only those tasks 
whose target corresponds to its mail address. 
An actor may create new actors upon accep- 
tance of a communication. 
An actor must compute a replacement be- 
havior upon acceptance of a communication. 

The paralation model is an architecture-indepen- 
dent model for parallel programming that can be 
combined with any base language to produce a 
concrete parallel programming language. It con- 
sists of a single data structure (called a field) and 
three carefully chosen operators. Which of the fol- 
lowing is not an operator in the basic paralation 
model? 

a. Merge. 
b. Elementwise evaluation. 
c. Move. 
d. Match. 
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Net A Net B 

Figure 1. Two Petri-Net Graphs 

18. Which model below lends itself most easily to the 
specification of potentially massive parallelism? 

a. Finite state machines. 
b. Monitors. 
c. Neural networks. 
d. Communicating sequential processes. 

1% When taking the axiomatic approach to the verifica- 
tion of concurrent programs: 

a. A concurrent program is transformed to an 
equivalent sequential program for further 
analysis. 

b. Interleaving scenarios are employed to 
characterize all possible behaviors of a 
concurrent program. 

c. A functional relationship is established 
between the initial and final set of values in 
a concurrent program. 

d. Statements in a concurrent program are 
viewed as relations between predicates in a 
formal logic system. 

SPECIFYING CONCURRENCY 
The following questions are concerned with a few of 
the problems associated with specifying concurrency. 
The exercises give an opportunity to specify concur- 
rency using some basic primitives. 

20. Coroutines are not suitable for specifying true 
parallel processing since: 

a. They do not permit the simultaneous execu- 

21. 

22. 

b. 

C. 

d. 

tion of multiple processes. 
They do not provide a well-defined method 
for transfer of control. 
They are not sufficiently powerful to imple- 
ment multiprogramming. 
They do not provide a mechanism for pro- 
cess synchronization. 

Statement sequences that cannot be executed in 
parallel are said to contain dependences. Consider 
the program fragment given in Listing 1. Identify 
the flow dependences, antidependences, and output 
dependences present between the statements in this 
fragment. 

Listing 1 

s,: w = x + Y 
s2: x = w - z 
sz:y=3+ w 
&: w = x + z 

Parallelism inherent in loop structures but not 
explicitly specified by the programmer can be ex- 
tracted by a compiler capable of detecting parallel- 
ism automatically. In the absence of dependences, 
such a compiler can restructure the loop and ulti- 
mately create a vector statement for each individ- 
ual case. This type of transformation is called: 
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23. 

24. 

25. 

a. Loop optimization. 
b. Loop distribution. 
c. Loop blocking. 
d. Loop interc:hange. 

Express the precedence graph in Figure 2 as a 
concurrent program using fork, join, and quit 
primitives. The program should permit maximum 
parallelism. 

Express the precedence graph in Figure 2 as a con- 
current program using the parbegin/parend (also 
known as cobegin/coend) concurrent statement. 
The program should again permit maximum paral- 
lelism. 

Suppose an edge from node S3 to node S4 were 
added to the precedence graph in Figure 2. What 
effect would this have on the programs developed 
in questions 23 and 24? 

The modification would have no effect on 
either program. 
The fork, join, and quit primitives could not 
be used to derive maximum parallelism. 
The parbegin/parend concurrent statement 
could not be used to derive maximum paral- 
lelism. 
Neither construct could be used to derive 
maximum parallelism. 

PROCESS COORDINATION 
Processes must often synchronize and communicate to 
accomplish their tasks. Process coordination problems 
provide one of the most intellectually challenging 
aspects of concurrency. This portion of the self- 
assessment procedure examines some problems and 
concerns associated with these issues. 

26. Which of the following is not a proper statement 
concerning critical regions? 

a. Critical regions involving distinct data may 
be executed concurrently. 

b. One critical region cannot be nested inside 
another critical region. 

c. A process should remain inside a critical re- 
gion for only a finite amount of time. 

d. A process should not be permitted to termi- 
nate inside a critical region. 

27. Starvation occurs when: 

a. At least one process is continually passed 
over and not permitted to execute. 

b. The priority of a process is adjusted based 
upon its length of time in the system. 

c. At least one process is waiting for an event 
that will never occur. 

d. Two or more processes are forced to access 

Figure 2. A Precedence Graph 

critical data in strict alternation with each 
other. 

