
Complete Computer
System Simulation:
The SimOS Approach
Mendel Rosenblum, Stephen A
Stan ford University

@ Designed for efficient
and accurate study of
both uniprocessor and
multiprocessor systems,
SimOS simulates
computer hardware in
enough detail to run an
entire operating system
and provides substantial
flexibility in the tradeoff
between simulation
speed and detail.

Herrod, Emmett Witchel, and Anoop Gupta

he complexity of modern computer systems and the diverse
workloads they must support challenge researchers and
designers who must understand a system’s behavior. As
computer system complexity has increased, software sim- T ulation has become the dominant method of system test-

ing, evaluating, and prototyping. Simulation is used at almost every step
of building a computer system: from evaluation of research ideas, to ver-
ification of the hardware design, to performance tuning once the system
has been built. In all these simulations, designers face trade-offs between
speed and accuracy. Frequently, they must reduce accuracy to make the
simulation run in an acceptable amount of time.

One simplification that reduces simulation time is to model only user-
level code and not the machine’s privileged operating system code. Omit-
ting the operating system substantially reduces the work required for sim-
ulation. Unfortunately, removing the operating system from the
simulation model reduces both the accuracy and the applicability of the
simulation environment. Important computing environments, such as
database management systems and multiprogrammed, time-shared sys-
terns, spend as much as a third of their execution time in the operating sys-
tem. Ignoring the operating system in modeling these environments
can result in incorrect conclusions. Furthermore, these environments use
the operating system services heavily, so it is difficult to study such appli-
cations in a simulation environment that does not model an operating
system. The inability to run OS-intensive applications means that their

34 1063-6iS2/YF/$4.00 0 1995 IEEE IEEE Parallel & Distributed Technology

behavior tends to be poorly
understood. Finally, operating
system researchers and develop-
ers cannot use these simulation
environments to study and evalu-
ate their handiwork.

SimOS is a siniulation en\. won-
ment capable of modeling com-
plete computer systems, includ-

SimOS
target hardware layer

Unaltered 1 @
applications

I E t h e r n e t l CPU/MMU models mm Memory system models

0 Ocean

i -

Host platform {
i -

I lrix version 5.2 (taroet oDeratino svstem) I

lrix version 5.x-Unix SVR4
. Mips R4000-based SGI multiprocessor

Figure 1. The SimOS environment. SimOS runs as a layer between the host
machine and the target operating system. (We use host to refer to the
hardware and software on which SimOS runs and target to refer t o the
simulated hardware modeled by SimOS and to the operating system and
applications executing on that architecture.)

ing a full operating system and all
application programs that run on
top of it. Two features help make this possible. First,
SimOS provides an extremely fast simulation of system
hardware. Workloads running in the SimOS simulation
environment can achieve speeds less than a factor of 10
slower than native execution. At this simulation speed,
researchers can boot and interactively use the operat-
ing system under study. (We use the term mi-kloacl to
refer to the execution of one or more applications and
their associated OS activity.)

The other feature that enables SimOS to model the
full operating system is its ability to control the level of
simulation detail. During the execution of a workload,
SiniOS can switch among a nuniber of hardware coni-
ponent simulators. These simulators vary in the amount
of detail they model and the speed a t which they run.
Using multiple levels of simulation detail, a researcher
can focus on the important parts of a workload while
slapping over the less interesting parts. The ability to
select the right simulator for the job is very useful. For
example, most researchers are interested in the com-
puter system’s running in steady state rather than its
behavior while booting and initializing data structures.
We typically use SimOS’s high-speed simulators to boot
and position the workload and then switch to more
detailed levels of simulation. The process is analogous
to using the fast forward button on a VCR to position
the tape at an interesting section and then examining
that section at normal speed or even in slow motion.
Additionally, SimOS lets us repeatedly jump into and
out of the more detailed levels of simulation. Statistics
collected during each of the detailed simulation sam-
ples provide a good indication of a workload’s behav-
ior, but with simulation times on a par with the quicker,
less detailed models.

SimOS allows a system designer to evaluate all the
hardware and software performance factors in the con-
text of the actual programs that will run on the machine.
Computer architects have used SimOS to study the
effects of new processor and memory system organiza-

tions on workloads such as large, scientific applications
and a commercial database system. OS designers have
used SimOS for developing, debugging, and perfor-
mance-tuning an operating system for a next-genera-
tion multiprocessor.

The SimOS environment
To boot and run an operating system, a simulator must
provide the hardware sexvices expected by the operating
system. A modern multiprocessor operating system,
such as Unix SVR4, assumes that its underlying hard-
ware contains one or more CPUs for executing instruc-
tions. Each CPU has a memory management unit
(hLML?) that relocates every virtual address generated
by the CPU to a location in physical memory or gener-
ates an exception if the reference is not permitted (for
example, a page fault). An operating system also assumes
the existence of a set of 110 devices including a periodic
interrupt timer that interrupts the CPU at regular inter-
vals, a block storage device such as a magnetic disk, and
devices such as a console or a network connection for
access to the outside world.

