
The Duality of Memory and Communication
in the Implementation of a

Multiprocessor Operating System

Michael Young, Avadis Tevanlan, Richard Rashid, David Golub,
Jeffrey Eppinger, Jonathan Chew, William Bolosky, David Black and Robert Baron

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

Maeh is a multiproeessor operating system being imple-
mented at Carnegie-Mellon University. An important corn:
ponent of the Mach design is the use of memory objects
which can be managed either by the kernel or by user
programs through a message interface. This feature allows
applications such as transaction management systems to par-
ticipate in decisious regarding secondary storage management
and page replacement.

This paper explores the goals, design and implementation
of Mach and its external memory management facility. The
relationship between memory and communication in Mach is
examined as it relates to overall performance, applicability of
Math to new multiprocessor architectures, and the structure
of application programs.

1. Introduction
In late 1984, we began implementation of an operating sys-

tem called Much. Our goals for Maeh were:

• an object oriented interface with a small number
of basic system objects,

• support for both distributed computing and mul-
tiprocessing,

• portability to a wide range of multiprocessor and
uniprocessor architectures,

• compatibility with Berkeley UNIX, and

• performance comparable to commercial UNIX
offerings.

Most of these early goals have been met. The underlying
Math kernel is based on five interrelated abstractions; operz-
tions on Math objects are invoked through message passing.
Math runs on the majority of workstations and mainframes

This researoh was sponsured by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 4864, monitored by the Space and Naval
Warfare Systems Command under contract N00039-85-C-1034. The views
expressed are those of the authors alone.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 A C M 0 8 9 7 9 1 - 2 4 2 - X / 8 7 / 0 0 1 1 / 0 0 6 3 $1.50
63

within the Department of Computer Science, and supports
projects in distributed computing and parallel processing such
as the Camelot distributed transaction processing system [21],
the Agora parallel speech understanding system [3] and a
parallel implementation of OPS5 [7]. Mach has already been
ported to more than a dozen computer systems including ten
members of the VAX family of uniprocessors and
multiprocessors 1, the IBM RT PC, the SUN 3, the 16-
processor Encore Mul t iMax, and the 26-processor Sequent
Balance 21000. Mach is binary compatible with Berkeley
UNIX 4.3bsd and has been shown to outperform 4.3bsd in
several benchmarks of overall system performance [1].

A key and unusual element in the design of Much is the
notion that communication (in the form of message passing)
and virtual memory can play complementary roles, not only in
the organization of distributed and parallel applications, but in
the implementation of the operating system kernel itself.
Mach uses memory-mapping techniques to make the passing
of large messages on a tightly coupled multiprocessor or
uniprocessor more efficient. In addition, Mach implements
virtual memory by mapping process addresses onto memory
objects which are represented as communication channels and
accessed via messages. The advantages gained by Math in
treating memory and communication as duals in this way
include:

• increased flexibility in memory management
available to user programs,

• a better match between Mach facilities and both
tightly and loosely coupled multiprocessors, and

• improved performance.
In this paper we describe the relationship between memory

and communication in Mach. In particular, we examine the
design and implementation of key Mach memory manage-
ment operations, how Math memory objects can be managed
outside the Mach kernel by application programs and the
overall performance of the Math operating system.

1The VAX 11/750, 11/780, 11/785, 8200, 8300, 8600, 8650, 8800,
MieroVAX I and MIeroVAX H are supported, including support for QBUS,
UNIBUS, MASSBUS and BIBUS devices. Several experimental VAXcn are
also in use including a VAX 11/784 (four processor 780), 11/787 (two
processor 785) and 8204 (four processor 8200).

2. Early Work in Virtual Memory/Message
Integration

The design of Mach owes a great deal to a previous system
developed at CMU called Accent [15]. A central feature of
Accent was the integration of virtual memory and com-
munication. Large amounts of data could be transmitted
between processes in Accent with extremely high perfor-
mance through its use of memory-mapping techniques. This
allowed client and server processes to exchange potentially
huge data objects, such as large files, without concern for the
traditional data copying costs of message passing.

In effect, Accent carried into the domain of message-passing
systems the notion that I/O can be performed through virtual
memory management. It supported a single level store in
which primary memory acted as a cache of secondary storage.
Filesystem data and rtmtLme allocated storage were both im-
plemented as disk-based data objects. Copies of large mes-
sages were managed using shadow paging techniques. Other
systems of the time, such as the IBM System 38 [6] and
Apollo Aegis [13], also used the single level store approach,
but limited its application to the management of Ides.

For the operating system designer, a single level store can be
very attractive. It can simplify the construction of application
programs by allowing programmers to map a file into the
address space of a process. This often encourages the replace-
ment of state-laden libraries of I/O routines (e.g., the UNIX
standard I/O package) with conceptually simpler program-
ming language constructs such as arrays and records. A

single level store can also make programs more efficient. File
data can be read directly into the pages of physical memory
used to implement the virtual address space of a program
rather than into intermediate buffers managed by the operat-
ing system. Because physical memory is used to cache secon-
dary storage, repeated references to the same data can often
be made without corresponding disk transfers.

Accent was successful in demonstrating the utility of com-
bining memory mapping with message passing, At its peak,
Accent ran on over 150 workstations at CMU and served as
the base for a number of experiments in distributed trans-
action processing [20], distributed sensor networks [8], dis-
tributed filesystems [12], and process migration [24].

Accent was unsuccessful, however, in surviving the intro-
duction of new hardware architectures and was never able to
efficiently support the large body of UNIX software used
within the academic community [16]. In addition, from the
point of view of a system designer, the Accent style of
message/memory integration lacked symmetry. Accent al-
lowed eornmunieation to be managed using memory-mapping
techniques, but the notion of a virtual memory object was
highly specialized and the management of such an object was
largely reserved to the operating system itself. Late in the life
of Accent this issue was partially addressed by the implemen-
tation of imaginary segments [24] which could be provided by
user-state processes, but such objects did not have the
flexibility or performance of kernel data objects.

3. T h e M a c h Design
The Mach design grew out of an attempt to adapt Accent

from its role as a network operating system for a uniprocessor
to a new environment that supported multiprocessors and
unlprocessors connected on high speed networks. Its history
led to a design that provided both the message passing
prevalent in Accent and new support for parallel processing
and shared memory.

There are four basic abstractions that Mach inherited
(although substantially changed) from Accent: task, thread,
port and message. Their primary, purpose is to provide con-
trol over program execution, internal program virtual memory
management and interprocess communication. In addition,
Mach provides a fifth abstraction called the memory object
around which secondary storage management is structured. It
is the Math memory object abstraction that most sets it apart
from Accent and that gives Mach the ability to efficiently
manage system services such as network paging and filesys-
tern support outside the kernel.

3.1. Execution Control Primitives
Program execution in Mach is controlled through the use of

tasks and threads. A task is the basic unit of resource alloca-
tion. It includes a paged virtual address space and protected
access to system resources such as processors and com-
munication capabilities. The thread is the basic unit of com-
putation. It is a lightweight process operating within a task;
its only physical atla'ibute is its processing state (e.g., program
counter and registers). All threads within a task share the
address space and capabilities of that task.