28. A common assumption underlying mutual exclu- 
sion algorithms in shared memory systems is that: 

Time-critical threats of process starvation 
can effectively be ignored. 
A memory reference to an individual word 
is mutually exclusive. 
A single instruction executes faster than a 
group of instructions. 
A process executing a busy wait will receive 
a lower scheduling priority. 

29. An objection to Dekker’s two-process mutual 
exclusion algorithm concerns the fact that: 

a. It relies on race conditions to achieve 
mutual exclusion. 

b. It does not prevent the indefinite postpone- 
ment of a process. 

c. It cannot be generalized to provide mutual 
exclusion among more than two processes. 

d. It uses a common variable that can be 
altered by any process. 

30. Consider busy waiting for entry into a critical 
section in a shared memory system. In which 
scenario (or scenarios) below would this not be 
considered an unreasonable approach? 
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a. When there are few CPU-bound processes in 
existence. 

b. When a dedicated processor can be assigned 
to perform the busy wait. 

c. When the expected wait is less than the 
time needed to perform a context switch. 

d. None of the above-busy waiting is always 
unreasonable since it does nothing but waste 
processor cycles. 

31. The first mutual exclusion algorithm independent 
of any centralized device serialized the requests 
from competing processes desiring entry into a 
critical section. This famous algorithm is known 
as: 

a. Conway’s Algorithm. 
b. Schott’s Algorithm. 
c. Lamport’s Bakery Algorithm. 
d. Dijkstra’s Banker’s Algorithm. 

32. In shared memory systems, process synchroniza- 
tion can be supported by special hardware instruc- 
tions that perform multiple actions atomically 
such as the reading and modification of a single 
memory location. Many of these instructions are 
termed blocking since they can be executed only 
by one process at a time. Conversely, nonblocking 
primitives permit many processors to access a 
shared variable simultaneously and obtain unique 
results. Which of the following hardware primi- 
tives, when used in conjunction with an intercon- 
nection network that can combine requests bound 
for the same memory location, is nonblocking? 

a. The test-and-set instruction. 
b. The fetch-and-add instruction. 
c. The lock instruction. 
d. The swap instruction. 

33. A general (or counting) semaphore: 

a. Provides less synchronization capability 
than a binary semaphore. 

b. Provides synchronization capability equiva- 
lent to a binary semaphore. 

c. Provides more synchronization capability 
than a binary semaphore. 

d. Bears no comparable relationship to a binary 
semaphore. 

34. A condition in a monitor is associated with: 

a. An integer variable, which is initially zero. 
b. A binary semaphore, which is initially zero. 
c. A queue, which is initially empty. 
d. A boolean variable, which is initially false. 

3.5. A monitor has all of the following advantages over 
a semaphore except: 

a. Being a more powerful synchronization 

36. 

37. 

38. 

39. 

40. 

construct than a semaphore. 
b. Being a higher-level synchronization con- 

struct than a semaphore. 
c. Providing automatic mutual exclusion 

within its boundaries. 
d. Collecting all routines that modify a set of 

shared data into one location. 

One advantage of path expressions over monitors is 
that path expressions: 

a. Are more easily implemented within a 
compiler. 

b. Can be used to convey condition synchroni- 
zation. 

c. Allow the specification of an ordering in 
which to resume blocked processes. 

d. Eliminate the need for explicit synchroniza- 
tion code. 

When working with message-passing systems, 
time-outs are used to: 

Limit the number of times that a message 
may be transmitted. 
Determine that a transmitted message has 
become lost. 
Temporarily suspend the transmission of 
messages. 
Limit the size of a transmitted message. 

A distinct advantage of message-passing over 
semaphores is that: 

Message-passing is readily extensible to a 
distributed environment. 
Message-passing primitives do not necessar- 
ily block a process when executed. 
Message-passing imposes a hierarchical 
structure on the design of an operating 
system. 
Processes engaged in message-passing can- 
not become involved in a deadlock. 

In many cases, a group of cooperating processes 
must all arrive at a common location before any 
them are permitted to proceed. This location is 
termed: 

of 

a. An artificial rendezvous point. 
b. A barrier synchronization point. 
c. A conditional critical region. 
d. A synchronization bottleneck. 

