
.,,i>! ,$f,
,\$ 'I,

*i s\',,
"I,, ,(q;
i\ ,,_ ,>,I!
"p,,;*,:

$: .:

:'I$,:,,:1:

SELF-ASSESSMENT PROCEDURE XX : ‘+
:;:c A self-assessment procedure on _,
I ’ operating systems
>.:I ,

I by J. Rosenberg, A. L. Ananda,
and B. Srinivasan

What is Self-Assessment Procedure XX? It is intended to be an educational experience for a
This is the 20th self-assessment procedure. All the pre- participant. The questions are only the beginning of the
vious ones are listed on the facing page. The first 13 are procedure. They are developed to help the participant
available from ACM* in a single loose-leaf binder to think about the concepts and decide whether to pursue
which later procedures may be added. the matter further.

This procedure is intended to allow computer profes-
sionals to test their knowledge of general concepts of
operating systems and includes questions concerning
terminology, process and memory management, capa-
bility, and file systems. In all except two cases, there is
supposed to be only one correct answer for each of the
multiple-choice questions.

The next few paragraphs repeat the introduction
and instructions given with earlier procedures. Those
who read them before may advance directly to the
questions.

The primary motivation of self-assessment is not for
an individual to satisfy others about his or her knowl-
edge; rather it is for a participant to appraise and de-
velop his or her own knowledge. This means that there
are several ways to use a self-assessment procedure.
Some people will start with the questions. ‘Others will
read the answers and refer to the references first. These
approaches and others devised by the participants are
all acceptable if at the end of the procedure the partici-
pant can say, “Yes, this has been a worthwhile experi-
ence” or “I have learned something.”

What is Self-Assessment?
Self-assessment is based on the idea that a procedure
can be devised that will help a person appraise and
develop his or her knowledge about a particular topic.

Authors’ Addresses: J. Rosenberg, Dept. of Electrical Engineering and Com-
puter Science, University of Newcastle. Newcastle, N.S.W. 2308. Australia:
A. L. Ananda, Dept. of Information Systems and Computer Science, National
University of Singapore, Singapore 0511; II. Srinivasan. Dept. of Computer
Science, Monash University, Clayton, Victoria 3168, Australia.

*Order number 203840. ACM Order Dept.. P.O. Box 64145, Baltimore. MD
22164. Members-$15. Non-members-$25.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

0 1990 ACM 0001.0782/90/0200-0190 $1.50

How to Use the Self-Assessment Procedure
We suggest the following way of using the -procedure,
but as noted earlier, there are others. This .is not a
timed exercise; therefore, plan to work with the proce-
dure when you have an hour to spare, or you will be
shortchanging yourself on this educational experience.
Go through the questions, and mark the responses you
think are most appropriate. Compare your responses
with those suggested by the Committee. In those cases
where you differ with the Committee, look up the ref-
erences if the subject seems pertinent to you. In those
cases in which you agree with the Committee, but feel
uncomfortable with the subject matter, and the subject
is significant to you, look up the references.

Some ACM chapters may want to devote a session to
discussing this self-assessment procedure or the con-
cepts involved.

The Committee hopes some participants will send
comments.

190 Communications of the ACM Februa y 1990 Volume 3.3 Number 2

Self-Assessment Procedure XX

Previous Self-Assessment Procedures

Self-Assessment Procedure I Self-Assessment Procedure XI
Three concept categories within the programming skills One part of early computing history
and techniques area Eric A. Weiss
May 1976 July 1983

Self-Assessment Procedure II
System organization and control with information
representation. handling, and manipulation
May 1977

Self-Assessment Procedure XII
Computer architecture
Robert I. Winner and Edward M. Carter
January 1984

Self-Assessment Procedure III
Internal sorting
Seotember 1977

Self-Assessment Procedure XIII
Binary search trees and B-Trees

Self-Assessment Procedure IV
Program development tools and methods, data integrity,
and file organization and processing
February 1978

Self-Assessment Procedure V
Database systems
Peter Scbeuermann and C. Robert Carlson
August 1978

Self-Assessment Procedure VI
Queueing network models of computer systems
J. W. Wang and G. Scott Graham
August 1979

Self-Assessment Procedure VII
Software science
M. H. Halstead and Victor Schneider
August 1980

Self-Assessment Procedure VIII
The programming language Ada
Peter Wegner
October 1981

Gopai K. Gupta
May 1984

Self-Assessment Procedure XIV
Legal issues of computing
Jane P. Devlin, William A. Lowell, and Anne E. Alger
May 1985

Self-Assessment Procedure XV
File processing
Martin K. Solomon and Riva Wenig Bickel
August 1986

Self-Assessment Procedure XVI
Computer organization and logic design
Glen G. Langdon, Jr.
November 1986

Self-Assessment Procedure XVII
ACM
Eric A. Weiss
October 1987

Self-Assessment Procedure IX
Ethics in computing
Edited by Eric A. Weiss, from a book by Dorm B. Parker
March 1982

