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Abstract 

The exokemel operating system architecture safely gives untrusted 
software efficient control over hardware and software resources by 
separating management from protection. This paper describes an 
exokemel system that allows specialized applications to achieve 
high performance without sacrificing the performance of unmod- 
ified UNIX programs. It evaluates the exokemel architecture by 
measuring end-to-end application performance on Xok, an exo- 
kernel for Intel x86-based computers, and by comparing Xok’s 
performance to the performance of two widely-used 4.4BSD UNIX 
systems (FreeBSD and OpenBSD). The results show that common 
unmodified UNIX applications can enjoy the benefits of exoker- 
nels: applications either perform comparably on Xok/ExOS and 
the BSD UNIXes, or perform significantly better. In addition, the 
results show that customized applications can benefit substantially 
from control over their resources (e.g., a factor of eight for a Web 
server). This paper also describes insights about the exokemel ap- 
proach gained through building three different exokemel systems, 
and presents novel approaches to resource multiplexing. 

1 Introduction 

In traditional operating systems, only privileged servers and the 
kernel can manage system resources. Untrusted applications are 
restricted to the interfaces and implementations of this privileged 
software. This organization is flawed because application demands 
vary widely. An interface designed to accommodate every appli- 
cation must anticipate all possible needs. The implementation of 
such an interface would need to resolve all tradeoffs and antic- 
ipate all ways the interface could be used. Experience suggests 
that such anticipation is infeasible and that the cost of mistakes is 
high [I, 4,8,11,21,39]. 

The exokernel architecture [1 l] solves this problem by giving 
untrusted applications as much control over resources as possi- 
ble. It does so by dividing responsibilities differently from the way 
conventional systems do. Exokemels separate protection from man- 
agement: they protect resources but delegate management to appli- 
cations. For example, each application manages its own disk-block 
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cache, but the exokemel allows cached pages to be shared securely 
across all applications. Thus, the exokemel protects pages and disk 
blocks, but applications manage them. 

Of course, not all applications need customized resource man- 
agement. Instead of communicating with the exokemel directly, we 
expect most programs to be linked with libraries that hide low- 
level resources behind traditional operating system abstractions, 
However, unlike traditional implementations of these abstractions, 
library implementations are unprivileged and can therefore be mod- 
ified or replaced at will. We refer to these unprivileged librnrics as 
library operating systems, or 1ibOSes. 

Wehopetheexokemel organization will facilitateoperatingsys- 
tern innovation: there are several orders of magnitude more applica- 
tion programmers than OS implementors, and any programmer can 
specialize a IibOS without affecting the rest of the system. LibOSes 
also allow incremental, seIective adoption of new OS features: ap 
plications link with the 1ibOSe.s that provide what they need-new 
OS functionality is effectively distributed with the application bi- 
nary. 

Theexokemel approach raises several questions. Can ambitious 
applications actually achieve significant performance improvements 
on an exokemel? Will traditional applications-for example, unal- 
tered UNIX applications-pay a price in reduced performance? Is 
global performance compromised when no centralized authority 
decides scheduling and multiplexing policies? Does the lack of n 
centralized management policy for shared OS structures lower the 
integrity of the system? 

This paper attempts to answer these questions and thereby cval- 
uate the soundness of the exokemel approach. Our experiments 
are performed on the Xok/ExOS exokemel system. Xok is an cxo- 
kernel for Intel x86-based computers and ExOS is its defnult HbOS, 
Xok/ExOS compiles onitself and runs many unmodified UNIX pro- 
grams (e.g., perl, gee, telnet, and most file utilities). We compare 
Xok/ExOS to two widely-used 4.4BSD UNIX systems running on 
the same hardware, using large, real-world applications, 

ExOS ensures the integrity of many of its abstractions using 
Xok’s support for protected sharing. Some abstractions, howcvcr, 
still use shared global data structures. ExOS cannot guarantee UNIX 
semantics for these abstractions until they are protected from arbl- 
trary writes by other processes. In our measurements, we approxi- 
mate the cost of this protection by inserting system calls before all 
writes to shared global state. 

Our results show that most unmodified UNIX applications per- 
form comparably on Xok/ExOS and on FreeBSD or OpcnBSD. 
Some applications, however, run up to a factor of four faster on 
Xok/ExOS. Experiments with multiple applications running con- 
currently also show that exokemels can offer competitive global 
system performance. 

We also demonstrate that application-level control can signlll- 
cantly improve the performance of applications. For example, WC 
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describe a new high-performance HTTP server, Cheetah, that ac- 
tively exploits exokernel extensibility. Cheetah uses a file system 
and a TCP implementation customized for the properties of HlTP 
traffic. Cheetah performs up to eight times faster than the best UNIX 
HTTP server we measured on the same hardware. 

In addition to evaluating the exokemel approach, this paper 
presents new kernel interfaces that separate protection from man- 
agement. We discuss the disk subsystem, XN, and explain how un- 
privileged applications can define new file systems and how these 
file systems can safely multiplex the same disk at a fine granularity. 
Finally, we summarize what we have leamed from building three 
complete exokemel systems (Xok, Aegis [ 1 l] for DECstations, and 
Glaze [29] for the Fugu multiprocessor). 

The rest of the paper is organized as follows. Section 2 discusses 
related work. Section 3 summarizes the exokemel architecture. Sec- 
tion 4 provides a detailed example of reconciling application control 
with protection by presenting the disk system XN. Section 5 briefly 
overviews Xok/ExOS, the experimental environment for this paper. 
Section 6 reports on the performance of unaltered UNIX applica- 
tions, while Section 7 reports on the performance of aggressively- 
specialized applications, such as the high-performance Cheetah web 
server. Section 8 investigates global performance on an exokemel 
system. Section 9 discusses our experiences with building three 
different exokemel systems. Section 10 concludes. 

2 Related Work 

The exokemel architecture was proposed in [ 111, which described a 
research prototype that performed significantly better than Ultrix on 
microbenchmarks. While the paper provided evidence that the exo- 
kernel approach was promising, it left many questions unanswered. 

