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he complexity of modern computer systems and the diverse 
workloads they must support challenge researchers and 
designers who must understand a system’s behavior. As 
computer system complexity has increased, software sim- T ulation has become the dominant method of system test- 

ing, evaluating, and prototyping. Simulation is used at almost every step 
of building a computer system: from evaluation of research ideas, to ver- 
ification of the hardware design, to performance tuning once the system 
has been built. In all these simulations, designers face trade-offs between 
speed and accuracy. Frequently, they must reduce accuracy to make the 
simulation run in an acceptable amount of time. 

One simplification that reduces simulation time is to model only user- 
level code and not the machine’s privileged operating system code. Omit- 
ting the operating system substantially reduces the work required for sim- 
ulation. Unfortunately, removing the operating system from the 
simulation model reduces both the accuracy and the applicability of the 
simulation environment. Important computing environments, such as 
database management systems and multiprogrammed, time-shared sys- 
terns, spend as much as a third of their execution time in the operating sys- 
tem. Ignoring the operating system in modeling these environments 
can result in incorrect conclusions. Furthermore, these environments use 
the operating system services heavily, so it is difficult to study such appli- 
cations in a simulation environment that does not model an operating 
system. The inability to run OS-intensive applications means that their 
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behavior tends to be poorly 
understood. Finally, operating 
system researchers and develop- 
ers cannot use these simulation 
environments to study and evalu- 
ate their handiwork. 

SimOS is a siniulation en\. won- 
ment capable of modeling com- 
plete computer systems, includ- 
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Figure 1.  The SimOS environment. SimOS runs as a layer between the host 
machine and the target operating system. (We use host to refer to the 
hardware and software on which SimOS runs and target to refer t o  the 
simulated hardware modeled by SimOS and to the operating system and 
applications executing on that architecture.) 

ing a full operating system and all 
application programs that run on 
top of it. Two features help make this possible. First, 
SimOS provides an extremely fast simulation of system 
hardware. Workloads running in the SimOS simulation 
environment can achieve speeds less than a factor of 10 
slower than native execution. At this simulation speed, 
researchers can boot and interactively use the operat- 
ing system under study. (We use the term mi-kloacl to 
refer to the execution of one or more applications and 
their associated OS activity.) 

The other feature that enables SimOS to model the 
full operating system is its ability to control the level of 
simulation detail. During the execution of a workload, 
SiniOS can switch among a nuniber of hardware coni- 
ponent simulators. These simulators vary in the amount 
of detail they model and the speed a t  which they run. 
Using multiple levels of simulation detail, a researcher 
can focus on the important parts of a workload while 
slapping over the less interesting parts. The ability to 
select the right simulator for the job is very useful. For 
example, most researchers are interested in the com- 
puter system’s running in steady state rather than its 
behavior while booting and initializing data structures. 
We typically use SimOS’s high-speed simulators to boot 
and position the workload and then switch to more 
detailed levels of simulation. The process is analogous 
to using the fast forward button on a VCR to position 
the tape at an interesting section and then examining 
that section at normal speed or even in slow motion. 
Additionally, SimOS lets us repeatedly jump into and 
out of the more detailed levels of simulation. Statistics 
collected during each of the detailed simulation sam- 
ples provide a good indication of a workload’s behav- 
ior, but with simulation times on a par with the quicker, 
less detailed models. 

SimOS allows a system designer to evaluate all the 
hardware and software performance factors in the con- 
text of the actual programs that will run on the machine. 
Computer architects have used SimOS to study the 
effects of new processor and memory system organiza- 

tions on workloads such as large, scientific applications 
and a commercial database system. OS designers have 
used SimOS for developing, debugging, and perfor- 
mance-tuning an operating system for a next-genera- 
tion multiprocessor. 

The SimOS environment 
To boot and run an operating system, a simulator must 
provide the hardware sexvices expected by the operating 
system. A modern multiprocessor operating system, 
such as Unix SVR4, assumes that its underlying hard- 
ware contains one or more CPUs for executing instruc- 
tions. Each CPU has a memory management unit 
(hLML?) that relocates every virtual address generated 
by the CPU to a location in physical memory or gener- 
ates an exception if the reference is not permitted (for 
example, a page fault). An operating system also assumes 
the existence of a set of 110 devices including a periodic 
interrupt timer that interrupts the CPU at regular inter- 
vals, a block storage device such as a magnetic disk, and 
devices such as a console or a network connection for 
access to the outside world. 