SimOS, diagrammed in Figure 1, is a simulation layer
that runs on top of general-purpose Unix multiproces-
sors such as the SGI (Silicon Graphics Inc.) Challenge
series. It simulates the hardware of an SGI machine in
enough detail to support Irix version 5.2, the standard
SGI version of Unix SVR4. Application workloads
developed on SGI machines run without modiikation
on the simulated system. SimOS can therefore run the
large and complex commercial applications available on
the SGI platform. Although the current SimOS imple-
mentation simulates the SGI platform, previous ver-
sions have supported other operating systems, and the
techniques SimOS utilizes are applicable to most gen-
eral-purpose operating systems.

Each simulated hardware component in the SimOS
layer has multiple implementations that vary in speed

-

Winter 1995 35

Table 1. SimOS‘s direct-execution m o d e
mapping.

IMPLEMENTATION
TARGET MACHINE FEATURE ON HOST MACHINE

CPU Unix process
Physical memory File 51
Disk storage File 52
Exceptions Unix signals
Resident page
I/O device interrupts Unix signals

Mapping of File #1 into process

and detail. While all implementations are complete
enough to run the full workload (operating system and
application programs), we designed the implementa-
tions to provide various speed/detail levels useful to
-computer system researchers and builders. The CPUs,
M U S , and memory system are the most critical com-
ponents in simulation time, so it is these components
that have the most varied implementations.

By far the fastest simulator of the CPU, MMU, and
memory system of an SGI multiprocessor is an SGI
multiprocessor. SimOS provides a direct-execution
mode that can be used when the host and target archi-
tectures are similar. SimOS exploits the similarity
between host and target by directly using the underly-
ing machine’s hardware to support the operating sys-
tem and applications under investigation. Configuring
a standard U13x process environment to support oper-
ating system execution is tricky but results in extremely
fast simulations.

The direct-execution mode often executes an oper-
ating system and target applications only two times
slower than they would run on the host hardware.
Because of its speed, researchers frequently use this
mode to boot the operating system and to position com-
plex workloads. Operating system developers also use
it for testing and debugging new features. Although the
direct-execution mode is fast, it provides little informa-
tion about the workload’s performance or behavior, and
thus it is unsuitable for studies requiring accurate hard-
ware modeling. Moreover, this mode requires strong
similarities between the simulated architecture and the
simulation platform.

For users who require only the simulation accuracy
of a simple model of a computer’s CPUs and memory
system, SimOS provides a binary-translation mode.
This mode uses on-the-fly object code translation to
dynamically convert target application and operating
system code into new code that simulates the original
code running on a particular hardware configuration. It
provides a notion of simulated time and a breakdown of
instructions executed. It operates at a slowdown of under
12 times. It can further provide a simple cache model
capable of tracking information about cache contents
and hit and miss rates, a t a slowdown of less than 3 5

times. Binary translation is useful for operating system
studies as well as simple computer architecture studies.

SimOS also includes a detailed simulate: implemented
with standard simulation techniques. The simulator runs
in a loop, fetching, decoding, and simulating the effects
of instructions on the machine’s register set, caches, and
main memory. The simulator includes a pipeline model
that records more detailed performance information at
the cost of longer simulation time. Different levels of
detail in memory system simulation are available, rang-
ing from simple cache-miss counters to accurate mod-
els of multiprocessor cache coherence hardware.
SimOS’s highly detailed modes have been used for com-
puter architecture studies as well as for performance tun-
ing of critical pieces of an operating system.

Altogether, SimOS provides hardware simulators
ranging from very approximate to highly accurate mod-
els. Similarly, the slowdowns resulting from execution
on these simulators ranges from well under a factor of
10 to well over a factor of 1,000.

Eflicient simulation by direct
execution
The greatest challenge faced by the SimOS direct-
execution mode is that the environment expected by an
operating system is different from that experienced by
user-level programs. The operating system expects to
have access to privileged CPU resources and to an
MMU it can configure for mapping virtual addresses to
physical addresses. The SimOS direct-execution mode
creates a user-level environment that looks enough like
“raw” hardware that an operating system can execute
on top of it. Table 1 summarizes the mapping of fea-
tures in SimOS’s direct-execution mode.

CPU INSTRUCTION EXECUTION
T o achieve the fastest possible CPU simulation speed,
the direct-execution mode uses the host processor for
the bulk of instruction interpretation. It simulates a
CPU by using the process abstraction provided by the
host operating system. This strategy constrains the tar-
get instruction to be binary-compatible with the host
instruction set. The operating system runs within a user-
level process, and each CPU in the target architecture
is modeled by a different host process. Host operating
system activity, such as scheduler preemptions and page
faults, is transparent to the process and will not perturb
the execution of the simulated hardware. CPU simula-
tion using the process abstraction is fast because most of

36 IEEE Parallel & Distributed Technology

the workload will run a t the native CPU’s speed. On
multiprocessor hosts, the target CPU processes can exe-
cute in parallel, further increasing simulation speed.