Self-Assessment Procedure XVIII
Data Communications
John C. Munson
March 1988

Self-Assessment Procedure X
Software project management
Roger S. Gourd
December 1982

Self-Assessment Procedure XIX
Copyright Law
Riva W. Bickel
April 1989

Approved and submitted by the ACM Committee on Self-Assessment,
a committee of the ACM Education Board

Chairman Neal S. Coulter
Department of Computer Science

Randy E. Michelsen
Los Alamos National Laboratory

Florida Atlantic University
Boca Raton, FL 33431

Edward G. Pekarek, Jr.
Appalachian State University

Members Richard E. Fairley
George Mason University

Mark J. Jensen
IBM-Austin. TX

Eric A. Weiss
Editor

February 1990 Volume 33 Number 2 Communications of the ACM 191

Self-Assessment Procedure XX

Self-Assessment Procedure XX

This self-assessment procedure is not sanctioned as a test nor endorsed in any
way by the Association for Computing Machinery. Any person using any of
the questions in this procedure for the testing or certification of anyone other
than himself or herself is violating the spirit of this self-assessment procedure
and the copyright on this material.

Contents -

Part I. Questions
Part II. Suggested Responses
Part III. Reference Table
Part IV. Reference Titles
Part V. Acknowledgments

Part I. Questions -

TERMINOLOGY
1. A process may be defined as:

a. A set of instructions to be executed by a
computer.

b. A program in execution.
c. A piece of hardware that executes a set of

instructions.
d. The main procedure of a program.

2. A processor in the context of computing is:

a. A set of instructions to be executed on a
computer.

b. A program in execution.
c. A piece of hardware that executes a set of

instructions.
d. The main procedure of a program.

3. A multiprogramming system may be defined as one
in which:

a. Programs are divided into pages.
b. Input is accepted in batches of many jobs.
c. Several programs can reside in memory at

the same time.
d. Many processes may share the same pro-

gram residing in main memory.

4. The main distinction between a multiprocessor
system and a multiprogrammed system is that in a
multiprocessor system:

a. The main storage is shared by several
programs.

b. The input is accepted in batches of many
jobs.

c. Processor time is shared among several
processes.

d. Many processors may be active simultane-
ously.

PROCESS MANAGEMENT
5. A user process can become blocked only if it is:

a. In the ready state
b. In the running state.
c. In the blocked (or waiting) state.
d. Waiting for a resource.

6. A counting semaphore was initialized to 9. Then
27 P (wait) operations and 23 V (signal) operations
were completed on this semaphore. The resulting
value of the semaphore is:

a. 5
b. o

7
:: 13

7. The main difference between binary semaphores
and counting semaphores is that:

a. Binary semaphores can only ta.ke the values
0 and 1, while counting semaphores can
take any non-negative integer values.

b. Binary semaphores can only be used to solve
problems involving up to two processes
sharing the same resource, while counting
semaphores can be used to solve problems
involving more than two processes sharing
the same resource.

c. Binary semaphores cannot solve all the
problems that can be solved by counting
semaphores.

d. Counting semaphores must be controlled by
a monitor, while binary semaphores are
called directly by user processes.

8. A wait operation on a semaphore should not occur
within a critical section controlled by that sema-
phore because:

192 Communications of the ACM February 1990 Volume 33 Number 2

Self-Assessment Procedure XX

a. A deadlock will occur.
b. A semaphore is not a shared variable.
c. Another process may then enter the critical

section violating the mutual exclusion con-
straint.

d. A signal on a semaphore is always given
from outside the critical section.

9. Which of the following statements is false?

a. Disjoint processes need not use critical sec-
tions.

b. Programs with critical sections can never
be used simultaneously by more than one
process.

c. A process wanting to enter a critical section
currently in use must wait for the process
utilizing the critical section to terminate.

d. Two different critical sections may be exe-
cuted concurrently if they do not use the
same shared variables.

10. The basic principle of a monitor is that:

a. Several resources can only be controlled by
a monitor.

b. Several processes may concurrently execute
a procedure of a given monitor.

c. Only one process may execute a procedure
of a given monitor at any given time.

d. It schedules the execution of processes in a
multiprocessor operating system.

11. Which of the following actions may result in a
process becoming blocked?

a. A process executes a P (wait) operation on a
semaphore.

b. A process executes a V (signal) operation on
a semaphore.

c. A process exits from a critical section.
d. A process within a critical section changes

the value of a shared variable.

12. Non-preemptive-process-scheduling policies:

a. Are indispensable for interactive systems.
b. Allocate the processor to a process for a

fixed time period.
c. Always use a ready queue sorted in order of

decreasing priority.
d. Make short jobs wait for long jobs.

13. The pure-round-robin-scheduling policy:

a. Responds poorly to short processes if the
time slice is small.

b. Does not use any a priori information about
the service times of processes.

c. Becomes equivalent to the Shortest-Job-First
Policy when the time slice is made infinitely
large.

d. Ensures that the ready queue is always the
same size.