SimOS, diagrammed in Figure 1, is a simulation layer 
that runs on top of general-purpose Unix multiproces- 
sors such as the SGI (Silicon Graphics Inc.) Challenge 
series. It simulates the hardware of an SGI machine in 
enough detail to support Irix version 5.2, the standard 
SGI version of Unix SVR4. Application workloads 
developed on SGI machines run without modiikation 
on the simulated system. SimOS can therefore run the 
large and complex commercial applications available on 
the SGI platform. Although the current SimOS imple- 
mentation simulates the SGI platform, previous ver- 
sions have supported other operating systems, and the 
techniques SimOS utilizes are applicable to most gen- 
eral-purpose operating systems. 

Each simulated hardware component in the SimOS 
layer has multiple implementations that vary in speed 

- 
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Table 1. SimOS‘s direct-execution m o d e  
mapping. 

IMPLEMENTATION 
TARGET MACHINE FEATURE ON HOST MACHINE 

CPU Unix process 
Physical memory File 51 
Disk storage File 52 
Exceptions Unix signals 
Resident page 
I/O device interrupts Unix signals 

Mapping of File #1 into process 

and detail. While all implementations are complete 
enough to run the full workload (operating system and 
application programs), we designed the implementa- 
tions to provide various speed/detail levels useful to 
-computer system researchers and builders. The CPUs, 
M U S ,  and memory system are the most critical com- 
ponents in simulation time, so it is these components 
that have the most varied implementations. 

By far the fastest simulator of the CPU, MMU, and 
memory system of an SGI multiprocessor is an SGI 
multiprocessor. SimOS provides a direct-execution 
mode that can be used when the host and target archi- 
tectures are similar. SimOS exploits the similarity 
between host and target by directly using the underly- 
ing machine’s hardware to support the operating sys- 
tem and applications under investigation. Configuring 
a standard U13x process environment to support oper- 
ating system execution is tricky but results in extremely 
fast simulations. 

The direct-execution mode often executes an oper- 
ating system and target applications only two times 
slower than they would run on the host hardware. 
Because of its speed, researchers frequently use this 
mode to boot the operating system and to position com- 
plex workloads. Operating system developers also use 
it for testing and debugging new features. Although the 
direct-execution mode is fast, it provides little informa- 
tion about the workload’s performance or behavior, and 
thus it is unsuitable for studies requiring accurate hard- 
ware modeling. Moreover, this mode requires strong 
similarities between the simulated architecture and the 
simulation platform. 

For users who require only the simulation accuracy 
of a simple model of a computer’s CPUs and memory 
system, SimOS provides a binary-translation mode. 
This mode uses on-the-fly object code translation to 
dynamically convert target application and operating 
system code into new code that simulates the original 
code running on a particular hardware configuration. It 
provides a notion of simulated time and a breakdown of 
instructions executed. It operates at a slowdown of under 
12 times. It can further provide a simple cache model 
capable of tracking information about cache contents 
and hit and miss rates, a t  a slowdown of less than 3 5  

times. Binary translation is useful for operating system 
studies as well as simple computer architecture studies. 

SimOS also includes a detailed simulate: implemented 
with standard simulation techniques. The simulator runs 
in a loop, fetching, decoding, and simulating the effects 
of instructions on the machine’s register set, caches, and 
main memory. The simulator includes a pipeline model 
that records more detailed performance information at 
the cost of longer simulation time. Different levels of 
detail in memory system simulation are available, rang- 
ing from simple cache-miss counters to accurate mod- 
els of multiprocessor cache coherence hardware. 
SimOS’s highly detailed modes have been used for com- 
puter architecture studies as well as for performance tun- 
ing of critical pieces of an operating system. 

Altogether, SimOS provides hardware simulators 
ranging from very approximate to highly accurate mod- 
els. Similarly, the slowdowns resulting from execution 
on these simulators ranges from well under a factor of 
10 to well over a factor of 1,000. 

Eflicient simulation by direct 
execution 
The greatest challenge faced by the SimOS direct- 
execution mode is that the environment expected by an 
operating system is different from that experienced by 
user-level programs. The operating system expects to 
have access to privileged CPU resources and to an 
MMU it can configure for mapping virtual addresses to 
physical addresses. The SimOS direct-execution mode 
creates a user-level environment that looks enough like 
“raw” hardware that an operating system can execute 
on top of it. Table 1 summarizes the mapping of fea- 
tures in SimOS’s direct-execution mode. 

