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Abstract 

Maeh is a multiproeessor operating system being imple- 
mented at Carnegie-Mellon University. An important corn: 
ponent of the Mach design is the use of memory objects 
which can be managed either by the kernel or by user 
programs through a message interface. This feature allows 
applications such as transaction management systems to par- 
ticipate in decisious regarding secondary storage management 
and page replacement. 

This paper explores the goals, design and implementation 
of Mach and its external memory management facility. The 
relationship between memory and communication in Mach is 
examined as it relates to overall performance, applicability of 
Math  to new multiprocessor architectures, and the structure 
of application programs. 

1. Introduction 
In late 1984, we began implementation of an operating sys- 

tem called Much. Our goals for Maeh were: 

• an object oriented interface with a small number 
of basic system objects, 

• support for both distributed computing and mul- 
tiprocessing, 

• portability to a wide range of multiprocessor and 
uniprocessor architectures, 

• compatibility with Berkeley UNIX, and 

• performance comparable to commercial UNIX 
offerings. 

Most of these early goals have been met. The underlying 
Math kernel is based on five interrelated abstractions; operz- 
tions on Math objects are invoked through message passing. 
Math  runs on the majority of workstations and mainframes 
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within the Department of Computer Science, and supports 
projects in distributed computing and parallel processing such 
as the Camelot distributed transaction processing system [21], 
the Agora parallel speech understanding system [3] and a 
parallel implementation of OPS5 [7]. Mach has already been 
ported to more than a dozen computer systems including ten 
members of the VAX family of uniprocessors and 
multiprocessors 1, the IBM RT PC, the SUN 3, the 16- 
processor Encore Mul t iMax,  and the 26-processor Sequent 
Balance 21000. Mach is binary compatible with Berkeley 
UNIX 4.3bsd and has been shown to outperform 4.3bsd in 
several benchmarks of overall system performance [1]. 

A key and unusual element in the design of Much is the 
notion that communication (in the form of message passing) 
and virtual memory can play complementary roles, not only in 
the organization of distributed and parallel applications, but in 
the implementation of the operating system kernel itself. 
Mach uses memory-mapping techniques to make the passing 
of large messages on a tightly coupled multiprocessor or 
uniprocessor more efficient. In addition, Mach implements 
virtual memory by mapping process addresses onto memory 
objects which are represented as communication channels and 
accessed via messages. The advantages gained by Math in 
treating memory and communication as duals in this way 
include: 

• increased flexibility in memory management 
available to user programs, 

• a better match between Mach facilities and both 
tightly and loosely coupled multiprocessors, and 

• improved performance. 
In this paper we describe the relationship between memory 

and communication in Mach. In particular, we examine the 
design and implementation of key Mach memory manage- 
ment operations, how Math memory objects can be managed 
outside the Mach kernel by application programs and the 
overall performance of the Math operating system. 

1The VAX 11/750, 11/780, 11/785, 8200, 8300, 8600, 8650, 8800, 
MieroVAX I and MIeroVAX H are supported, including support for QBUS, 
UNIBUS, MASSBUS and BIBUS devices. Several experimental VAXcn are 
also in use including a VAX 11/784 (four processor 780), 11/787 (two 
processor 785) and 8204 (four processor 8200). 



2. Early Work in Virtual Memory/Message 
Integration 

The design of Mach owes a great deal to a previous system 
developed at CMU called Accent [15]. A central feature of 
Accent was the integration of virtual memory and com- 
munication. Large amounts of data could be transmitted 
between processes in Accent with extremely high perfor- 
mance through its use of memory-mapping techniques. This 
allowed client and server processes to exchange potentially 
huge data objects, such as large files, without concern for the 
traditional data copying costs of message passing. 

In effect, Accent carried into the domain of message-passing 
systems the notion that I/O can be performed through virtual 
memory management. It supported a single level store in 
which primary memory acted as a cache of secondary storage. 
Filesystem data and rtmtLme allocated storage were both im- 
plemented as disk-based data objects. Copies of large mes- 
sages were managed using shadow paging techniques. Other 
systems of the time, such as the IBM System 38 [6] and 
Apollo Aegis [13], also used the single level store approach, 
but limited its application to the management of Ides. 

For the operating system designer, a single level store can be 
very attractive. It can simplify the construction of application 
programs by allowing programmers to map a file into the 
address space of a process. This often encourages the replace- 
ment of state-laden libraries of I/O routines (e.g., the UNIX 
standard I/O package) with conceptually simpler program- 
ming language constructs such as arrays and records. A 

single level store can also make programs more efficient. File 
data can be read directly into the pages of physical memory 
used to implement the virtual address space of a program 
rather than into intermediate buffers managed by the operat- 
ing system. Because physical memory is used to cache secon- 
dary storage, repeated references to the same data can often 
be made without corresponding disk transfers. 

Accent was successful in demonstrating the utility of com- 
bining memory mapping with message passing, At its peak, 
Accent ran on over 150 workstations at CMU and served as 
the base for a number of experiments in distributed trans- 
action processing [20], distributed sensor networks [8], dis- 
tributed filesystems [12], and process migration [24]. 

Accent was unsuccessful, however, in surviving the intro- 
duction of new hardware architectures and was never able to 
efficiently support the large body of UNIX software used 
within the academic community [16]. In addition, from the 
point of view of a system designer, the Accent style of 
message/memory integration lacked symmetry. Accent al- 
lowed eornmunieation to be managed using memory-mapping 
techniques, but the notion of a virtual memory object was 
highly specialized and the management of such an object was 
largely reserved to the operating system itself. Late in the life 
of Accent this issue was partially addressed by the implemen- 
tation of imaginary segments [24] which could be provided by 
user-state processes, but such objects did not have the 
flexibility or performance of kernel data objects. 

3. T h e  M a c h  Design 
The Mach design grew out of an attempt to adapt Accent 

from its role as a network operating system for a uniprocessor 
to a new environment that supported multiprocessors and 
unlprocessors connected on high speed networks. Its history 
led to a design that provided both the message passing 
prevalent in Accent and new support for parallel processing 
and shared memory. 

There are four basic abstractions that Mach inherited 
(although substantially changed) from Accent: task, thread, 
port and message. Their primary, purpose is to provide con- 
trol over program execution, internal program virtual memory 
management and interprocess communication. In addition, 
Mach provides a fifth abstraction called the memory object 
around which secondary storage management is structured. It 
is the Math memory object abstraction that most sets it apart 
from Accent and that gives Mach the ability to efficiently 
manage system services such as network paging and filesys- 
tern support outside the kernel. 

3.1. Execution Control Primitives 
Program execution in Mach is controlled through the use of 

tasks and threads. A task is the basic unit of resource alloca- 
tion. It includes a paged virtual address space and protected 
access to system resources such as processors and com- 
munication capabilities. The thread is the basic unit of com- 
putation. It is a lightweight process operating within a task; 
its only physical atla'ibute is its processing state (e.g., program 
counter and registers). All threads within a task share the 
address space and capabilities of that task. 

3.2. In te r -Process  Communication 
Inter-process communication (IPC) in Mach is defined in 

terms of ports and messages. These constructs provide for 
location independence, security and data type tagging. 

