
SELF-ASSESSMENT PROCEDURE XXI
A self-assessment procedure on
concurrency

by Brian A. Rudolph

What is Self-Assessment Procedure XXI?
This is the 21st self-assessment procedure. All the pre-
vious ones are listed on the facing page. The first 13 are
available from ACM* in a single loose-leaf binder to
which later procedures may be added.

This procedure is intended to allow computer profes-
sionals to test their knowledge of the general concepts
of concurrency, that is, the parallel execution of several
processes or tasks. It includes questions concerning ter-
minology, formal topics, specifying concurrency, pro-
cess coordination, and classical problems. In all except
a few cases, there is supposed to be only one correct
answer for each of the multiple-choice questions.

The next few paragraphs repeat the introduction
and instructions given with earlier procedures. Those
who read them before may advance directly to the
questions.

What is Self-Assessment?
Self-assessment is based on the idea that a procedure
can be devised that will help a person appraise and
develop his or her knowledge about a particular topic.
It is intended to be an educational experience for a
participant. The questions are only the beginning of the
procedure. They are developed to help the participant
think about the concepts and decide whether to pursue
the matter further.

* Order number 203640. ACM Order Dept.. P.O. Box 64145, Baltimore. MD
21264. Members-$15. Non-members-$25.

0 1990 ACM OOOl-0762/90/0500-0563 $1.50

The primary motivation of self-assessment is not for
an individual to satisfy others about his or her knowl-
edge; rather it is for a participant to appraise and de-
velop his or her own knowledge. This means that there
are several ways to use a self-assessment procedure.
Some people will start with the questions. Others will
read the answers and refer to the references first. These
approaches and others devised by the participants are
all acceptable if at the end of the procedure the partici-
pant can say, “Yes, this has been a worthwhile experi-
ence” or “I have learned something.”

How to Use the Self-Assessment Procedure
We suggest the following way of using the procedure,
but as noted earlier, there are others. This is not a
timed exercise; therefore, plan to work with the proce-
dure when you have an hour to spare, or you will be
shortchanging yourself on this educational experience.
Go through the questions, and mark the responses you
think are most appropriate. Compare your responses
with those suggested by the Committee. In those cases
where you differ with the Committee, look up the ref-
erences if the subject seems pertinent to you. In those
cases in which you agree with the Committee, but feel
uncomfortable with the subject matter, and the subject
is significant to you, look up the references.

Some ACM chapters may want to devote a session to
discussing this self-assessment procedure or the con-
cepts involved.

The Committee hopes some participants will send
comments.

May 1990 Volume 33 Number 5 Communications of the ACM 563

Self-Assessment Procedure XXI

Previous Self-Assessment Procedures

Self-Assessment Procedure I
Three concept categories within the programming skills
and techniques area
May 1976

Self-Assessment Procedure II
System organization and control with information
representation, handling, and manipulation
May 1977

Self-Assessment Procedure III
Internal sorting
September 1977

Self-Assessment Procedure IV
Program development tools and methods, data integrity,
and file organization and processing
February 1978

Self-Assessment Procedure V
Database systems
Peter Scheuermann and C. Robert Carlson
August 1978

Self-Assessment Procedure VI
Queueing network models of computer systems
J, W. Wang and G. Scott Graham
August 1979

Self-Assessment Procedure VII
Software science
M. H. Halatead and Victor Schneider
August 1980

Self-Assessment Procedure VIII
The programming language Ada
Peter Wegner
October 1981

Self-Assessment Procedure IX
Ethics in computing
Edited by Eric A. Weiss. from a book by Donn B. Parker
March 1982

SeIf-Assessment Procedure X
Software project management
Roger S. Gourd
December 1982

Self-Assessment Procedure XI
One part of early computing history
Eric A. Weiss
July 1983

Self-Assessment Procedure XII
Computer architecture
Robert I. Winner and Edward M. Carter
January 1984

Self-Assessment Procedure XIII
Binary search trees and B-Trees
Gopal K. Gupta
May 1984

Self-Assessment Procedure XIV
Legal issues of computing
Jane P. Devlin, William A. Lowell, and Anne E. Alger
May 1985

Self-Assessment Procedure XV
File processing
Martin K. Solomon and Riva Wenig Bickel
August 1986

Self-Assessment Procedure XVI
Computer organization and logic design
Glen G. Langdon, Jr.
November 1986

Self-Assessment Procedure XVII
ACM
Eric A. Weiss
October 1987

Self-Assessment Procedure XVIII
Data Communications
John C. Munson
March 1988

Self-Assessment Procedure XIX
Copyright Law
Riva W. Bickel
April 1989

Self-Assessment Procedure XX
Operating Systems
J. Rosenberg, A. L. Ananda, and
B. Srinivasan
February 1990

Approved and submitted by the ACM Committee on Self-Assessment,
a committee of the ACM Education Board

Chairman Neal S. Coulter
Department of Computer Science
Florida At [antic University
Boca Raton, FL 33431

Randy E. Michelsen
Los Alamos National Laboratory

Edward G. Pekarek, Jr.
Appalachian State University

Members Richard E. Fairley
George Mason University

Mark J. Jensen
IBM-Austin, TX

Eric A. Weiss
Editor

564 Communications of the ACM May 1990 Volume 33 Number 5

Self-Assessment Procedure XXI

Self-Assessment Procedure XXI

This self-assessment procedure is not sanctioned as a test or endorsed in any
way by ACM. Any person using any of the questions in this procedure for the
testing or certification of anyone other than him- or herself is violating the
spirit of this self-assessment procedure and the copyright on this material.

Contents

Part I. Questions
Part II. Suggested Responses
Part III. References

Part I. Questions

GENERAL CONCEPTS
The notion of a process (often termed a task) is difficult
to capture precisely, while at the same time being of
foremost importance in the study of concurrency. The
first part of this self-assessment procedure is about
fundamental processes and concurrency concepts.

1. Processes may be described as physically concurrent
or logically concurrent. The distinction between
these types of concurrency is analogous to the
distinction between:

a. Synchronous processes and asynchronous
processes.

b. Real processors and virtual processors.
c. Explicit parallelism and implicit parallelism.
d. Batch processing and interactive processing.