CPU INSTRUCTION EXECUTION 
T o  achieve the fastest possible CPU simulation speed, 
the direct-execution mode uses the host processor for 
the bulk of instruction interpretation. It simulates a 
CPU by using the process abstraction provided by the 
host operating system. This strategy constrains the tar- 
get instruction to be binary-compatible with the host 
instruction set. The operating system runs within a user- 
level process, and each CPU in the target architecture 
is modeled by a different host process. Host operating 
system activity, such as scheduler preemptions and page 
faults, is transparent to the process and will not perturb 
the execution of the simulated hardware. CPU simula- 
tion using the process abstraction is fast because most of 
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the workload will run a t  the native CPU’s speed. On 
multiprocessor hosts, the target CPU processes can exe- 
cute in parallel, further increasing simulation speed. 

Because operating systems use CPU features unavail- 
able to user-level processes, it is not possible simply to 
run the unmodified operating system in a user-level 
process. Two such features provided by most CPUs are 
the trap architecture and the execution of privileged 
instructions. Fortunately, most workloads use these fea- 
tures relatively infrequently, and so SimOS can provide 
them by means of slower simulation techniques. 

A CPU’s trap architecture allows an operating sys- 
tem to take control of the machine when an exception 
occurs. An exception interrupts the processor and 
records information about the cause of the exception in 
processor-accessible registers. The  processor then 
resumes execution at a special address that contains the 
code needed to respond to the excep- 

vide privileged instructions that the operating system 
uses to manipulate a special state in the machine. This 
special state includes the currently enabled interrupt 
level and the state of virtual-memory mappings. The 
privileged instructions that manipulate this state can- 
not be simulated by directly executing them in a user- 
level process; at  user-level these instructions cause an 
illegal instruction exception. The host OS notifies the 
CPU process of this exception by sending it a signal. 
The direct-execution mode uses such signals to detect 
privileged instructions, which it then interprets in soft- 
ware. SimOS contains a simple software CPU simula- 
tor capable of simulating all the privileged instructions 
of the CPU’s instruction set. This software is also 
responsible for maintaining privileged registers such as 
the processor’s interrupt mask and the MMU registers. 

MMU SIMULATION 
tion. Common exceptions include page 
faults, arithmetic overflow, address 
errors, and device interrupts. To simu- 
late a trap architecture, the process rep- 
resenting a %mOS CPU must be noti- 
fied when an exceptional event occurs. 
Fortunately, most modern operating 
systems have some mechanism for noti- 
fying user-level processes that an 
exceptional event occurred during exe- 

A process is an obvious way to simu- 
late a CPU’s instruction interpretation, 

Altogether, but an analog for the memory man- 
SimOS provides agement unit is not so obvious because 
hardware a user-level process’s view of memory 

simulatorc ranging is very different from the view assumed 
by an operating system. An operating 
system believes that it is in complete 
control of the machine’s physical 
memory and that it can establish arbi- 

from very 
to 

highly accurate 
cution. SimOS uses this process iotifi- 
cation mechanism to simulate the tar- 
get machine’s trap architecture. 

In Unix, user-level processes are notified of excep- 
tional events via the signal mechanism. Unix signals are 
similar to hardware exceptions in that the host OS inter- 
rupts execution of the user process, saves the processor 
state, and provides information about the cause of the 
signal. If the user-level process registers a function 
(known as a signal handler) with the host OS, the host 
OS will restart the process at the signal handler func- 
tion, passing it the saved processor state. SimOS’s direct- 
execution mode registers signal handlers for each excep- 
tional event that can occur. The SimOS signal handlers 
responsible for trap simulation convert the information 
provided by the host OS into input for the target OS. 
For example, upon receiving a floating-point exception 
signal, the invoked SimOS signal handler converts the 
signal information into the form expected by the target 
OS’s trap handlers and transfers control to the target 
OS’s floating-point-exception-handling code. 

In addition to the trap architecture, most CPUs pro- 

models. trary mappings of virtual address 
ranges to physical memory pages. In 

contrast, user-level processes deal only in virtual 
addresses. T o  execute correctly, the target operating 
system must be able to control the virtual-to-physical 
address mappings for itself and for the private address 
spaces of the target user processes. 