3.2. In te r -Process Communication
Inter-process communication (IPC) in Mach is defined in

terms of ports and messages. These constructs provide for
location independence, security and data type tagging.

A port is a communication channel. Logically, a port is a
finite length queue for messages protected by the kernel.
Access to a port is granted by receiving a message containing
a port capability (to either send or receive messages). A port
may have any number of senders but only one receiver.

A message consists of a fixed length header and a variable-
size collection of typed data objects. Messages may contain
port capabilities or imbedded pointers as long as they are
properly typed. A single message may transfer up to the
entire address space of a task.

msL.send(message, option, tlmeout)
Send a message to the destination specified in the message header.

ms[L_receive(message, option, tlmeout)
Receive a message from the pert specified in the message header,
or the default group of ports. "

msg_rpe(message, option, rev size, send tlmeout, receive tlmeout)
s e ~ a ~ s a s e , a ~ . recave ~ reply.

Table 3-1: Primitive Message Operations

The fundamental primitive operations on ports are those to
send and receive messages. These primitives are listed Table

64

3-1. Other than these primitives and a few functions that
return the identity of the calling task or thread, all Mach
facilities are expressed in terms of remote procedure calls on
ports.

The Mach kernel can itself be considered a task with mul-
tiple threads of control The kernel task acts as a server which

in turn implements tasks and threads. The act of creating a
task or thread returns send access rights to a port that

represents the new task or thread and that can be used to

manipulate it. Messages sent to such a port result in opera-

tions being performed on the object it represents. Ports used
in this way can be thought of as though they were capabilities

to objects in an object-oriented system [10]. The act of send-
ing a message (and perhaps receiving a reply) corresponds to
a cross-domain procedure call in a capability-based system
such as Hydra [23] or StarOS [11].

The indirection provided by message passing allows objects
to be arbitrarily placed in the network without regard to pro-
gramming details. For example, a thread can suspend another
thread by sending a suspend message to the port representing
that other thread even if the request is initiated on another
node in a network. It is thus possible to run varying system
configurations on different classes of machines while provid-
ing a consistent interface to all resources. The actual system
running on any particular machine is more a function of its
servers than its kernel.

Tasks allocate ports to represent their own objects or to
perform communication. A task may also deallocate its rights
to a port. When the receive rights to a port are destroyed, that
port is destroyed and tasks holding send rights are notified.
Table 3-2 summarizes the operations available to manage port
rights and control message reception.

port allocate(task, port)
- Allocate a new part.

port deallocate(task, port)
- Deallocat~ the task's rights to thlsport .

port enable(task, port)
- Addthispor t to the task ' sde faul tgroupofpor ts formsg_reeeive .

port disable~task, port}
- lcemove thts por t f rom the task's default group o f porte f o r

msg receive.

port ramsa2es(task, ports, ports count)
- -Return an array o f e~zbled parts on which ~ a g ¢ . ¢ are current{y

queued.

port_status(~sk, port, unrmtrleted, num msgs, backlog, receiver, owner)
tceturn status information aOo~t this port.

port set backlog(task, port, backlog)
l.dmlt the moruber o f nw.saage.s that can be waiting on this port.

Table 3-2: Port Operations

3 . 3 . V i r t u a l M e m o r y M a n a g e m e n t
A task's address space consists of an ordered collection of

valid memory regions. Tasks may allocate memory regions
anywhere within the virtual address space defined by the
underlying hardware 2. The only restriction imposed by Mach

2F~a example, an RT PC task can address a full 4 gigabyteffi of me~nory undex
Mach wb.~ a VAX task ~ limited to at most 2 glgabytes of use~ address space
by the hardware.

is that regions must be aligned on system page boundaries.
The system page size is a boot time parameter and can be any
multiple of the hardware page size.

Mach supports read/write sharing of memory among tasks of
common ancestry through inheritance. When a child task is
created, its address space may share (read/write) or copy any
region of its parent's address space. As in Accent, copy-on-
write sharing is used to efficiently perform virtual memory
copying both during task creation and during message trans-
fer.

Table 3-3 summarizes the full set of virtual memory opera-
tions that can be performed on a task.

vm allocate(task, address, size, anywhere)
- Allocate new virtual memory at the specified address or anywhere

space can be found (filled-zero on demand).

vm deallocate(task, address, size)
- Deallocate a range o/~dd~e~, ~ n g ~ m no longer valid.

vm Inherit(task, address, size, Inheritance)
- Specify how this range should be inherited in child tasks.

vm read(task, address, size, data, data count)
- Reaa ~ contents ofthls tusks address space.

vm write(task, address, count, data, data count)
- Write the contents o f this task'i-address space.

vm copy(task, sre addr, count, dat addr)
- Copy ~range ofmemor~from one address to another.

vm statlstics(task, vm stats)
- Return $taffstic$ about this task's use o f virtual memory.

Table 3-3: Virtual Memory Operations

3 . 4 . E x t e r n a l M e m o r y M a n a g e m e n t
An important part of the Mach strategy was a reworking of

the basic concept of secondary storage. Instead of basing
secondary storage around a kernel-supplied file system (as
was done in Accent and Aegis), Mach treats secondary
storage objects in the same way as other server-provided
resources accessible through message passing. This form of
e x t e r n a l m e m o r y m a n a g e m e n t allows the advantages of a
single level store to be made available to ordinary user-state
servers.

The Mach external memory management interface is based
on the the Math m e m o r y o b j e c t . Like other abstract objects in
the Math environment, a memory object is represented by a
port. Unlike other Mach objects, the memory object is not
provided solely by the Math kernel, but can be created and
serviced by a user-level data manager task.

A memory object is an abstract object representing a collec-
tion of data bytes on which several operations (e .g . , read,
write) are defined. The data manager is entirely responsible
for the initial values of this data and the permanent storage of
the data if necessary. The Mach kernel makes no assumptions
about the purpose of the memory object.

In order to make memory object data available to tasks in
the form of physical memory, the Mach kernel acts as a cache
manager for the contents of the memory object. When a page
fault occurs for which the kernel does not currently have a

65

valid cached resident page, a remote procedure call is made
on the memory object requesting that data. When the cache is
full (i.e., all physical pages contain other valid data), the
kernel must choose some cached page to replace. If the data
in that page was modified while it was in physical memory,
that data must be flushed; again, a remote procedure call is
made on the memory object. Similarly, when all references to
a memory object in all task address maps are relinquished, the
kernel releases the cached pages for that object for use by
other data, cleaning them as necessary.

For historical reasons, the external memory management
interface has been e ~ e s s e d in terms of kernel activity,
namely paging. As a result, the term paging object is often
used to refer to a memory object, and the term pager is
frequently used to describe the data manager task that imple-
ments a memory object.

3.4.1. Detailed Description
The interface between data manager tasks and the Mach

kernel consists of three parts:

• Calls made by an application program to cause a
memory object to be mapped into its address
space. Table 3-4 shows this extension to Table
3-3.