2. Physical concurrency in a uniprocessor system:

a. Can occur among operating system routines.
b. Can occur with peripherals that communi-

cate via interrupts.
c. Occurs through context switching.
d. Cannot occur.

3. Within a process, a critical section consists of any
sequence of instructions that:

a. Produce a result necessary for the successful
completion of a subsequent instruction.

b. Are frequently executed on behalf of the
process.

c. Must be accessed on a mutually exclusive
basis.

d. Have a high-priority value associated with
them.

4. When the result of a computation depends on the
speed of the processes involved, there is said to be:

a. Process syncopation.
b. A time lock.
c. Cycle stealing.
d. A race condition.

May 1990 Volume 33 Number 5

5. The relative speed of a process in execution can-
not reliably be determined due primarily to the
variations in:

The timing of context switching among
processes.
The speed of system hardware.
The number of instructions included in a
process.
The types of the instructions included in a
process.

6. The major distinction between lightweight and
heavyweight processes centers around:

a. The amount of memory that must be
allocated to the process.

b. The average number of instructions exe-
cuted by the process.

c. The amount of overhead associated with
process creation and context switching.

d. The number of I/O requests made by the
process.

7. A technique which derives parallelism by decom-
posing a task into a number of distinct stages
which may be overlapped in an assembly-line
fashion is called:

a. Phase transition.
b. Pipelining.
c. Linear displacement.
d. Fragmentation.

FORMAL CONCURRENCY TOPICS
The study of concurrency is based on formal models of
concurrent computation and the properties of their par-
allel algorithms. Many attempts have been made to in-
troduce formalisms that are both sufficiently powerful
and clear, but none have become dominant. This sec-
tion focuses on a sampling of these models and on other
formal aspects of concurrency.

8. A sequential algorithm with input size i performs

Communications of the ACM 565

Self-Assessment Procedure XXI

W(i) operations in the worst case. Given a machine
with n identical processors, the best worst case
complexity of a parallel implementation of this
algorithm would be on the order of:

a. W(i)/log 17.
b. W(i)/&
c. W(i)/n
d. W(i)/n’

9. Bernstein’s conditions use the concepts of read sets
and write sets to determine:

a. If a group of processes and resources have
become involved in a deadlock.

b. If there are any processes suffering from
indefinite postponement.

c. If a resource allocation request can be
granted safely.

d. If performing multiple operations in parallel
will preserve determinacy.

10. The NC problem class consists of problems that
can be solved by a parallel algorithm with polyno-
mially many processors in time proportional to a
fixed power of the log of their input size. Which of
the following problems is most likely not in class
NC?

a. Sorting a list of records on a particular key.
b. Searching an unordered list for the record

with the largest key.
c. Weighted average computation.
d. Finding the greatest common divisor of two

integers.

11. Flynn’s taxonomy of parallel computational
models uses the concepts of instruction streams
and data streams to determine classification. The
conventional view is that no existing computers
can be classified as:

a. Single-instruction stream, single data stream
(SISD).

b. Single-instruction stream, multiple data
stream (SIMD).

c. Multiple-instruction stream, single data
stream (h4ISD).

d. Multiple-instruction stream, multiple data
stream (h?IMD).

12. The number of messages buffered in Hoare’s
Communicating Sequential Processes is:

a. Zero.
b. One.
c. Bounded by some n 2 1.
d. Unbounded.

13. Which of the following does not completely dis-
tribute through the nondeterministic choice opera-
tor under the laws established in Hoare’s text on

14.

15.

16.

17.

communicating sequential processes?

a. Recursion.
b. Interleaving.
c. Prefixing.
d. Concealment.

Petri nets provide a method to mathematically
analyze systems that contain concurrent activities.
Consider the two Petri net graphs in Figure 1. For
an initial node marking of n tokens, which of the
following observations regarding the execution of
these two Petri nets is incorrect?

All places in both Petri nets are n-safe.
All places in both Petri nets will have been
marked during execution.
One of the two Petri nets is not strictly con-
servative.
Exactly n tokens will remain in each Petri
net when execution halts.

When message transmission systems send empty
messages asynchronously, they are effectively
equivalent to:

a. Petri nets.
b. Semaphore-based systems.
c. Finite state machines.
d. Turing machines.

In the actor paradigm, computational agents called
actors communicate by message passing and carry
out their actions concurrently. Each actor has a
mail address and an associated behavior. Which of
the following does not characterize the behavior of
an actor?

An actor may process multiple communica-
tions simultaneously.
An actor may process only those tasks
whose target corresponds to its mail address.
An actor may create new actors upon accep-
tance of a communication.
An actor must compute a replacement be-
havior upon acceptance of a communication.

The paralation model is an architecture-indepen-
dent model for parallel programming that can be
combined with any base language to produce a
concrete parallel programming language. It con-
sists of a single data structure (called a field) and
three carefully chosen operators. Which of the fol-
lowing is not an operator in the basic paralation
model?

a. Merge.
b. Elementwise evaluation.
c. Move.
d. Match.

566 Communications of the ACM May 1990 Volume 33 Number 5

Self-Assessment Procedure XXI

Net A Net B

Figure 1. Two Petri-Net Graphs

18. Which model below lends itself most easily to the
specification of potentially massive parallelism?

a. Finite state machines.
b. Monitors.
c. Neural networks.
d. Communicating sequential processes.

1% When taking the axiomatic approach to the verifica-
tion of concurrent programs:

a. A concurrent program is transformed to an
equivalent sequential program for further
analysis.

b. Interleaving scenarios are employed to
characterize all possible behaviors of a
concurrent program.

c. A functional relationship is established
between the initial and final set of values in
a concurrent program.

d. Statements in a concurrent program are
viewed as relations between predicates in a
formal logic system.

SPECIFYING CONCURRENCY
The following questions are concerned with a few of
the problems associated with specifying concurrency.
The exercises give an opportunity to specify concur-
rency using some basic primitives.