A port is a communication channel. Logically, a port is a 
finite length queue for messages protected by the kernel. 
Access to a port is granted by receiving a message containing 
a port capability (to either send or receive messages). A port 
may have any number of senders but only one receiver. 

A message consists of a fixed length header and a variable- 
size collection of typed data objects. Messages may contain 
port capabilities or imbedded pointers as long as they are 
properly typed. A single message may transfer up to the 
entire address space of a task. 

msL.send(message, option, tlmeout) 
Send a message to the destination specified in the message header. 

ms[L_receive(message, option, tlmeout) 
Receive a message from the pert specified in the message header, 
or the default group of  ports. " 

msg_rpe(message, option, rev size, send tlmeout, receive tlmeout) 
s e ~  a ~ s a s e ,  a ~ .  recave ~ reply. 

Table 3-1: Primitive Message Operations 

The fundamental primitive operations on ports are those to 
send and receive messages. These primitives are listed Table 
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3-1. Other than these primitives and a few functions that 
return the identity of the calling task or thread, all Mach 
facilities are expressed in terms of remote procedure calls on 
ports. 

The Mach kernel can itself be considered a task with mul- 
tiple threads of control The kernel task acts as a server which 

in turn implements tasks and threads. The act of creating a 
task or thread returns send access rights to a port that 

represents the new task or thread and that can be used to 

manipulate it. Messages sent to such a port result in opera- 

tions being performed on the object it represents. Ports used 
in this way can be thought of as though they were capabilities 

to objects in an object-oriented system [10]. The act of send- 
ing a message (and perhaps receiving a reply) corresponds to 
a cross-domain procedure call in a capability-based system 
such as Hydra [23] or StarOS [11]. 

The indirection provided by message passing allows objects 
to be arbitrarily placed in the network without regard to pro- 
gramming details. For example, a thread can suspend another 
thread by sending a suspend message to the port representing 
that other thread even if the request is initiated on another 
node in a network. It is thus possible to run varying system 
configurations on different classes of machines while provid- 
ing a consistent interface to all resources. The actual system 
running on any particular machine is more a function of its 
servers than its kernel. 

Tasks allocate ports to represent their own objects or to 
perform communication. A task may also deallocate its rights 
to a port. When the receive rights to a port are destroyed, that 
port is destroyed and tasks holding send rights are notified. 
Table 3-2 summarizes the operations available to manage port 
rights and control message reception. 

port allocate(task, port) 
- Allocate a new part.  

port deallocate(task, port) 
- Deallocat~ the task's rights to thlsport .  

port enable(task, port) 
- Addthispor t to the task ' sde faul tgroupofpor ts formsg_reeeive .  

port disable~task, port} 
- lcemove thts por t  f rom the task's default group o f  porte f o r  

msg receive. 

port ramsa2es(task, ports, ports count) 
- -Return an array o f  e~zbled parts on which ~ a g ¢ . ¢  are current{y 

queued. 

port_status(~sk, port, unrmtrleted, num msgs, backlog, receiver, owner) 
tceturn status information aOo~t this port. 

port set backlog(task, port, backlog) 
l.dmlt the moruber o f  nw.saage.s that can be waiting on this port.  

Table 3-2: Port Operations 

3 . 3 .  V i r t u a l  M e m o r y  M a n a g e m e n t  
A task's address space consists of an ordered collection of  

valid memory regions. Tasks may allocate memory regions 
anywhere within the virtual address space defined by the 
underlying hardware 2. The only restriction imposed by Mach 

2F~a example, an RT PC task can address a full 4 gigabyteffi of me~nory undex 
Mach wb.~ a VAX task ~ limited to at most 2 glgabytes of use~ address space 
by the hardware. 

is that regions must be aligned on system page boundaries. 
The system page size is a boot time parameter and can be any 
multiple of the hardware page size. 

Mach supports read/write sharing of memory among tasks of 
common ancestry through inheritance. When a child task is 
created, its address space may share (read/write) or copy any 
region of its parent's address space. As in Accent, copy-on- 
write sharing is used to efficiently perform virtual memory 
copying both during task creation and during message trans- 
fer. 

Table 3-3 summarizes the full set of virtual memory opera- 
tions that can be performed on a task. 

vm allocate(task, address, size, anywhere) 
- Allocate new virtual memory at the specified address or anywhere 

space can be found (filled-zero on demand). 

vm deallocate(task, address, size) 
- Deallocate a range o/~dd~e~, ~ n g  ~ m  no longer valid. 

vm Inherit(task, address, size, Inheritance) 
- Specify how this range should be inherited in child tasks. 

vm read(task, address, size, data, data count) 
- Reaa ~ contents ofthls  tusks  address space. 

vm write(task, address, count, data, data count) 
- Write the contents o f  this task'i-address space. 

vm copy(task, sre addr, count, dat addr) 
- Copy ~range ofmemor~from one address to another. 

vm statlstics(task, vm stats) 
- Return $taffstic$ about this task's use o f  virtual memory. 

Table 3-3: Virtual Memory Operations 

3 . 4 .  E x t e r n a l  M e m o r y  M a n a g e m e n t  
An important part of  the Mach strategy was a reworking of 

the basic concept of  secondary storage. Instead of  basing 
secondary storage around a kernel-supplied file system (as 
was done in Accent and Aegis), Mach treats secondary 
storage objects in the same way as other server-provided 
resources accessible through message passing. This form of 
e x t e r n a l  m e m o r y  m a n a g e m e n t  allows the advantages of a 
single level store to be made available to ordinary user-state 
servers. 

The Mach external memory management interface is based 
on the the Math  m e m o r y  o b j e c t .  Like other abstract objects in 
the Math  environment, a memory object is represented by a 
port. Unlike other Mach objects, the memory object is not 
provided solely by the Math  kernel, but can be created and 
serviced by a user-level data manager task. 

A memory object is an abstract object representing a collec- 
tion of data bytes on which several operations (e .g . ,  read, 
write) are defined. The data manager is entirely responsible 
for the initial values of this data and the permanent storage of 
the data if  necessary. The Mach kernel makes no assumptions 
about the purpose of the memory object. 

In order to make memory object data available to tasks in 
the form of physical memory, the Mach kernel acts as a cache 
manager for the contents of the memory object. When a page 
fault occurs for which the kernel does not currently have a 
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valid cached resident page, a remote procedure call is made 
on the memory object requesting that data. When the cache is 
full (i.e., all physical pages contain other valid data), the 
kernel must choose some cached page to replace. If the data 
in that page was modified while it was in physical memory, 
that data must be flushed; again, a remote procedure call is 
made on the memory object. Similarly, when all references to 
a memory object in all task address maps are relinquished, the 
kernel releases the cached pages for that object for use by 
other data, cleaning them as necessary. 

For historical reasons, the external memory management 
interface has been e ~ e s s e d  in terms of kernel activity, 
namely paging. As a result, the term paging object is often 
used to refer to a memory object, and the term pager is 
frequently used to describe the data manager task that imple- 
ments a memory object. 