14. Which of the following statements is true?

a. A multiprogrammed system gives better
average turnaround than a non-multipro-
grammed system.

b. When a job-scheduling policy is changed, it
is possible for the average turnaround time
to decrease while the average priority-
weighted turnaround time increases.

c. There is no job scheduler in a time-sharing
system.

d. Indefinite postponement of a job is possible
if the First-Come-First-Serve-job-scheduling
policy is used.

15. Which of the following statements if false?

a. I/O-bound processes should be given prior-
ity in scheduling over CPU-bound processes
to ensure good turnaround time.

b. Users can exploit a multilevel feedback-
scheduling policy by breaking a long job into
several small jobs.

c. The processor scheduler normally classifies
a process as being a CPU-bound process if it
uses most of the previous time slice allo-
cated to it.

d. The round-robin-scheduling policy allocates
a time slice to a process depending on the
number of time slices it has already used.

16. Which of the following is not a necessary condi-
tion for a deadlock?

a. Mutually exclusive use of a resource by
processes.

b. Partial allocation of resources to a process.
c. Preemptive scheduling of resources.
d. Circular waiting by processes.

17. One solution to the Dining Philosophers problem
which avoids deadlock is:

a. Non-preemptive scheduling.
b. Ensuring that all philosophers pick up their

left fork before they pick up their right fork.
c. Ensuring that all philosophers pick up their

right fork before they pick up their left fork.
d. Ensuring that odd philosophers pick up their

left fork before they pick up their right fork
and even philosophers pick up their right
fork before they pick up their left fork.

18. Which of the following statements is true for the
Banker’s algorithm?

a. It cannot be used for a system with many
resources, each of which is unique with no
multiple copies.

February 1990 Volume 33 Number 2 Communications of the ACM 193

Self-Assessment Procedure XX

b. It is used to detect deadlock.
c. It is not applicable when a resource is

shared simultaneously by many users.
d. An unsafe situation will always lead to a

deadlock.

19. Consider a system in which the total available
memory is 4% and in which memory once allo-
cated to a process cannot be preempted from that
process. Three processes A, B, and C have de-
clared in advance that the maximum amount of
memory that they will require is 25K, 15K, and
41K words respectively. When the three processes
are all in execution and using 3K, 9K, and 24K
words of memory respectively, which one of the
following requests for additional allocation can be
granted with a guarantee that deadlock will not
occur as a result of the allocation.

a. A requests 9K words.
b. C requests 7K words.
c. B requests 6K words.
d. A requests 6K words.

MEMORY MANAGEMENT
20. Which of the following statements is true?

a. When the best-fit method of allocating seg-
ments is used, it is preferable to order the
list of free blocks according to increasing
memory addresses.

b. The best.-fit method chooses the largest free
block in which the given segment can fit.

c. In general, the first-fit allocation algorithm
will be faster than the best-fit algorithm.

d. The tagged method of deallocating segments
is fast when the list of free blocks is ordered
according to increasing memory addresses.

21. In a variable partition-memory management
scheme, internal fragmentation occurs when:

a. Sufficiem memory is available to run a pro-
gram, but it is scattered between existing
partitions.

b. Insufficient memory is available to run a
program.

c. The partition allocated to a program is larger
than the memory required by the program.

d. A program is larger than the size of memory
on the computer.

22. The FIFO page-replacement policy:

a. Is based on program locality.
b. Sometimes can cause more page faults when

memory size is increased.

23. Which of the following statements is false?

With the Least Recent.ly Used (LRU) page-
replacement policy, when the page size is
halved, the number of page faults can be
more than double the original n.umber of
page faults.
The working set size is a monotonically
nondecreasing function of the wcmrking set
parameter.
When the working set policy is used, main
memory may contain some pages which do
not belong to the working set of any pro-
gram.

24. It is advantageous for the page size to be large
because:

a. Less unreferenced data will be loaded into
memory.

b. Virtual addresses will be smaller.
c. Page tables will be smaller.
d. Large programs can be run.

25. It is advantageous for the page size to be small
because:

a.

b.
C.

d.

Less unreferenced data will be loaded into
memory.
Virtual addresses will be smaller.
Page tables will be smaller.
Large programs can be run.

26. For a certain page trace starting with no page in
the memory, a demand-paged memory system op-
erated under the LRU replacement policy results
in 9 and 11 page faults when the primary memory
is of 6 and 4 pages, respectively. When the same
page trace is operated under the optimal policy,
the number of page faults may be:

a. 9 and 7.
b. 7 and 9.
c. 10 and 12.
d. 6 and 7.

27. In a paged segmented scheme of memory man-
agement, the segment table points to a page table
because:

c. Is not easy to implement, and hence, most
systems use an approximation cf FIFO.

a. The segment table may occasionally be too
large to fit in one page.

194 Communications of the .4CM February 2990 Volume 33 Number 2

Self-Assessment Procedure XX

b. Each segment may be spread over a number
of pages.

c. Page size is usually larger than the segment
size.

d. The page table may be too large to fit into a
single segment.