The MMU also presents a special simulation chal- 
lenge because it is used constantly-by each instruction 
fetch and each data reference. As Figure 2 (next page) 
shows, we use a single file to represent the physical 
memory of the target machine. For each valid transla- 
tion between virtual and physical memory, we use the 
host operating system to map a page-size chunk of this 
file into the address space of the CPU-simulating 
process. The target operating system’s requests for vir- 
tual memory mappings appear as privileged instructions, 
which the direct-execution mode detects and simulates 
by calling the host system’s file-mapping routines. 
These calls map or unmap page-size chunks of the phys- 
ical memory file into or out of the simulated CPU’s 
address space. If a target application instruction accesses 
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CPU-simulating process 

Target machine’s 
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these addresses 
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Figure 2 .  MMU simulation. SimOS simulates a processor’s MMU by mapping 
page-size chunks of a file representing physical memory into a target 
application’s address space. References to  unmapped portions of the user’s 
address space are converted to  page faults for the target OS. Similarly, 
writing to  mapped pages without write permission results in protection faults 
for the target OS. 
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Figure 3. Address space relocation for direct execution. Running the entire 
workload within an lrix user-level process necessitates compressing the 2 
Gbytes of host OS address space into 384 Mbytes. We relink the target OS to  
reside with SimOS’s code and data in the upper portion of the user-level 
virtual address space. Both SimOS and the target OS reside in each process 
simulating a CPU f o r  the target architecture. 

a page of the application’s address space that has no 
translation entry in the simulated MMC, the instruc- 
tion will access a page of the CPU siniulation process 
that is unmapped in the host 11/z7\/IU. As discussed ear- 
lier, the simulated trap architecture catches the signal 
generated by this event and converts the access into a 
page fault for the target operating system. 

We simulate the protection provided by an 1WMU by 
using the protection capabilities of the file-mapping sys- 
tem calls. For example, mapping a page-size section of 
the physical memory file without write permission has 
the effect of installing a read-only translation entry in 
the MMU. Any target application write attempts to these 
regions produce signals that are converted into protec- 
tion faults and sent to the target operating system. 

In many architectures the operating system resides 
outside the user’s virtual address space. This causes a 
problem for the SimOS MiMU simulation because the 
virtual addresses used by the operating system are not 
normally accessible to the user. We circumvented this 
problem by relinlung the kernel to run a t  the high end of 

the user’s virtual address space in 
a range of addresses accessible 
from user mode. We also placed 
the SimOS code itself in this 
address range. Although this 
mechanism leaves less space avail- 
able for the target machine’s user- 
level address space, most applica- 
tions are insensitive to this change. 
Figure 3 illustrates the layout of 
SimOS in an Irix address space. 

DEVICE SIMULATION 
SimOS simulates a large collec- 
tion of devices supporting the tar- 
get operating system. These 
devices include a console, mag- 
netic disks, Ethernet interfaces, 
periodic interrupt timers, and an 
interprocessor interrupt con- 
troller. SimOS supports inter- 
rupts and direct memory access 
(DMA) from devices, as well as 
memory-mapped I/O (a method 
of communicating with devices by 
using loads and stores to special 
addresses). 

In direct-execution mode, the 
simulated devices raise interrupts 

by sending Unix signals to the target CPU processes. 
As described earlier, SimOS-installed signal handlers 
convert information from these signals into input for 
the target operating system. The timer, interprocessor, 
and disk interrupts are all implemented by this method. 
N’e implement DrWA by giving the devices access to the 
physical memory file. By accessing this file, I/O devices 
can read or write memory to simulate transfers that 
occur during DltW. 

TO simulate a disk, SimOS uses a file with content 
corresponding to that of a real disk. The standard file- 
5ysteni build program converts standard files into raw 
disk format. SimOS uses this program to generate disks 
containing files copied from the host system. Building 
disks from host files gives the target OS access to the 
large volume of programs and data necessary to boot 
and run large, complex workloads. 

SimOS contains a simulator of an Ethernet local-area 
network, which allows simulated machines to commu- 
nicate with each other and the outside world. The  
implementation of the network interface hardware in 

~ 
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SimOS sends messages to an Eth- 
ernet simulator process. Commu- 
nication with the outside world 
uses the Ethernet simulator 
process as a gateway to the local 
Ethernet. With network connec- 
tivity, SimOS users can remotely 
log in to the simulated machines 
and transfer files using services 
such as FTP (file transfer proto- 
col) o r  NFS (Network File Sys- 
tem). For ease of use, we estab- 
lished an Internet subnet for our 
simulated machines and entered a 
set of host names into the local 
name server. 