20. Coroutines are not suitable for specifying true
parallel processing since:

a. They do not permit the simultaneous execu-

21.

22.

b.

C.

d.

tion of multiple processes.
They do not provide a well-defined method
for transfer of control.
They are not sufficiently powerful to imple-
ment multiprogramming.
They do not provide a mechanism for pro-
cess synchronization.

Statement sequences that cannot be executed in
parallel are said to contain dependences. Consider
the program fragment given in Listing 1. Identify
the flow dependences, antidependences, and output
dependences present between the statements in this
fragment.

Listing 1

s,: w = x + Y
s2: x = w - z
sz:y=3+ w
&: w = x + z

Parallelism inherent in loop structures but not
explicitly specified by the programmer can be ex-
tracted by a compiler capable of detecting parallel-
ism automatically. In the absence of dependences,
such a compiler can restructure the loop and ulti-
mately create a vector statement for each individ-
ual case. This type of transformation is called:

May 1990 Volume 33 Number 5 Communications of the ACM 567

Self-Assessment Procedure XXI

23.

24.

25.

a. Loop optimization.
b. Loop distribution.
c. Loop blocking.
d. Loop interc:hange.

Express the precedence graph in Figure 2 as a
concurrent program using fork, join, and quit
primitives. The program should permit maximum
parallelism.

Express the precedence graph in Figure 2 as a con-
current program using the parbegin/parend (also
known as cobegin/coend) concurrent statement.
The program should again permit maximum paral-
lelism.

Suppose an edge from node S3 to node S4 were
added to the precedence graph in Figure 2. What
effect would this have on the programs developed
in questions 23 and 24?

The modification would have no effect on
either program.
The fork, join, and quit primitives could not
be used to derive maximum parallelism.
The parbegin/parend concurrent statement
could not be used to derive maximum paral-
lelism.
Neither construct could be used to derive
maximum parallelism.

PROCESS COORDINATION
Processes must often synchronize and communicate to
accomplish their tasks. Process coordination problems
provide one of the most intellectually challenging
aspects of concurrency. This portion of the self-
assessment procedure examines some problems and
concerns associated with these issues.

26. Which of the following is not a proper statement
concerning critical regions?

a. Critical regions involving distinct data may
be executed concurrently.

b. One critical region cannot be nested inside
another critical region.

c. A process should remain inside a critical re-
gion for only a finite amount of time.

d. A process should not be permitted to termi-
nate inside a critical region.

27. Starvation occurs when:

a. At least one process is continually passed
over and not permitted to execute.

b. The priority of a process is adjusted based
upon its length of time in the system.

c. At least one process is waiting for an event
that will never occur.

d. Two or more processes are forced to access

Figure 2. A Precedence Graph

critical data in strict alternation with each
other.

28. A common assumption underlying mutual exclu-
sion algorithms in shared memory systems is that:

Time-critical threats of process starvation
can effectively be ignored.
A memory reference to an individual word
is mutually exclusive.
A single instruction executes faster than a
group of instructions.
A process executing a busy wait will receive
a lower scheduling priority.

29. An objection to Dekker’s two-process mutual
exclusion algorithm concerns the fact that:

a. It relies on race conditions to achieve
mutual exclusion.

b. It does not prevent the indefinite postpone-
ment of a process.

c. It cannot be generalized to provide mutual
exclusion among more than two processes.

d. It uses a common variable that can be
altered by any process.

30. Consider busy waiting for entry into a critical
section in a shared memory system. In which
scenario (or scenarios) below would this not be
considered an unreasonable approach?

568 Communications of the ACM May 1990 Volume 33 Number 5

Self-Assessment Procedure XXI

a. When there are few CPU-bound processes in
existence.

b. When a dedicated processor can be assigned
to perform the busy wait.

c. When the expected wait is less than the
time needed to perform a context switch.

d. None of the above-busy waiting is always
unreasonable since it does nothing but waste
processor cycles.

31. The first mutual exclusion algorithm independent
of any centralized device serialized the requests
from competing processes desiring entry into a
critical section. This famous algorithm is known
as:

a. Conway’s Algorithm.
b. Schott’s Algorithm.
c. Lamport’s Bakery Algorithm.
d. Dijkstra’s Banker’s Algorithm.

32. In shared memory systems, process synchroniza-
tion can be supported by special hardware instruc-
tions that perform multiple actions atomically
such as the reading and modification of a single
memory location. Many of these instructions are
termed blocking since they can be executed only
by one process at a time. Conversely, nonblocking
primitives permit many processors to access a
shared variable simultaneously and obtain unique
results. Which of the following hardware primi-
tives, when used in conjunction with an intercon-
nection network that can combine requests bound
for the same memory location, is nonblocking?

a. The test-and-set instruction.
b. The fetch-and-add instruction.
c. The lock instruction.
d. The swap instruction.

33. A general (or counting) semaphore:

a. Provides less synchronization capability
than a binary semaphore.

b. Provides synchronization capability equiva-
lent to a binary semaphore.

c. Provides more synchronization capability
than a binary semaphore.

d. Bears no comparable relationship to a binary
semaphore.

34. A condition in a monitor is associated with:

a. An integer variable, which is initially zero.
b. A binary semaphore, which is initially zero.
c. A queue, which is initially empty.
d. A boolean variable, which is initially false.

3.5. A monitor has all of the following advantages over
a semaphore except:

a. Being a more powerful synchronization

36.

37.

38.

39.

40.

construct than a semaphore.
b. Being a higher-level synchronization con-

struct than a semaphore.
c. Providing automatic mutual exclusion

within its boundaries.
d. Collecting all routines that modify a set of

shared data into one location.

One advantage of path expressions over monitors is
that path expressions:

a. Are more easily implemented within a
compiler.

b. Can be used to convey condition synchroni-
zation.

c. Allow the specification of an ordering in
which to resume blocked processes.

d. Eliminate the need for explicit synchroniza-
tion code.

When working with message-passing systems,
time-outs are used to:

Limit the number of times that a message
may be transmitted.
Determine that a transmitted message has
become lost.
Temporarily suspend the transmission of
messages.
Limit the size of a transmitted message.