There is a large literature on extensible operating systems, start- 
ing with the classic rationales by Lampson and Brinch Hansen [19, 
25,261, Previous approaches to extensibility can be coarsely clas- 
sified in three groups: better microkemels, virtual machines, and 
downloading untrusted code into the kernel. We discuss each in 
turn. 

The principal goal of an exokemel-giving applications con- 
trol-is orthogonal to the question of monolithic versus microkemel 
organization. If applications are restricted to inadequate interfaces, 
it makes little difference whether the implementations reside in 
the kernel or privileged user-level servers [20, 181; in both cases 
applications lack control. For example, it is difficult to change the 
buffer management policy of a shared file server. In many ways, 
servers can be viewed as fixed kernel subsystems that happen to run 
in user space. Whether monolithic or microkemel-based, the goal 
of an exokemel system remains for privileged software to provide 
interfaces that do not limit the ability of unprivileged applications 
to manage their own resources. 

Some newer microkemels push the kernel interface closer to 
the hardware [8,20,36], obtaining better performance and robust- 
ness than previous microkemels and allowing for a greater degree 
of flexibility, since shared monolithic servers can be broken into 
several servers, Techniques to reduce the cost of shared servers 
by improving IPC performance, moving code from servers into 
libraries, mapping read-only shared data structures, and batching 
system calls [2, l&28,30] can also be successfully applied in an 
exokemel system. 

Virtual machines [5,12,17] (VMs) are an OS structure in which 
a privileged virtual machine monitor (VMM) isolates less privileged 
software in emulated copies of the underlying hardware. Unfortu- 
nately, emulation hides information. This can lead to ineffective 
use of hardware resources; for instance, the VMM has no way of 
knowing if a VM no longer needs a particular virtual page. More- 
over, VMs can only share resources through remote communication 
protocols. This prevents VMs from sharing many OS abstractions 
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Figure 1: A simplified exokemel system with two applications, each 
linked with its own 1ibOS and sharing pages through a buffer cache 
registry. 

such as processes or file descriptors with each other. Thus, VMMs 
confine specialized operating systems and associated processes to 
isolated virtual machines, while exokemels let applications use cus- 
tomized 1ibOSes without sacrificing a single view of the machine, 

Downloading code into the kernel is another approach to ex- 
tensibility. In many systems only trusted users can download code, 
either through dynamically-loaded kernel extensions or static con- 
figuration [13, 211. In the SPIN and Vino systems, any user can 
safely download code into the kernel [4,39]. Safe downloading of 
codethrough type-safety [4,37] and software fault-isolation [39,42] 
is complementary to the exokemel approach of separating protec- 
tion from management. Exokemels use downloading of code to let 
the kernel leave decisions to untrusted software [ll]. 

In addition to these structural approaches, much work has been 
done on better OS abstractions that give more control to appli- 
cations, such as user-level networking [40, 411, lottery schedul- 
ing [43], application-controlled virtual memory [22, 271 and file 
systems [6,35]. All of this work is directly applicable to 1ibOSes. 

3 Exokernel Background 

This section briefly summarizes the exokemel architecture. Fig- 
ure 1 shows a simplified exokemel system that is running two appli- 
cations: an unmodified UNIX application linked against the ExOS 
1ibOS and a specialized exokemel application using its own TCP 
and file system libraries. Applications communicate with the kernel 
using low-level physical names (e.g., block numbers); the kernel 
interface is as close to the hardware as possible. LibOSes handle 
higher-level names (e.g., file descriptors) and supply abstractions. 

We briefly describe the exokemel principles, motivated in [ 111. 
These principles illustrate the mechanics of exokemel systems and 
provide important motivation for many design decisions discussed 
later in this paper. In addition, we show how the principles can be 
applied and discuss the general issue of protected sharing. 

3.1 Exokernel principles 
The goal of an exokemel is to give efficient control of resources 
to untrusted applications in a secure, multi-user system. We follow 
these principles to achieve this goal: 

Separate protection and management. Exokemels provide 
primitives at the lowest possible level required for protection- 
ideally, at the level of hardware (disk blocks, context identifiers, 
TLB, etc.). Resource management is restricted to functions neces- 
sary for protection: allocation, revocation, sharing, and the tracking 
of ownership. 
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Expose allocation. Applications allocate resources explicitly. 
The kernel allows specific resources to be requested during alloca- 
tion. 

Expose names. Exokemels use physical names wherever pos- 
sible. Physical names capture useful information and do not require 
potentially costly or race-prone translations from virtual names. 

Expose revocation. Exokemels expose revocation policies to 
applications. They let applications choose which instance of a re- 
source to give up. Each application has control over its set of phys- 
ical resources. 

Expose information. Exokemels expose all system information 
and collect data that applications cannot easily derive locally. For 
example, applications can determine how many hardware network 
buffers there are or which pages cache file blocks. An exokemel 
might also record an approximate least-re&ntly-used ordering of 
all physical pages, something individual applications cannot do 
without global information. 

These principles apply not just to the kernel, but to any compo- 
nent of an exokemel system. Privileged servers should provide an 
interface boiled down to just what is required for protection. 

3.2 Kernel support for protected abstractions 
Many of the resources protected by traditional operating systems 
are themselves high-level abstractions. Files, for instance, consist 
of metadata, disk blocks, and buffer cache pages, all of which are 
guarded by access control on high-level file objects. While exoker- 
nels allow direct access to low-level resources, exokemel systems 
must be able to provide UNIX-like protection, including access con- 
trol on high-level objects where required for security. One of the 
main challenges in designing exokemels is to find kernel interfaces 
that allow such higher-level access control without either mandat- 
ing a particular implementation or hindering application control of 
hardware resources. 