Cycle counting 
instructions) 

Figure 4. Binary translation mechanics. Binary translation converts an 
instruction sequence from a block of code in the target machine’s instruction 
set into a code sequence that runs on the host. Above, simRegs is an array 
that holds the state of the target CPU‘s registers. The translated code uses 
simRegs to  perform operations on the target machine’s registers and 
memory. The MMU address translation and cycle-counting annotations 
support the operating system. Adding a cache simulation entails adding two 
instructions to  the MMU translation. All instruction counts are for the hit 
case. Misses necessitate calling support functions. 

Detailed CPU simulation 
Although the SimOS direct-execution mode runs the 
target operating system and applications quickly, it does 
not model any aspect of the simulated system’s timing 
and may be inappropriate for many studies. Further- 
more, it requires compatibility between the host plat- 
form and the architecture under investigation. To sup- 
port more detailed performance evaluation, SiniOS 
provides a hierarchy of models that simulate the CPU 
and MMU in software for more accurate modeling 
of the target machine’s CPU and timing. Software- 
simulated architectures also remove the requirement 
that the host and target processors be compatible. 

CPU SIMULATION VIA BINARY TRANSLATION 
The first in SimOS’s hierarchy of more detailed simu- 
lators is a CPU model that uses binary translation3 to 
simulate execution of the target operating system and 
applications. This soh-are technique allows greater exe- 
cution control than is possible in direct-execution mode. 
Rather than executing unaltered workload code as in 
direct execution, the host processor executes a transla- 
tion of that code, which is produced at runtime. From 
a block of application or OS code, the binary translator 
creates a translation that applies the operations speci- 
fied by the original code to the state of the simulated 
architecture. Figure 4 presents an example of this trans- 
lation and the flexibility it provides. 

Many interesting workloads execute large volumes of 
code, so the translator must be fast. Ure amortize the 
time spent on runtime code generation by storing the 
code block translations in a large translation cache. 

Upon entering each basic block, SimOS searches the 
cache to see if a translation of this code already exists. 
Basic block translations present in the cache are reexe- 
cuted without incurring translation costs. 

As in the direct-execution mode, each CPU in the tar- 
get machine is simulated by a separate user process. 
Using separate processes reduces the accuracy of instruc- 
tion and memory reference interleaving, but it allows 
the simulated processors to run concurrently on a multi- 
processor host. Since the binary-translation mode’s 
emphasis is execution speed, the efficiency obtained by 
parallel simulation outweighs the lost accuracy. 

The binary-translation CPU’s ability to dynamically 
generate code supports on-the-fly changes of the sim- 
ulator’s level of detail. A faster binary-translation mode 
instruments its translations only to count the number 
of instructions executed. A slower binary-translation 
mode counts memory system events such as cache hits 
and misses. A highly optimized instruction sequence 
emitted by the translator performs cache hit checks, 
quickly determining whether a reference hits in the 
cache; thus, the full cache simulator is invoked only for 
cache misses (which are infrequent). Adding cache sim- 
ulation yields a more accurate picture of a workload’s 
performance on the simulated architecture. 

CPU SIMULATION VIA DETAILED SOFTWARE 
INTERPRETATION 
Although the binary-translation CPU is extremely fast 
and provides enough detail to derive some memory sys- 
tem behavior, it is not sufficient for detailed multi- 
processor studies. Because each simulated CPU executes 
as a separate Unix process on the host machine, there is 
no fine-grained control over the interleaving of mem- 
ory references from the multiple simulated CPUs. To 
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address this deficiency, SimOS includes two more- 
detailed CPU simulators that provide complete control 
over the instruction interleaving of multiple processors. 

The first of these simulators interprets instructions 
using a straightforward fetch, decode, and execute loop. 
Because we want precise, cycle-by-cycle interleavings of 
all CPUs, we simulate them all in a single Unix process. 
Precise cycle interleavings allow device interrupts to 
occur with precise timing and allow more accurate cache 
simulation. The additional accuracy of this mode and its 
current inability to exploit parallelism on a multiproces- 
sor host result in slowdowns more than an order of mag- 
nitude larger than the binary-translation CPU. 