Event counts and sequencers can be used to solve 
the bounded-buffer producer/consumer problem: 

a. Without requiring mutual exclusion be- 
tween the producer and consumer processes. 

b. Only in the case of a single producer process 
and a single consumer process. 

c. Only when the producer and consumer 
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41. 

42. 

43. 

44. 

processes run at the same relative speed. 
d. Only when the information transmitted be- 

tween the producer and consumer processes 
is passed by value. 

A major distinction between tightly-coupled sys- 
tems and loosely-coupled systems is that process 
synchronization: 

a. Is simplified in a loosely-coupled system 
since all processors in the system can access 
a shared global memory. 

b. Is simplified in a loosely-coupled system 
since a single operating system must control 
all processors in the system. 

c. Is more difficult in a loosely-coupled system 
since there is only minimal message traffic 
between processors. 

d. Is more difficult in a loosely-coupled system 
since there is typically no shared memory or 
clocks. 

Transaction processing systems such as airline 
reservation systems must provide a mechanism, 
which guarantees that each transaction is immune 
from interference by other transactions that may 
be occurring at the same time. Two-phase transac- 
tions obey a protocol that insures this atomicity. In 
two-phase transactions: 

a. All read operations occur before the first 
write operation. 

b. All lock actions occur before the first unlock 
action. 

c. A shared lock on an object must be obtained 
before an exclusive lock on the object can 
be obtained. 

b. Any currently locked object must be un- 
locked before another object can be locked. 

Remote procedure calls can be specified in one of 
two ways: either as a procedure declaration that is 
implemented as a server process or as a special 
statement. The Ada rendezvous takes the latter ap- 
proach by requiring the server side to execute: 

a. A call statement. 
b. A null statement. 
c. An accept statement. 
d. An entry statement. 

Which of the following is not an advantage of the 
Ada rendezvous mechanism? 

a. One server can provide multiple services. 
b. Communication between the client and 

server is guaranteed within a finite amount 
of time. 

c. A server can achieve different effects for 
client calls to the same service. 

d. Client calls can be serviced at times deter- 
mined by the server. 

45. The Ada select statement is an example of a 
guarded command. The guards: 

a. Prevent conflicting tasks from simultane- 
ously executing the select statement. 

b. Provide mutual exclusion among the alter- 
natives in the select statement. 

c. Determine which select alternatives can be 
executed. 

d. Determine which specific event will be 
serviced. 

46. Which of the following is not a characteristic of an 
algorithm that exhibits large-grain parallelism? 

a. It performs relatively many operations be- 
tween synchronizations. 

b. It generates an abundance of message traffic. 
c. It can typically take advantage of additional 

processors as the size of a problem increases. 
d. It can be implemented on both multiproces- 

sor systems and multicomputer systems. 

CLASSIC CONCURRENCY PROBLEMS 
This segment is a collection of problems and exercises, 
which have become classics in concurrency. 

47. Dijkstra’s Dining Philosophers problem involves a 
group of five philosophers whose existence is 
based solely on two activities: thinking and eating. 
The philosophers sit around a circular table. In the 
center of the table is a bowl of spaghetti, which is 
constantly replenished (the bowl is never empty). 
The only eating utensils available are five forks. 
One of the forks is located between each adjacent 
pair of philosophers. A hungry philosopher, there- 
fore, must acquire the forks to the immediate left 
and right in order to eat. The life of a philosopher 
constantly cycles between the thinking and eating 
states. Consider designing a concurrent program 
that simulates the activities of the philosophers 
without severely inhibiting their actions. The pri- 
mary task in developing an acceptable solution to 
this problem concerns: 

a. Selecting an appropriate mutual exclusion 
primitive. 

b. Avoiding deadlock and process starvation. 
c. Selecting an appropriate representation for 

the resources. 
d. Serializing the use of the resources. 

48. The Cigarette Smokers’ problem consists of an 
agent process and three smoker processes. The 
agent has access to an infinite supply of the three 
commodities necessary to make and use a ciga- 
rette: paper, tobacco, and matches. One of the 
smoker processes has access to an infinite supply 
of paper, another has access to an infinite supply 
of tobacco, and the third has access to an infinite 
supply of matches. The agent begins by placing 
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two of the three commodities on the table. The 
smoker process with the missing ingredient must 
then acquire the two commodities on the table, 
make and smoke a cigarette, and notify the agent 
when it has completed. The process then repeats 
with the agent placing two more of its commodi- 
ties on the table. This is an example of a synchro- 
nization problem that cannot be solved: 

a. Using a Petri net. 
b. Using only ordinary semaphore operations. 
c. Using only asynchronous message passing. 
d. Using any model of parallel computation. 