3.4.1. Detailed Description 
The interface between data manager tasks and the Mach 

kernel consists of three parts: 

• Calls made by an application program to cause a 
memory object to be mapped into its address 
space. Table 3-4 shows this extension to Table 
3-3. 

• Calls made by the kernel on the data manager. 
Table 3-5 summarizes this interface. 

• Calls made by the data manager on the Mach 
kernel to control use of its memory object. Table 
3-6 summarizes these operations. 

As in other Mach interfaces, these calls are implemented 
using IPC; the f'u-st argument to each call is the port to which 
the request is sent, and represents the object to be affected by 
the operation. 

pager  Inlt(m_emory object, pager  request_port, pager  name) 
- lnitializ~ a memory obfict. 

pager  data  request(memory object, pager  request_port, offset, length, 
- -desired access) - 

Requesff  data f rom an external data manager. 

pager  data  write(memory object, offset, data,  data  count) 
- Wr i t e s  data bdcTi to a memory object. - 

pager_data  unlock(memory object, pager_request_port,  offset, length, 
-destrea access~ - 
R equesff  that data be unlock.ea~ 

pager  create(old memory object, new memory object, 
- new Tequest ~p-_ort, new name) - - 

Accept responeibility for-a kernel-created memory object. 

Table 3-5: Kernel to Data Manager Interface 

When asked to map a memory object for the first time, the 
kernel responds by making a pagerini t  call on the memory 
object. Included in this message axe: 

• a pager request port that the data manager may 
use to make cache management requests of the 
M ach kernel; 

• a pager name port that the kernel will use to 
identify this memory object to other tasks in the 
description returned by vm_regions calls 3. 

The Math kernel holds send rights to the memory object port, 
and both send and receive rights on the pager request and 
pager name ports. 

If a memory object is mapped into the address space of more 
than one task on different hosts (with independent Maeh 
kernels), the data manager will receive an initialization call 
from each kernel. For identification purposes, the pager re- 
quest port is specified in future operations made by the kernel. 

vm allocate wlth~pager(tusk, address, size, anywhere,  memory object, 
- " r f f se ty  . . - 

Allocate a regto• o f  m~mory at the ap~.cified address. TI~ 
spec~Cled memory object prokides th~ initial data values and 
rece4ves c&:mges. 

Table 3-4: Application to Kernel Interface 

A memory object may be mapped into the address space of 
an application task by exercising the wnallocate_with_pager 
primitive, specifying that memory object (a port). A single 
memory object may be mapped in more than once, possibly in 
different tasks. 

The memory region specified by n_ddress in the 
vm_allocatejvith_pager call will be mapped to the specified 
offset in the memory object. The offset into the memory 
object is not required to align on system page boundaries; 
however, the Mach kernel will only guarantee consistency 
among mappings with similar page alignment. 

pager.data..pr.ovided(pager..request. .port,  offset, data ,  data  count, 
lOCK ValUe} 
S ut?.p'lies th~ k~rMl with the data contents o f  a region o f a  m~mory 
object. 

pager  da~loek(pager_reques t . .por t ,  offset, length, lock value) 
- lcestncts cach~ access to the epecO~ied itata. - 

pager  flush request(pager r e q u e s t p o r t ,  offset, length) 
- ~orces cached ~ata to I~ mvalidated~ 

pager  clean request(pager r eques tpo r t ,  offset, length) 
- Forces cachc-d Ar~ta to bc ~-~,'itten back to t~e nutmory object. 

pager  cache(pager reouest noct, may cache object) 
- Tells t~e~e.rnel-'whether ~ may-retain cached data from the 

memory object eve•  after all references to it have bee •  remove& 
pager  data  unavailable(pager request_port, offset, size) 

-- "Jqo~fies katrnti ~a i ' no  data ¢x.ist.v for  that reglo• o f  a memory 
obj~cL 

Table 3-6: Data Manager to Kernel Interface 

In order to process a cache miss (i.e., page fauk), the kernel 
issues apagerdata__request call specifying the range (usually 
a single page) desired and the pager request port to which the 
data should be renamed. 

SThe memory object and request ports cannot be used for this purpose, as 
a~ess to those ports allows complete access to the data and management 
functions. 
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To clean dirty pages, the kernel performs a 
pager_data_write call specifying the location in the memory 
object, and including the data to be written. When the data 
manager no longer needs the data (e.g., it has been success- 
fully written to secondary storage), it is expected to use the 
vm._deallocate call to release the cache resources. 

These remote procedure calls made by the Mach kernel are 
asynchronous; the calls do not have explicit return arguments 
and the kernel does not wait for acknowledgement. 

A data manager passes data for a memory object to the 
kernel by using the pager_data_provided call. This call 
specifies the location of the data within the memory object, 
and includes the memory object data. It is usually made in 
response to a pagerdatarequest call made to the data 
manager by the kernel. 

Typical data managers will only provide data upon demand 
(when processing pagerdatarequest calls); however, ad- 
vanced data mangers may provide more data than requested. 
The Mach kernel can only handle integral multiples of the 
system page size in any one call and partial pages are dis- 
carded. 

Since the data manager may have external constraints on the 
consistency of its memory object, the Mach interface provides 
some functions to control caching; these calls are made using 
the pager request port provided at initialization time. 

A pager.flushrequest call causes the kernel to invalidate its 
cached copy of the data in question, writing back modifica- 
tions if necessary. A pager_clean_request call asks the kernel 
to write back modifications, but allows the kernel to continue 
to use the cached data. The kernel uses the pager_data_write 
call in response, just as when it initiates a cache replacement. 

A data manager may restrict the use of cached data by 
issuing a pager_data_lock request, specifying the types of 
access (any combination of read, write, and execute) that must 
be prevented. For example, a data manager may wish to 
temporarily allow read-only access to cached data. The lock- 
ing on a page may later be changed as deemed necessary by 
the data manager. [To avoid race conditions, the 
pager_dataprovided call also includes an initial lock value.] 

When a user task requires greater access to cached data than 
the data manager has permitted (e.g., a write fault on a page 
made read-only by a pager_data lock call), the kernel issues 
a pager_data_unlock ca l l .  The data manager is expected to 
respond by changing the locking on that data when it is able 
to do so. 

w h e n  no references to a memory object remain, and all 
modifications have been written back to the memory object, 
the kernel deallocates its rights to the three ports associated 
with that memory object. The data manager receives notifica- 
tion of the destruction of the request and name ports, at which 
time it can perform appropriate shutdown. 

In order to attain better cache performance, a data manager 
may permit the data for a memory object to be cached even 
after all application address map references are gone by call- 
ing pager_cache. Permitting such caching is in no way bind- 
ing; the kernel may choose to relinquish its access to the 
memory object ports as it deems necessary for its cache 
management. A data manager may later rescind its permis- 
sion to cache the memory object. 

The Mach kernel itself creates memory objects to provide 
backing storage for zero-filled memory created by 
vmallocate 4, The kernel allocates a port to represent this 
memory object, and passes it to a default pager task, that is 
known to the kernel at system initialization time 5, in a 
pager_create call. This call is similar in form to pagerinit; 
however, it cannot be made on the memory object port itself, 
but on a port provided by the default pager. 