• Calls made by the kernel on the data manager.
Table 3-5 summarizes this interface.

• Calls made by the data manager on the Mach
kernel to control use of its memory object. Table
3-6 summarizes these operations.

As in other Mach interfaces, these calls are implemented
using IPC; the f'u-st argument to each call is the port to which
the request is sent, and represents the object to be affected by
the operation.

pager Inlt(m_emory object, pager request_port, pager name)
- lnitializ~ a memory obfict.

pager data request(memory object, pager request_port, offset, length,
- -desired access) -

Requesff data f rom an external data manager.

pager data write(memory object, offset, data, data count)
- Wr i t e s data bdcTi to a memory object. -

pager_data unlock(memory object, pager_request_port, offset, length,
-destrea access~ -
R equesff that data be unlock.ea~

pager create(old memory object, new memory object,
- new Tequest ~p-_ort, new name) - -

Accept responeibility for-a kernel-created memory object.

Table 3-5: Kernel to Data Manager Interface

When asked to map a memory object for the first time, the
kernel responds by making a pagerini t call on the memory
object. Included in this message axe:

• a pager request port that the data manager may
use to make cache management requests of the
M ach kernel;

• a pager name port that the kernel will use to
identify this memory object to other tasks in the
description returned by vm_regions calls 3.

The Math kernel holds send rights to the memory object port,
and both send and receive rights on the pager request and
pager name ports.

If a memory object is mapped into the address space of more
than one task on different hosts (with independent Maeh
kernels), the data manager will receive an initialization call
from each kernel. For identification purposes, the pager re-
quest port is specified in future operations made by the kernel.

vm allocate wlth~pager(tusk, address, size, anywhere, memory object,
- " r f f se ty . . -

Allocate a regto• o f m~mory at the ap~.cified address. TI~
spec~Cled memory object prokides th~ initial data values and
rece4ves c&:mges.

Table 3-4: Application to Kernel Interface

A memory object may be mapped into the address space of
an application task by exercising the wnallocate_with_pager
primitive, specifying that memory object (a port). A single
memory object may be mapped in more than once, possibly in
different tasks.

The memory region specified by n_ddress in the
vm_allocatejvith_pager call will be mapped to the specified
offset in the memory object. The offset into the memory
object is not required to align on system page boundaries;
however, the Mach kernel will only guarantee consistency
among mappings with similar page alignment.

pager.data..pr.ovided(pager..request. .port, offset, data , data count,
lOCK ValUe}
S ut?.p'lies th~ k~rMl with the data contents o f a region o f a m~mory
object.

pager da~loek(pager_reques t . .por t , offset, length, lock value)
- lcestncts cach~ access to the epecO~ied itata. -

pager flush request(pager r e q u e s t p o r t , offset, length)
- ~orces cached ~ata to I~ mvalidated~

pager clean request(pager r eques tpo r t , offset, length)
- Forces cachc-d Ar~ta to bc ~-~,'itten back to t~e nutmory object.

pager cache(pager reouest noct, may cache object)
- Tells t~e~e.rnel-'whether ~ may-retain cached data from the

memory object eve• after all references to it have bee • remove&
pager data unavailable(pager request_port, offset, size)

-- "Jqo~fies katrnti ~a i ' no data ¢x.ist.v for that reglo• o f a memory
obj~cL

Table 3-6: Data Manager to Kernel Interface

In order to process a cache miss (i.e., page fauk), the kernel
issues apagerdata__request call specifying the range (usually
a single page) desired and the pager request port to which the
data should be renamed.

SThe memory object and request ports cannot be used for this purpose, as
a~ess to those ports allows complete access to the data and management
functions.

66

To clean dirty pages, the kernel performs a
pager_data_write call specifying the location in the memory
object, and including the data to be written. When the data
manager no longer needs the data (e.g., it has been success-
fully written to secondary storage), it is expected to use the
vm._deallocate call to release the cache resources.

These remote procedure calls made by the Mach kernel are
asynchronous; the calls do not have explicit return arguments
and the kernel does not wait for acknowledgement.

A data manager passes data for a memory object to the
kernel by using the pager_data_provided call. This call
specifies the location of the data within the memory object,
and includes the memory object data. It is usually made in
response to a pagerdatarequest call made to the data
manager by the kernel.

Typical data managers will only provide data upon demand
(when processing pagerdatarequest calls); however, ad-
vanced data mangers may provide more data than requested.
The Mach kernel can only handle integral multiples of the
system page size in any one call and partial pages are dis-
carded.

Since the data manager may have external constraints on the
consistency of its memory object, the Mach interface provides
some functions to control caching; these calls are made using
the pager request port provided at initialization time.

A pager.flushrequest call causes the kernel to invalidate its
cached copy of the data in question, writing back modifica-
tions if necessary. A pager_clean_request call asks the kernel
to write back modifications, but allows the kernel to continue
to use the cached data. The kernel uses the pager_data_write
call in response, just as when it initiates a cache replacement.

A data manager may restrict the use of cached data by
issuing a pager_data_lock request, specifying the types of
access (any combination of read, write, and execute) that must
be prevented. For example, a data manager may wish to
temporarily allow read-only access to cached data. The lock-
ing on a page may later be changed as deemed necessary by
the data manager. [To avoid race conditions, the
pager_dataprovided call also includes an initial lock value.]

When a user task requires greater access to cached data than
the data manager has permitted (e.g., a write fault on a page
made read-only by a pager_data lock call), the kernel issues
a pager_data_unlock ca l l . The data manager is expected to
respond by changing the locking on that data when it is able
to do so.

w h e n no references to a memory object remain, and all
modifications have been written back to the memory object,
the kernel deallocates its rights to the three ports associated
with that memory object. The data manager receives notifica-
tion of the destruction of the request and name ports, at which
time it can perform appropriate shutdown.

In order to attain better cache performance, a data manager
may permit the data for a memory object to be cached even
after all application address map references are gone by call-
ing pager_cache. Permitting such caching is in no way bind-
ing; the kernel may choose to relinquish its access to the
memory object ports as it deems necessary for its cache
management. A data manager may later rescind its permis-
sion to cache the memory object.

The Mach kernel itself creates memory objects to provide
backing storage for zero-filled memory created by
vmallocate 4, The kernel allocates a port to represent this
memory object, and passes it to a default pager task, that is
known to the kernel at system initialization time 5, in a
pager_create call. This call is similar in form to pagerinit;
however, it cannot be made on the memory object port itself,
but on a port provided by the default pager.

Since these kernel-created objects have no initial memory,
the defauk pager may not have data to provide in response to
a request. In this case, it must perform a
pager_data_unavailable call to indicate that the page should
be zero-f'tlled 6.

4. Using Memory Objects
This section briefly describes two sample data managers and

their applications. The first is a filesystem with a read/copy-
on-write interface, which uses tl~ minimal subset of the
memory management interface. The second is an excerpt
from the operation of a consistent network shared memory
service.