Questions 49 and 50 refer to Listing 2 in which a pro- 
ducer and a consumer process synchronize to share a 
common buffer. 

Listing 2 

var 

mutex, item-available: semaphore; 

procedure producer; 

begin 
repeat 

produce-item; 
P(mutex); 
append-to_buffer; 
V(mutex); 
V(item-available) 

until false 
end; 

procedure consumer; 
begin 

repeat 
P(item-available); 
P(mutex); 
retrieve-from-buffer; 
V(mutex); 
consume-item 

until false 
end; 

begin 
semaphore-init(mutex, 1); 

semaphoreAnit(itemavailable, 0); 

parbegin 
producer; 
consumer 

parend 
end. 

49. What would be the effect of executing the pro- 
gram in Listing z with the two P operations in the 
consumer process interchanged? 

a. The producer and consumer processes could 
deadlock. 

b. The producer or consumer process could 

become a victim of starvation. 
c. Mutual exclusion would be violated. 
d. The modification would have no effect on 

the correctness of the program. 

50. What would be the effect of executing the pro- 
gram in Listing 2 with the two V operations in the 
producer process interchanged? 

a. The producer and consumer processes could 
deadlock. 

b. The producer or consumer process could 
become a victim of starvation. 

c. Mutual exclusion would be violated. 
d. The modification would have no effect on 

the correctness of the program. 

51. Determine the proper lower-bound and upper- 
bound on the final value of the shared variable 
tally output by the concurrent program in Listing 
3. Assume that the processes can execute at any 
speed and that a value can only be incremented 
after it has been loaded into an accumulator by a 
separate machine instruction. 

Listing 3 

const 
n = 50; 

var 
tally : integer; 

procedure total; 

var 
count: integer; 

begin 
for count := 1 to n do 

tally := tally + 1 

end; 

begin 
tally := 0; 

parbegin 
total; 
total 

parend ; 

writeIn(tally) 
end. 

Suppose that an arbitrary number of these increment 
processes are permitted to execute in parallel under the 
previous assumptions. What effect will this modifica- 
tion have on the range of final values of tally? 

52. When the concurrent processes in Listing 4 are 
executing, what relationship will exist between 
the values of the shared variables count 1 and 
count2? Again assume that the processes can 
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execute at any speed and that a value can only blocked[id] := true; 

be incremented after it has been loaded into an while turn <> id do 

accumulator by a separate machine instruction. begin 

a. count 1 and count2 will remain equal. 
b. count 1 will remain greater than or equal to 

count2. 
c. count2 will remain greater than or equal to 

countl. 
d. The values of count 1 and count2 will 

exhibit no consistent relationship. 

while blocked[l -- id] do; 
turn := Id 

end; 
count1 := count1 + 1; 

blocked[id] := false; 
count2 := count2 + 1 

until false 
end; 

Listing 4 

var 
blocked: array [O..l] of boolean; 
turn, countl, count2: integer; 

procedure process(id: integer); 
begin 

repeat 

begin 
blocked[O] := false; blocked]11 := false; 
turn := 0; count1 := 0; count2 := 0; 

parbegin 
process(O); 
process(l) 

parend 

end. 

Part II. Suggested Responses 

GENERAL CONCEPTS 
1. b [6, 36-37; 32, 62-65; 19, 221 pp. pp. p. 
2. b [32, 12-15; 6, 296-300; 9, pp. 26-271 pp. pp. 
3. c [6, 46-48; 32, pp. 83-84; 9, pp. 76-771 pp. 
4. d [19, 19; 2, 3661 p. p. 
5. a [5, pp. 22-24; 34, pp. 70-72; 19, p. 221 
6. c [2, 272-273; 13, 3381 pp. p. 
7. b [28, 9-10, 13-15; 9, pp. 29-30; 15, p. 2701 pp. 

FORMAL CONCURKENCY TOPICS 
8. 
9. 

10. 
11. 

12. 