Since these kernel-created objects have no initial memory, 
the defauk pager may not have data to provide in response to 
a request. In  this case, it must perform a 
pager_data_unavailable call to indicate that the page should 
be zero-f'tlled 6. 

4. Using Memory Objects 
This section briefly describes two sample data managers and 

their applications. The first is a filesystem with a read/copy- 
on-write interface, which uses tl~ minimal subset of the 
memory management interface. The second is an excerpt 
from the operation of a consistent network shared memory 
service. 

4.1. A Minimal Fi l e sys t em 
An example of a service which minimally uses the Mach 

external interface is a f'desystem server which provides read- 
whole-file/write-whole-file functionality. Although it is 
simple, this style of interface has been used in actual servers 
[12, 19] and should be considered a serious example. 
An application might use this f'desystem as follows: 

char *file data; 
Int i, file size; 
extern floa[ rand(); /* random in [0,I) */ 

/* Read the file -- ignore errors */ 
fs_read_file("filename", &file_data, file_size); 

/* Randomly change contents */ 
for (i = 0; i < file size; i++) 

file_data [ (Int) (file_slze*rand ()) ]++; 

/* Write back some results -- ignore errors */ 
fs_wrlte_file("filename", file_data, file_size/2); 

/* Throw away working copy */ 
vm_deallocate (task_self 0 , file_data, file_size) ; 

Note that the Is_read file call retm'ns new virtual memory as 
a result. This memory is copy-on-write in the application's 
address space; other applications will consistently see the 
original f'tle contents while the random changes are being 
made. The application must explicitly store back its changes. 

To process the fs_.read.file request, the filesystem server 
creates a memory object and maps it into Its own address 
space. It then returns that memory region through the IPC 
mechanism so that it will be mapped copy-on-write in the 

"l'h¢ same mechanism is used for ~hadow objects that contain changes to 
copy-on-wrltz data. 

s'I'h¢ default pager wiU be described in more detail in a later section. 

SWhm shadowing, the data is instead copied from u ~  original 
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client's address space. 7 
return t fs read_file(name, data, size) 

strlng_~ name; 
char **data; 
Int *size; 

( 
port t new_obJ eet; 

/* Allocate a memory object (a port), */ 
/* and accept request */ 
port allocate (task_self(), &new_object); 
portenable (task_self (), new_object) ; 

/* Perform file lookup, find current file size,*/ 
/* record association of file to new_object */ 

/* Map the memory object into our address space*/ 
vm allocate wlth_pager(task_selfO, data, *size, 

TRUE, new_object, 0); 

return (success) ; 
} 

When the vm_allocate_with_pager call is performed, the ker- 
nel will issue a pager_init call. The f'flesystem must receive 
this message at some time, and should record the pager re- 
quest port contained therein. 

When the application first uses a page of  the data, it 
generates a page fault. To fill that fault, the kernel issues a 
pager_data_request for that page. To fulfill this request, the 
data manager responds with a pager_data_provided call. 
void pager_data_request (memory_object, pacer_request, 

offset, size, access) 
port_t memory object; 
port t pager_request; 
vm offset t offset; 
vm--slz e__t--si ze; 
vm_prot_t access; 

( 
char *data; 

/* Allocate disk buffer */ 
vm allocate(task_self(), &data, size) ; 

/* Lookup memory__object; find actual disk data*/ 
dlskread (disk address (memory_object, offset) , 

data, size); 

/* Return the data with no locking */ 
pager_data_provided(pager_request, offset, data, 

size, VM_PROT_NONE) ; 

/* Deallocate disk buffer */ 
vm__deallocate (taskself (), data, size) ; 

) 

The filesystem will never receive any pager_data_write or 
pagerdata_unlock requests. After the application deal- 
locates its memory copy of  the file, the filesystem will receive 
a port death message for the pager request port. It can then 
release its data structures and resources for this file. 

void port_death (requestport) 
port_t request_port; 

( 
port_t memory_object; 
char *data; 
int size; 

/* Find the associated memory object */ 
lookup_byrequest_port (request_port, 

&memory_object, &data, &size); 

/* Release resources */ 
port_deallocate (task_self (), memory_object) ; 
vm deallocate (task_self O • data, size) ; 

) 

4.2. Consistent Network Shared M e m o r y  E x c e r p t  
In this subsection we describe how the memory management 

interface might be used to implement a region of  shared 
memory between two clients on different hosts. Figure 4-1 
shows the important message traffic. 

In order to use the shared memory region, a client must first 
contact a data manager which provides shared memory ser- 
vice. In our example, the first client has made a request for a 
shared memory region not in use by any other client. The 
shared memory server creates a memory object (i.e., allocates 
a port) to refer to this region and returns that memory object, 
X, to the first client. 

The second client, running on a different host, later makes a 
request for the same shared memory region s . The shared 
memory server finds the memory object, X, and returns it to 
the second client. 

Each client maps the memory object X into its address 
space, using vm_allocate_with_pager. As each kernel 
processes that call, it makes a pager init call to the memory 
object X. The shared memory server records each use of  X, 
and the pager request and name ports for those uses. Note 
that the Math  kernel does not await a reply from the shared 
memory server, but does perform the pagerinit call before 
allowing the vm_allocate_with_pager call to complete. Also 
note that while there is only one memory object port (X), 
there are distinct request and name ports for each kernel  In 
this example" the shared memory server may be located on 
either of  the clients' hosts, or on yet another host. 

In the second f~ame, each client takes a read fault on the 
same page of  the shared memory region. The same page may 
be mapped to different addresses in the two clients. Each 
kernel makes a pager_data_request on X, specifying its own 
pager request port for X. The shared memory server replies 
using the pager data_provided call on the appropriate request 
port. Since the request only requires read access, the shared 
memory server applies a write lock on the data as it is 
returned 9. The shared memory server must also record all of 
the uses (i.e. pager request ports) of this page. 

In the final frame, one client attempts to write on one of the 
pages which both clients have been reading. Since the 
writer's kernel already has the data page to satisfy the fault, it 

~If the client were to map the memory object into its address space using 
vm_allocat~with_pager, the client would not see a copy-on-write vendon of 
the data, but would have read/write access to the memory object. 

fHow it specifies that xegion (e.g., by name or by use of another capability) is 
not important to the example, 

~ 'he choice to prevent writing is made here to simplify the example. It may 
be more practical to allow the first client write access, and then to revoke it 
later, 
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makes a p a g e r d a t a _ u n l o c k  call on X, asking that write per- 
mission be granted. Before allowing write permission, the 
shared memory server must invalidate all of the other uses of 
this page; it does so using the pager_flush_request call. Once 
all readers have been invalidated, the server grants write ac- 
cess to the first client using p a g e r d a t a l o c k  with no lock. 

5. Implementation Details 
Four basic data structures are used within the Mach kernel to 

implement the external memory management interface: 
address maps, memory object structures, resident page struc- 
tures, and a set o fpageou t  queues. 