Because operating systems use CPU features unavail-
able to user-level processes, it is not possible simply to
run the unmodified operating system in a user-level
process. Two such features provided by most CPUs are
the trap architecture and the execution of privileged
instructions. Fortunately, most workloads use these fea-
tures relatively infrequently, and so SimOS can provide
them by means of slower simulation techniques.

A CPU’s trap architecture allows an operating sys-
tem to take control of the machine when an exception
occurs. An exception interrupts the processor and
records information about the cause of the exception in
processor-accessible registers. The processor then
resumes execution at a special address that contains the
code needed to respond to the excep-

vide privileged instructions that the operating system
uses to manipulate a special state in the machine. This
special state includes the currently enabled interrupt
level and the state of virtual-memory mappings. The
privileged instructions that manipulate this state can-
not be simulated by directly executing them in a user-
level process; at user-level these instructions cause an
illegal instruction exception. The host OS notifies the
CPU process of this exception by sending it a signal.
The direct-execution mode uses such signals to detect
privileged instructions, which it then interprets in soft-
ware. SimOS contains a simple software CPU simula-
tor capable of simulating all the privileged instructions
of the CPU’s instruction set. This software is also
responsible for maintaining privileged registers such as
the processor’s interrupt mask and the MMU registers.

MMU SIMULATION
tion. Common exceptions include page
faults, arithmetic overflow, address
errors, and device interrupts. To simu-
late a trap architecture, the process rep-
resenting a %mOS CPU must be noti-
fied when an exceptional event occurs.
Fortunately, most modern operating
systems have some mechanism for noti-
fying user-level processes that an
exceptional event occurred during exe-

A process is an obvious way to simu-
late a CPU’s instruction interpretation,

Altogether, but an analog for the memory man-
SimOS provides agement unit is not so obvious because
hardware a user-level process’s view of memory

simulatorc ranging is very different from the view assumed
by an operating system. An operating
system believes that it is in complete
control of the machine’s physical
memory and that it can establish arbi-

from very
to

highly accurate
cution. SimOS uses this process iotifi-
cation mechanism to simulate the tar-
get machine’s trap architecture.

In Unix, user-level processes are notified of excep-
tional events via the signal mechanism. Unix signals are
similar to hardware exceptions in that the host OS inter-
rupts execution of the user process, saves the processor
state, and provides information about the cause of the
signal. If the user-level process registers a function
(known as a signal handler) with the host OS, the host
OS will restart the process at the signal handler func-
tion, passing it the saved processor state. SimOS’s direct-
execution mode registers signal handlers for each excep-
tional event that can occur. The SimOS signal handlers
responsible for trap simulation convert the information
provided by the host OS into input for the target OS.
For example, upon receiving a floating-point exception
signal, the invoked SimOS signal handler converts the
signal information into the form expected by the target
OS’s trap handlers and transfers control to the target
OS’s floating-point-exception-handling code.

In addition to the trap architecture, most CPUs pro-

models. trary mappings of virtual address
ranges to physical memory pages. In

contrast, user-level processes deal only in virtual
addresses. T o execute correctly, the target operating
system must be able to control the virtual-to-physical
address mappings for itself and for the private address
spaces of the target user processes.

The MMU also presents a special simulation chal-
lenge because it is used constantly-by each instruction
fetch and each data reference. As Figure 2 (next page)
shows, we use a single file to represent the physical
memory of the target machine. For each valid transla-
tion between virtual and physical memory, we use the
host operating system to map a page-size chunk of this
file into the address space of the CPU-simulating
process. The target operating system’s requests for vir-
tual memory mappings appear as privileged instructions,
which the direct-execution mode detects and simulates
by calling the host system’s file-mapping routines.
These calls map or unmap page-size chunks of the phys-
ical memory file into or out of the simulated CPU’s
address space. If a target application instruction accesses

Winter 1995 37

CPU-simulating process

Target machine’s
virtual address

space , References succeed
References to

these addresses
cause page faults

References succeed
Writes to these

addresses cause

Physical memory file
(target machine memory)

Free pages I
Read-only
mappings

Figure 2 . MMU simulation. SimOS simulates a processor’s MMU by mapping
page-size chunks of a file representing physical memory into a target
application’s address space. References to unmapped portions of the user’s
address space are converted to page faults for the target OS. Similarly,
writing to mapped pages without write permission results in protection faults
for the target OS.

Host machine’s virtual Target machine’s

Oxffff f f f f

0x8000 0000

0x0000 0000

address space virtual address space
SimOS code and data

(1 28 Mbvtes) Host operating
system address
space (2 Gbytes)

Host user-level
address space

(2 Gbytes)

2 ,
~~

Target OS address
space (384 Mbytes)

Target user-level
address (1 5 Gbytes)

_ _ _ ~ ~

3x8000 0000

0x7800 0000

0x6000 0000

0x0000 0000

Figure 3. Address space relocation for direct execution. Running the entire
workload within an lrix user-level process necessitates compressing the 2
Gbytes of host OS address space into 384 Mbytes. We relink the target OS to
reside with SimOS’s code and data in the upper portion of the user-level
virtual address space. Both SimOS and the target OS reside in each process
simulating a CPU f o r the target architecture.

a page of the application’s address space that has no
translation entry in the simulated MMC, the instruc-
tion will access a page of the CPU siniulation process
that is unmapped in the host 11/z7\/IU. As discussed ear-
lier, the simulated trap architecture catches the signal
generated by this event and converts the access into a
page fault for the target operating system.