13. 

14. 

c [28, pp. 42-44, 131; 4, p. 363; 15, p. 2601 
d [21, pp. 12-14; 26, pp. 52-53, 70-731 
d [8, pp. 2-22; 4, pp. 365-366; 15, pp. 271-2751 
c [2, pp. 19, 111-112; 28, pp. 16-17; 9, pp. 317- 
318] Pipelined vector processors are sometimes 
classified as MISD, however. 
a [17, pp. 134-135, 142; 18, p. 285; 32, pp. 125- 
127, 132-1331 
a [17, pp. 101-104, III-112,119-1201 The recur- 
sion operator is not distributive through nondeter- 
ministic choice except in the trivial case where 
identical operands are supplied. 
b [26, pp. 16-21, 40, 81-841 Since the first three 
transitions in Net A cause a mark to visit every 
place by creating an additional token after each 
firing, Net A is not strictly conservative. The final 
transition removes these duplicate tokens, leaving 
n tokens in the final place when execution halts. 
The arrangement of the places and transitions, 
however, limits the number of tokens in a given 
place to n, thus making them n-safe. 

The execution of Net B contains a sequence of 
transitions that are in conflict, causing each token 
to be preserved as it follows one “path” of transi- 
tions from the initial place to the final place. Since 

no tokens are created or destroyed, Net B is 
strictly conservative, all places are n-safe, and n 
tokens are left in the final place when execution 
halts. But the firing of transitions is nondetermin- 
istic, so there is no guarantee that all places in Net 
B will have been marked. 

15. b [26, pp. 220-226; 19, pp. 33-36; 7, p. 931 
16. a [l, pp. 23-251 
17. a [31, pp. 7-8, 11-361 
18. c [30, pp. 129-136; 11, pp. 170-187; 14, p. 1611 
19. d [23, pp. 319-340; 24, pp. 279-285; 3, pp. 6-9, 

32-33, 52-53; 29, pp. 56-58; lo] 

SPECIFYING CONCURRENCY 
20. a [5, pp. 30-32; 3, p. 10; 7, p. 1311 
21. [25, pp. 1184-1187; 27, pp. 15-18; 22, pp. 2-10- 

2-121 

Flow Dependences: 

w: Sl&, SIG 
x: MS4 

Antidependences: 

w: s,F&, s,z%s, 
x: s* 8-.ss, 
y: s1 Fss, 

Output Dependence: 

w: s, 6QS4 

22. b [27, pp. 21-27; 2, pp. 226-229; 9, pp. 322-3231 
23. [6, pp. 42-44; 2, pp. 154-157; 19, pp. 18-191 

Sample Solution: 

Threads:= 4; 
S,;fork Process1 ;fork 
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Process2; fork Process3 i quit i 
Processl: S,; S,; join Threads,Continue 

quit; 
Process2: S,; fork Process4; S,; join 

Threads,Continue; quit; 
Process3: S,; join Threads,Continue; 

quit 
Process4 : S,; S,; join Threads,Continue 

quit; 
Continue: S,; quit 

24. [2, pp. 154-158; 7, pp. 57-60; 6, pp. 40-421 

Sample Solution: 

S1; 
parbegin 

begin 
s,; s4 

end ; 

begin 
s,; 
parbegin 

s,; 
begin 

se; se 
end 

parend 
end ; 

S, 
parend ; 
S9 

25. c [6, pp. 40-41; 2, pp. 54, 57; 3, pp. 11-121 (21 

PROCESS COORDINATION 
26. 
27. 
26. 
29. 
30. 

31. 

32. 
33. 
34. 
35. 
36. 
37. 
38. 

39. 
40. 
41. 
42. 