5.1. Address  Maps  
As in Accent, a task address map is a directory mapping 

each of many valid address ranges to a memory object and 
offset within that memory object. Additional information 
stored for each range includes protection and irdaedtance in- 
formation. 

To account for sharing through inheritance, Mach address 
maps are two-level. A task address space consists of one 
top-level address map; instead of references to memory ob- 
jects directly, address map entries refer to second-level 
sharing maps. Changes in per-task attributes, such as protec- 
tion and inheritance, are stored in the top-level map. Changes 
to the virtual memory represented by a map entry axe reflected 
in the sharing map; for example, a vra write operation into a 
region shared by more than one task would take place in the 
sharing map referenced by all of their task maps. 

It is then the second-level sharing maps that refer to memory 
object structures. As an optimization, top-level maps may 
contain direct references to memory object structures if no 
sharing has taken place. 

W h e n  a vm_al locatewi th . .pager  call is processed, the Math 
kernel looks up the given memory object port, attempting to 
fred an associated internal memory object structure; if none 
exists, a new internal structure is created, and the p a g e r i n i t  
call performed. Once a memory object structure is found, it is 
inserted into the (top-level) task address map. Note that the 
sharing semantics are different than in the inheritance case in 
that no sharing map is involved; an attempt to vm_write one 
mapping of the memory object would merely replace that 
mapping, rather than reflecting it in other tasks that have also 
mapped that memory object. 

5.2. V i r tua l  M e m o r y  Objec t  S t ruc tu res  
A n  internal memory object structure is kept for each memory 

object used in an address map (or for which the data manager 
has advised that caching is permitted). Components of this 
structure include the ports used to refer to the memory object, 
its size, the number of address map references to the object, 
and whether the kernel is permitted to cache the memory 
object when no address map references remain. 

A list of resident page structures is attached to the object in 
order to expediently release the pages associated with an 
object when it is destroyed. 

5.3. Resident M e m o r y  S t ruc tures  
Each resident page structure corresponds to a page of physi- 

cal memory, and vice versa. The resident page structure 
records the memory object and offset into the object, along 
with the access permitted to that page by the data manager. 
Reference and modification information provided by the 
hardware is also saved here. An interface providing fast 
resident page lookup by memory object and offset (virtual to 
physical table) is implemented as a hash table chained 
through the resident page structures. 

5.4. Page Replacement Queues 
Page replacement uses several pageout  queues linked 

through the resident page structures. An active queue con- 
tains all of the pages currently in use, in least-recently-used 
order. An inactive queue is used to hold pages being prepared 
for pageout. Pages not caching any data are kept on a free 
queue. 

5.5. Fault Handling 
The Mach page fault handler is the hub of the Mach virtual 

memory system. The kernel fault handler is called when the 
hardware tries to reference a page for which there no valid 
mapping or for which there is a protection violation. The 
fault handler has several responsibilities (see Figure 5-1): 

• validity and protection - The  kernel determines 
whether the faulting thread has the desired access 
to the address, by performing a lookup in its 
task's address map. This lookup also results in a 
memory object and offset. 

• page lookup - The  kernel attempts to find an 
entry for a cached page in the virtual to physical 
hash table; if the page is not present, the kernel 
must request the data from the data manager. 

• copy-on-write - Once the page has been located, 
the kernel determines if a copy-on-write opera- 
tion is needed. If the task desires write permis- 
sion and the page has not yet been copied, then a 
new page is created as a copy of the original. If 
necessary, the kernel also creates a new shadow 
object. 

• hardware validation - Finally, the kernel informs 
the hardware physical map module of the new 
virtual to physical mapping. 

With the exception of the hardware validation, all of these 
steps are implemented in a machine-independent fashion. 

6. The Problems of External Memory 
Management 

6.1. Types of Memory Failures 
While the functionality of external memory management can 

be a powerful tool in the hands of a careful application, it can 
also raise several robustness and security problems if im- 
properly used. Some of the problems are: 

• Data manager doesn' t  return data. Threads may 
now become blocked waiting for data supplied by 
another user task, which does not respond 
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promptly. The tight interconnection between IPC 
and memory management makes it difficult (or 
merely expensive) to determine whether the 
source of any memory is hostile prior to attempt- 
ing to access that memory. 

• Data manager fails to free flushed data. A data 
manager may wreak havok with the pageout 
process by failing to promptly release memory 
following pageout of dirty pages. 

• Data manager floods the cache. This is rather 
similar in nature to a data manager which fails to 
free data, but is easier to detect and prevent. 

• Data manager changes data. A malicious data 
manager may change the value of its data on each 
cache refresh. While this is an advantage for 
shared memory applications, it is a serious 
problem to applications which receive (virtual 
copied) data in a message. 

• Data manager backs its own data. Deadlock 
may occur if a data manager becomes blocked in 
a page fault waiting for data which it provides. 

Fortunately, there are several techniques that minimize these 
potential problems: 

• A task may use the vm_regions call to obtain 
information about the makeup of its address 
space. While this enables a task to avoid dead- 
lock on memory it provides, it does not prevent 
two or more tasks from deadlocking on memory 
provided by the others. 

• The use of multiple threads to handle data ro- 
quests also aids in deadlock prevention; one 
thread within a task may service a data request 
for another thread in that task. 

• Server tasks which cannot tolerate changing data, 
or which must ensure that all of the necessary 
data is available, may use a separate thread to 
copy that data to safe memory before proceeding. 

6.2. Handling Memory Failures 
6.2.1. Analogy to Communication Failure 

The potential problems associated with external data 
managers are strongly analogous to communication failure. 
This is actually not surprising since external data managers 
are implemented using communlcatiorL Solutions to com- 
munication failure problems are applicable to external data 
manager failure. 

A task's address space becomes populated with memory 
objects in two basic ways: explicit allocation (vm_allocate or 
vm_allocate_with_pager) or receipt of data in an IPC mes- 
sage, In the first case, the source of the data is considered 
trusted (either the default pager, or a data manager known to 
the requestor). Use of the data received in a message can be 
viewed as attempting to receive that data explicitly; the only 
differences are the time and the granularity of the failure. The 
same options provided for communications failure may be 

applied to memory failures: a timeout period may be 
specified, after which a memory request is aborted; a 
notification message may be sent so that another thread can 
perform recovery; wait until the request is filled. Aborting a 
memory request after a timeout may involve providing (zero- 
Filled) memory backed by the default pager, or termination of 
the waiting thread. 

Destruction of a memory object by the data manager (i.e. 
deallocation of the memory object port) results in failure 
modes similar to destruction of a port: notification of those 
tasks previously having access to that object, and abortion of 
those requests in progress. 

6.2.2. The Default Pager 
The default pager manages backing storage for memory 

objects created by the kernel in any of several ways: explicit 
allocation by user tasks (vm_allocate); shadow memory ob- 
jects; temporary memory objects for data being paged out. 
Unlike other data managers, it is a trusted system component. 

When cached data is written back to a data manager, those 
pages are temporarily moved to a new memory object which 
is destroyed when the data manager relinquishes that memory. 
If the data manager does not process and release the data 
within an adequate period of time, the data may then be paged 
out to the default pager. In this way, the kernel is protected 
from starvation by errant data managers. 