We simulate the protection provided by an 1WMU by
using the protection capabilities of the file-mapping sys-
tem calls. For example, mapping a page-size section of
the physical memory file without write permission has
the effect of installing a read-only translation entry in
the MMU. Any target application write attempts to these
regions produce signals that are converted into protec-
tion faults and sent to the target operating system.

In many architectures the operating system resides
outside the user’s virtual address space. This causes a
problem for the SimOS MiMU simulation because the
virtual addresses used by the operating system are not
normally accessible to the user. We circumvented this
problem by relinlung the kernel to run a t the high end of

the user’s virtual address space in
a range of addresses accessible
from user mode. We also placed
the SimOS code itself in this
address range. Although this
mechanism leaves less space avail-
able for the target machine’s user-
level address space, most applica-
tions are insensitive to this change.
Figure 3 illustrates the layout of
SimOS in an Irix address space.

DEVICE SIMULATION
SimOS simulates a large collec-
tion of devices supporting the tar-
get operating system. These
devices include a console, mag-
netic disks, Ethernet interfaces,
periodic interrupt timers, and an
interprocessor interrupt con-
troller. SimOS supports inter-
rupts and direct memory access
(DMA) from devices, as well as
memory-mapped I/O (a method
of communicating with devices by
using loads and stores to special
addresses).

In direct-execution mode, the
simulated devices raise interrupts

by sending Unix signals to the target CPU processes.
As described earlier, SimOS-installed signal handlers
convert information from these signals into input for
the target operating system. The timer, interprocessor,
and disk interrupts are all implemented by this method.
N’e implement DrWA by giving the devices access to the
physical memory file. By accessing this file, I/O devices
can read or write memory to simulate transfers that
occur during DltW.

TO simulate a disk, SimOS uses a file with content
corresponding to that of a real disk. The standard file-
5ysteni build program converts standard files into raw
disk format. SimOS uses this program to generate disks
containing files copied from the host system. Building
disks from host files gives the target OS access to the
large volume of programs and data necessary to boot
and run large, complex workloads.

SimOS contains a simulator of an Ethernet local-area
network, which allows simulated machines to commu-
nicate with each other and the outside world. The
implementation of the network interface hardware in

~

38 IEEE Parallel & Distributed Technology

SimOS sends messages to an Eth-
ernet simulator process. Commu-
nication with the outside world
uses the Ethernet simulator
process as a gateway to the local
Ethernet. With network connec-
tivity, SimOS users can remotely
log in to the simulated machines
and transfer files using services
such as FTP (file transfer proto-
col) o r NFS (Network File Sys-
tem). For ease of use, we estab-
lished an Internet subnet for our
simulated machines and entered a
set of host names into the local
name server.

Cycle counting
instructions)

Figure 4. Binary translation mechanics. Binary translation converts an
instruction sequence from a block of code in the target machine’s instruction
set into a code sequence that runs on the host. Above, simRegs is an array
that holds the state of the target CPU‘s registers. The translated code uses
simRegs to perform operations on the target machine’s registers and
memory. The MMU address translation and cycle-counting annotations
support the operating system. Adding a cache simulation entails adding two
instructions to the MMU translation. All instruction counts are for the hit
case. Misses necessitate calling support functions.

Detailed CPU simulation
Although the SimOS direct-execution mode runs the
target operating system and applications quickly, it does
not model any aspect of the simulated system’s timing
and may be inappropriate for many studies. Further-
more, it requires compatibility between the host plat-
form and the architecture under investigation. To sup-
port more detailed performance evaluation, SiniOS
provides a hierarchy of models that simulate the CPU
and MMU in software for more accurate modeling
of the target machine’s CPU and timing. Software-
simulated architectures also remove the requirement
that the host and target processors be compatible.

CPU SIMULATION VIA BINARY TRANSLATION
The first in SimOS’s hierarchy of more detailed simu-
lators is a CPU model that uses binary translation3 to
simulate execution of the target operating system and
applications. This soh-are technique allows greater exe-
cution control than is possible in direct-execution mode.
Rather than executing unaltered workload code as in
direct execution, the host processor executes a transla-
tion of that code, which is produced at runtime. From
a block of application or OS code, the binary translator
creates a translation that applies the operations speci-
fied by the original code to the state of the simulated
architecture. Figure 4 presents an example of this trans-
lation and the flexibility it provides.

Many interesting workloads execute large volumes of
code, so the translator must be fast. Ure amortize the
time spent on runtime code generation by storing the
code block translations in a large translation cache.