b [32, pp. 107-110; 7, pp. 83-86; 13, pp. 291-2921 
a [32. pp. 99-100; 13, p. 275; 15, pp. 275-2831 
b [5, p. 8; 29, p. 40; 13, p. 276; 7, p. 871 
d [9, pp. 84-85; 5. pp. 38-39, 43; 29, pp. 18-221 
b, c [13, pp. 283-284; 6, pp. 56-57; 2, pp. 162- 
1631 
c [29, pp. 50-52; 5, pp. 44-46, 93; 21, pp. 207-208; 
9, p. 871 Each process “takes a ticket” (chooses a 
number in a non-decreasing fashion) when desir- 
ing to enter a critical section, similar to the num- 
bered ticket system employed in a busy bakery. 
b [32, pp. 92-95; 29, pp. 40-44; 2, pp. 162-1671 
b [16, pp. 7-8; 6, pp. 56-57; 19, pp. 30-311 
c [5, pp. 73-78; 6, pp. 62-66; 19, pp. 98-991 
a [5, pp. 86-88; 32, pp. 120-121; 6, pp. 65-661 
d [6, pp. 68-72; 13, pp. 306-308; 3, pp. 36-391 
b [32, pp. 135-136; 21, p. 189; 2, p.1691 
a [7, pp. 127-130; 6, pp. 72-73; 5, p. 93; 34, 
p. 1051 
b [2, pp. 165-166; 22, pp. 2-16; 27, pp. 44-45, 861 
a [13, pp. 302-305; 21, pp. 17-231 
d [28, pp. 35-42; 32, p. 415; 9, pp. 329-3301 
b [33, pp. 380-381; 13, pp. 240-241; 21, pp. 244- 
246] 
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43. c [3, pp. 48-51, 56-57; 21, pp. 82-92; 6, pp. 78-82; 
9, pp. 125-127; 2, pp. 167-1691 

44. b [3, pp. 49-50; 5, pp. 93-105; 28, pp. 70-711 
45. c [32, pp. 123-125; 5, pp. 99-104; 21, pp. 85-88; 

9, pp. 127-1291 
46. b [12, pp. 21-22; 28, pp. 60-611 

CLASSIC CONCURRENCY PROBLEMS 
47. b [19, pp. 115-121; 13, pp. 136-138; 21, pp. 30- 

311 
48. b [26, pp. 192-193, 216-217, 224-226; 5, pp. 71- 

72; 21. pp. 31-331 
49. a [34, pp. 66-70; 5, pp. 58-601 
50. d [34, pp. 66-70; 5, pp. 58-601 
51. [5, pp. 7-8, 17; 7, pp. 82-83; 13, p. 3131 On casual 

inspection it appears that tally will fall in the 
range 50 I tally 5 100 since from 0 to 50 incre- 
ments could go unrecorded due to the lack of mu- 
tual exclusion, The basic argument contends that 
by running these two processes concurrently we 
should not be able to derive a result lower than 
the result produced by executing just one of these 
processes sequentially. The logic of it all is quite 
appealing. But consider the following interleaved 
sequence of the load, increment, and store opera- 
tions performed by these two processes when 
altering the value of the shared variable: 

(1) 

(3) 

(4) 

(5) 

(‘31 

Process A loads the value of tally, increments 
tally, but then loses the processor (it has incre- 
mented its accumulator to 1, but has not yet 
stored this value). 

Process B loads the value of tally (still zero) and 
performs forty-nine complete increment opera- 
tions, losing the processor after it has stored the 
value 49 into the shared variable tally. 

Process A regains control long enough to per- 
form its first store operation (replacing the pre- 
vious tally value of 49 with 1) but is then imme- 
diately forced to relinquish the processor. 

Process B resumes long enough to load 1 (the 
current value of tally) into its accumulator, but 
then it too is forced to give up the processor 
(note that this was process B’s final load). 

Process A is rescheduled, but this time it is not 
interrupted and runs to completion, performing 
its remaining 49 load, increment, and store oper- 
ations which subsequently sets the value of tally 
to 50. 

Process B is reactivated with only one increment 
and store operation left to perform before it ter- 
minates. Since it has already performed its final 
load, it increments its accumulator to 2 and 
stores this value as the final value of the shared 
variable! Both processes have terminated, but 
the value of tally has fallen considerably short 
of 50. 
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Is 2 the absolute lower bound? It would appear 
so. Process A must perform a store operation in 
order to corrupt the value of the shared variable, 
which Process B has incremented to 49. This 
means that Process A had to perform at least one 
increment operation, implying that 49 will be 
replaced by a minimum value of 1. Once Process 
B has loaded this value into its accumulator, it 
must still perform a final increment before this 
value can be stored. Thus 2 is the proper lower 
bound. 

All values in the range 2 through 49 are like- 
wise potential results. The obvious interleaved 
sequences cause Process B to initially lose the 
processor after completing 50-k increment cycles 
(II k ZZ 48) in step (2). 