Xok meets this challenge with three design techniques. First, it 
performs access control on all resources in the same manner. Sec- 
ond, Xok provides software abstractions to bind hardware resources 
together. For example, as shown in Figure 1, the Xok buffer cache 
registry binds disk blocks to the memory pages caching them. Ap- 
plications have control over physical pages and disk I/O, but can 
also safely use each other’s cached pages. Xok’s protection mech- 
anism guarantees that a process can only access a cache page if it 
has the same level of access to the corresponding disk block. Third, 
and most general, some of Xok’s abstractions allow applications 
to download code. This is required for abstractions whose protec- 
tion does not map to hardware abstractions. For example, files may 
require valid updates to their modification times. 

The key to these exokemel software abstractions is that they 
neither hinder low-level access to hardware resources nor unduly 
restrict the semantics of the protected abstractions they enable. 
Given these properties, a kernel softwareabstractiondoes not violate 
the exokemel principles. 

Though these software abstractions reside in the kernel on 
Xok, they could also be implemented in trusted user-level servers. 
This microkemel organization would cost many additional context 
switches; these are particularly expensive on the Intel Pentium Pro 
processors on which Xok rum. Furthermore, partitioning function- 
ality in user-level servers tends to be more complex. 

3.3 Protected sharing 
The low-level exokemel interface gives 1ibOSes enough hardware 
control to implement all traditional operating system abstractions. 
Library implementations of abstractions have the advantage that 
they can trust the applications they link with and need not defend 
against malicious use. The flip side, however, is that a libOS cannot 

necessarily trust all other 1ibOSes with access to a particular re- 
source. When 1ibOSes guarantee invariants about their abstractions, 
they must be aware of exactly which resources are involved, what 
other processes have access to those resources, and what level of 
trust they place in those other processes. 

As an example, consider the semantics of the UNIX fork system 
call. It spawns a new process initially identical to the currently run- 
ning one. This involves copying the entire virtual address space of 
the parent process, a task operating systems typically perform lazily 
through copy-on-write to avoid unnecessary page copies. While 
copy-on-write can always be done in a trusted, in-kernel virtunl 
memory system, a 1ibOS must exercise care to avoid compromising 
the semantics of fork when sharing pages with potentially untrusted 
processes. This section details some of the approaches we have used 
to-allow a 1ibOS to maintain invariants when sharing resources with 
other libOSes. 

The exokemel provides four mechanisms 1ibOSes can use to 
maintain invariants in shared abstractions. First, sofhvare regions, 
areas of memory that can only be read or written through system 
calls, provide sub-page protection and fault isolation. Second, the 
exokemel allows on the-fly-creation of hierarchically-named capa- 
bilities and requires that these capabilities be specified explicitly 
on each system call 1311. Thus, a buggy child process acciden- 
tally requesting write access to a page or software region of its 
parent will likely provide the wrong capability and be denied pcr- 
mission. Third, the exokemel provides wakeup predicates: smnll, 
kernel-downloaded functions that wake up processes when arbi- 
trary conditions become true (see Section 5.1 for details), Wakeup 

.predicates can ensure that a buggy or crashed process will not hang 
a correctly behaved one. Fourth, the exokemel provides robust crit- 
ical sections: inexpensive critical sections that are implemented by 
disabling software interrupts [33. Using critical sections instead of 
locks eliminates the need to trust other processes. 

Three levels of trust determine what optimizations can be used 
by the implementation of a shared abstraction. 

Optimize for the common case: Mutual trust. It is often the 
case that applications sharing resources place a considerable amount 
of trust in each other. For instance, any two UNIX programs run by 
the same user can arbitrarily modify each others’ memory through 
the debugger system call, ptrace. When two exokemcl processes 
can write each others’ memory, their 1ibOSes can clearly trust each 
other not to be malicious. This reduces the problem of guaranteeing 
invariants from one of security to one of fault-isolation, and consc- 
quently allows 1ibOS code to resemble that of monolithic kernels 
implementing the same abstraction. 

Unidirectional trust. Another common scenario occurs when 
two processes share resources and one trusts the other, but the trust 
is not mutual. Network servers often follow this organization: a prlv- 
ileged process accepts network connections, forks, and then drops 
privileges to perform actions on behalf of a particular user, Mnny 
abstractions implemented for mutual trust can also function under 
unidirectional trust with only slight modification. In the example of 
copy-on-write, for instance, the trusted parent process must retain 
exclusive control of shared pages and its own page tables, prevent- 
ing a child from child making copied pages writable in the parent. 
While this requires more page faults in the parent, it does not in- 
crease the number of page copies or seriously complicate the code, 

Defensive programming for mutual distrust. Finally, there 
aresituations wheremutually distrustful processes must share high- 
level abstractions with each other. For instance, two unrelated pro- 
cesses may wish to communicate over a UNIX domain socket, and 
neither may have any trust in the other. For OS abstractions that can 
be shared by mutually distrustful processes, 1ibOSes must include 
defensive implementations that give reasonable interpretations to 
all possible actions by the foreign process (for instance a socket 
write larger than the buffer can be interpreted as an end of file), 
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Fortunately, sharing with mutual distrust occurs very infre 
quently for many abstractions. Many types of sharing occur only 
between child and parent processes, where mutual or unidirectional 
trust almost always holds. Where mutual distrust does occur, defen- 
sive sanity checks are often not on the critical path for performance. 
In the remaining cases, as is the case for disk files, we have carefully 
crafted kernel software abstractions to help libOSes maintain the 
necessary invariants. 

4 Multiplexing Stable Storage 

An exokemel must provide a means to safely multiplex disks among 
multiple library file systems (libFSe.9. Each IibOS contains one or 
more IibFSes. Multiple 1ibFSes can be used to share the same files 
with different semantics. In addition to accessing existing files, 
1ibFSes can define new on-disk file types with arbitrary metadata 
formats. An exokemel must give 1ibFSes as much control over file 
management as possible while still protecting files from unautho- 
rized access. It therefore cannot rely on simpleminded solutions 
like partitioning to multiplex a disk: each file would require its own 
partition. 