Upon entering each basic block, SimOS searches the
cache to see if a translation of this code already exists.
Basic block translations present in the cache are reexe-
cuted without incurring translation costs.

As in the direct-execution mode, each CPU in the tar-
get machine is simulated by a separate user process.
Using separate processes reduces the accuracy of instruc-
tion and memory reference interleaving, but it allows
the simulated processors to run concurrently on a multi-
processor host. Since the binary-translation mode’s
emphasis is execution speed, the efficiency obtained by
parallel simulation outweighs the lost accuracy.

The binary-translation CPU’s ability to dynamically
generate code supports on-the-fly changes of the sim-
ulator’s level of detail. A faster binary-translation mode
instruments its translations only to count the number
of instructions executed. A slower binary-translation
mode counts memory system events such as cache hits
and misses. A highly optimized instruction sequence
emitted by the translator performs cache hit checks,
quickly determining whether a reference hits in the
cache; thus, the full cache simulator is invoked only for
cache misses (which are infrequent). Adding cache sim-
ulation yields a more accurate picture of a workload’s
performance on the simulated architecture.

CPU SIMULATION VIA DETAILED SOFTWARE
INTERPRETATION
Although the binary-translation CPU is extremely fast
and provides enough detail to derive some memory sys-
tem behavior, it is not sufficient for detailed multi-
processor studies. Because each simulated CPU executes
as a separate Unix process on the host machine, there is
no fine-grained control over the interleaving of mem-
ory references from the multiple simulated CPUs. To

Winter 1995 39

address this deficiency, SimOS includes two more-
detailed CPU simulators that provide complete control
over the instruction interleaving of multiple processors.

The first of these simulators interprets instructions
using a straightforward fetch, decode, and execute loop.
Because we want precise, cycle-by-cycle interleavings of
all CPUs, we simulate them all in a single Unix process.
Precise cycle interleavings allow device interrupts to
occur with precise timing and allow more accurate cache
simulation. The additional accuracy of this mode and its
current inability to exploit parallelism on a multiproces-
sor host result in slowdowns more than an order of mag-
nitude larger than the binary-translation CPU.

As its second more-detailed CPU model, SimOS
includes a dynamically scheduled CPU similar to many
next-generation processors such as the Intel P6, the Mips
R10000, and the AMD KS. This model incorporates
highly aggressive processor design techniques including
multiple instruction issue, out-of-order execution, and
hardware branch prediction. The CPU simulator is com-
pletely parameterizable and accurately models the
pipeline behavior of the advanced processors. This accu-
racy, combined with the model’s single-process struc-
ture, results in extremely time-consuming simulation.
We use this CPU model to study the effect of aggressive
processor designs on the performance of both the oper-
ating system and the applications it supports.

SWITCHING SIMULATORS AND SAMPLING
The hierarchy of CPU simulators in SimOS makes
accurate studies of complex workloads feasible. The
slowdowns at the most detailed level make running
entire complex workloads for a reasonable amount of
time far too expensive, so we exploit SimOS’s ability to
switch modes. We control switching by specifylng that
a given program be run in a more detailed mode or that
we want to sample a workload. Sampling a workload
consists of executing it in one CPU simulator for a given
number of simulated cycles and then switching execu-
tion to another simulator. By toggling simulators, we
can obtain most of the information of the more detailed
mode a t a performance near that of the less detailed
mode. Because the different modes share much of the
simulated machine’s state, the time required to switch
levels of detail is negligible.

Sampling is useful for understanding workload exe-
cution because application programs’ execution phases
usually display different behavior. For instance, pro-
gram initialization typically involves file access and data
movement, while the main part of the program compu-

tation phase may stress the CPU. These phases may be
even more dissimilar for multiprocessor workloads, in
which the initialization phase may be single-threaded,
while the parallel, computation pha’se may alternate
between heavy computation and extensive communica-
tion. Thus, capturing an accurate picture of the work-
load by examining only one portion is not possible. Sam-
pling enables a detailed simulator to examine evenly
distributed time slices of an entire workload, allowing
accurate workload measurement without the detailed
simulator’s large slowdowns.

Switching modes is not only useful for sampling
between a pair of modes. It is also useful for positioning
workloads for study. For example, we usually boot the
operating system under the direct-execution mode and
then switch into the binary-translation mode to build
the state of the system’s caches. Once the caches have
been “warmed up’’ with referenced code and data, we
can begin more detailed examination of the workload.
We switch to the more detailed CPU model for an accu-
rate examination of the workload’s cache behavior. We
present specific performance numbers for the various
simulation levels later in the article.

MEMORY SYSTEM SIMULATION
The growing gap between processor speed and mem-
ory speed means that the memory system has become
a large performance factor in modern computer sys-
tems. Recent studies have found that 30 to SO percent
of some multiprogrammed workloads’ execution time
is spent waiting for the memory system rather than exe-
cuting instructions. Clearly, an accurate computer sys-
tem simulation must include a model of these signifi-
cant delays.