4.1. A Minimal Fi l e sys t em
An example of a service which minimally uses the Mach

external interface is a f'desystem server which provides read-
whole-file/write-whole-file functionality. Although it is
simple, this style of interface has been used in actual servers
[12, 19] and should be considered a serious example.
An application might use this f'desystem as follows:

char *file data;
Int i, file size;
extern floa[rand(); /* random in [0,I) */

/* Read the file -- ignore errors */
fs_read_file("filename", &file_data, file_size);

/* Randomly change contents */
for (i = 0; i < file size; i++)

file_data [(Int) (file_slze*rand ())]++;

/* Write back some results -- ignore errors */
fs_wrlte_file("filename", file_data, file_size/2);

/* Throw away working copy */
vm_deallocate (task_self 0 , file_data, file_size) ;

Note that the Is_read file call retm'ns new virtual memory as
a result. This memory is copy-on-write in the application's
address space; other applications will consistently see the
original f'tle contents while the random changes are being
made. The application must explicitly store back its changes.

To process the fs_.read.file request, the filesystem server
creates a memory object and maps it into Its own address
space. It then returns that memory region through the IPC
mechanism so that it will be mapped copy-on-write in the

"l'h¢ same mechanism is used for ~hadow objects that contain changes to
copy-on-wrltz data.

s'I'h¢ default pager wiU be described in more detail in a later section.

SWhm shadowing, the data is instead copied from u ~ original

67

client's address space. 7
return t fs read_file(name, data, size)

strlng_~ name;
char **data;
Int *size;

(
port t new_obJ eet;

/* Allocate a memory object (a port), */
/* and accept request */
port allocate (task_self(), &new_object);
portenable (task_self (), new_object) ;

/* Perform file lookup, find current file size,*/
/* record association of file to new_object */

/* Map the memory object into our address space*/
vm allocate wlth_pager(task_selfO, data, *size,

TRUE, new_object, 0);

return (success) ;
}

When the vm_allocate_with_pager call is performed, the ker-
nel will issue a pager_init call. The f'flesystem must receive
this message at some time, and should record the pager re-
quest port contained therein.

When the application first uses a page of the data, it
generates a page fault. To fill that fault, the kernel issues a
pager_data_request for that page. To fulfill this request, the
data manager responds with a pager_data_provided call.
void pager_data_request (memory_object, pacer_request,

offset, size, access)
port_t memory object;
port t pager_request;
vm offset t offset;
vm--slz e__t--si ze;
vm_prot_t access;

(
char *data;

/* Allocate disk buffer */
vm allocate(task_self(), &data, size) ;

/* Lookup memory__object; find actual disk data*/
dlskread (disk address (memory_object, offset) ,

data, size);

/* Return the data with no locking */
pager_data_provided(pager_request, offset, data,

size, VM_PROT_NONE) ;

/* Deallocate disk buffer */
vm__deallocate (taskself (), data, size) ;

)

The filesystem will never receive any pager_data_write or
pagerdata_unlock requests. After the application deal-
locates its memory copy of the file, the filesystem will receive
a port death message for the pager request port. It can then
release its data structures and resources for this file.

void port_death (requestport)
port_t request_port;

(
port_t memory_object;
char *data;
int size;

/* Find the associated memory object */
lookup_byrequest_port (request_port,

&memory_object, &data, &size);

/* Release resources */
port_deallocate (task_self (), memory_object) ;
vm deallocate (task_self O • data, size) ;

)

4.2. Consistent Network Shared M e m o r y E x c e r p t
In this subsection we describe how the memory management

interface might be used to implement a region of shared
memory between two clients on different hosts. Figure 4-1
shows the important message traffic.

In order to use the shared memory region, a client must first
contact a data manager which provides shared memory ser-
vice. In our example, the first client has made a request for a
shared memory region not in use by any other client. The
shared memory server creates a memory object (i.e., allocates
a port) to refer to this region and returns that memory object,
X, to the first client.

The second client, running on a different host, later makes a
request for the same shared memory region s . The shared
memory server finds the memory object, X, and returns it to
the second client.

Each client maps the memory object X into its address
space, using vm_allocate_with_pager. As each kernel
processes that call, it makes a pager init call to the memory
object X. The shared memory server records each use of X,
and the pager request and name ports for those uses. Note
that the Math kernel does not await a reply from the shared
memory server, but does perform the pagerinit call before
allowing the vm_allocate_with_pager call to complete. Also
note that while there is only one memory object port (X),
there are distinct request and name ports for each kernel In
this example" the shared memory server may be located on
either of the clients' hosts, or on yet another host.

In the second f~ame, each client takes a read fault on the
same page of the shared memory region. The same page may
be mapped to different addresses in the two clients. Each
kernel makes a pager_data_request on X, specifying its own
pager request port for X. The shared memory server replies
using the pager data_provided call on the appropriate request
port. Since the request only requires read access, the shared
memory server applies a write lock on the data as it is
returned 9. The shared memory server must also record all of
the uses (i.e. pager request ports) of this page.

In the final frame, one client attempts to write on one of the
pages which both clients have been reading. Since the
writer's kernel already has the data page to satisfy the fault, it

~If the client were to map the memory object into its address space using
vm_allocat~with_pager, the client would not see a copy-on-write vendon of
the data, but would have read/write access to the memory object.

fHow it specifies that xegion (e.g., by name or by use of another capability) is
not important to the example,

~ 'he choice to prevent writing is made here to simplify the example. It may
be more practical to allow the first client write access, and then to revoke it
later,

68

Client A

® ®

f

Mach
Kernel A

shared
Memory
Server Q

I I

Client B I

ii o
Mach I

Kernel B

Q Cllent A calls Server to acquire memory object X
Q Client A calls vm allocate with_pager to mad

object X into--its address space

Q Kernel A calls pager_inlt(X, request_A, name_A)

Q Client A is resumed

G Client B calls Server to acquire memory object X

~ Client B calls vm allocate_with pager to map
object X into its address space

Q Kernel B calls pager init (X, request_B, name_B)

~Client B is resumed

Initialization: Clients map object X into their address spaces

I Client B

I I ~ Shared
,~1 I,":~ I Memory I
~'1 r ,.~ / Server / (D

Mach
Kernel B

Q Client A read faults
Q Kernel A calls pager data request(X, request_A,

offset, page_size, VM--_PROT_READ)

Q Server calls pager data_provided(request A,
offset, data, page_size, VM_PROT_WRITE)

Q Client A is resumed

~Client B read faults

G Kernel B calls pager data request(X, request_B,
offset, page size, VM--_PROT_READ)

Q Server calls pager data provided(request B,
offset, data, paqe_size, VM_PROT_WRITE)

Q Client B is resumed

Clients read the same "shared memory" data page

Client B

Mach I
Kernel B

Q Client A write faults on data being read by B
Q Kernel A calls pager data unlock(X, request A,

offset, page_size, VM--_PROT_WRITE)

G Server calls pager flush request(request_B,
offset, page s~ze) --

Q Server calls pager data lock(request A,
offset, page_s~ze, VMPROT_NONE)--

Q Client A is resumed

One client writes a page being read on another host

Figure 4-1: Consistent Network Shared Memory

69

makes a p a g e r d a t a _ u n l o c k call on X, asking that write per-
mission be granted. Before allowing write permission, the
shared memory server must invalidate all of the other uses of
this page; it does so using the pager_flush_request call. Once
all readers have been invalidated, the server grants write ac-
cess to the first client using p a g e r d a t a l o c k with no lock.