XL Sharing in a paged memory system is done by:

a. Giving a copy of the shared pages to each
process.

b. Dividing the program into procedures and
data and allowing only the procedures to be
shared.

c. Several page table entries pointing to the
same frame in the main memory.

26. One of the ways of sharing segments in a seg-
mented system is by:

a. Maintaining a common segment table con-
taining the information about shared seg-
ments.

b. Dividing the program into procedures and
data and allowing only the procedures to be
shared.

c. Dividing the shared segment into a set of
pages and allowing only certain pages to be
shared.

d. None of the above, as segments are larger
than pages, and hence, cannot be shared.

30. With reference to Multics, which of the following
statements is false?

a. Every process must have a separate linkage
segment for every shared segment.

b. The linkage segment need not be used to
resolve internal references of a segment.

c. When control is transferred from one seg-
ment to another, the linkage pointer must be
changed to point to the new linkage
segment.

d. The linkage segment is constructed at the
time of linking.

31. An advantage of dynamic linking is that:

a. The segments that are not used in a run
need not be linked into the process address
space.

b. It reduces execution time overhead.
c. Debugging is simplified because programs

are modular.
d. The linker need not construct the known

segment table.

CAPABILITY
32. In operating systems, a capability is:

A facility which provides global access to all
data in the system.
A unique and nonforgeable name identifying
an object in the system together with access
information.
A user-maintained list of access privileges of
the objects in the system.
A table of the available operating system
resources.

33. In capability-based systems, which of the follow-
ing statements is true?

a. The unique name of a capability is reused
after every time slice.

b. The unique name of a capability is never
reused.

c. The unique name of a capability can be
reused if there are no references to it.

FILE SYSTEMS
34. Disk scheduling involves:

Allocating disk space to users in a fair
manner.
Validating the file control information stored
in the file.
Examining pending disk requests to deter-
mine the most efficient way to service the
requests.
Reorganizing disk requests to maximize seek
time.

35. Which of the following is not normally contained
in the directory entry of a file?

a. Creation date.
b. Access control list.
c. A count of the number of free blocks in the

disk.
d. Filename and extension.

36. Which of the following is an example of a spooled
device?

a. A line printer used to print the output of a
number of jobs.

b. The terminal used to enter the input data
for a Fortran program being executed.

c. The secondary memory device in a virtual
memory system.

d. The swapping area on a disk used by the
swapper.

February 1990 Volume 33 Number 2 Communications of the ACM 195

Self-Assessment Procedure XX

Part II. Suggested Responses

1.

2.
3.

4.

5.

6.

7.

6.

9.

10.

11.

12.

13.

14.

b The term process was borrowed from chemical engineering by the designers of the Multics system in the
1960s and is used interchangeably with the term task. The generally accepted definition of a process is a
program in execution.
c A processor is any piece of hardware that executes a set of instructions.
c Multiprogramming is, by definition, having several programs in memory at the same time. In time-sharing
systems, for example, a process currently requiring an input/output operation will yield the CPU lo another
process which is ready to run. Such switching is also called CPU scheduling. A time-sharing system generally
has multiprogramming too.
d A multiproct~ssor system has more than one processor. Each processor can have its own memory or share a
common memory. The former belongs to the class of loosely coupled systems and the latter to the tightly
coupled systems. Each processor executes a separate process, and many processors may be active sirnultane-
ously.
a, b A process can become blocked if it is either ready or in the running state. A process can become blocked
while running if it requests a resource in use by another process. It is also possible for a process to become
blocked while ready. For example, in a preemptive resource-allocation scheme, a low-priority process could be
ready to run. While that process is waiting in the ready queue, if a higher-priority process requests a resource
that is held by a ready process, the operating system can preempt the resource and allocate it to the higher-
priority process, thereby blocking the process which was in the ready state.
a Each P (wait) operation would decrement the semaphore value by one while each V (signal) operation
would increment the semaphore value by one. Thus, for an initial value of 9, 27 waits and 23 signals would
result in a semaphore value of 9 - 27 + 23 = 5.
a The power of counting semaphores and binary semaphores is the same. The counting semapho:re is particu-
larly useful when a resource is to be allocated from a pool of identical resources. The counting semaphore for
such a resource is initialized to the number of identical resources in the pool. Each P operation decrements the
value of the semaphore indicating that another resource has been allocated, and each V operation increments
the semaphore value by 1 indicating that a process has returned the resource to the pool. If a process attempts
a P operation on the semaphore whose value is zero, then the process has to wait until a resource is returned
to the pool.
a When a semaphore is used to implement mutual exclusion it is initialized to 1. In order to enter the critical
region a process executes a wait on the semaphore which decrements it to zero. The next process attempting to
enter will then wait. On exitting the critical region, the process executes a signal which activates i-he next
process [if there is one waiting) or increments the sernaphore. If a process executes a wait on the sernaphore
while in the critical region it will be suspended, and no other process will be able to enter. Thus the processes
waiting for the semaphore will be deadlocked.
b Disjoint processes that do not share any data need not require critical sections. A critical section contains
shared data, and hence, any process wanting to enter the critical section which is in use by another process
must wait for the process utilizing the critical sectiorl to terminate. Hence, programs with critical sections can
be shared by many processes as long as only one process is accessing the data in the critical section at any
time.
c The monitor is a synchronization mechanism based on data abstraction. The shared data is encapsulated
in routines, and automatic mutual exclusion is provided on these routines; only one process may execute a
procedure of a monitor at any time. Monitors also have a queuing mechanism for waiting on cond:itions.
a V operations can never cause a process to become blocked. Processes can be blocked by executing a P
operation.
d In general, a non-preemptive process-scheduling policy can make short jobs wait longer in the ready queue,
thereby giving poor response to those processes. This is particularly true when the system is heavily loaded
with long jobs.
b With the Round-Robin-scheduling policy, processes are dispatched in FIFO order but are given a limited
amount of CPU time, called the time slice or quantum. If a process does not complete before the time slice
expires, it is preempted, and the CPU is given to the next waiting process in the ready queue. The preempted
process is placed at the back of the ready queue. Hence no a priori knowledge is used to determine the next
process to schedule.
b Multiprogramming systems do not always perform better than single program systems because of the
overhead of switching between processes. It is possible for the average turnaround to improve because of the
change in the job scheduling policy, but at the same time it may result in a longer turnaround for high-priority
jobs. This could happen when the priority of the job is given less importance in the new scheduling algorithm.
Time-sharing systems sometimes have a job scheduler to limit the number of logged-on users to a level that