To allow 1ibFSes to perform their own file management, an 
exokemel stable storage system must satisfy four requirements. 
First, creating new file formats should be simple and lightweight. 
It should not require any special privilege. Second, the protection 
substrate should allow multiple 1ibFSes to safely share files at the 
raw diskblock and metadatalevel. Third, thestoragesystemmust be 
efficient-as close to raw hdrdware performance as possible. Fourth, 
the storage system should facilitate cache sharing among libFSes, 
and allow them to easily address problems of cache coherence, 
security, and concurrency. 

This section describes how Xok multiplexes stable storage, both 
to show how we address these problems and to provide a concrete 
example of the exokemel principles in practice. First, we describe 
XN, Xok’s extensible, low-level in-kernel stable storage system. 
We also describe the general interface between XN and libFSes 
and present one particular libFS, C-EFS, the co-locating fast file 
system [ISI. 

4.1 Overview of XN 

Designing a flexible exokemel stable storage system has proven 
difficult: XN is our fourth design. This section provides an overview 
of UDFs, the cornerstone of XN; the following sections describe 
some earlier approaches (and why they failed), and aspects of XN 
in greater depth. 

XN provides access to stable storage at the level of disk blocks, 
exporting a buffer cache registry (Section 4.3.3) as well as free 
maps and other on-disk structures. The main purpose of XN is to 
determine the access rights of a given principal to a given disk 
block as efficiently as possible. XN must prevent a malicious user 
from claiming another user’s disk blocks as part of her own files. 
On a conventional OS, this task is easy, since the kernel itself 
knows the file’s metadata format. On an exokemel, where files have 
application-defined metadata layouts, the task is more difficult. 

XN’s novel solution employs UDFs (untrusted deterministic 
functions). UDFs are metadata translation functions specific to each 
file type. XN uses UDFs to analyze metadata and translate it into 
a simple form the kernel understands. A libFS developer can in- 
stall UDFs to introduce new on-disk metadata formats. The re- 
stricted language in which UDFs are specified ensures that they are 
deterministic-their output depends only on their input (the meta- 
data itself). UDFs allow the kernel to safely and efficiently handle 
any metadata layout without understanding the layout itself. 

UDFs are stored on disk in structures called templates. Each 
template corresponds to a particular metadata format; for exam- 
ple, a UNIX file system would have templates for data blocks, 
inode blocks, inodes, indirect blocks, etc. Each template T has one 
UDF: owns-udfrr, and two untrusted but potentially nondeterminis- 
tk fUlCdOILS: ad-UfT and size-ufT. All three functions are specified 
in the same language but only OwnS-dfT must be deterministic. 
The other two can have access to, for example, the time of day. The 
limited language used to write these functions is a pseudo-RISC 
assembly language, checked by the kernel to ensure determinacy. 
Once a template is specified, it cannot be changed. 

For a piece of metadata m of template type T, ownsudfrr (m) 
returns the set of blocks which m points to and their respective 
template types. UDF determinism guarantees that owns-udf will 
always compute the same output for a given input: XN cannot 
be spoofed by owns-udJ The set of blocks owns-udf returns is 
represented as a set of tuples. Each tuple constitutes a range: a 
block address that specifies the start of the range, the number of 
blocks in the range, and the template identifier for the blocks in 
the range. Because owned sets can be large, XN allows IibFSes 
to partition metadata blocks into disjoint pieces such that each set 
returned is (typically) a single tuple. 

For example, say a libFS wants to allocate a disk block b by 
placing a pointer to it in a metadata structure, m. The IibFS will 
call XN, passing it m, b, and the proposed modification to m (spec- 
ified as a list of bytes to write into m). To enforce protection, 
XN needs to know that the 1ibFS’s proposed modification actually 
does what it says it does-that is, allocates b in m. Thus, XN mns 
OwnS-UdfT (m> ; makes the proposed modification on m’, a copy of 
m; and runs own.vudfT Cm’). It then verifies that the new result is 
equal the old result plus b. 

The ucf-uf function implements template-specific access control 
and semantics; its input is a piece of metadata, a proposed modifi- 
cation to that metadata, and set of credentials (e.g., capabilities). Its 
output is a Boolean value approving or disapproving of the mod- 
ification. XN runs the proper acf-uf function before any metadata 
modification. acl-ufi can implement access control lists, as well 
as providing certain other guarantees; for example, an ucl-uf could 
ensure that inode modification times are kept current by rejecting 
any metadata changes that do not update them. 

The size-uf function simply returns the size of a data structure 
in bytes. 

4.2 XN: Problem and history 

The most difficult requirement for XN is efficiently determining the 
access rights of a given principal to a given disk block. We discuss 
the successive approaches that we have pursued. 

Disk-block-level multiplexing. One approach is to associate 
with each block or extent a capability (or access control list) that 
guards it. Unfortunately, if the capability is spatially separated from 
the disk block (e.g., stored separately in a table), accessing a block 
can require two disk accesses (one to fetch the capability and one 
to fetch the block). While caching can mitigate this problem to a 
degree, we are nervous about its overhead on disk-intensive work- 
loads. An alternative approach is to co-locate capabilities with disk 
blocks by placing them immediately before a disk block’s data [26]. 
Unfortunately, on common hardware, reserving space for a capa- 
bility would prevent blocks from being multiples of the page size, 
adding overhead and complexity to disk operations. 

Self-descriptive metadata. Our tirst serious attempt at efficient 
disk multiplexing provided a means for each instance of metadata 
to describe itself. For example, a disk block would start with some 
number of bytes of application-specific data and then say “the next 
ten integers are disk block pointers.” The complexity of space- 
efficient self-description caused us to limit what metadata could be 
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described. We discovered that this approach both caused unaicept- 
able amounts of space overhead and required excessive effort to 
modify existing file system code, because it was difficult to shoe- 
horn existing file system data structures into a universal format. 

Template-based description. Self-description and its problems 
were eliminated by the insight that each file system is built from 
only a handful of different on-disk data structures, each of which 
can be considered a type. Since the number of types is small, it 
is feasible to describe each type only once per file system-rather 
than once per instance of a type-using a template. 