T o hide the long latency of memory from the CPU,
modern computer systems incorporate one or more lev-
els of high-speed cache memories to hold recently
accessed memory blocks. Modeling memory system stall
time requires simulating these caches to determine
which memory references hit in the cache and which
require additional latency to access main memory. Since
processor caches are frequently controlled by the same
hardware module that implements the CPU, SimOS
incorporates the caches in the CPU model. This allows
the different CPU simulator implementations to model
caches at an appropriate level of accuracy.

The direct-execution mode does not model a mem-
ory system, so it does not include a cache model. The
binary-translation mode can model a single level of
cache for its memory system. This modeling includes

40 IEEE Parallel & Distributed Technology

keeping multiple caches coherent in multiprocessor sim-
ulation and ensuring that DMA requests for I/O devices
interact properly with caches. Finally, the detailed CPU
simulators include a multilevel cache model that we can
parameterize to model caches with different organiza-
tion and timing. It can provide an accurate model of
most of today’s computer system caches. As in the CPU
models, each level of cache detail increases simulation
accuracy as well as execution time.

SimOS also provides multiple levels of detail in mod-
eling the latency of memory references that miss in the
caches. In the fastest and simplest of these models, all
cache misses experience the same delay. More complex
models include modeling contention due to memory
banks that can service only one request at a time. This
model makes it possible to accurately model the laten-
cies of most modern, bus-based multiprocessors.

Finally, SimOS contains a memory system simulator
that models the directory-based cache-coherence sys-
tem used in multiprocessors with distributed shared
memory. These machines, such as Stanford’s DASH
multiprocessor, have nonuniform memory access
(NUMA) times due to the memory distribution. Each
processor can access local memory more quickly than
remote memory. The simulator also models the
increased latency caused by memory requests that
require coherency-maintaining activity. This simulator
has been useful for examining the effects of the NUMA
architecture in modern operating systems.

Although we have presented our CPU simulator hier-
archy independently from our memory system hierar-
chy, there are correlations. Certain CPU simulations
require certain memory system simulation support. For
example, the dynamically scheduled CPU simulator
requires a nonblocking cache model to exploit its out-
of-order execution. Furthermore, without a memory
system that models contention, the timings reported by
the processor will be overly optimistic. Likewise, simpler
CPU simulation models are best coupled with simpler,
faster memory system models.

SimOS performance
The two primary criteria for evaluating a simulation
environment are what information it can obtain and
how long it takes to obtain this information. Table 2
(next page) compares the simulation speeds of several
of the SimOS simulation modes with each other and
with execution on the native machine. We used the fol-
lowing workloads in the comparison:

SPEC benchmarks: T o evaluate uniprocessor speed,
we ran three programs selected from the SPEC92
benchmark suite.4 The performance of these appli-
cations has been widely studied, providing a conve-
nient reference point for comparisons to other sim-
ulation systems.
Muhiprogram mix: This workload is typical of a mul-
tiprocessor used as a compute server. It consists of
two copies of a parallel program (raytrace) from the
SPLASH benchmark suiteS and one of the SPEC
benchmarks (eqntott). The mix of parallel and
sequential applications is typical of current multi-
processor use. The operating system starts and stops
the programs as well as time-sharing the machine
among the multiple programs.
Pmake: This workload represents a multiprocessor
used in a program development environment. It con-
sists of two independent program compilations taken
from the compile stage of the Modified Andrew
Benchmark.6 Each program consists of multiple files
compiled in parallel on the four processors of the
machine, using the SGI pmake utility. This type of
workload contains many small, short-lived processes
that make heavy use of OS services.
Database: This workload represents the use of a mul-
tiprocessor as a database server, such as might be
found in a bank. We ran a Sybase database server sup-
porting a transaction-processing workload, modeled
after TPC-B.7 The workload contains four processes
that comprise the parallel database server plus 20
client programs that submit requests to the database.
This workload is particularly stressful on the oper-
ating system’s virtual memory subsystem and on its
interprocess communication code. It also demon-
strates a strength of the SimOS environment: the
ability to run large, commercial workloads.

We executed the simulations on a SGI Challenge
multiprocessor equipped with four 1 SO-MHz R4400
CPUs. We configured the different simulators to behave
like this host platform and ran the workloads on top of
them. The native execution numbers represent the wall-
clock time necessary to execute each workload directly
on the Challenge machine. The other numbers indicate
how much slower the workload ran under simulation.
We computed the slowdowns by dividing the simula-
tion wall-clock times by the native execution times. The
detailed simulations execute the multiprocessor simu-
lations in a single process.

The trade-off between CPU speed and the level of

Winter 1995 41

Table 2. SimOS performance.