196 Communications of the ACM Februay 1990 Volume 33 Number 2

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Self-Assessment Procedure XX

the system can cope with. Under the first-come-first-serve algorithm, it is not possible for a job to be indefi-
nitely postponed because jobs are executed in the order of their arrival.
d I/O-bound processes use little CPU time in general, and hence, in order to have better furnaround fime
(defined as the number of processes completing execution per unit of time), I/O processes should be given
more priority over CPU-bound processes. In the case of a multilevel feedback system, multiple wait queues are
maintained. The queue on which a process waits for CPU allocation is determined by its previous queue and
the amount of CPU time used in the previous allocated CPU time slice. If a process uses its entire time slice
(i.e., a CPU-bound process) it is moved down in the hierarchy and will thus have a lower priority in the next
CPU-time-slice allocation. Hence, response to a long job can be improved by dividing it into several smaller
jobs. For discussion about the Round-Robin-scheduling policy, refer to question 13.
c In a deadlock, processes never finish executing, and system resources are tied up. This prevents other jobs
from ever starting. The following are the necessary conditions that must be satisfied for a deadlock to exist.

l Processes claim exclusive control of the resources they require (mutual exclusion condition)
l Processes hold resources already allocated to them while waiting for additional resources (hold and waif

condition)
l Resources cannot be removed from the processes holding them until the resources are used to completion (no

preemption condition)
l A circular chain of processes exists in which each process holds one or more resources that are requested by

the next process in the chain (circular-wait condition).

d The scheduling algorithm given (d) will guarantee that there will be no deadlock. Both (b) and (c) allow the
possibility of all philosophers picking up one fork resulting in deadlock. There are other solutions to the Dining
Philosophers problem.
c The Banker’s algorithm (initially described by Dijkstra in 1965) is an algorithm which will detect whether a
given allocation of resources could result in a deadlock. It does not detect the existence of a deadlock. The
algorithm can handle single or multiple equivalent or independent resources. The algorithm is pessimistic in
that it flags situations as being potential deadlocks when, in fact, a deadlock may not occur. Simultaneously
shared resources can never be in a deadlock situation, and thus, the algorithm is inapplicable to these cases.
c After initial allocation to the processes A, B, and C, the remaining available memory is l2K. If process A
makes a further request of 9K and if the request is satisfied, it could still require 13K at some point before its
completion. This requirement cannot be satisfied at this point of time because, if A gets 9K more, no process
can get its maximum memory request, so deadlock is possible. A similar argument holds good for the choices
(b) and (d). However, if 6K is allocated to process B (which can be satisfied from the available memory), its
maximum requirement is satisfied, and hence it can run to completion. After a finite amount of time the
memory held by process B will be released. Then process C’s requirements can be met, and in a finite amount
of time it will complete its execution which in turn allows process A to complete. Hence, the allocation of 6K
memory for process B under the current allocation will result in a safe situation.
c In the first-fit allocation algorithm, the free blocks are searched sequentially until a free block whose size is
greater than or equal to the requested memory size is found. The best-fit algorithm tries to find and allocate
the free block (if it exists) that is the closest (but at least as large) to the required size. Empirical study shows
that a first-fit allocation is generally faster than a best-fit allocation although there are circumstances where
either one can be better than the other. For a detailed comparison of the first-fit and best-fit strategies refer to
Shore, J. E., “On the External Storage Fragmentation Produced by First-Fit and Best-Fit Allocation Strategies,”
(Communications August 1975, pp. 433-446).