Originally, templates were written in a declarative description 
language (similar to that used in self-descriptive metadata) rather 
than UDFs. This system was simple and better than self-descriptive 
metadata, but still exhibited what we have come to appreciate as 
an indication that applications do not have enough control: the 
system made too many tradeoffs. We had to make a myriad of 
decisions about which base types were available and how they were 
represented (how large disk block pointers could be, how the type 
layout could change, how extents were specified). Given the variety 
of on-disk data structures described in the file system literature, it 
seems unlikely that any fixed set of components will evkr be enough 
to describe all useful metadata. 

‘Our current solution uses templates, but trades the declarative 
description language for a more expressive, interpreted language 
UDFs. This lets IibFSes track their own access rights without XN 
understanding how they do so; XN merely verifies that 1ibFSes track 
block ownership correctly. 

4.3 XN: Design and implementation 

We first describe the requirements for XN and then present the 
design. 

4.3.1 Requirements and approach 

In our experience so far, the following requirements have been 
sufficient to reconcile application control with protected sharing. 

1. To prevent unauthorized access, every operation on disk data 
must be guarded. For speed, XN uses secure bindings [ll] 
to move access checks to bind time rather than checking at 
every access. For example, the permission to read a cached 
disk block is checked when the page is inserted into the page 
table of the IibFS’s environment, rather than on every access. 

2. XN must be able to determine unambiguously what access 
rights a principal has to a given disk block. For speed, it uses 
the UDF mechanism to protect disk blocks using the IibFS’s 
own metadata rather than guarding each block individually. 

3. XN must guarantee that disk updates are ordered such that 
a crash wilI not incorrectly grant a 1ibFS access to data it 
either has freed or has not allocated. This requirement means 
that metadata that is persistent across crashes cannot be writ- 
ten when it contains pointers to uninitialized metadata, and 
that reallocation of a freed block must be delayed until all 
persistent pointers to it have been removed. 

While isolation allows separate IibFSes to coexist safely, pro- 
tected sharing of file system state by mutually distrustful libFSes 
requires three additional features: 

1. Coherent caching of disk blocks. Distributed, per-application 
disk block caches create a consistency problem: if two appli- 
cations obliviously cache the same disk block in two differ- 
ent physical pages, then modifications will not be shared. XN 
solves this problem with an in-kernel, system-wide, protected 

2. 

3. 

. 

cache registry that maps cached disk blocks to the physical 
pages holding them. 

Atomic metadata updates. Many file system updates have 
multiple steps. To ensure that shared state always ends up 
in a consistent and correct state, IibFSes can lock cache reg- 
istry entries. (Future work will explore optimistic concur- 
rency control based on versioning.) 

Well-formed updates. File abstractions above the XN intcr- 
face may require that metadata modifications satisfy invari- 
ants (e.g., that link counts in inodes match the number of as- 
sociated directory entries). UDFs allow XN to guarantee such 
invariants in a file-system-specific manner, allowing mutually 
distrustful applications to safely share metadata. 

XN controls only what is necessary to enforce these protection 
rules. All other abilities-40 initiation, disk block layout and allo- 
cation policies, recovery semantics, and coflsistency guarantees- 
are left to untrusted 1ibFSes. 

4.3.2 Ordered disk writes 

Another difficulty XN must face is guaranteeing the rules Ganger 
and Patt [16] give for achieving strict file system integrity across 
crashes: First, never reuse an on-disk resource before nullifying all 
previous pointers to it. Second, never create persistent pointers to 
structures before they are initialized. Third, when moving an on. 
disk resource, never reset the old pointer in persistent storage bcforc 
the new one has been set. 

The first two rules are required for global system integrity-and 
thus must be enforced by XN-while a file system violating the 
third rule will only affect itself. 

The rules are simple but diftictilt to enforce efficiently: a naive 
implementation will incur frequent costly synchronous disk writes, 
XN allows 1ibFSes to address this by enforcing the rules without 
legislating how to follow them. In particular, IibFSes can choose 
any operation order which satisfies the constraints, 

The first rule is implemented by deferring a block’s deallocation 
until all on-disk pointers to that block have been deleted; a reference 
count performed at crash recovery time helps IibFSes implement the 
third rule. 

The second rule is the hardest of the three. To implement it, XN 
keeps track of tainted blocks. Any block is considered tainted if it 
points either to an uninitialized block or to a tainted block. LibFScs 
must not be allowed to write a tainted block to disk. However, two 
exceptions allow XN to enforce the general rule more efficiently: 

First, XN allows entire file systems to be marked “temporary” 
(i.e., not persistent across reboots). Since these file systems are not 
persistent, they are not required to adhere to any of the integrity 
rules. This technique allows memory-based file systems to be im- 
plemented with no loss of efficiency. 

Thesecondexceptionisbasedontheobservationthatunattachcd 
subtrees-trees whose root is not reachable from any persistent 
root-will not be preserved across reboots and thus, like tempo- 
rary trees, are free of any ordering constraints. Thus, XN does not 
track tainted blocks in an unreachable tree until it is connected to a 
persistent root. 

4.3.3 The buffer cache registry 

Finally, we discuss the XN buffer cache registry, which allows pro- 
tected sharing of disk blocks among 1ibFSes. The registry tracks the 
mapping of cached disk blocks and their metadata to physical pages 
(and vice versa). Unlike traditional buffer caches, it only records 
the mapping, not the disk blocks themselves. The disk blocks are 
stored in application-managed physical-memory pages. The registry 
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tracks both the mapping and its state (dirty, out of core, uninitialized, 
locked). To allow IibFSes to see which disk blocks are cached, the 
buffer cache registry is mapped read-only into application space. 

Access control is performed when a IibFS attempts to map a 
physical page containing a disk block into its address space, rather 
than when that block is requested from disk. That is, registry entries 
can be inserted without requiring that the object they describe be 
in memory. Blocks can also be installed in the registry before their 
template or parent is known. As a result, 1ibFSes have significant 
freedom to prefetch. 