A distinct advantage of message-passing over
semaphores is that:

Message-passing is readily extensible to a
distributed environment.
Message-passing primitives do not necessar-
ily block a process when executed.
Message-passing imposes a hierarchical
structure on the design of an operating
system.
Processes engaged in message-passing can-
not become involved in a deadlock.

In many cases, a group of cooperating processes
must all arrive at a common location before any
them are permitted to proceed. This location is
termed:

of

a. An artificial rendezvous point.
b. A barrier synchronization point.
c. A conditional critical region.
d. A synchronization bottleneck.

Event counts and sequencers can be used to solve
the bounded-buffer producer/consumer problem:

a. Without requiring mutual exclusion be-
tween the producer and consumer processes.

b. Only in the case of a single producer process
and a single consumer process.

c. Only when the producer and consumer

May 1990 Volume 33 Number 5 Communications of the ACM 569

Self-Assessment Procedure XXI

41.

42.

43.

44.

processes run at the same relative speed.
d. Only when the information transmitted be-

tween the producer and consumer processes
is passed by value.

A major distinction between tightly-coupled sys-
tems and loosely-coupled systems is that process
synchronization:

a. Is simplified in a loosely-coupled system
since all processors in the system can access
a shared global memory.

b. Is simplified in a loosely-coupled system
since a single operating system must control
all processors in the system.

c. Is more difficult in a loosely-coupled system
since there is only minimal message traffic
between processors.

d. Is more difficult in a loosely-coupled system
since there is typically no shared memory or
clocks.

Transaction processing systems such as airline
reservation systems must provide a mechanism,
which guarantees that each transaction is immune
from interference by other transactions that may
be occurring at the same time. Two-phase transac-
tions obey a protocol that insures this atomicity. In
two-phase transactions:

a. All read operations occur before the first
write operation.

b. All lock actions occur before the first unlock
action.

c. A shared lock on an object must be obtained
before an exclusive lock on the object can
be obtained.

b. Any currently locked object must be un-
locked before another object can be locked.

Remote procedure calls can be specified in one of
two ways: either as a procedure declaration that is
implemented as a server process or as a special
statement. The Ada rendezvous takes the latter ap-
proach by requiring the server side to execute:

a. A call statement.
b. A null statement.
c. An accept statement.
d. An entry statement.

Which of the following is not an advantage of the
Ada rendezvous mechanism?

a. One server can provide multiple services.
b. Communication between the client and

server is guaranteed within a finite amount
of time.

c. A server can achieve different effects for
client calls to the same service.

d. Client calls can be serviced at times deter-
mined by the server.

45. The Ada select statement is an example of a
guarded command. The guards:

a. Prevent conflicting tasks from simultane-
ously executing the select statement.

b. Provide mutual exclusion among the alter-
natives in the select statement.

c. Determine which select alternatives can be
executed.

d. Determine which specific event will be
serviced.

46. Which of the following is not a characteristic of an
algorithm that exhibits large-grain parallelism?

a. It performs relatively many operations be-
tween synchronizations.

b. It generates an abundance of message traffic.
c. It can typically take advantage of additional

processors as the size of a problem increases.
d. It can be implemented on both multiproces-

sor systems and multicomputer systems.

CLASSIC CONCURRENCY PROBLEMS
This segment is a collection of problems and exercises,
which have become classics in concurrency.

47. Dijkstra’s Dining Philosophers problem involves a
group of five philosophers whose existence is
based solely on two activities: thinking and eating.
The philosophers sit around a circular table. In the
center of the table is a bowl of spaghetti, which is
constantly replenished (the bowl is never empty).
The only eating utensils available are five forks.
One of the forks is located between each adjacent
pair of philosophers. A hungry philosopher, there-
fore, must acquire the forks to the immediate left
and right in order to eat. The life of a philosopher
constantly cycles between the thinking and eating
states. Consider designing a concurrent program
that simulates the activities of the philosophers
without severely inhibiting their actions. The pri-
mary task in developing an acceptable solution to
this problem concerns:

a. Selecting an appropriate mutual exclusion
primitive.

b. Avoiding deadlock and process starvation.
c. Selecting an appropriate representation for

the resources.
d. Serializing the use of the resources.

48. The Cigarette Smokers’ problem consists of an
agent process and three smoker processes. The
agent has access to an infinite supply of the three
commodities necessary to make and use a ciga-
rette: paper, tobacco, and matches. One of the
smoker processes has access to an infinite supply
of paper, another has access to an infinite supply
of tobacco, and the third has access to an infinite
supply of matches. The agent begins by placing

570 Communicntions of the ACM May 1990 Volume 33 Number 5

Self-Assessment Procedure XXI

two of the three commodities on the table. The
smoker process with the missing ingredient must
then acquire the two commodities on the table,
make and smoke a cigarette, and notify the agent
when it has completed. The process then repeats
with the agent placing two more of its commodi-
ties on the table. This is an example of a synchro-
nization problem that cannot be solved:

a. Using a Petri net.
b. Using only ordinary semaphore operations.
c. Using only asynchronous message passing.
d. Using any model of parallel computation.

Questions 49 and 50 refer to Listing 2 in which a pro-
ducer and a consumer process synchronize to share a
common buffer.

Listing 2

var

mutex, item-available: semaphore;

procedure producer;

begin
repeat

produce-item;
P(mutex);
append-to_buffer;
V(mutex);
V(item-available)

until false
end;

procedure consumer;
begin

repeat
P(item-available);
P(mutex);
retrieve-from-buffer;
V(mutex);
consume-item

until false
end;

begin
semaphore-init(mutex, 1);

semaphoreAnit(itemavailable, 0);

parbegin
producer;
consumer

parend
end.

49. What would be the effect of executing the pro-
gram in Listing z with the two P operations in the
consumer process interchanged?

a. The producer and consumer processes could
deadlock.

b. The producer or consumer process could

become a victim of starvation.
c. Mutual exclusion would be violated.
d. The modification would have no effect on

the correctness of the program.