Because the interface to the default pager is identical to 
other external data managers, there are no fundamental as- 
sumptions made about the nature of secondary storage. For 
example, the default pager may use local disk, network ser- 
vices, or some combination of the two. Furthermore, a new 
default pager may be debugged as a regular data manager. 

6.2.3. Reserved Memory Pool 
In order to perform pageout operations, the kernel must send 

a message; to send a message, the kernel may need to allocate 
additional memory. To avoid deadlock, the kernel must 
reserve some amount of memory for itself to do pageout. 
Furthermore, data manager tasks may need to allocate 
memory in order to manage a pageout request. The kernel 
must allow for at least enough memory for the default pager 
to process a pagcout, and for performance reasons wants to be 
able to provide enough memory for reasonable data manager 
tasks. 

Many other operating systems have met with this problem. 
Often these systems solve the problem by using inside 
knowledge of the algorithms used to manage secondary 
storage. Unfortunately, the Mach kernel has no such 
knowledge; it must rely on a conservative estimate of the 
amount of memory required by the default pager to perform a 
pageout operation. 

7. M u l t i p r o c e s s o r  I s s u e s  
As faster networks and more loosely connected multiproces- 

sots are built, the distinctions between the use of shared 
memory and message passing as communication mechanisms 
are becoming blurred. There are three major types of multiple 
instruction, multiple data stream (MIMD) multiprocessors 
which have gained commercial acceptance: 

1. u_nlform memory access multiprocessors 
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(UMAs) with fully shared memory and nearly 
uniform memory access times for all data; 

2. n_on-u_niform memory _access multiprocessors 
(NUMAs) with shared memory in which an in- 
dividual CPU can access some memory rapidly 
and other memory more slowly; and 

3. no remote memory _access (NORMAs), message- 
based multiproeessors which communicate over 
an internal or external network. 

UMA systems are the most prevalent in the commercial 
marketplace. They are the easiest of the three types to use 
because they are the most similar to traditional mul- 
fiprogrammed uniprocessors. Shared memory is typically 
provided on some kind of shared bus with individual CPUs 
accessing the bus through a cache. Cache contents are 
synchronized. Write operations by one CPU will either up- 
date or flush the appropriate cache blocks visible to other 
CPUs. Access times appear nearly uniform, although, 
depending on the architecture, cache flushing can result in 
non-uniform memory access times for some algorithms. Ex- 
amples of UMAs are the Encore MultiMax, Sequent Balance, 
VAX 8300 and VAX 8800. 

Some of the earliest multiprocessors were examples of 
NUMAs, including CMUs C.mmp [23] and CM* [11]. One 
problem with UMAs is that they often rely on a shared global 
bus that limits the maximum number of processors and 
memory units which can be attached. NUMAs typically 
avoid this problem of scale by associating a local memory 
with each CPU. This memory can be accessed by other 
CPUs, but only at a time cost greater than that for local 
memory access. The typical CPU-to-CPU interconnect is a 
communication switch with several levels of internal switch- 
ing nodes. While such switches can be made to accommodate 
large numbers of communicating processors, they add the 
characteristic NUMA remote memory access delay. The dif- 
ficulties in keeping cache contents consistent through such 
switches have led most NUMA designers to (1) not provide 
cache memory, (2) only allow caching for non-shared 
memory or (3) provide instruction-level cache control to be 
used by smart compilers. The BBN Butterfly [2] is an ex- 
ample of a commercial NUMA. Communication between 
CPUs in the Butterfly is by means of a Butterfly Switch, the 
complexity of which increases only as the logarithm of the 
number of processors. The Butterfly makes no use of cache 
memory and remote access times are roughly i0 times greater 
than local access times. Because NUMA architectures allow 
greater numbers of CPUs to be put in a single machine, many 
experimental very large multiprocessors are NUMAs; the 
512-processor IBM RP3 is a recent example. 

NORMAs are the easiest of the multiprocessors to build and, 
in a sense, have existed for as long as local area networking 
has been available. The typical NORMA consists of a num- 
ber of CPUs interconnected on a high speed bus or network. 
Interconnection topology depends on the network technology 
used. The Intel HyperCube, for example, uses a multi-level 
cube structure with 10MHz Ethemet as the connecting tech- 
nology. NORMAs are distinguished from NUMAs in that 
they provide no hardware supplied mechanism for remote 

memory access. Typically NORMAs can be much larger but 
also much more loosely coupled than NUMAs. For example, 
on the HyperCube, remote communication times are 
measured in the hundreds of microseconds versus five 
microseconds for a Butterfly and considerably less than one 
microsecond (on average) for a MultiMax. 

All three types of multiprocassors can be made to support 
message passing or shared memory. Although some 
manufacturers [4, 9] have provided hardware support for mes- 
sage mechanisms, implementations of message communica- 
tion on urtiprocessors and tightly coupled muhiprocessors 
typically use internal semaphores and data copy operations. It 
is possible to implement copy-on-reference[24] and 
read/write sharing [13, 14] of information in a network en- 
vironment without explicit hardware support. 

Just as Accent demonstrated that copy-on-write could be 
used for message passing in a uniprocessor, 13 at Yale 
showed that a modified Apollo Aegis kernel could support 
applications which required read/write sharing of virtual 
memory data structures on a 10MHz token ring [14]. Net- 
work read/write sharing is accomplished using software tech- 
niques which parallel the hardware management of consistent 
caches in a multiprocessor. Cache blocks (in this case physi- 
cal memory pages mapped by the memory mapping hardware 
of the Apollo workstations) are retrieved and cached as neces- 
sary from global memory. Multiple read accesses with no 
writers are permitted but only one writer can be allowed to 
modify a page of data at a time. An attempt by a reader to 
write previously read data causes a memory fault which con- 
verts a reader into a writer and invalidates all other page 
caches. A subsequent attempt to read by another workstation 
will cause the writer to revert to reader status (at least until the 
next write is performed). The efficiency of algorithms that 
use this form of network shared memory depends on the 
extent to which they exhibit read/write locality in their page 
references. Kai Li showed that multiple processors which 
seldom read and write the same data at the same time can 
conveniently use this approach. 

Mach provides a collection of operating system primitives 
defined such that a programmer has the option of choosing to 
use either shared memory or message-based communication 
as the basis for the implementation of a multithreaded ap- 
plication. Depending on the desired style of the application 
and the kind of mulfiprocessor or network available, message 
passing can be implemented in terms of memory management 
primitives or memory management can be implemented in 
terms of communication primitives. 

8. Applications 
The implications of message/memory duality in Mach ex- 

tend beyond the issue of multiprocessor support. There is 
evidence that the efficient emulation of operating system en- 
vironments such as UNIX can be achieved using the Mach 
primitives. Process migration can be supported more effec- 
tively by relying on network copy-on-reference of process 
data. The interaction of message and memory primitives can 
also be an important tool in the design and implementation of 
transaction and database management facilities. Work is also 
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being done to allow AI knowledge structures to be built, 
maintahted and accessed using these techniques. 