Registry entries are installed in two ways. First, an application 
that has write access to a block can directly install a mapping to it 
into the registry. Second, applications that do not have write access 
to a block can indirectly install an entry for it by performing a “read 
and insert,” which tells the kernel to read a disk block, associate it 
with an application-provided physical page, set the protection of that 
page page appropriately, and insert this mapping into the registry. 
This latter mechanism is used to prevent applications that do not 
have permission to write a block from modifying it by installing a 
bogus in-core copy. 

XN does not replace physical pages from theregistry (except for 
those freed by applications), allowing applications to determine the 
most appropriate caching policy. Because applications also manage 
virtual memory paging, the partitioning of disk cache and virtual 

’ 
memory backing store is under application control. To simplify 
the application’s task and because it is inexpensive to provide, XN 
maintains an LRU list of unused but valid buffers. By default, when 
LibOSes need pages and none are free, they recycle the oldest buffer 
on this LRU list. 

XN allows any process to write “unowned” dirty blocks to disk 
(i.e., blocks not associated with a running process), even if that 
process does not have write permission for the dirty blocks. This 
allows the construction of daemons that asynchronously write dirty 
blocks. LibFSes do not have to trust daemons with write access 
to their files, only to flush the blocks. This ability has three bene- 
fits. First, the contents of the registry can be safely retained across 
process invocations rather than having to be brought in and paged 
out on creation and exit. Second, this design simplifies the imple- 
mentations of libFSes, since a 1ibFS can rely on a daemon of its 
choice to flush dirty blocks even in difficult situations (e.g., if the 
application containing the 1ibFS is swapped out). Third, this design 
allows different write-back policies. 

4.4 XN usage 

To illustrate how XN is used, we sketch how a 1ibFS can implement 
common file system operations. These two setup operations are 
used to install a libFS: 

‘Qpe creation. The 1ibFS describes its types by storing tem- 
plates, described above in Section 4.1, into a type catalogue. Each 
template is identified by a unique string (e.g., “FFS Inode”). Once 
installed, types are persistent across reboots. 

LibFS persistence. To ensure that 1ibFS data is persistent across 
reboots, a 1ibFS can register the root of its tree in XN’s root cat- 
alogue. A root entry consists of a disk extent and corresponding 
template type, identified by a unique string (e.g., “mylibFS”). 

After a crash, XN uses these roots to garbage-collect the disk 
by reconstructing the free map. It does so by logically traversing 
all roots and all blocks reachable from them: reachable blocks are 
allocated, non-reachable blocks are not. If rebuilding the free map 
after a crash needs to be fast, this step can be eliminated by ordering 
writes to the free map. 

After initialization, the new 1ibFS can use XN. We describe a 
simplified version of the most common operations. 

Startup. To start using XN, a libFS loads its root(s) and any 
types it needs from the root catalogue into the buffer cache registry. 

Usually both will already be cached. 
Read. Reading a block from disk is a two-stage process, where 

the stages can be combined or separated. First, the 1ibFS creates 
entries in the registry by passing block addresses for the requested 
disk blocks and the metadata blocks controlling them (their par- 
en&). The parents must already exist in the registry-1ibFSes are 
responsible for loading them. XN uses owns-udf to determine if 
the requested blocks are controlled by the supplied metadata blocks 
and, if so, installs registry entries. 

In the second stage, the 1ibFS initiates a read request, optionally 
supplying pages to place the data in. Access control through acl-uf 
is performed at the parent (e.g., if the data loaded is a bare disk 
block), at the child (e.g., if the data is an inode), or both. 

A 1ibFS can load any block in its tree by traversing from its root 
entry, or optionally by starting from any intermediate node cached 
in the registry. Note that XN specifically disallows metadata blocks 
from being mapped read/write. 

To speculatively read a block before its parent is known, a 1ibFS 
can issue a raw read command. If the block is not in the registry, it 
will be marked as “unknown type” and a disk request initiated. The 
block cannot be used until after it is bound to a parent by the first 
stage of the read process, which will determine its type and allow 
access control to be performed. 

Allocate. A libFS selects blocks to allocate by reading XN’s 
map of free blocks, allowing 1ibFSes to control file layout and 
grouping. Free blocks are allocated to a given metadata node by 
calling XN with the metadata node, the blocks to allocate, and the 
proposed modification to the metadata node. XN checks that the 
requested blocks are free, runs the appropriate a&uf to see if the 
1ibFS has permission to allocate, and runs owns-u& as described in 
Section 4.1, to see that the correct block is being allocated. If these 
checks all succeed, the metadata is changed, the allocated blocks 
are removed from the free list, and any allocated metadata blocks 
are marked tainted (see Section 4.3.2). 

Write. A libFS writes dirty blocks to disk by passing the blocks 
to write to XN. If the blocks are not in memory, or they have been 
pinned in memory by some other application, the writeis prevented. 
The write also fails if any of the blocks are tainted and reachable 
from a persistent root. Otherwise, the write succeeds. If the block 
was previously tainted and now is not (either by eliminating pointers 
to uninitialized metadata or by becoming initialized itself), XN 
modifies its state and removes it from the tainted list. 

Since applications control what is fetched and what is paged out 
when (and in what order), they can control many disk management 
policies and can enforce strong stability guarantees. 

Deallocate. XN uses UDFs to check deallocate operations anal- 
ogously to allocate operations. If there are no on-disk pointers to a 
deallocated disk block, XN places it on the free list. Otherwise, XN 
enqueues the block on a “will free” list until the block’s reference 
count is zero. Reference counts are decremented when a parent that 
had an on-disk pointer to the block deletes that pointer via a write. 

4.5 C-FFS: a library tie system 

This subsection briefly describes C-FFS (co-locating fast file sys- 
tem [151)-a UNIX-like library file system we built-with special 
reference to additional protection guarantees it provides. 

XN provides the basic protection guarantees needed for file 
system integrity, but real-world file systems often require other, file- 
system-specific invariants. For instance, UNIX file systems must 
ensure the uniqueness of file names within a directory. This type of 
guarantee can be provided in any number of ways: in the kernel, in a 
server, or, in some cases, by simple defensive programming. C-FFS 
currently downloads methods into the kernel to check its invariants. 
We are currently developing a system similar to UDFs that can be 

57 



used to enforce type-specific invariants in an efficient, extensible 
way. 