As its second more-detailed CPU model, SimOS 
includes a dynamically scheduled CPU similar to many 
next-generation processors such as the Intel P6, the Mips 
R10000, and the AMD KS. This model incorporates 
highly aggressive processor design techniques including 
multiple instruction issue, out-of-order execution, and 
hardware branch prediction. The CPU simulator is com- 
pletely parameterizable and accurately models the 
pipeline behavior of the advanced processors. This accu- 
racy, combined with the model’s single-process struc- 
ture, results in extremely time-consuming simulation. 
We use this CPU model to study the effect of aggressive 
processor designs on the performance of both the oper- 
ating system and the applications it supports. 

SWITCHING SIMULATORS AND SAMPLING 
The hierarchy of CPU simulators in SimOS makes 
accurate studies of complex workloads feasible. The 
slowdowns at the most detailed level make running 
entire complex workloads for a reasonable amount of 
time far too expensive, so we exploit SimOS’s ability to 
switch modes. We control switching by specifylng that 
a given program be run in a more detailed mode or that 
we want to sample a workload. Sampling a workload 
consists of executing it in one CPU simulator for a given 
number of simulated cycles and then switching execu- 
tion to another simulator. By toggling simulators, we 
can obtain most of the information of the more detailed 
mode a t  a performance near that of the less detailed 
mode. Because the different modes share much of the 
simulated machine’s state, the time required to switch 
levels of detail is negligible. 

Sampling is useful for understanding workload exe- 
cution because application programs’ execution phases 
usually display different behavior. For instance, pro- 
gram initialization typically involves file access and data 
movement, while the main part of the program compu- 

tation phase may stress the CPU. These phases may be 
even more dissimilar for multiprocessor workloads, in 
which the initialization phase may be single-threaded, 
while the parallel, computation pha’se may alternate 
between heavy computation and extensive communica- 
tion. Thus, capturing an accurate picture of the work- 
load by examining only one portion is not possible. Sam- 
pling enables a detailed simulator to examine evenly 
distributed time slices of an entire workload, allowing 
accurate workload measurement without the detailed 
simulator’s large slowdowns. 

Switching modes is not only useful for sampling 
between a pair of modes. It is also useful for positioning 
workloads for study. For example, we usually boot the 
operating system under the direct-execution mode and 
then switch into the binary-translation mode to build 
the state of the system’s caches. Once the caches have 
been “warmed up’’ with referenced code and data, we 
can begin more detailed examination of the workload. 
We switch to the more detailed CPU model for an accu- 
rate examination of the workload’s cache behavior. We 
present specific performance numbers for the various 
simulation levels later in the article. 

MEMORY SYSTEM SIMULATION 
The growing gap between processor speed and mem- 
ory speed means that the memory system has become 
a large performance factor in modern computer sys- 
tems. Recent studies have found that 30 to SO percent 
of some multiprogrammed workloads’ execution time 
is spent waiting for the memory system rather than exe- 
cuting instructions. Clearly, an accurate computer sys- 
tem simulation must include a model of these signifi- 
cant delays. 

T o  hide the long latency of memory from the CPU, 
modern computer systems incorporate one or more lev- 
els of high-speed cache memories to hold recently 
accessed memory blocks. Modeling memory system stall 
time requires simulating these caches to determine 
which memory references hit in the cache and which 
require additional latency to access main memory. Since 
processor caches are frequently controlled by the same 
hardware module that implements the CPU, SimOS 
incorporates the caches in the CPU model. This allows 
the different CPU simulator implementations to model 
caches at  an appropriate level of accuracy. 

The direct-execution mode does not model a mem- 
ory system, so it does not include a cache model. The 
binary-translation mode can model a single level of 
cache for its memory system. This modeling includes 
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keeping multiple caches coherent in multiprocessor sim- 
ulation and ensuring that DMA requests for I/O devices 
interact properly with caches. Finally, the detailed CPU 
simulators include a multilevel cache model that we can 
parameterize to model caches with different organiza- 
tion and timing. It can provide an accurate model of 
most of today’s computer system caches. As in the CPU 
models, each level of cache detail increases simulation 
accuracy as well as execution time. 

SimOS also provides multiple levels of detail in mod- 
eling the latency of memory references that miss in the 
caches. In the fastest and simplest of these models, all 
cache misses experience the same delay. More complex 
models include modeling contention due to memory 
banks that can service only one request at  a time. This 
model makes it possible to accurately model the laten- 
cies of most modern, bus-based multiprocessors. 