The tagged method is used (by using tag fields to indicate whether the block is free or used by a process) for
coalescing adjacent free blocks when a block of memory is released.
c Internal fragmentation occurs when a partition allocated to a program is larger than that required. The
difference between these two sizes is the amount of memory that is wasted. Choice (a) refers to external
fragmentation.
b It would seem reasonable to expect that if more pages are allocated to a process, then it should experience
fewer page faults. But under the FIFO page-replacement strategy, certain page-reference patterns actually
cause more page faults when the number of pages allocated to the process is increased. This phenomenon is
known as Beludy’s anomaly. For more information refer to Beludy, L. A., Nelson, R. A., and Shedler, G. S., “An
Anomaly in Space-Time Characteristics of Certain Programs Running in a Paging Environment” (Communicu-
fions December 1969, pp. 349-353).
a For a given pattern of references and a given page size, the number of page faults is governed by the
number of different pages that are accessed. If the page size is halved, then no more than the original number
of full-sized pages can be accessed, and thus, no more than twice the original number of page faults can occur.
c Increasing the size of the page will decrease the number of pages of the address space, and hence, the
number of entries in the page table will be smaller.

February 1990 Volume 33 Number 2 Communications of the ACM 197

Self-Assessment Procedure XX

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

a By reducing the page size, the amount of unreferenced data held in memory will be reduced. E[owever, the
size of the page table will increase.

b The LRU scheme results in 9 and 11 page faults for memory sizes of 6 and 4 pages, respectively. .Hence,

the optimal (OPT) scheme must have a and b number of page faults for a memory size of 6 and 4 pages,
respectively, where a 5 9 and b 5 11 and 0 5 u 5 b. This is because OPT must be at least as good as LRU and
must not have more faults if there is more memory. .[nitially, the memory is empty, and .hence, in ‘both cases,
there must be an initial set of accesses requiring more than the total number of pages of memory in order to
cause page faults greater than the number of memor:,r pages. Thus, even with OPT, there must be at least a
number of page faults greater than the number of pages of memory for each memory size, that is a ;. 6 and
b > 4. Hence, 6 < u 5 9 and 4 < b 5 11. Therefore, it should be noted that neither OPT nor LRU scheme suffers
from Belady’s a~zomaly.

b Segments are variable-sized memory blocks. In a paged segmented system, each segment is divided into one
or more fixed-sized pages. Hence, an entry for a segment points to a page table which contains the addresses of
the pages corresponding to that segment.

a, c Sharing pages can be achieved either by providing a copy of the page or by having the same entry in the
page tables that point to the shared page. The latter d.oes not have the duplicate copy of the page, and hence,
the memory-space requirement and the overhead ;nvolved in maintaining the consistency of shared pages is
reduced. There need be no restriction that only procedures and not data can be shared in a paged system.

a The sharing of segments in a segmented system can be done by having a common segment table. All virtual
addresses above a certain segment number can be translated using the information in the common segment
table rather than the entries in the local segment table. This method will avoid duplication of the entries in the
shared segment:; in each local segment table.

a A linkage segment is only required when there are external references from a shared segment. Hence, if
some objects are shared but have no external references, then there will be no linkage segment.

a Dynamic linking allows procedures to be linked and loaded into memory when they are first called. Hence,
procedure segments that are not required for a particular execution need not be in memory, thereby reducing
the amount of memory required.

b A capability is a unique nonforgeable name directly identifying an object in a system, together with access
information. Users cannot manufacture or modify capabilities. Possession of a capability gives the right to
access the object, governed by the access information.

c The unique name in capabilities can be reused, but only if it can be guaranteed that no references remain
to the old use of the name.

c In multiprogrammed systems, many processes may be generating requests for reading and writing disk
records. Because these processes often make requests faster than they can be retrieved by moving head disks,
queues build up for such devices. Some systems use the first-come-first-serve (FCFS) policy to service the disk
queues. But FCFS exhibits a seek pattern in which successive requests can cause time consuming slsek delays.
To minimize the time spent in seeking records, it is reasonable to order the request queue. Such a method of
ordering the disk requests is called disk scheduling. Disk scheduling generally tries to minimize the head-
movement time.

c The directory entry generally contains information pertaining to a file that includes the file name and
possibly some or all of the following: file extension, date of creation, date of last modification, size (may be in
kilobytes), access rights, etc. The number of free b1ock.s on the disk is information related to the whole disk
and is not kept as part of a file.

a In spooling (Simultaneous Peripheral Operation On Line], a buffer is interposed between a running program
and a slow-speed device involved with the program for input/output. For example, instead of writing lines
directly to the line printer, the lines are written (temporarily) onto a disk. Thus, the program is allowed to run
to completion without waiting for the (slow) printer to finish. When the printer becomes free, the lines can be
printed from the disk file.

198 Communications of the ACM February 1990 Volume 33 Number 2

Self-Assessment Procedure XX

Part III. Reference Table

The following table gives the page numbers of the suggested references where a discussion on the
question can be found. Suggested references are fully cited in Part IV, Reference Titles.