5. Implementation Details
Four basic data structures are used within the Mach kernel to

implement the external memory management interface:
address maps, memory object structures, resident page struc-
tures, and a set o fpageou t queues.

5.1. Address Maps
As in Accent, a task address map is a directory mapping

each of many valid address ranges to a memory object and
offset within that memory object. Additional information
stored for each range includes protection and irdaedtance in-
formation.

To account for sharing through inheritance, Mach address
maps are two-level. A task address space consists of one
top-level address map; instead of references to memory ob-
jects directly, address map entries refer to second-level
sharing maps. Changes in per-task attributes, such as protec-
tion and inheritance, are stored in the top-level map. Changes
to the virtual memory represented by a map entry axe reflected
in the sharing map; for example, a vra write operation into a
region shared by more than one task would take place in the
sharing map referenced by all of their task maps.

It is then the second-level sharing maps that refer to memory
object structures. As an optimization, top-level maps may
contain direct references to memory object structures if no
sharing has taken place.

W h e n a vm_al locatewi th . .pager call is processed, the Math
kernel looks up the given memory object port, attempting to
fred an associated internal memory object structure; if none
exists, a new internal structure is created, and the p a g e r i n i t
call performed. Once a memory object structure is found, it is
inserted into the (top-level) task address map. Note that the
sharing semantics are different than in the inheritance case in
that no sharing map is involved; an attempt to vm_write one
mapping of the memory object would merely replace that
mapping, rather than reflecting it in other tasks that have also
mapped that memory object.

5.2. V i r tua l M e m o r y Objec t S t ruc tu res
A n internal memory object structure is kept for each memory

object used in an address map (or for which the data manager
has advised that caching is permitted). Components of this
structure include the ports used to refer to the memory object,
its size, the number of address map references to the object,
and whether the kernel is permitted to cache the memory
object when no address map references remain.

A list of resident page structures is attached to the object in
order to expediently release the pages associated with an
object when it is destroyed.

5.3. Resident M e m o r y S t ruc tures
Each resident page structure corresponds to a page of physi-

cal memory, and vice versa. The resident page structure
records the memory object and offset into the object, along
with the access permitted to that page by the data manager.
Reference and modification information provided by the
hardware is also saved here. An interface providing fast
resident page lookup by memory object and offset (virtual to
physical table) is implemented as a hash table chained
through the resident page structures.

5.4. Page Replacement Queues
Page replacement uses several pageout queues linked

through the resident page structures. An active queue con-
tains all of the pages currently in use, in least-recently-used
order. An inactive queue is used to hold pages being prepared
for pageout. Pages not caching any data are kept on a free
queue.

5.5. Fault Handling
The Mach page fault handler is the hub of the Mach virtual

memory system. The kernel fault handler is called when the
hardware tries to reference a page for which there no valid
mapping or for which there is a protection violation. The
fault handler has several responsibilities (see Figure 5-1):

• validity and protection - The kernel determines
whether the faulting thread has the desired access
to the address, by performing a lookup in its
task's address map. This lookup also results in a
memory object and offset.

• page lookup - The kernel attempts to find an
entry for a cached page in the virtual to physical
hash table; if the page is not present, the kernel
must request the data from the data manager.

• copy-on-write - Once the page has been located,
the kernel determines if a copy-on-write opera-
tion is needed. If the task desires write permis-
sion and the page has not yet been copied, then a
new page is created as a copy of the original. If
necessary, the kernel also creates a new shadow
object.

• hardware validation - Finally, the kernel informs
the hardware physical map module of the new
virtual to physical mapping.

With the exception of the hardware validation, all of these
steps are implemented in a machine-independent fashion.

6. The Problems of External Memory
Management

6.1. Types of Memory Failures
While the functionality of external memory management can

be a powerful tool in the hands of a careful application, it can
also raise several robustness and security problems if im-
properly used. Some of the problems are:

• Data manager doesn' t return data. Threads may
now become blocked waiting for data supplied by
another user task, which does not respond

70

Victim Task

~rea

m

Mach Kernel

Thread

OOQ

%.,

Kernel Context

Check Validity
Check Protection
Page Lookup

Send Request
Receive Data

Do Copy-On-Write
(if necessary)

Call pmap Module
Resume Thread

IThread

m

m

J

f

J

f

External Pager Task

~ Thread
Rece ive Reques t
Find Data
Send Reply

(with data)

pmap Module $
Validate Hardware Map

Figure 5-1: Fault Handling

71

promptly. The tight interconnection between IPC
and memory management makes it difficult (or
merely expensive) to determine whether the
source of any memory is hostile prior to attempt-
ing to access that memory.

• Data manager fails to free flushed data. A data
manager may wreak havok with the pageout
process by failing to promptly release memory
following pageout of dirty pages.

• Data manager floods the cache. This is rather
similar in nature to a data manager which fails to
free data, but is easier to detect and prevent.

• Data manager changes data. A malicious data
manager may change the value of its data on each
cache refresh. While this is an advantage for
shared memory applications, it is a serious
problem to applications which receive (virtual
copied) data in a message.

• Data manager backs its own data. Deadlock
may occur if a data manager becomes blocked in
a page fault waiting for data which it provides.

Fortunately, there are several techniques that minimize these
potential problems:

• A task may use the vm_regions call to obtain
information about the makeup of its address
space. While this enables a task to avoid dead-
lock on memory it provides, it does not prevent
two or more tasks from deadlocking on memory
provided by the others.

• The use of multiple threads to handle data ro-
quests also aids in deadlock prevention; one
thread within a task may service a data request
for another thread in that task.

• Server tasks which cannot tolerate changing data,
or which must ensure that all of the necessary
data is available, may use a separate thread to
copy that data to safe memory before proceeding.

6.2. Handling Memory Failures
6.2.1. Analogy to Communication Failure

The potential problems associated with external data
managers are strongly analogous to communication failure.
This is actually not surprising since external data managers
are implemented using communlcatiorL Solutions to com-
munication failure problems are applicable to external data
manager failure.

A task's address space becomes populated with memory
objects in two basic ways: explicit allocation (vm_allocate or
vm_allocate_with_pager) or receipt of data in an IPC mes-
sage, In the first case, the source of the data is considered
trusted (either the default pager, or a data manager known to
the requestor). Use of the data received in a message can be
viewed as attempting to receive that data explicitly; the only
differences are the time and the granularity of the failure. The
same options provided for communications failure may be

applied to memory failures: a timeout period may be
specified, after which a memory request is aborted; a
notification message may be sent so that another thread can
perform recovery; wait until the request is filled. Aborting a
memory request after a timeout may involve providing (zero-
Filled) memory backed by the default pager, or termination of
the waiting thread.