50. What would be the effect of executing the pro-
gram in Listing 2 with the two V operations in the
producer process interchanged?

a. The producer and consumer processes could
deadlock.

b. The producer or consumer process could
become a victim of starvation.

c. Mutual exclusion would be violated.
d. The modification would have no effect on

the correctness of the program.

51. Determine the proper lower-bound and upper-
bound on the final value of the shared variable
tally output by the concurrent program in Listing
3. Assume that the processes can execute at any
speed and that a value can only be incremented
after it has been loaded into an accumulator by a
separate machine instruction.

Listing 3

const
n = 50;

var
tally : integer;

procedure total;

var
count: integer;

begin
for count := 1 to n do

tally := tally + 1

end;

begin
tally := 0;

parbegin
total;
total

parend ;

writeIn(tally)
end.

Suppose that an arbitrary number of these increment
processes are permitted to execute in parallel under the
previous assumptions. What effect will this modifica-
tion have on the range of final values of tally?

52. When the concurrent processes in Listing 4 are
executing, what relationship will exist between
the values of the shared variables count 1 and
count2? Again assume that the processes can

May 1990 Volume 33 Number 5 Communications of the ACM 571

Self-Assessment Procedure XXI

execute at any speed and that a value can only blocked[id] := true;

be incremented after it has been loaded into an while turn <> id do

accumulator by a separate machine instruction. begin

a. count 1 and count2 will remain equal.
b. count 1 will remain greater than or equal to

count2.
c. count2 will remain greater than or equal to

countl.
d. The values of count 1 and count2 will

exhibit no consistent relationship.

while blocked[l -- id] do;
turn := Id

end;
count1 := count1 + 1;

blocked[id] := false;
count2 := count2 + 1

until false
end;

Listing 4

var
blocked: array [O..l] of boolean;
turn, countl, count2: integer;

procedure process(id: integer);
begin

repeat

begin
blocked[O] := false; blocked]11 := false;
turn := 0; count1 := 0; count2 := 0;

parbegin
process(O);
process(l)

parend

end.

Part II. Suggested Responses

GENERAL CONCEPTS
1. b [6, 36-37; 32, 62-65; 19, 221 pp. pp. p.
2. b [32, 12-15; 6, 296-300; 9, pp. 26-271 pp. pp.
3. c [6, 46-48; 32, pp. 83-84; 9, pp. 76-771 pp.
4. d [19, 19; 2, 3661 p. p.
5. a [5, pp. 22-24; 34, pp. 70-72; 19, p. 221
6. c [2, 272-273; 13, 3381 pp. p.
7. b [28, 9-10, 13-15; 9, pp. 29-30; 15, p. 2701 pp.

FORMAL CONCURKENCY TOPICS
8.
9.

10.
11.

12.

13.

14.

c [28, pp. 42-44, 131; 4, p. 363; 15, p. 2601
d [21, pp. 12-14; 26, pp. 52-53, 70-731
d [8, pp. 2-22; 4, pp. 365-366; 15, pp. 271-2751
c [2, pp. 19, 111-112; 28, pp. 16-17; 9, pp. 317-
318] Pipelined vector processors are sometimes
classified as MISD, however.
a [17, pp. 134-135, 142; 18, p. 285; 32, pp. 125-
127, 132-1331
a [17, pp. 101-104, III-112,119-1201 The recur-
sion operator is not distributive through nondeter-
ministic choice except in the trivial case where
identical operands are supplied.
b [26, pp. 16-21, 40, 81-841 Since the first three
transitions in Net A cause a mark to visit every
place by creating an additional token after each
firing, Net A is not strictly conservative. The final
transition removes these duplicate tokens, leaving
n tokens in the final place when execution halts.
The arrangement of the places and transitions,
however, limits the number of tokens in a given
place to n, thus making them n-safe.

The execution of Net B contains a sequence of
transitions that are in conflict, causing each token
to be preserved as it follows one “path” of transi-
tions from the initial place to the final place. Since

no tokens are created or destroyed, Net B is
strictly conservative, all places are n-safe, and n
tokens are left in the final place when execution
halts. But the firing of transitions is nondetermin-
istic, so there is no guarantee that all places in Net
B will have been marked.

15. b [26, pp. 220-226; 19, pp. 33-36; 7, p. 931
16. a [l, pp. 23-251
17. a [31, pp. 7-8, 11-361
18. c [30, pp. 129-136; 11, pp. 170-187; 14, p. 1611
19. d [23, pp. 319-340; 24, pp. 279-285; 3, pp. 6-9,

32-33, 52-53; 29, pp. 56-58; lo]

SPECIFYING CONCURRENCY
20. a [5, pp. 30-32; 3, p. 10; 7, p. 1311
21. [25, pp. 1184-1187; 27, pp. 15-18; 22, pp. 2-10-

2-121

Flow Dependences:

w: Sl&, SIG
x: MS4

Antidependences:

w: s,F&, s,z%s,
x: s* 8-.ss,
y: s1 Fss,

Output Dependence:

w: s, 6QS4

22. b [27, pp. 21-27; 2, pp. 226-229; 9, pp. 322-3231
23. [6, pp. 42-44; 2, pp. 154-157; 19, pp. 18-191

Sample Solution:

Threads:= 4;
S,;fork Process1 ;fork

572 Communications of the ACM May 1990 Volume 33 Number 5

Process2; fork Process3 i quit i
Processl: S,; S,; join Threads,Continue

quit;
Process2: S,; fork Process4; S,; join

Threads,Continue; quit;
Process3: S,; join Threads,Continue;

quit
Process4 : S,; S,; join Threads,Continue

quit;
Continue: S,; quit

24. [2, pp. 154-158; 7, pp. 57-60; 6, pp. 40-421

Sample Solution:

S1;
parbegin

begin
s,; s4

end ;

begin
s,;
parbegin

s,;
begin

se; se
end

parend
end ;

S,
parend ;
S9

25. c [6, pp. 40-41; 2, pp. 54, 57; 3, pp. 11-121 (21

PROCESS COORDINATION
26.
27.
26.
29.
30.