Calinsaerl Deitel Janson
Peterson,

Silberschatr Tanenbaum
Theaker,
Brookes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

53
53-55
21-22

203-208
54-57
95-100
89-95
95-100
84-92

104-105
95-100
57-60
59-60
65-67
57-65

108
-

110-111
110-111

46-47
22

39-40
35-41
35-36
35-39
39-40
42-45

-
-
-

34
-
-

128-130
146-156
143-144

55
63-64

7
278

56-57
89-93
89-93
89-90
77-78

103-104
93

252-253
252-256
252-261
252-261

131
119-121
135-139
135-139
169-174

-

218-220
222-226
229-233
229-233
217-221
203-208
194-195
202-208

-
-

454-456
454-456
301-320
334-336

35

24
4-6

64-68
23-26
36-38
39-40
32-42
42-44
42-44
44-45
72-75
72-75
77-78

-

72-75
51-52

-

54-56
54-56

111-112
-

126-127
129-130
117-134
117-134
118-122
133-136

-
-

179-184
188-189
216-217
216-222

97-98
148-156

10-12

105-106 46-47 -
-

17-18
33-34

107-108
340-344
340-344
375-378
327-347
384-393
340-344
120-122
122-125
115-136
115-125
275-276
347-349
287-289
287-289

76
151

218-220
217-237
241-242
241-242
220-224
191-194
178-179
188-190
187-195
187-195
412-413
412-413
259-270

82-89
15-17

- -
8-11 10-11
-

48-49
60-62
61-63
63-67

53
63-67
60-62
80-81
81-82
80-87
80-87

124
75-78

131-135
131-135
201-203
205-206
215-216
213-219
222-223
222-223
213-217
209-212
207-226

-

165-167
163-169
163-169
165-169
169-172
184-185

165
58-59
63-64

-

42-55
136-137

-

210-212

-

140-142
139-140
124-126

77-79
117

115-117
92-95
92-95

115-116
97-98
92-97
85-86

-
-

293-295
293-295
144-146
254-256
121-122

-

153-154
153-157

-

128-129
20-23

Part IV. Reference Titles

Suggested References
1. Calingaert, P. Operating System Elements-A User

Perspective. Prentice Hall, Englewood Cliffs, N.J.,
1982.

2. Deitel, H.M. An Introduction to Operating Systems.
Addison-Wesley, Reading, Mass., 1984 (revised
first edition).

3. Janson, P.A. Operating Systems Structures and
Mechanisms. Academic Press, New York, 1985.

4. Peterson, J. L., and Silberschatz, A. Operating
System Concepts. 2d ed. Addison-Wesley, Read-
ing, Mass., 1985.

5. Tanenbaum, AS. Operating Systems-Design and
Implementation. Prentice Hall, Englewood Cliffs,
N.J., 1987.

6. Theaker, C.J., and Brookes, G.R. A Practical
Course on Operating Systems. Macmillan Press
Ltd., United Kingdom, 1983.

Additional References
7. Bit, L., and Shaw, A.C. Logical Design of Operat-

ing Systems. 2d ed. Prentice Hall, Englewood
Cliffs, N.J., 1988.

8. Christian, K. The Unix Operating Systems. John
Wiley & Sons, New York, 1983.

9. Comer, D. Operating System Design--The XINU
Approach. Prentice Hall, Englewood Cliffs, N.J.,
1984.

February 1990 Volume 33 Number 2 Communications of the ACM 199

Self-Assessment Procedure XX

10. Davis, WS. Operating Systems-A Systematic R.R. Operating Systems-Advanced Concepts. Ben-
View. 3d ed. Addison-Wesley, Reading, Mass., jamin/Cummings Publishing Co. Inc., 1987.
1987. 1% Milenkovic, M. Operating Systems-Cofzcepts and

11. Kaisler, S.H. The Design of Operating Systems for Design. McGraw-Hill, New York, 1987.
Small Computer Systems. John Wiley & Sons, New 14. Turner, R.W. Operating Systems-Design and Im-
York, 1983. plementation. MacMillan Publishing Company,

12. Maekawa, M., Oldehoeft, A.E., and Oldehoeft, New York, 1986.

Part V. Acknowledgments

The authors would like to acknowledge the referees for their constructive criticisms and the valuable
suggestions which made this assessment procedure more consistent and readable.

Epilogue

Now that you have reviewed this self-assessment procedure and have compared your responses to those
suggested, you should ask yourself whether this has been a successful educational experience. The
Committee suggests that you conclude that it has only if you have

-discovered some concepts that you did not previously know about or understand, or
-increased your understanding of those concepts that were relevant to your work or valuable to you.

ACM Self-Assessment Procedures
Guide for Prospective Authors

Self-assessment procedures are intended to be fairly
short mechanisms to help members of ACM appraise
and develop their knowledge of subjects important to
them in their roles as computer professionals. The pur-
pose of the procedures is tutorial. The subjects of the
procedures should be about computing, of widespread
interest or importance to ACM members, and compre-
hensible to the average ACM member after a reason-
able amount of effort. However, the subjects need not
be of universal interest within the ACM community.
The procedure need not present a balanced view of all
known ways of solving or viewing a particular problem
as long as the procedure is accurate.