Destruction of a memory object by the data manager (i.e.
deallocation of the memory object port) results in failure
modes similar to destruction of a port: notification of those
tasks previously having access to that object, and abortion of
those requests in progress.

6.2.2. The Default Pager
The default pager manages backing storage for memory

objects created by the kernel in any of several ways: explicit
allocation by user tasks (vm_allocate); shadow memory ob-
jects; temporary memory objects for data being paged out.
Unlike other data managers, it is a trusted system component.

When cached data is written back to a data manager, those
pages are temporarily moved to a new memory object which
is destroyed when the data manager relinquishes that memory.
If the data manager does not process and release the data
within an adequate period of time, the data may then be paged
out to the default pager. In this way, the kernel is protected
from starvation by errant data managers.

Because the interface to the default pager is identical to
other external data managers, there are no fundamental as-
sumptions made about the nature of secondary storage. For
example, the default pager may use local disk, network ser-
vices, or some combination of the two. Furthermore, a new
default pager may be debugged as a regular data manager.

6.2.3. Reserved Memory Pool
In order to perform pageout operations, the kernel must send

a message; to send a message, the kernel may need to allocate
additional memory. To avoid deadlock, the kernel must
reserve some amount of memory for itself to do pageout.
Furthermore, data manager tasks may need to allocate
memory in order to manage a pageout request. The kernel
must allow for at least enough memory for the default pager
to process a pagcout, and for performance reasons wants to be
able to provide enough memory for reasonable data manager
tasks.

Many other operating systems have met with this problem.
Often these systems solve the problem by using inside
knowledge of the algorithms used to manage secondary
storage. Unfortunately, the Mach kernel has no such
knowledge; it must rely on a conservative estimate of the
amount of memory required by the default pager to perform a
pageout operation.

7. M u l t i p r o c e s s o r I s s u e s
As faster networks and more loosely connected multiproces-

sots are built, the distinctions between the use of shared
memory and message passing as communication mechanisms
are becoming blurred. There are three major types of multiple
instruction, multiple data stream (MIMD) multiprocessors
which have gained commercial acceptance:

1. u_nlform memory access multiprocessors

72

(UMAs) with fully shared memory and nearly
uniform memory access times for all data;

2. n_on-u_niform memory _access multiprocessors
(NUMAs) with shared memory in which an in-
dividual CPU can access some memory rapidly
and other memory more slowly; and

3. no remote memory _access (NORMAs), message-
based multiproeessors which communicate over
an internal or external network.

UMA systems are the most prevalent in the commercial
marketplace. They are the easiest of the three types to use
because they are the most similar to traditional mul-
fiprogrammed uniprocessors. Shared memory is typically
provided on some kind of shared bus with individual CPUs
accessing the bus through a cache. Cache contents are
synchronized. Write operations by one CPU will either up-
date or flush the appropriate cache blocks visible to other
CPUs. Access times appear nearly uniform, although,
depending on the architecture, cache flushing can result in
non-uniform memory access times for some algorithms. Ex-
amples of UMAs are the Encore MultiMax, Sequent Balance,
VAX 8300 and VAX 8800.

Some of the earliest multiprocessors were examples of
NUMAs, including CMUs C.mmp [23] and CM* [11]. One
problem with UMAs is that they often rely on a shared global
bus that limits the maximum number of processors and
memory units which can be attached. NUMAs typically
avoid this problem of scale by associating a local memory
with each CPU. This memory can be accessed by other
CPUs, but only at a time cost greater than that for local
memory access. The typical CPU-to-CPU interconnect is a
communication switch with several levels of internal switch-
ing nodes. While such switches can be made to accommodate
large numbers of communicating processors, they add the
characteristic NUMA remote memory access delay. The dif-
ficulties in keeping cache contents consistent through such
switches have led most NUMA designers to (1) not provide
cache memory, (2) only allow caching for non-shared
memory or (3) provide instruction-level cache control to be
used by smart compilers. The BBN Butterfly [2] is an ex-
ample of a commercial NUMA. Communication between
CPUs in the Butterfly is by means of a Butterfly Switch, the
complexity of which increases only as the logarithm of the
number of processors. The Butterfly makes no use of cache
memory and remote access times are roughly i0 times greater
than local access times. Because NUMA architectures allow
greater numbers of CPUs to be put in a single machine, many
experimental very large multiprocessors are NUMAs; the
512-processor IBM RP3 is a recent example.

NORMAs are the easiest of the multiprocessors to build and,
in a sense, have existed for as long as local area networking
has been available. The typical NORMA consists of a num-
ber of CPUs interconnected on a high speed bus or network.
Interconnection topology depends on the network technology
used. The Intel HyperCube, for example, uses a multi-level
cube structure with 10MHz Ethemet as the connecting tech-
nology. NORMAs are distinguished from NUMAs in that
they provide no hardware supplied mechanism for remote

memory access. Typically NORMAs can be much larger but
also much more loosely coupled than NUMAs. For example,
on the HyperCube, remote communication times are
measured in the hundreds of microseconds versus five
microseconds for a Butterfly and considerably less than one
microsecond (on average) for a MultiMax.

All three types of multiprocassors can be made to support
message passing or shared memory. Although some
manufacturers [4, 9] have provided hardware support for mes-
sage mechanisms, implementations of message communica-
tion on urtiprocessors and tightly coupled muhiprocessors
typically use internal semaphores and data copy operations. It
is possible to implement copy-on-reference[24] and
read/write sharing [13, 14] of information in a network en-
vironment without explicit hardware support.

Just as Accent demonstrated that copy-on-write could be
used for message passing in a uniprocessor, 13 at Yale
showed that a modified Apollo Aegis kernel could support
applications which required read/write sharing of virtual
memory data structures on a 10MHz token ring [14]. Net-
work read/write sharing is accomplished using software tech-
niques which parallel the hardware management of consistent
caches in a multiprocessor. Cache blocks (in this case physi-
cal memory pages mapped by the memory mapping hardware
of the Apollo workstations) are retrieved and cached as neces-
sary from global memory. Multiple read accesses with no
writers are permitted but only one writer can be allowed to
modify a page of data at a time. An attempt by a reader to
write previously read data causes a memory fault which con-
verts a reader into a writer and invalidates all other page
caches. A subsequent attempt to read by another workstation
will cause the writer to revert to reader status (at least until the
next write is performed). The efficiency of algorithms that
use this form of network shared memory depends on the
extent to which they exhibit read/write locality in their page
references. Kai Li showed that multiple processors which
seldom read and write the same data at the same time can
conveniently use this approach.

Mach provides a collection of operating system primitives
defined such that a programmer has the option of choosing to
use either shared memory or message-based communication
as the basis for the implementation of a multithreaded ap-
plication. Depending on the desired style of the application
and the kind of mulfiprocessor or network available, message
passing can be implemented in terms of memory management
primitives or memory management can be implemented in
terms of communication primitives.