31.

32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.

b [32, pp. 107-110; 7, pp. 83-86; 13, pp. 291-2921
a [32. pp. 99-100; 13, p. 275; 15, pp. 275-2831
b [5, p. 8; 29, p. 40; 13, p. 276; 7, p. 871
d [9, pp. 84-85; 5. pp. 38-39, 43; 29, pp. 18-221
b, c [13, pp. 283-284; 6, pp. 56-57; 2, pp. 162-
1631
c [29, pp. 50-52; 5, pp. 44-46, 93; 21, pp. 207-208;
9, p. 871 Each process “takes a ticket” (chooses a
number in a non-decreasing fashion) when desir-
ing to enter a critical section, similar to the num-
bered ticket system employed in a busy bakery.
b [32, pp. 92-95; 29, pp. 40-44; 2, pp. 162-1671
b [16, pp. 7-8; 6, pp. 56-57; 19, pp. 30-311
c [5, pp. 73-78; 6, pp. 62-66; 19, pp. 98-991
a [5, pp. 86-88; 32, pp. 120-121; 6, pp. 65-661
d [6, pp. 68-72; 13, pp. 306-308; 3, pp. 36-391
b [32, pp. 135-136; 21, p. 189; 2, p.1691
a [7, pp. 127-130; 6, pp. 72-73; 5, p. 93; 34,
p. 1051
b [2, pp. 165-166; 22, pp. 2-16; 27, pp. 44-45, 861
a [13, pp. 302-305; 21, pp. 17-231
d [28, pp. 35-42; 32, p. 415; 9, pp. 329-3301
b [33, pp. 380-381; 13, pp. 240-241; 21, pp. 244-
246]

Self-Assessment Procedure XXI

43. c [3, pp. 48-51, 56-57; 21, pp. 82-92; 6, pp. 78-82;
9, pp. 125-127; 2, pp. 167-1691

44. b [3, pp. 49-50; 5, pp. 93-105; 28, pp. 70-711
45. c [32, pp. 123-125; 5, pp. 99-104; 21, pp. 85-88;

9, pp. 127-1291
46. b [12, pp. 21-22; 28, pp. 60-611

CLASSIC CONCURRENCY PROBLEMS
47. b [19, pp. 115-121; 13, pp. 136-138; 21, pp. 30-

311
48. b [26, pp. 192-193, 216-217, 224-226; 5, pp. 71-

72; 21. pp. 31-331
49. a [34, pp. 66-70; 5, pp. 58-601
50. d [34, pp. 66-70; 5, pp. 58-601
51. [5, pp. 7-8, 17; 7, pp. 82-83; 13, p. 3131 On casual

inspection it appears that tally will fall in the
range 50 I tally 5 100 since from 0 to 50 incre-
ments could go unrecorded due to the lack of mu-
tual exclusion, The basic argument contends that
by running these two processes concurrently we
should not be able to derive a result lower than
the result produced by executing just one of these
processes sequentially. The logic of it all is quite
appealing. But consider the following interleaved
sequence of the load, increment, and store opera-
tions performed by these two processes when
altering the value of the shared variable:

(1)

(3)

(4)

(5)

(‘31

Process A loads the value of tally, increments
tally, but then loses the processor (it has incre-
mented its accumulator to 1, but has not yet
stored this value).

Process B loads the value of tally (still zero) and
performs forty-nine complete increment opera-
tions, losing the processor after it has stored the
value 49 into the shared variable tally.

Process A regains control long enough to per-
form its first store operation (replacing the pre-
vious tally value of 49 with 1) but is then imme-
diately forced to relinquish the processor.

Process B resumes long enough to load 1 (the
current value of tally) into its accumulator, but
then it too is forced to give up the processor
(note that this was process B’s final load).

Process A is rescheduled, but this time it is not
interrupted and runs to completion, performing
its remaining 49 load, increment, and store oper-
ations which subsequently sets the value of tally
to 50.

Process B is reactivated with only one increment
and store operation left to perform before it ter-
minates. Since it has already performed its final
load, it increments its accumulator to 2 and
stores this value as the final value of the shared
variable! Both processes have terminated, but
the value of tally has fallen considerably short
of 50.

May 1990 Volume 33 Number 5 Communications of the ACM 573

Self-Assessment Procedure XXI

Is 2 the absolute lower bound? It would appear
so. Process A must perform a store operation in
order to corrupt the value of the shared variable,
which Process B has incremented to 49. This
means that Process A had to perform at least one
increment operation, implying that 49 will be
replaced by a minimum value of 1. Once Process
B has loaded this value into its accumulator, it
must still perform a final increment before this
value can be stored. Thus 2 is the proper lower
bound.

All values in the range 2 through 49 are like-
wise potential results. The obvious interleaved
sequences cause Process B to initially lose the
processor after completing 50-k increment cycles
(II k ZZ 48) in step (2).

Although these sequences would hardly ever
occur, they are nonetheless possible. Thus the
proper range of final values is 2 5 tally 5 100.

For the generalized case of p increment proc-
esses, the proper range of results would be 2 I
tally 5 50p since it is possible for all other proc-
esses to be initially scheduled and run to com-
pletion in step (5) before Process B would finally
destroy their work by finishing last.

52. d [32, p. 141; 29, p. 25; 20, p. 451 This concurrent
program is based upon Hyman’s incorrect mutual
exclusion algorithm. Since mutual exclusion is not
properly enforced (both processes can be in their
critical sections simultaneously) and the execution
speed of the processes cannot be determined, no
consistent relationship can be stated.