The procedure should be aimed at the general ACM
membership, not at specialists. The set of items in the
procedure seldom would make a good graduate student
examination, although some of the items conceivably
might be used in such a context.

It is important to keep in mind that the self-assessment
procedure is not intended as a test or certification of
knowledge for anyone other than the person reading
the procedure.

The items in the procedure should be of widely vary-
ing difficulty; a few should be easy enough for virtually
any ACM member to answer or make a reasonable
guess at. The author should supply about 30 items,

some or all of which may be based on short examples
placed in the procedure. Most of the items in published
procedures have been in multiple-choice fo.rm, but this
is not necessary as long as reasonably short responses
can be provided. Some items have had more than one
correct response, which is fine as long as the item is
appropriately worded. It is suggested that the items not
be arranged in order of increasing difficulty and that
some easy items appear very near or at the beginning,
and occasionally throughout.

Responses should be provided for almost all of the
items. Occasionally, an open question mighi be in-
cluded (a procedure consisting entirely of open ques-
tions would be unusual).

Every item and its response should be associated
with a reference. These references should be as precise
as possible (including page and, if appropriate, line or
paragraph number). References should be only to a few
publicly available documents. One should be able to
obtain the references without having access to a huge
library. If the author can find no references for a re-
sponse, this probably indicates that the subj,ect or item
is too new to appear in a self-assessment procedure.

It is desirable to provide an additional short bibliog-
raphy for readers who become interested enough to
read further. If a good bibliography has already been

200 Communications of the ACM February 1990 Volume 33 Number 2

Self-Assessment Procedure XX

published, a reference to it should be included as well.
Authors of published procedures have found it useful

to test the procedures by asking colleagues and students
to work them through. The Committee strongly recom-
mends that this be done prior to submission of a draft.

Please supply the ACM Self-Assessment Committee
with your proposed procedure including the following
sections: items, responses, references for each item, and
bibliography. The Committee will review your proce-
dure and will get technical reviews by experts as

needed. If the Committee accepts your procedure, it
may ask you to attend a committee meeting to go over
any proposed changes. After the authors of accepted
procedures sign copyright agreements, the Committee
will have the procedure published with an appropriate
introduction in Communicntions. The authors of the pro-
cedure will be listed as such, as with other Communica-
tions articles. The membership of the Committee will
be listed as part of the procedure.

CONTACT: Neal S. Coulter
Department of Computer Science
Florida Atlantic University
Boca Raton, FL 33431

ACM SPECIAL INTEREST GROUPS
AREYOURTECHNICAL

INTERESTSHERE?

The ACM Special Interest Groups further the ad-
vancement of computer science and practice in
many specialized areas. Members of each SIG
receive as one of their benefits a periodical
exclusively devoted to the special interest. The
following are the publications that are avail-
able-through membership or special
subscription.

SIGACT NEWS [Automata and
Computability Theory)

SIGAda Letters (Ada)

SIGAPL Quote Quad (APL)

SIGARCH Computer Architecture News
(Architecture of Computer Systems)

SIGART Newsletter (Artificial
Intelligence)

SIGBDP DATABASE (Business Data
Processing)

SIGBIO Newsletter (Biomedical
Computing)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGCAPH Newsletter, Cassette Edition SIGMICRO Newsletter

SIGCAPH Newsletter, Print and Cassette
Editions

(Microprogramming)

SIGMOD Record (Management of Data)

SIGCAS Newsletter (Computers and SIGNUM Newsletter (Numerical
Society) Mathematics)

SIGCHI Bulletin (Computer and Human
Interaction)

SIGOIS Newsletter (Office Information
Systems)

SIGCOMM Computer Communication
Review (Data Communication)

SIGOPS Operating Systems Review
(Operating Systems)

SIGCPR Newsletter (Computer Personnel
Research)

SIGPLAN Notices (Programming
Languages)

SIGCSE Bulletin (Computer Science
Education)

SIGCUE Bulletin (Computer Uses in
Education)

SIGDA Newsletter (Design Automation)

SIGPLAN FORTRAN FORUM (FORTRAN)

SIGSAC Newsletter (Security, Audit,
and Control)

SIGSAM Bulletin (Symbolic and Algebraic
Manipulation)

SIGDOC Asterisk (Systems
Documentation)

SIGFORTH Newsletter (FORTH)

SIGSIM Simuletter (Simulation and
Modeling]

SIGSMALWPC Newsletter (Small and
SIGGRAPH Computer Graphics

(Computer Graphics)
Personal Computing Systems and
Applications)

SIGIR Forum (Information Retrieval)

SIGMETRICS Performance Evaluation
Review (Measurement and

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newsletter (University and
Evaluatibn) College Computing Services)

See the ACM membership application in this issue
for additional information.

February 1990 Volume 33 Number 2 Communications of the ACM 201