8. Applications
The implications of message/memory duality in Mach ex-

tend beyond the issue of multiprocessor support. There is
evidence that the efficient emulation of operating system en-
vironments such as UNIX can be achieved using the Mach
primitives. Process migration can be supported more effec-
tively by relying on network copy-on-reference of process
data. The interaction of message and memory primitives can
also be an important tool in the design and implementation of
transaction and database management facilities. Work is also

73

being done to allow AI knowledge structures to be built,
maintahted and accessed using these techniques.

8.1. E m u l a t i n g Opera t ing System E n v i r o n m e n t s
During the 1960's the notion of a virtual machine base for

operating systems development became commercially
popular. That popularity faded in the research community
due to the complexities of truly virtualizing a wide range of
devices and hardware functions. Alternative systems such as
UNIX [18] were developed which provided a simple set of
basic abstractions which could be implemented on a range of
architectures.

Today, the concept of an extensible operating system is once
again gaining acceptance -- this time as the solution to the
unconstrained growth of UNIX. During the last 20 years
operating systems and their environments have undergone
dramatic expansion in size, scope and complexity. The Alto
operating system [22], a workstation operating system of the
early 70's, occupied approximately 19K bytes, including code
and data. A typical UNIX implemention on a modem
workstation such as a MieroVAX or SUN can consume over
1.5 megabytes of storage before a single user program is
executed.

This increase in complexity has been fueled by changing
needs and technology which have resulted in UNIX being
modified to provide a staggering number of new and different
mechanisms for managing objects and resources. UNIX has
become a dumping ground for new f~atures and facilities
because key requirements for many of fl,~ese new facilities earl
be found only in kernel state:

• easy access to user process state,

• access to virtual and physical memory objects,

• device access,

• the ability to run several processes which com-
municate through shared memory, and

• efficient context switching and scheduling.
One of the goals of Maeh is to provide an extensible kernel

basis upon which operating system environments such as
UNIX can be built.

Emulation of UNIX-like system environments can be imple-
mented using a variety of techniques. Generic UNIX system
calls can be implemented outside of the Maeh kernel in
libraries and server tasks. For example, UNIX filesystem I/O
can be emulated by a library package that maps open and
close calls to a f'flesystem server task. An open call would
result in the file being mapped into memory. Subsequent read
and write calls would operate directly on virtual memory.
The filesystem server task would operate as an external pager,
managing the virtual memory corresponding to the f'Lle.
Shared process state information can be passed on to child
processes using inherited shared memory.

8.2. Copy-On-Refe rence Task Migra t ion
One of the thorniest problems of task migration is the han-

dling of large address spaces. Edward Zayas showed that
migration could be performed efficiently using copy-on-
reference techniques [24]. The task migration service can

create a memory object to represent a region of the original
task's address space, and map that region into the new task's
address space on the remote host. The kernel managing the
remote host treats page faults on the newly-migrated task by
making paging requests on that memory object, just as it does
for other tasks.

The generality of the external memory management allows
for a wide variety of migration strategies. To reduce faulting
overhead, the migration manager may provide some data in
advance for tasks with predictable access patterns. This pre-
paging can proceed while the newly-migrated task begins to
run. Alternatively, the migration manager can respond to
requests on demand for unpredictable or excessively large
tasks.

8.3. Database M a n a g e m e n t : Camelo t
Camelot is a transaction processing system being imple-

mented on Mach [21]. Camelot provides support for dis-
tributed transactions on user-defined objects. In Camelot,
servers maintain permanent objects in virtual memory backed
by the Camelot disk manager. Camelot uses the write-ahead
logging technique to implement permanent, failure-atomic
transactions. When the disk manager receives a
pager flush_request from the kernel, it verifies that the
proper log records have been written before writing the
specified pages to disk.

Transaction s~cstems reap many benefits from the ability to
manage memory objects:

*Camelot clients can access data easily and
quickly by mapping memory objects into their
virtual address spaces.

• Camelot clients do not have to implement their
own page replacement algorithms.

• Clients need not reserve f'Lxed sized physical
memory buffers. The amount of physical
memory devoted to each client varies dynami-
cally with overall system load.

• Recoverable data can be written directly to per-
manent backing storage without first being writ-
ten to temporary paging storage.

By using an external interface, Camelot can benefit from
these advantages without having to modify the operating sys-
tem to provide specialized support [5]. Maeh manages the
physical memory cache while the Camelot disk manager
guarantees that the write-ahead log protocol is followed.

8.4. AI Knowledge Bases: Agora
A parallel can be made between the potential uses of exter-

nal pagers in transaction and database management and their
use in the implementation of AI knowledge structures. The
speech research group at CMU is currently engaged in a
project to build a distributed speech understanding system
called Agora [3]. This work is being done on Math and
currently makes use beth of Math memory sharing and mes-
sage passing.

Both communication and memory sharing are used to imple-
ment a shared blackboard structure in which hypotheses are

74

placed and evaluated by multiple cooperating agents. The
blackboard physically resides on a multiprocessor host. All
accesses to the blackboard are through a procedural interface
that determines if shared memory or communication must be
used. Agenl use shared memory to directly modify the
blackboard. Message passing is used between loosely
coupled components of the system that collect data, perform
low level signal processing, and display results. The total
system distributes itself among a collection of machines con-
sisting of a VAX 8200 with four CPUs and a number of
MicroVAX IIs and IBM RT PCs interconnected via several
Ethernets and IBM token rings.

9. Performance
One of the key benefits to Mach's external memory manage-

ment is that it allows user provided objects to take advantage
of the same kind of physical memory caching which tradi-
tionally has only been available to kernel-supplied secondary
storage. A user program can, for example, create a memory
object which is used to represent a data array and provide
access to that array to many other programs through a server
message interface. The clients of such a service would only
have to exchange a single message with the server to get
access to the array and, if other clients had already referenced
the data of the array, the physical memory cache of the array
would be directly accessible to the client with no further
message traffic.

A large, well-managed memory cache of this kind can be a
powerful aid to improving the performance of an operating
system. For example, traditional UNIX implementations
manage a cache of recently accessed file data blocks. This
cache, which is normally 10% of physical memory in a
Berkeley U N ~ system, is accessed by user programs through
read and write kernel-to-user and user-to-kernel copy opera-
tions. In contrast, Mach uses the bulk of its physical memory
as a cache of secondary storage data pages. The effect of this
kind of caching on the performance of UNIX and its tradi-
tional suite of application programs is dramatic. Compilation
of a small program cached in memory on a SUN 3/160 run-
ning Mach is twice as fast as when running the more conven-
tional SunOS 3.2 operating system [17]. In a large system
compilation, the total number of I/O operations can be
reduced by a factor of 10 [1].

10. Status
All of the Mach facilities described in this paper have been

implemented -- with the external memory management
facility the most recent and most experimental addition. A
production version of Mach is in use on over 200 worksta-
tions and large timesharing systems within the CMU Depart-
ment of Computer Science. It is also being used on dozens of
machines outside the Department, including systems at BBN,
the IBM Hawthorne Laboratory, the CMU Software En-
gineering Institute and the Los Alamos Research Laboratory.