Finally, SimOS contains a memory system simulator 
that models the directory-based cache-coherence sys- 
tem used in multiprocessors with distributed shared 
memory. These machines, such as Stanford’s DASH 
multiprocessor, have nonuniform memory access 
(NUMA) times due to the memory distribution. Each 
processor can access local memory more quickly than 
remote memory. The simulator also models the 
increased latency caused by memory requests that 
require coherency-maintaining activity. This simulator 
has been useful for examining the effects of the NUMA 
architecture in modern operating systems. 

Although we have presented our CPU simulator hier- 
archy independently from our memory system hierar- 
chy, there are correlations. Certain CPU simulations 
require certain memory system simulation support. For 
example, the dynamically scheduled CPU simulator 
requires a nonblocking cache model to exploit its out- 
of-order execution. Furthermore, without a memory 
system that models contention, the timings reported by 
the processor will be overly optimistic. Likewise, simpler 
CPU simulation models are best coupled with simpler, 
faster memory system models. 

SimOS performance 
The two primary criteria for evaluating a simulation 
environment are what information it can obtain and 
how long it takes to obtain this information. Table 2 
(next page) compares the simulation speeds of several 
of the SimOS simulation modes with each other and 
with execution on the native machine. We used the fol- 
lowing workloads in the comparison: 

SPEC benchmarks: T o  evaluate uniprocessor speed, 
we ran three programs selected from the SPEC92 
benchmark suite.4 The performance of these appli- 
cations has been widely studied, providing a conve- 
nient reference point for comparisons to other sim- 
ulation systems. 
Muhiprogram mix: This workload is typical of a mul- 
tiprocessor used as a compute server. It consists of 
two copies of a parallel program (raytrace) from the 
SPLASH benchmark suiteS and one of the SPEC 
benchmarks (eqntott). The mix of parallel and 
sequential applications is typical of current multi- 
processor use. The operating system starts and stops 
the programs as well as time-sharing the machine 
among the multiple programs. 
Pmake: This workload represents a multiprocessor 
used in a program development environment. It con- 
sists of two independent program compilations taken 
from the compile stage of the Modified Andrew 
Benchmark.6 Each program consists of multiple files 
compiled in parallel on the four processors of the 
machine, using the SGI pmake utility. This type of 
workload contains many small, short-lived processes 
that make heavy use of OS services. 
Database: This workload represents the use of a mul- 
tiprocessor as a database server, such as might be 
found in a bank. We ran a Sybase database server sup- 
porting a transaction-processing workload, modeled 
after TPC-B.7 The workload contains four processes 
that comprise the parallel database server plus 20 
client programs that submit requests to the database. 
This workload is particularly stressful on the oper- 
ating system’s virtual memory subsystem and on its 
interprocess communication code. It also demon- 
strates a strength of the SimOS environment: the 
ability to run large, commercial workloads. 

We executed the simulations on a SGI Challenge 
multiprocessor equipped with four 1 SO-MHz R4400 
CPUs. We configured the different simulators to behave 
like this host platform and ran the workloads on top of 
them. The native execution numbers represent the wall- 
clock time necessary to execute each workload directly 
on the Challenge machine. The other numbers indicate 
how much slower the workload ran under simulation. 
We computed the slowdowns by dividing the simula- 
tion wall-clock times by the native execution times. The 
detailed simulations execute the multiprocessor simu- 
lations in a single process. 

The trade-off between CPU speed and the level of 
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Table 2. SimOS performance. 

NATIVE BINARY TRANSLATION WITHOUT DETAILED CPU WITH 
EXECUTION MEMORY CONTENTION MODELING MEMORY CONTENTION MODELING 

WORKLOAD TIME (SEC.) EXECUTION CACHES L2 CACHE CACHES SCHEDULE D 
WALL-CLOCK DIRECT WITHOUT WITH L1 AND L2 DYNAMICALLY 

Uniprocessor (1 processor, 16-Mbyte RAM) 

023.eqntott 20 1.9x 5 . 2 ~  
052.alvinn 97 1 . lx 5.4x 
008.espresso 36 1 . 6 ~  8 . 8 ~  

Multiprocessor (4 processors, 128-Mbyte RAM) 

Multiprogram mix 36 4 . 1 ~  4.5x 
Pmake 15 36x 12.1,x 

13 145x 1 0 . 5 ~  Database 
~~ ~ ~ 

modeling detail is readily apparent in Table 2 .  For the 
uniprocessor workloads, the highly detailed simulations 
are more than 100 times slower than the less detailed 
direct-execution mode and around 200 times slower 
than the native machine. The binary-translation mode’s 
moderate accuracy level (instruction counting and sim- 
ple cache simulation) results in moderate slowdowns of 
around 5 to 10 times the native machine. 