8.1. E m u l a t i n g  Opera t ing  System E n v i r o n m e n t s  
During the 1960's the notion of a virtual machine base for 

operating systems development became commercially 
popular. That popularity faded in the research community 
due to the complexities of truly virtualizing a wide range of 
devices and hardware functions. Alternative systems such as 
UNIX [18] were developed which provided a simple set of 
basic abstractions which could be implemented on a range of 
architectures. 

Today, the concept of an extensible operating system is once 
again gaining acceptance -- this time as the solution to the 
unconstrained growth of UNIX. During the last 20 years 
operating systems and their environments have undergone 
dramatic expansion in size, scope and complexity. The Alto 
operating system [22], a workstation operating system of the 
early 70's, occupied approximately 19K bytes, including code 
and data. A typical UNIX implemention on a modem 
workstation such as a MieroVAX or SUN can consume over 
1.5 megabytes of storage before a single user program is 
executed. 

This increase in complexity has been fueled by changing 
needs and technology which have resulted in UNIX being 
modified to provide a staggering number of new and different 
mechanisms for managing objects and resources. UNIX has 
become a dumping ground for new f~atures and facilities 
because key requirements for many of fl,~ese new facilities earl 
be found only in kernel state: 

• easy access to user process state, 

• access to virtual and physical memory objects, 

• device access, 

• the ability to run several processes which com- 
municate through shared memory, and 

• efficient context switching and scheduling. 
One of the goals of Maeh is to provide an extensible kernel 

basis upon which operating system environments such as 
UNIX can be built. 

Emulation of UNIX-like system environments can be imple- 
mented using a variety of techniques. Generic UNIX system 
calls can be implemented outside of the Maeh kernel in 
libraries and server tasks. For example, UNIX filesystem I/O 
can be emulated by a library package that maps open and 
close calls to a f'flesystem server task. An open call would 
result in the file being mapped into memory. Subsequent read 
and write calls would operate directly on virtual memory. 
The filesystem server task would operate as an external pager, 
managing the virtual memory corresponding to the f'Lle. 
Shared process state information can be passed on to child 
processes using inherited shared memory. 

8.2. Copy-On-Refe rence  Task  Migra t ion  
One of the thorniest problems of task migration is the han- 

dling of large address spaces. Edward Zayas showed that 
migration could be performed efficiently using copy-on- 
reference techniques [24]. The task migration service can 

create a memory object to represent a region of the original 
task's address space, and map that region into the new task's 
address space on the remote host. The kernel managing the 
remote host treats page faults on the newly-migrated task by 
making paging requests on that memory object, just as it does 
for other tasks. 

The generality of the external memory management allows 
for a wide variety of migration strategies. To reduce faulting 
overhead, the migration manager may provide some data in 
advance for tasks with predictable access patterns. This pre- 
paging can proceed while the newly-migrated task begins to 
run. Alternatively, the migration manager can respond to 
requests on demand for unpredictable or excessively large 
tasks. 

8.3. Database  M a n a g e m e n t :  Camelo t  
Camelot is a transaction processing system being imple- 

mented on Mach [21]. Camelot provides support for dis- 
tributed transactions on user-defined objects. In Camelot, 
servers maintain permanent objects in virtual memory backed 
by the Camelot disk manager. Camelot uses the write-ahead 
logging technique to implement permanent, failure-atomic 
transactions. When the disk manager receives a 
pager flush_request from the kernel, it verifies that the 
proper log records have been written before writing the 
specified pages to disk. 

Transaction s~cstems reap many benefits from the ability to 
manage memory objects: 

*Camelot clients can access data easily and 
quickly by mapping memory objects into their 
virtual address spaces. 

• Camelot clients do not have to implement their 
own page replacement algorithms. 

• Clients need not reserve f'Lxed sized physical 
memory buffers. The amount of physical 
memory devoted to each client varies dynami- 
cally with overall system load. 

• Recoverable data can be written directly to per- 
manent backing storage without first being writ- 
ten to temporary paging storage. 

By using an external interface, Camelot can benefit from 
these advantages without having to modify the operating sys- 
tem to provide specialized support [5]. Maeh manages the 
physical memory cache while the Camelot disk manager 
guarantees that the write-ahead log protocol is followed. 

8.4. AI Knowledge  Bases: Agora  
A parallel can be made between the potential uses of exter- 

nal pagers in transaction and database management and their 
use in the implementation of AI knowledge structures. The 
speech research group at CMU is currently engaged in a 
project to build a distributed speech understanding system 
called Agora [3]. This work is being done on Math and 
currently makes use beth of Math memory sharing and mes- 
sage passing. 

Both communication and memory sharing are used to imple- 
ment a shared blackboard structure in which hypotheses are 
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placed and evaluated by multiple cooperating agents. The 
blackboard physically resides on a multiprocessor host. All 
accesses to the blackboard are through a procedural interface 
that determines if  shared memory or communication must be 
used. Agenl use shared memory to directly modify the 
blackboard. Message passing is used between loosely 
coupled components of the system that collect data, perform 
low level signal processing, and display results. The total 
system distributes itself among a collection of  machines con- 
sisting of  a VAX 8200 with four CPUs and a number of 
MicroVAX IIs and IBM RT PCs interconnected via several 
Ethernets and IBM token rings. 

9. Performance 
One of the key benefits to Mach's  external memory manage- 

ment is that it allows user provided objects to take advantage 
of the same kind of physical memory caching which tradi- 
tionally has only been available to kernel-supplied secondary 
storage. A user program can, for example, create a memory 
object which is used to represent a data array and provide 
access to that array to many other programs through a server 
message interface. The clients of  such a service would only 
have to exchange a single message with the server to get 
access to the array and, if  other clients had already referenced 
the data of the array, the physical memory cache of the array 
would be directly accessible to the client with no further 
message traffic. 

A large, well-managed memory cache of  this kind can be a 
powerful aid to improving the performance of an operating 
system. For example, traditional UNIX implementations 
manage a cache of recently accessed file data blocks. This 
cache, which is normally 10% of physical memory in a 
Berkeley U N ~  system, is accessed by user programs through 
read and write kernel-to-user and user-to-kernel copy opera- 
tions. In contrast, Mach uses the bulk of  its physical memory 
as a cache of secondary storage data pages. The effect of this 
kind of  caching on the performance of  UNIX and its tradi- 
tional suite of  application programs is dramatic. Compilation 
of  a small program cached in memory on a SUN 3/160 run- 
ning Mach is twice as fast as when running the more conven- 
tional SunOS 3.2 operating system [17]. In a large system 
compilation, the total number of  I/O operations can be 
reduced by a factor of  10 [1]. 

10. Status 
All of the Mach facilities described in this paper have been 

implemented -- with the external memory management 
facility the most recent and most experimental addition. A 
production version of  Mach is in use on over 200 worksta- 
tions and large timesharing systems within the CMU Depart- 
ment of  Computer Science. It is also being used on dozens of  
machines outside the Department, including systems at BBN, 
the IBM Hawthorne Laboratory, the CMU Software En- 
gineering Institute and the Los Alamos Research Laboratory. 