Our experience with C-FFS shows.that, even with the strongest 
desired guarantees, a protected interface can still provide significant 
flexibility to unprivileged software, and that the exokemel apIjroach 
can deal as readily with high-level protection requirements as it can 
with those closer to hardware. 

C-FFS makes four main additions to XN’s protection mecha- 
nisms: 

1. Access control: it maps the UNIX representation and seman- 
tics of access control (uids and gids, etc.) to those of exokemel 
capabilities. 

2. Well-formed updates: C-FFS guarantees UNIXspecific file 
semantics: for example, that directories contain legal, aligned 
file names. 

3. Atomicity: C-FFS performs locking to ensure that its data is 
always recoverable and disk writes only occur when metadata 
is internally consistent. 

4. Implicit updates: C-FFS ensures that certain state transitions 
are implicit on certain actions. Some examples are that mod- 
ification times are updated when file data are changed, and 
that renaming or deleting a file updates the name cache. 

It is not difficult to implement UNIX protection without sig- 
nificantly degrading application power. C-FFS protection is im- 
plemented mainly by a small number of if-statements rather than 
by procedures that limit flexibility. The most intricate operation- 
ensuring that files in a directory have unique names-is less than 
100 lines of code that scans through a linked list of cached directory 
blocks to ensure name uniqueness. 

4.6 Future work 

Stable storage is the most challenging resource we have multi- 
plexed. Future work will focus on two areas. First, we plan to im- 
plement a range of file systems (log-structured file systems, RAID, 
and memory-based file systems), thus testing if the XN interface 
is powerful enough to support concurrent use by radically different 
file systems. Second we will investigate using lightweight protected 
methods like UDFs to implement the simple protection checks re- 
quired by higher-level abstractions. 

5 Overview of XoklExOS 

For the experiments in this paper, we use Xok/ExOS. This section 
describes both Xok and ExOS. 

5.1 Xok 
Xok safely multiplexes the physical resources on Intel x86-based 
computers. Xok performs this task in a manner similar to the Aegis 
exokemel, which runs on MIPS-based DECstations [ll]. The CPU 
is multiplexed by dividing time into round-robin-scheduled slices 
with explicit notification of the beginning and the end df a time 
slice. Environments provide the hardware-specific state needed to 
run a process (e.g., an exception stack) and to respond to any event 
occurring during process execution (e.g., interrupts and excep tions). 
The network is multiplexed with dynamic packet filters [lo]. This 
subsection briefly describes the differences between Aegis and Xok. 

Physical memory. Unlike the MIPS architecture, the x86 archi- 
tecture defines the page-table structure. Since x86 TLB refills are 
handled in hardware, this structure cannot be overridden by appli- 
cations. Additionally, since the hardware does not verify that the 

physical page of a translation can be mapped by a process, applica4 
tions are prevented from directly modifying the page table and must 
instead use system calls. Although these restrictions make Xok less 
extensible than Aegis, they simplify the implementation of 1ibOSes 
(see Section 9) with only a small reduction in application flexibility. 

Like Aegis, Xok allows efficient and powerful virtual memory 
abstractions to be built at the application level. It does so by exposing 
the capabilities of the hardware (e.g., all MMU protection bits) 
and exposing many kernel data structures (e.g., free lists, inverse 
page mappings). Xok’s low-level interface means that paging IS 
handled by applications. As such, it can be done from disk, ncross 
the network, or by data regeneration. Additionally, applications 
can readily perform per-page transformations such as compression, 
verification of contents using digital signatures (to allow untrusted 
nodes in a network to cache pages), or encryption. 

Wakeup predicates. Applications often want to sleep until a 
cbndition is true. Unfortunately, it may be difficult for an applica- 
tion to express this condition to the kernel. This problem is more 
prevalent on exokemels because the bulk of OS functionality resides 
in the application. 

To solvethis problem, Xokprovides applications with the ability 
to inject wakeup predicates into the kernel. Wakeup predicates arc 
boolean expressions used by applications to sleep until the state of 
the system satisfies some condition; they are evaluated by the kernel 
when an environment is about to be scheduled. The applbatlon is 
not scheduled if the predicate does not hold. 

Predicate evaluation is efficient. Like dynamid packet filters, 
Xok compiles predicates on-the-fly to executable code. The slgnlf- 
icant overhead of an address space context switch is eliminated by 
evaluating the predicates in the exokemel and pre-translating all 
predicate virtual addresses to their associated physical addresses, 
Whenavirtualpagereferencedinapredicateisunmapbed, thephyso 
ical page is not marked as free until a new predicate is downloaded 
or until the application exits. Furthermore, the implementation of 
wakeup predicates is simple (fewer than 200 lines of commented 
code) because careful language design (no loops and easy to under- 
stand operations) allows predicates to be easily controlled. 

Predicates are simple but powerful. Coupled with Xok’s ex- 
posure of data structures, they have provided us with a robust 
wakeup facility-none of the new uses of wakeup predicates re- 
quired changes to Xok. For example, to wait for a disk block to 
be paged in, a wakeup predicate can bind to the block’s state and 
wake up when it changes from “in transit” to “resident.” To bound 
the amount of time a predicate sleeps, it can compare against the 
system clock. The composition of multiple predicates allows atomb 
checking of disjoint data structures. 

Access control Unlike Aegis, Xok performs access control 
through hierarchically-named capabilities [31]; despite the name, 
these capabilities more cIosely resembIe a generalized form of 
UNIX user and group ID than traditional capabilities [9]. All Xok 
calls require explicit credentials. We believe that the combination 
of an exokemel interface, hierarchically-named capabilities, and 
explicit credentials will simplify the implementation of secure ap- 
plications, as we hope to demonstrate in future work. 