The trade-off between accuracy and speed becomes 
even more pronounced for multiprocessor runs. For the 
relatively simple case of running several applications in 
the multiprogram mix, the accurate simulations take 500 
times longer than the native machine. Since the detailed 
CPU model does not exploit the underlying machine’s 
parallelism to speed the simulation, its slowdown scales 
linearly with the number of CPUs being simulated. This 
causes a slowdown factor in the thousands when simu- 
lating machines with 16 or 32 processors. 

The complex nature of the other two multiprocessor 
workloads, along with heavy use of the operating sys- 
tem, causes all the simulators to run slower. Frequent 
transitions between kernel and user space, frequent con- 
text switches, and poor MMU characteristics degrade 
the direct-execution mode’s performance until it is 
worse than the binary-translation model. These trou- 
blesome characteristics cannot be handled directly on 
the host system and constantly invoke the slower soft- 
ware layers of the direct-execution mode. 

The pmake and database workloads cause large slow- 
downs on the simulators that model caches because the 
workloads have a much higher cache miss rate than is 
present in the uniprocessor SPEC benchmarks. Cache 
simulation for the binary-translation CPU is slower in 
the mu1 tiprocessor case than in the uniprocessor case 
due to the communication overhead of keeping the mul- 
tiprocessor caches coherent. Similar complexities in 
multiprocessor cache simulation add to the execution 
time of the detailed CPU modes. 

9 . 2 ~  229x -5,700~ 
9 . 8 ~  180x -3,900~ 
11.2x 232x -6,400~ 

10.1x 502x -25,000~ 
2 6 . 5 ~  11 34x -52,000~ 
3 6 . 2 ~  849x -27,000~ 

~~ ~ 

Experiences with SimOS 

SimOS development began in spring 1992 with the 
simulation of the Sprite network operating system, 
running on Sparc-based machines. We started devel- 
opment of the Mips-based SimOS described in this 
article in fall 1993 and have been using it since early 
1994. A simulation environment is only as good as the 
results it produces, and SimOS has proven to be 
extremely useful in our research. Recent studies 
in three areas illustrate the SimOS environment’s 
effectiveness: 

Architectural evaluatior,: SimOS is playing a large 
part in the design of Stanford’s Flash, a large-scale 
NUMA multiprocessor.8 Researchers have used 
SimOS’s detailed CPU modes to examine the per- 
formance impact of several design decisions. The 
ability to boot and run realistic workloads such as 
the Sybase database and to switch to highly accu- 
rate machine simulation have been of great value. 
System sofzware development: In the design of an oper- 
ating system for Flash, SimOS’s direct-execution 
and binary-translation modes provide a develop- 
ment and debugging environment. Because SimOS 
supports full source-level debugging, it is a signifi- 
cantly better debugging environment than the raw 
hardware. Developers use the detailed CPU mod- 
els to examine and measure time-critical parts of the 
software. In addition, SimOS provides the OS 
development group with Flash “hardware” long 
before the machine is to be complete. 
Workload characterization: SimOS’s ability to run 
complex, realistic workloads including commercial 
applications enables researchers to characterize 
workloads that have not been widely studied before. 
Examples include parallel compilations and the 
Sybase da taba~e .~  

42 IEEE Parallel & Distributed Technology 



ased on our experience with SimOS, we 
believe that two of its features will become 
requirements for future simulation envi- 
ronments. These key features are the abil- 
ity to model complex workloads, including 

all operating system activity, and the ability to dynam- 
ically adjust the level of simulation detail. Modern com- 
puter applications, such as database-transaction- 
processing systems, spend a significant amount of 
execution time in the operating system. Any evaluation 
of these workloads or the architectures on which they 
run must include all operating system effects. 

Simulation of multiple levels of detail that can be 
adjusted on the fly allows rapid exploration of long- 
running workloads. A fast simulation mode that allows 
positioning of long-running workloads is essential for 
performance studies. Furthermore, as system complex- 
ity increases, accurate simulators will be too slow to run 
entire workloads. Sampling between fast simulators and 
detailed simulators will be the best way to understand 
complex workload behavior. 
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