Part III. Reference Titles

Suggested References 14.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Agha, G.A. Actors: A Model of Concurrent Compu-
tation in Distributed Systems. The MIT Press,
Cambridge, Mass., 1986.
Almasi, G.S., and Gottlieb, A. Highly Parallel
Computing. Benjamin/Cummings Publishing
Company, Redwood City, Calif., 1989.
Andrews, G.R., and Schneider, F.B. Concepts
and notations for concurrent programming. In
Concurrent Programming, N. Gehani and A.D.
McGettrick, Eds. Addison-Wesley, Reading,
Mass., 1988, pp. 3-69. (First published in Com-
put. Surv. 15, 1 (Mar. 1983), 3-43.
Baase, S. Computer Algorithms. 2d ed. Addison-
Wesley, Reading, Mass., 1988.
Ben-Ari, M. Principles of Concurrent Programming.
Prentice Hall, Englewood Cliffs, N.J., 1982.
Bit, L., and Shaw, A.C. The Logical Design of Op-
erating Systems. Prentice Hall, Englewood Cliffs,
N.J., 1988.
Brinch Hansen, P. Operating System Principles.
Prentice Hall, Englewood Cliffs, N.J., 1973.
Cook, S.A. A taxonomy of problems with fast
parallel algorithms. Inf. and Cont. 64 (1985), 2-22.
Deitel, H.M. Operating Systems. 2d ed. Addison-
Wesley, Reading, Mass., 1990.
Dijkstra, E.W. A Discipline of Programming. Pren-
tice Hall, Englewood Cliffs, N.J., 1976.
Feldman, J.A., Fanty, M.A., Goddard, N.H., and
Lynne, K.J. Computing with structured connec-
tionist networks. Commun. ACM 31, 2 (Feb.
1988),170-187.
Finkel, R.A. Large-Grain Parallelism-Three
case studies. In The Characteristics of Parallel Al-
gorithms, L.H. Jamieson, D.B. Gannon, and R.J.
Douglass, Eds. The MIT Press, Cambridge, Mass.,
1987, pp. 21-63.
Finkel, R.A. An Operating Systems VADE
MECUM. 2d ed. Prentice Hall, Englewood Cliffs,
N.J., 1988.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Gehani, N., and McGettrick, A.D., Eds. Concur-
rent Programming. Addison-Wesley, Reading,
Mass., 1988.
Harel, D. Algorithmics. Addison-Wesley, Reading,
Mass., 1987.
Hemmendinger, D. Comments on “A correct and
unrestrictive implementation of general sema-
phores.” Oper. Syst. Rev. 23, 1 (Jan. 1989), 7-8.
Hoare, C.A.R. Communicating Sequential Processes.
Prentice Hall, Englewood Cliffs, N.J., 1985.
Hoare, C.A.R. Communicating sequential pro-
cesses. In Concurrent Programming, N. Gehani
and A.D. McGettrick, Eds. Addison-Wesley,
Reading, Mass., 1988, pp. 278-308. (First pub-
lished in Commun. ACM 21, 8 (Aug. 1978), 666-
677.)
Holt, R.C. Concurrent Euclid, The UNIX System,
and TUNIS. Addison-Wesley, Reading, Mass.,
1983.
Hyman, H. Comments on a problem in concur-
rent programming control. Commun. ACM 9, 1
(Jan. 1966), 45.
Maekawa, M., Oldehoeft, A.E., and Oldehoeft,
R.R. Operating Systems: Advanced Concepts. Benja-
min/Cummings Publishing Company, Menlo
Park, Calif., 1987.
Osterhaug, A., Ed. Guide to Parallel Programming
on Sequent Computer Systems. 2d ed. Prentice
Hall, Englewood Cliffs, N.J., 1989.
Owicki, S.S., and Gries, D. An axiomatic proof
technique for parallel programs. Acta Inf. 6
(1976), 319-340.
Owicki, S.S., and Gries, D. Verifying properties
of parallel programs: An axiomatic approach.
Commun. ACM 19, 5 (May 1976), 279-285.
Padua, D.A., and Wolfe, M.J. Advanced compiler
optimizations for supercomputers. Commun.
ACM29,12 (Dec.1986), 1184-1201.
Peterson, J.L. Petri Net Theory and the Modeling of

Systems. Prentice Hall, Englewood Cliffs, N.J.,

574 Communications of the ACM May 1990 Volume 33 Number 5

Self-Assessment Procedure XXI

27.

28.

29.

30.

31.

32.

33.

34.

1981. N.J., 1973.
Polychronopoulos, C.D. Parallel Programming and
Compilers. Kluwer Academic Publishers, Boston,
Mass., 1988.
Quinn, M.J. Designing Efficient Algorithms for Par-
allel Computers. McGraw-Hill Book Company,
New York, 1987.
Raynal, M. Algorithms for Mutual Exclusion. The
MIT Press, Cambridge, Mass., 1986.
Rumelhart, D.E., and McClelland, J.L., Eds. Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. Vol. I, Foundations. MIT
Press/Bradford Books, Cambridge, Mass., 1986.
Sabot, G.W. The Paralation Model. The MIT Press,
Cambridge, Mass., 1988.
Silberschatz, A., and Peterson, J.L. Operating Sys-
tem Concepts. Addison-Wesley, Reading, Mass.,
1988.

42.

43.

44.

45.

46.

Ullman, J.D. Principles of Database Systems. 2d ed.
Computer Science Press, Inc., Rockville, Md.,
1982.

47.

Whiddett, D. Concurrent Programming for Software
Engineers. Ellis Horwood Ltd., Chichester, Great
Britain, 1987.

48.

49.