NATIVE BINARY TRANSLATION WITHOUT DETAILED CPU WITH
EXECUTION MEMORY CONTENTION MODELING MEMORY CONTENTION MODELING

WORKLOAD TIME (SEC.) EXECUTION CACHES L2 CACHE CACHES SCHEDULE D
WALL-CLOCK DIRECT WITHOUT WITH L1 AND L2 DYNAMICALLY

Uniprocessor (1 processor, 16-Mbyte RAM)

023.eqntott 20 1.9x 5 . 2 ~
052.alvinn 97 1 . lx 5.4x
008.espresso 36 1 . 6 ~ 8 . 8 ~

Multiprocessor (4 processors, 128-Mbyte RAM)

Multiprogram mix 36 4 . 1 ~ 4.5x
Pmake 15 36x 12.1,x

13 145x 1 0 . 5 ~ Database
~~ ~ ~

modeling detail is readily apparent in Table 2 . For the
uniprocessor workloads, the highly detailed simulations
are more than 100 times slower than the less detailed
direct-execution mode and around 200 times slower
than the native machine. The binary-translation mode’s
moderate accuracy level (instruction counting and sim-
ple cache simulation) results in moderate slowdowns of
around 5 to 10 times the native machine.

The trade-off between accuracy and speed becomes
even more pronounced for multiprocessor runs. For the
relatively simple case of running several applications in
the multiprogram mix, the accurate simulations take 500
times longer than the native machine. Since the detailed
CPU model does not exploit the underlying machine’s
parallelism to speed the simulation, its slowdown scales
linearly with the number of CPUs being simulated. This
causes a slowdown factor in the thousands when simu-
lating machines with 16 or 32 processors.

The complex nature of the other two multiprocessor
workloads, along with heavy use of the operating sys-
tem, causes all the simulators to run slower. Frequent
transitions between kernel and user space, frequent con-
text switches, and poor MMU characteristics degrade
the direct-execution mode’s performance until it is
worse than the binary-translation model. These trou-
blesome characteristics cannot be handled directly on
the host system and constantly invoke the slower soft-
ware layers of the direct-execution mode.

The pmake and database workloads cause large slow-
downs on the simulators that model caches because the
workloads have a much higher cache miss rate than is
present in the uniprocessor SPEC benchmarks. Cache
simulation for the binary-translation CPU is slower in
the mu1 tiprocessor case than in the uniprocessor case
due to the communication overhead of keeping the mul-
tiprocessor caches coherent. Similar complexities in
multiprocessor cache simulation add to the execution
time of the detailed CPU modes.

9 . 2 ~ 229x -5,700~
9 . 8 ~ 180x -3,900~
11.2x 232x -6,400~

10.1x 502x -25,000~
2 6 . 5 ~ 11 34x -52,000~
3 6 . 2 ~ 849x -27,000~

~~ ~

Experiences with SimOS

SimOS development began in spring 1992 with the
simulation of the Sprite network operating system,
running on Sparc-based machines. We started devel-
opment of the Mips-based SimOS described in this
article in fall 1993 and have been using it since early
1994. A simulation environment is only as good as the
results it produces, and SimOS has proven to be
extremely useful in our research. Recent studies
in three areas illustrate the SimOS environment’s
effectiveness:

Architectural evaluatior,: SimOS is playing a large
part in the design of Stanford’s Flash, a large-scale
NUMA multiprocessor.8 Researchers have used
SimOS’s detailed CPU modes to examine the per-
formance impact of several design decisions. The
ability to boot and run realistic workloads such as
the Sybase database and to switch to highly accu-
rate machine simulation have been of great value.
System sofzware development: In the design of an oper-
ating system for Flash, SimOS’s direct-execution
and binary-translation modes provide a develop-
ment and debugging environment. Because SimOS
supports full source-level debugging, it is a signifi-
cantly better debugging environment than the raw
hardware. Developers use the detailed CPU mod-
els to examine and measure time-critical parts of the
software. In addition, SimOS provides the OS
development group with Flash “hardware” long
before the machine is to be complete.
Workload characterization: SimOS’s ability to run
complex, realistic workloads including commercial
applications enables researchers to characterize
workloads that have not been widely studied before.
Examples include parallel compilations and the
Sybase da taba~e .~

42 IEEE Parallel & Distributed Technology

ased on our experience with SimOS, we
believe that two of its features will become
requirements for future simulation envi-
ronments. These key features are the abil-
ity to model complex workloads, including

all operating system activity, and the ability to dynam-
ically adjust the level of simulation detail. Modern com-
puter applications, such as database-transaction-
processing systems, spend a significant amount of
execution time in the operating system. Any evaluation
of these workloads or the architectures on which they
run must include all operating system effects.

Simulation of multiple levels of detail that can be
adjusted on the fly allows rapid exploration of long-
running workloads. A fast simulation mode that allows
positioning of long-running workloads is essential for
performance studies. Furthermore, as system complex-
ity increases, accurate simulators will be too slow to run
entire workloads. Sampling between fast simulators and
detailed simulators will be the best way to understand
complex workload behavior.

ACKNOWLEDGMENTS
We thank John Chapin, Edouard Bugnion, and the magazine refer-
ees for useful feedback on early drafts of this article. We also thank Ben
Verghese for his help with the Sybase workload and Jim Bennett for
creating the SimOS dynamic processor model. Stephen Herrod
receives the support of a National Science Foundation graduate
research fellowship. Mendel Rosenblum and h o o p Gupta receive
partial support from NSFYoung Investigator awards. This work was
supported in part by DARPA grant DABT63-94-C-0054.