As of  this writing, Mach runs on more than a dozen com- 
puter systems including the VAX family of  uniprocessors and 
multiprocessors, the IBM RT PC, the SUN 3, the 16- 
processor Encore MultiMax, and the 26-processor Sequent 

Balance 21000. Work is proceeding on implementations for 
several other computer systems. 

Versions of Mach for all machine types are built from the 
same source with machine specific code isolated to machine 
dependent directories 10. All VAXen run the same binary 
image of the kernel. Mach currently supports the X window 
manager and is binary compatible with 4.3bsd UNIX on VAX 
architecture machines. 

The paging interface component is still under development: 

• Default Pager. The default pager is currently 
nmning as a separate kernel-state task which uses 
the memory object interface. To manage secon- 
dary storage, it uses Unix inodes and the Unix 
buffer pool. Future plans include eliminating use 
of  the buffer pool, and instead allowing that 
memory to be used for the global virtual memory 
cache. 

• User Pager Tasks. The implementation already 
supports both pagein and pageout requests being 
handled by user-state pager tasks; however, cache 
consistency primitives are not fully implemented. 

• Special Conditions. Currently, initialization and 
termination are implemented as described; 
however, handling of pager failures is not yet 
done. 

Mach is being released externally to interested researchers. 
The second release of  Mach was made in April, 1987. The 
next release is scheduled for the end of October, 1987. 

References 

I. Accetta, M.J., Baron, R.V., Bolosky, W., Golub, D.B., Rashid, 
R.F., Tevanian, A., and Young, M.W. Mach: A New Kernel Foun- 
dation for UNIX Development. Proceedings of Summer Usenix, 
July, 1986. 

2. BBN Laboratories. Butterfly Parallel Processor Overview. BBN 
Computer Company, Cambridge, MA, June, 1985. 

3. Bisiani, R., Alleva, F., Forin, A. and Lamer, R. Agora: A 
Distributed System Architecture for Speech Recognition. Inter- 
national Conference on Acoustics, Speech and Signal Processing, 
IEEE, ApKI, 1986. 

4. ELXSI Computer, Inc. SystemProsraramer's Reference Manual. 
ELXSI Computer, Inc., 1983. 

5. Eppinger, J.L., and Specter, A.Z. Virtual Memory Management 
for Recoverable Objects in the TABS Prototype. Tech. Rept. CMU- 
CS-85-163, Carnegie-Mellon University, December, 1985. 

6. French, R.E., R.W. Collins and L.W. Loen. "System/38 Machine 
Storage Management". IBM System138 Technical Developments, 
IBM General Systems Division (1978), 63-66. 

7. Gupta, A. Parallel Production Systems. Ph.D. Th., Carnegie 
Mellon University, May 1986. 

l°Sc~ne support for manufacturer specific UNIX featttw~ has been kept in 
machine independent f'~les to aecomodate binary compatibility with various 
manufacmre.rs' non-4.3bsd UNIX environments. 

75 



8. Homig, D.A. Automatic Partitioning and Scheduling on a Net- 
work of Personal Computers. Ph.D. Th., Department of Computer 
Science, Carnegie-Mellon University, November 1984. 

9. Kahn, K.C. et aL iMAX: A Multiprecessor Operating System for 
an Object-Based Computer. Prec. 8th Symposium on Operating 
Systems Principles, ACM, December, 1981, pp. 127-136. 

10. Jones, A.K. The Object Model: A Conceptual Tool for Struc- 
turing Systems. In Operating Systems: An Advanced Course, 
Springer-Vedag, 1978, pp. 7-16. 

11. Jones, A.K., Chansler, R.J., Durham, I.E., Sohwans, K., and 
Vegdahl, S. StazOS, a Multipmcessor Operating System for the 
Support of Task Forces. Proceedings of the 7th Symposium on 
Operating System Principles, ACM, December, 1979, pp. 117-129. 

I2. Jones, M.B., Rashid, R.F., and Thompson, M.R. Sesame: The 
Spice File System. Department of Computer Science, Carnegie- 
Mellon University, October, 1982. 

13. Leach, P.L., P.H. Levine, B.P. Douros, LA. Hamilton, D.L. 
Nelson and B.L. Stumpf. "The Architecture of an Integrated Local 
Network". IEEE Journal on Selected Areas in Communications 
SAC-l, 5 (November 1983), 842-857. 

14. Li, K. and Hudak, P. Memory Coherence in Shared Virtual 
Memory Systems. 5th Symposium on Principles of Distributed 
Computing, 1986. 

15. Rashid, R.F. and Robertson, G. Accent: A Communication 
Oriented Network Operating System Kernel. Proceedings of the 8th 
Symposium on Operating System Principles, December, 1981, pp. 
64-75. 

16. Rashid, R.F. From RIG to Accent to Mach: The Evolution of a 
Network Operating System. Proceedings of the ACM/IEEE Com- 
puter Society 1986 Fall Joint Computer Conference, ACM, Novem- 
ber, 1986. 

17. Rashid, R.F., Tevanian, A., Young, M.W., Golub, D.B., Baron, 
R.V., Black, D.L., Bolosky, W., and Chew, JJ.  Machine- 
Independent Virtual Memory Management for Paged Uniprecessor 
and Multiprocessor Architectures. Proceedings of the 2nd Sym- 
posium on Architectural Support for Programming Languages and 
Operating Systems, ACM, October, 1987. 

18. Ritchie, D.M. and Thompson, K. "The Unix Time-Sharing 
System". Communications of the ACM 17, 7 (July 1974), 365-375. 

19. Satyanarayanan, M., et.al. The TIC Distributed File System: 
Principles and Design. Proc. 10th Symposium on Operating Systems 
Principles, AC.M, December, 1985, pp. 35-50. 

20. Spector, A.Z., Butcher, J., Danids, D.S., Duchamp, DJ., Ep- 
pinger, LL., Fineman, C.E., Heddaya, A., Schwarz, P.M. Support for 
Distributed Transactions in the TABS Prototype.. Proceedings of the 
4th Symposium on Reliability In Distributed Software and Database 
Systems, October, 1984. Also available as Camegie-Mellon Report 
CMU-CS-84-132, July 1984.. 

21. Spector, A.Z. NATO Advanced Study Institute - Computer and 
Systems Sciences. Volume : Distributed Transaction Precessing and 
the Camelot System. In Distributed Operating Systems: Theory and 
Practice, Yakup Paker, Ed., Springer-Verlag, 1987. Also available 
as Carnegie-Mellon Report CMU-CS-87-100, January 1987.. 

22. Thacker, C.P., et al. Alto: A personal computer. In Computer 
Structures: Readings and Examples, 
McGraw-Hill, 1980. Edited by D. SiewioreL C.G. Bell, and 
A. Newell, second edition.. 

23. Wulf, W.A., Levin, R., and Harbison, S.P.. HydralCJnmp: An 
Experimental Computer System. McGraw-Hill, 1981. 

24. Zayas, E.R. The Use of Copy-On-Reference in a Process Migra- 
tion System. Ph.D. Th., Deparlment of Computer Science, Carnegie- 
Mellon University, January 1987. 

76 