As of this writing, Mach runs on more than a dozen com-
puter systems including the VAX family of uniprocessors and
multiprocessors, the IBM RT PC, the SUN 3, the 16-
processor Encore MultiMax, and the 26-processor Sequent

Balance 21000. Work is proceeding on implementations for
several other computer systems.

Versions of Mach for all machine types are built from the
same source with machine specific code isolated to machine
dependent directories 10. All VAXen run the same binary
image of the kernel. Mach currently supports the X window
manager and is binary compatible with 4.3bsd UNIX on VAX
architecture machines.

The paging interface component is still under development:

• Default Pager. The default pager is currently
nmning as a separate kernel-state task which uses
the memory object interface. To manage secon-
dary storage, it uses Unix inodes and the Unix
buffer pool. Future plans include eliminating use
of the buffer pool, and instead allowing that
memory to be used for the global virtual memory
cache.

• User Pager Tasks. The implementation already
supports both pagein and pageout requests being
handled by user-state pager tasks; however, cache
consistency primitives are not fully implemented.

• Special Conditions. Currently, initialization and
termination are implemented as described;
however, handling of pager failures is not yet
done.

Mach is being released externally to interested researchers.
The second release of Mach was made in April, 1987. The
next release is scheduled for the end of October, 1987.

References

I. Accetta, M.J., Baron, R.V., Bolosky, W., Golub, D.B., Rashid,
R.F., Tevanian, A., and Young, M.W. Mach: A New Kernel Foun-
dation for UNIX Development. Proceedings of Summer Usenix,
July, 1986.

2. BBN Laboratories. Butterfly Parallel Processor Overview. BBN
Computer Company, Cambridge, MA, June, 1985.

3. Bisiani, R., Alleva, F., Forin, A. and Lamer, R. Agora: A
Distributed System Architecture for Speech Recognition. Inter-
national Conference on Acoustics, Speech and Signal Processing,
IEEE, ApKI, 1986.

4. ELXSI Computer, Inc. SystemProsraramer's Reference Manual.
ELXSI Computer, Inc., 1983.

5. Eppinger, J.L., and Specter, A.Z. Virtual Memory Management
for Recoverable Objects in the TABS Prototype. Tech. Rept. CMU-
CS-85-163, Carnegie-Mellon University, December, 1985.

6. French, R.E., R.W. Collins and L.W. Loen. "System/38 Machine
Storage Management". IBM System138 Technical Developments,
IBM General Systems Division (1978), 63-66.

7. Gupta, A. Parallel Production Systems. Ph.D. Th., Carnegie
Mellon University, May 1986.

l°Sc~ne support for manufacturer specific UNIX featttw~ has been kept in
machine independent f'~les to aecomodate binary compatibility with various
manufacmre.rs' non-4.3bsd UNIX environments.

75

8. Homig, D.A. Automatic Partitioning and Scheduling on a Net-
work of Personal Computers. Ph.D. Th., Department of Computer
Science, Carnegie-Mellon University, November 1984.

9. Kahn, K.C. et aL iMAX: A Multiprecessor Operating System for
an Object-Based Computer. Prec. 8th Symposium on Operating
Systems Principles, ACM, December, 1981, pp. 127-136.

10. Jones, A.K. The Object Model: A Conceptual Tool for Struc-
turing Systems. In Operating Systems: An Advanced Course,
Springer-Vedag, 1978, pp. 7-16.

11. Jones, A.K., Chansler, R.J., Durham, I.E., Sohwans, K., and
Vegdahl, S. StazOS, a Multipmcessor Operating System for the
Support of Task Forces. Proceedings of the 7th Symposium on
Operating System Principles, ACM, December, 1979, pp. 117-129.

I2. Jones, M.B., Rashid, R.F., and Thompson, M.R. Sesame: The
Spice File System. Department of Computer Science, Carnegie-
Mellon University, October, 1982.

13. Leach, P.L., P.H. Levine, B.P. Douros, LA. Hamilton, D.L.
Nelson and B.L. Stumpf. "The Architecture of an Integrated Local
Network". IEEE Journal on Selected Areas in Communications
SAC-l, 5 (November 1983), 842-857.

14. Li, K. and Hudak, P. Memory Coherence in Shared Virtual
Memory Systems. 5th Symposium on Principles of Distributed
Computing, 1986.

15. Rashid, R.F. and Robertson, G. Accent: A Communication
Oriented Network Operating System Kernel. Proceedings of the 8th
Symposium on Operating System Principles, December, 1981, pp.
64-75.

16. Rashid, R.F. From RIG to Accent to Mach: The Evolution of a
Network Operating System. Proceedings of the ACM/IEEE Com-
puter Society 1986 Fall Joint Computer Conference, ACM, Novem-
ber, 1986.

17. Rashid, R.F., Tevanian, A., Young, M.W., Golub, D.B., Baron,
R.V., Black, D.L., Bolosky, W., and Chew, JJ. Machine-
Independent Virtual Memory Management for Paged Uniprecessor
and Multiprocessor Architectures. Proceedings of the 2nd Sym-
posium on Architectural Support for Programming Languages and
Operating Systems, ACM, October, 1987.

18. Ritchie, D.M. and Thompson, K. "The Unix Time-Sharing
System". Communications of the ACM 17, 7 (July 1974), 365-375.

19. Satyanarayanan, M., et.al. The TIC Distributed File System:
Principles and Design. Proc. 10th Symposium on Operating Systems
Principles, AC.M, December, 1985, pp. 35-50.

20. Spector, A.Z., Butcher, J., Danids, D.S., Duchamp, DJ., Ep-
pinger, LL., Fineman, C.E., Heddaya, A., Schwarz, P.M. Support for
Distributed Transactions in the TABS Prototype.. Proceedings of the
4th Symposium on Reliability In Distributed Software and Database
Systems, October, 1984. Also available as Camegie-Mellon Report
CMU-CS-84-132, July 1984..

21. Spector, A.Z. NATO Advanced Study Institute - Computer and
Systems Sciences. Volume : Distributed Transaction Precessing and
the Camelot System. In Distributed Operating Systems: Theory and
Practice, Yakup Paker, Ed., Springer-Verlag, 1987. Also available
as Carnegie-Mellon Report CMU-CS-87-100, January 1987..

22. Thacker, C.P., et al. Alto: A personal computer. In Computer
Structures: Readings and Examples,
McGraw-Hill, 1980. Edited by D. SiewioreL C.G. Bell, and
A. Newell, second edition..

23. Wulf, W.A., Levin, R., and Harbison, S.P.. HydralCJnmp: An
Experimental Computer System. McGraw-Hill, 1981.

24. Zayas, E.R. The Use of Copy-On-Reference in a Process Migra-
tion System. Ph.D. Th., Deparlment of Computer Science, Carnegie-
Mellon University, January 1987.

76