Crichlow, J.M. An Introduction to Distributed and
Parallel Computing. Prentice Hall, Englewood
Cliffs, N.J., 1988.
Desrochers, G.R. Principles of Parallel and Multi-
processing. Intertext Publications, Inc., McGraw-
Hill Book Company, New York, 1987.
Hoare, C.A.R. Monitors: An operating system
structuring concept. In Concurrent Programming,
N. Gehani and A.D. McGettrick, Eds. Addison-
Wesley, Reading, Mass., 1988 pp. 256-277. (First
published in Commun. ACM 17, 10 (Oct. 1974),
549-557.)
Hsieh, C.S. Further comments on implementa-
tion of general semaphores. Oper. Syst. Rev. 23, 1
(Jan. 1989), 9-10.
Jamieson, L.H., Gannon, D.B., and Douglass, R.J.,
Eds. The Characteristics of Parallel Algorithms. The
MIT Press, Cambridge, Mass., 1987.
Krakowiak, S. Principles of Operating Systems.
The MIT Press, Cambridge, Mass., 1988.
Lister, A.M. Fundamentals of Operating Systems.
3d ed. Springer-Verlag, New York, 1984.
Lorin, H. Parallelism in Hardware and Software:
Real and Apparent Concurrency. Prentice Hall,
Englewood Cliffs, N.J., 1972.
Lusk, E., Overbeek, R., et al. Portable Programs
for Parallel Processors. Holt, Rinehart and Win-
ston Inc., New York, 1987.
Madnick, SE., and Donovan, J.J. Operating Sys-
tems. McGraw-Hill, New York, 1974.
Milenkovic, M. Operating Systems Concepts and
Design. McGraw-Hill, New York, 1987.
Raynal, M. Distributed Algorithms and Protocols.
John Wiley & Sons, New York, 1988.
Reed, D.P., and Kanodia, R.K. Synchronization
with event counts and sequencers. Commun.
ACM 22, 2 (Feb. 1979), 115-123.
Theaker, C.J., and Brookes, G.R. A Practical
Course on Operating Systems. Springer-Verlag,
New York, 1983.
Turner, R.W. Operating Systems Design and Imple-
mentations. Macmillan, New York, 1986.
Yuen, C.K. Essential Concepts of Operating Sys-
tems. Addison-Wesley, Reading, Mass., 1986.

Additional References
35.

36.

37.

38.

39.

40.

41.

Akl, S.G. The Design and Analysis of Parallel Algo-
rithms. Prentice Hall, Englewood Cliffs, N.J.,
1989.
Bach, M.J. The Design of the UNIX Operating Sys-
tem. Prentice Hall, Englewood Cliffs, N.J.,
1986.
Berstein, A.J. Program analysis for parallel pro-
cessing. IEEE Trans. Elect. Comput. EC-1.5, 5 (Oct.
1966),757-762.
Bustard, D., Elder, J., and Welsh, J. Concurrent
Program Structures. Prentice Hall, Englewood
Cliffs, N.J., 1988.
Chandy, K.M., and Misra, J, Parallel Program
Design: A Foundation. Addison-Wesley, Reading,
Mass., 1988.
Cherry, G.W. Parallel Programming in ANSI Stan-
dard Ada. Reston Press, Reston, Va., 1984.
Coffman, E.G., and Denning, P.J. Operating Sys-
tems Theory. Prentice Hall, Englewood Cliffs,

50.

51.

52.

53.

54.

55.

56.

57.

Epilogue

Now that you have reviewed this self-assessment procedure and have compared your responses to those
suggested, you should ask yourself whether this has been a successful educational experience. The
Committee suggests that you conclude that it has only if you have

-discovered some concepts that you did not previously know about or understand, or
-increased your understanding of those concepts that were relevant to your work or valuable to you.

May 1990 Volume 33 Number 5 Communications of the ACM 575

Self-Assessment Procedure XXI

ACM Self-Assessment Procedures
Guide for Prospective Authors

Self-assessment procedures are intended to be fairly
short mechanisms to help members of ACM appraise
and develop their knowledge of subjects important to
them in their roles as computer professionals. The pur-
pose of the procedures is tutorial. The subjects of the
procedures should be about computing, of widespread
interest or importance to ACM members, and compre-
hensible to the average ACM member after a reason-
able amount of effort. However, the subjects need not
be of universal interest within the ACM community.
The procedure need not present a balanced view of all
known ways of solving or viewing a particular problem
as long as the procedure is accurate.

The procedure should be aimed at the general ACM
membership, not at specialists. The set of items in the
procedure seldom would make a good graduate student
examination, although some of the items conceivably
might be used in such a context.

It is important to keep in mind that the self-assessment
procedure is not intended as a test or certification of
knowledge for anyone other than the person reading
the procedure.

The items in the procedure should be of widely vary-
ing difficulty; a few should be easy enough for virtually
any ACM member to answer or make a reasonable
guess at. The author should supply about 30 items,
some or all of which may be based on short examples
placed in the procedure. Most of the items in published
procedures have been in multiple-choice form, but this
is not necessary as long as reasonably short responses
can be provided. Some items have had more than one
correct response, which is fine as long as the item is
appropriately worded. It is suggested that the items not
be arranged in order of increasing difficulty and that
some easy items appear very near or at the beginning,
and occasionally throughout.

Responses should be provided for almost all of the

Author’s Address: Brian A. Rudolph, Dept. of Computer Science. University of
Wisconsin-Plattevilk. 421 Pioneer Tower, Platteville. WI 53818.

items. Occasionally, an open question might be in-
cluded (a procedure consisting entirely of open ques-
tions would be unusual).

Every item and its response should be associated
with a reference. These references should be as precise
as possible (including page and, if appropriate, line or
paragraph number). References should be only to a few
publicly available documents. One should be able to
obtain the references without having access to a huge
library. If the author can find no references for a re-
sponse, this probably indicates that the subject or item
is too new to appear in a self-assessment procedure.

It is desirable to provide an additional short bibliog-
raphy for readers who become interested enough to
read further. If a good bibliography has already been
published, a reference to it should be included as well.

Authors of published procedures have found it useful
to test the procedures by asking colleagues and students
to work them through. The Committee strongly recom-
mends that this be done prior to submission of a draft.

Please supply the ACM Self-Assessment Committee
with your proposed procedure including the following
sections: items, responses, references for each item, and
bibliography. The Committee will review your proce-
dure and will get technical reviews by experts as
needed. If the Committee accepts your procedure, it
may ask you to attend a committee meeting to go over
any proposed changes. After the authors of accepted
procedures sign copyright agreements, the Committee
will have the procedure published with an appropriate
introduction in Communications. The authors of the pro-
cedure will be listed as such, as with other Communica-
tions articles. The membership of the Committee will
be listed as part of the procedure.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

CONTACT: Neal S. Coulter
Department of Computer Science
Florida Atlantic University
Boca Raton, FL 33431

576 Communications of the ACM May 1990 Volume 33 Number 5