Although these sequences would hardly ever 
occur, they are nonetheless possible. Thus the 
proper range of final values is 2 5 tally 5 100. 

For the generalized case of p increment proc- 
esses, the proper range of results would be 2 I 
tally 5 50p since it is possible for all other proc- 
esses to be initially scheduled and run to com- 
pletion in step (5) before Process B would finally 
destroy their work by finishing last. 

52. d [32, p. 141; 29, p. 25; 20, p. 451 This concurrent 
program is based upon Hyman’s incorrect mutual 
exclusion algorithm. Since mutual exclusion is not 
properly enforced (both processes can be in their 
critical sections simultaneously) and the execution 
speed of the processes cannot be determined, no 
consistent relationship can be stated. 
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Epilogue 

Now that you have reviewed this self-assessment procedure and have compared your responses to those 
suggested, you should ask yourself whether this has been a successful educational experience. The 
Committee suggests that you conclude that it has only if you have 

-discovered some concepts that you did not previously know about or understand, or 
-increased your understanding of those concepts that were relevant to your work or valuable to you. 
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ACM Self-Assessment Procedures 
Guide for Prospective Authors 

Self-assessment procedures are intended to be fairly 
short mechanisms to help members of ACM appraise 
and develop their knowledge of subjects important to 
them in their roles as computer professionals. The pur- 
pose of the procedures is tutorial. The subjects of the 
procedures should be about computing, of widespread 
interest or importance to ACM members, and compre- 
hensible to the average ACM member after a reason- 
able amount of effort. However, the subjects need not 
be of universal interest within the ACM community. 
The procedure need not present a balanced view of all 
known ways of solving or viewing a particular problem 
as long as the procedure is accurate. 

The procedure should be aimed at the general ACM 
membership, not at specialists. The set of items in the 
procedure seldom would make a good graduate student 
examination, although some of the items conceivably 
might be used in such a context. 

It is important to keep in mind that the self-assessment 
procedure is not intended as a test or certification of 
knowledge for anyone other than the person reading 
the procedure. 

The items in the procedure should be of widely vary- 
ing difficulty; a few should be easy enough for virtually 
any ACM member to answer or make a reasonable 
guess at. The author should supply about 30 items, 
some or all of which may be based on short examples 
placed in the procedure. Most of the items in published 
procedures have been in multiple-choice form, but this 
is not necessary as long as reasonably short responses 
can be provided. Some items have had more than one 
correct response, which is fine as long as the item is 
appropriately worded. It is suggested that the items not 
be arranged in order of increasing difficulty and that 
some easy items appear very near or at the beginning, 
and occasionally throughout. 

Responses should be provided for almost all of the 

Author’s Address: Brian A. Rudolph, Dept. of Computer Science. University of 
Wisconsin-Plattevilk. 421 Pioneer Tower, Platteville. WI 53818. 

items. Occasionally, an open question might be in- 
cluded (a procedure consisting entirely of open ques- 
tions would be unusual). 

Every item and its response should be associated 
with a reference. These references should be as precise 
as possible (including page and, if appropriate, line or 
paragraph number). References should be only to a few 
publicly available documents. One should be able to 
obtain the references without having access to a huge 
library. If the author can find no references for a re- 
sponse, this probably indicates that the subject or item 
is too new to appear in a self-assessment procedure. 

It is desirable to provide an additional short bibliog- 
raphy for readers who become interested enough to 
read further. If a good bibliography has already been 
published, a reference to it should be included as well. 

Authors of published procedures have found it useful 
to test the procedures by asking colleagues and students 
to work them through. The Committee strongly recom- 
mends that this be done prior to submission of a draft. 

Please supply the ACM Self-Assessment Committee 
with your proposed procedure including the following 
sections: items, responses, references for each item, and 
bibliography. The Committee will review your proce- 
dure and will get technical reviews by experts as 
needed. If the Committee accepts your procedure, it 
may ask you to attend a committee meeting to go over 
any proposed changes. After the authors of accepted 
procedures sign copyright agreements, the Committee 
will have the procedure published with an appropriate 
introduction in Communications. The authors of the pro- 
cedure will be listed as such, as with other Communica- 
tions articles. The membership of the Committee will 
be listed as part of the procedure. 
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