REFERENCES
1. J. Chapin et al., “UNIX Performance on CC-NUMA Multi-

processorsl)i Proc. 1995 ACM SipetYicr Con{ Measurement and
iVlorleling of Computm System, ACIM Press, New York, 1995, pp.
1-13.

2. J.B. Chen and B. Bershad, “The Impact of Operating System
Structure on Memory System Performance,” Operating Systems
Revie;u,Vol. 27, No. 5, Dec. 1993, pp. 120-133.

3. R. Cmelik and D. Keppel, “Shade: A Fast Instruction Set Simu-
lator for Execution Profiling,” Perfoolmanre Euakation Review,
Vol. 22, No. 1,iMay 1994, pp. 128-137.

4. SPEC Newsletter, Vol. 3, hTo. 4, Dec. 199 1, pp. 18-2 1.

5. J.P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford
Parallel Applications for Shared Memory,” Computer Architec-
tiire News, Vol. 20, No. 1, iMar. 1992, pp. 5-44.

6. J. Ousterhout, “Why .Aren’t Operating Systems Getting Faster
as Fast as Hardware?” Proc. Swnmeol- 1990 Lkenix Con$, Usenix
Assn., Berkeley, Calif., June 1990, pp. 247-256.

7. J. Gray, ed. The Benchmark Handbook for Database and Transac-
tion Processing Systems, Morgan Kaufmann, San Mateo, Calif.,
1991.

8. M. Heinrich et al., “The Performance Impact of Flexibility in
the Stanford Flash Multiprocessor,” Proc. Sixth Int’l Con$ Arcbi-
tectural Suppoolt fir Programming Languages and Operating Systems,
IEEE Computer Society Press, Los Alamitos, Calif., 1994, pp.
274-284.

9. Al. Rosenblum et al., “The Impact of Architectural Trends on
Operating System Performance,” Proc. 15th ACM Symp. @er-
ating System Prtnciples, ACM Press, New York,

Mendel Rosenblum is an assistant professor in the Computer Science
Department at Stanford University. His research interests include
system software, computer architecture, and simulation environments.
He received a BA in math from the University of Virginia (1984) and
a M S (1989) and PhD (1992) in computer science from the Univer-
sity of California at Berkeley. He is a 1992 recipient of the National
Science Foundation’s National Young Investigator award and a 1994
recipient of a Alfred P. Sloan Foundation Research Fellowship. He
was a co-winner of the 1992 ACM Doctoral Dissertation Award. He
is a member of ACM and IEEE Computer Society. He can be reached
at the Computer Science Department, Stanford University, Stanford,
CA 94305; mendel@cs.Stanford.edu.

Stephen Herrod is a PhD candidate in computer science at Stanford
University. His research interests include simulation technology, mul-
tiprocessor architectures, and multiprocessor application performance
debugging. He received a BA in computer science from the Univer-
sity of Texas at Austin in 1992 and an MS in computer science from
Stanford University in 1995. He is currently supported by a National
Science Foundation graduate fellowship and is continually improv-
ing the SimOS environment. He can be reached at the Computer Sci-
ence Department, Stanford University, Stanford, CA 94305; her-
rod@cs.stanford.edu.

Emmett Witchel is currently a PhD student at the Massachusetts
Institute of Technology where he is feeding an addiction to systems
programming.He obtained his BS in computer systems engineering
and RA in philosophy from Stanford University in 1992, and his MS
in computer science from Stanford University in 1994. He then spent
a year at the Computer Systems Laboratory at Stanford developing fast
machine simulation technology using dynamic code generation. His
research interests include operating systems, dynamic code genera-
tion, parallel architectures and Yoga. He can be reached at 545 Tech-
nology Square Room 52 I b, Cambridge MA, 02 139; witchel@cs.stan-
ford.edu

h o o p Gupta is an associate professor of computer science and elec-
trical engineering a t Stanford University. Prior to joining Stanford,
he was on the research faculty of Carnegie Mellon University, where
he received his PhD in 1986. His research interests include hardware,
systems software, and applications for scalable parallel computer sys-
tems. Along with John Hennessy, he co-led the design and construc-
tion of the Stanford DASH multiprocessor, and is currently working
on the next generation Flash machine. He is on the editorial boards
of IEEE Transactions on Parallel and Distributed Systems and3oumal of
Parallel and Distributed Compziting. He can be reached a t the Com-
puter Science Department, Stanford University, Stanford, CA 94305;
gupta@cs.stanford.edu.

Additional information about SimOS is available at http://www.flash.
stanford.edu/SimOS/

Winter 1995 43

mailto:mendel@cs.Stanford.edu
mailto:rod@cs.stanford.edu
http://ford.edu
mailto:gupta@cs.stanford.edu
http://www.flash