5.2 ExOS 1.0 
ExOS is a 1ibOS that supports most of the abstractions found ln 
4.4BSD. It runs many unmodified UNIX applications, including all 
of the applications that are needed to build the complete system 
(kernel, ExOS, and applications) on itself. It also runs most shells, 
file utiIities (WC, grep, Is, vi, etc.), and many networking applica- 
tions (telnetd, ftp, etc.). The most salient missing functions are full 
paging, process swapping, process groups, and a windowing sys- 
tem. There is no fundamental reason why these are not supported; 
we simply have not yet had the time to implement or port them. On 
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Aegis, for instance, ExOS supported full paging to disk and over 
the network. 

The primary goals of ExOS are simplicity and flexibility. To al- 
low applications to override any implementation feature, we made 
the system entirely library based, rather than place objects such as 
process tables in non-customizable servers. As a result, customiza- 
tion of the resulting system is limited only by an application’s un- 
derstanding of the system interfaces and by the protection enforced 
by shared abstractions-any ExOS functionality can be replaced by 
application-specific code. 

The two primary caveats of the current implementation are that 
the system is research, not production quality and that it uses shared 
global state for some abstractions. These limitations are not funda- 
mental and we do not expect removing either caveat to have a 
significant impact on our results. To compensate for the effects of 
shared state on performance, measurements in Sections 6 and 8 
include the cost of inserting system calls before all writes to shared 
state. This represents the overhead of invoking the kernel to check 
writes to shared state. 

52.1 Implementing UNIX abstractions on Xok 
To implement UNIX abstractions in a library, we partitioned most 
of the UNIX kernel state and made it private to each process. The 
remainder is shared. Most critical shared state (inode table, file sys- 
tem metadata, page tables, buffer cache, process table, and pipes), is 
protected using Xok’s protections mechanisms. However, for some 
shared state (the process map, file descriptor table, sockets, ‘ITYs, 
mount table, and system V shared memory table), ExOS uses shared 
memory, Using software regions, we plan to make this shared state 
fully protected in the near future. A limited degree of fault isola- 
tion is provided for these abstractions by mapping shared data at 
addresses far from the application text and dam. 

Processes, The process map maps UNIX process identifiers to 
Xok environment numbers using a shared table. The process table 
records the process identifiers of each process, that of its parent, the 
arguments with which the process was called, its run status, and the 
identity of its children. The table is partitioned across application- 
reserved memory of Xok’s environment structure, which is mapped 
readable for all processes and writeable for only the environment’s 
owning process. ExOS uses Xok’s IPC to safely update parent and 
child process state. The UNIX ps (process status) program is im- 
plemented by reading all the entries of the process table. 

UNIX provides the fork system call to duplicate the current 
process and exec to overlay it with another. Exec is implemented by 
creating a new address space for the new process, loading on demand 
the disk image of the process into the new address space, and then 
discarding the address space that called exec. Implementing forkin 
a library is peculiar since it requires that a process create a replica 
of its address space and state while it is executing. To make fork 
efficient, ExOS uses copy-on-write to lazily create separate copies 
of the parent’s address space. ExOS scans through its page tables, 
which are exposed by Xok, marking all pages as copy-on-write 
except those data segment and stack pages that thefork call itself is 
using. These pages must be duplicated so as not to generate copy- 
on-write faults while running thefork and page fault handling code. 
Groups of page table entries are updated at once by batching system 
calls to amortize the system call overhead over many updates. 

Inter-process communication. UNIX defines a variety of in- 
terprocess communication primitives: signals (software interrupts 
that can be sent between processes or to a process itself), pipes 
(producer-consumer untyped message queues), and sockets (differ- 
ing from pipes in that they can be established between non-related 
processes, potentially executing on different machines). 

Signals are layered on top of Xok IPC. Pipes are implemented 
using Xok’s software regions, coupled with a “directed yield” to the 
other party when it is required to do work (i.e., if the queue is full or 

empty). Sockets communicating on the same machine are currently 
implemented using a shared buffer. 

Inter-machine sockets are implemented through user-level net- 
work libraries for UDP and TCP. The network libraries are imple- 
mented using Xok’s timers, upcalls, and packet rings, which allow 
protected buffering of received network packet, 

File descriptors. File descriptors are small integers used to ac- 
cess many UNIX resources (e.g., files, sockets, pipes). On ExOS 
they name entries in a global file descriptor table, which is cur- 
rently stored in shared memory. As in the UNIX kernel itself, ExOS 
accesses each table element in an object-oriented manner: each 
resource is associated with a table of pointers to functions imple- 
menting each operation (read, write, etc.). However, unlike UNIX, 
ExOS allows applications to install their own methods. 

Files. Local files are accessed through C-FFS, which uses XN to 
protect file metadata; remote files are accessed through the Network 
FileSystem protocol (NFS) [38]. Both filesystems arelibrary based. 
ExOS uses XN’s buffer cache registry to safely share both C-FFS 
and NFS disk blocks. 

UNIX allows different file systems to he attached to its hierarchi- 
cal name space. ExOS duplicates this functionality by maintaining 
a currently unprotected shared mount table that maps directories 
from one file system to another. 

5.2.2 Shared libraries 
Since ExOS is implemented as a library, shared libraries are cru- 
cial. Without shared libraries, every application would contain its 
own copy of ExOS, wasting memory and making process creation 
expensive. We employ a simple but primitive scheme for shared 
libraries. ExOS is linked as a stand-alone executable with its base 
address starting at a reserved section of the application’s address 
space. Its exported symbols are then extracted and stored in an as- 
sembly file. To resolve calls to library routines, the application links 
against this assembly file. During process creation the application 
is loaded and ExOS maps the library at its indicated address. 

This organization separates the file that the 1ibOS resides in from 
applications, allowing multiple applications to share the same on- 
disk copy and, more importantly, any cached disk blocks from this 
file. Code sharing reduces the size of ExOS executables to roughly 
that of normal UNIX applications. Unlike traditional dynamic link- 
ing, procedure calls are no more expensive than for normal code 
since they do not require the use of a relocation table. 

6 Application Performance on Xok 

This section shows that unmodified UNIX applications run as fast 
on XokiExOS as on conventional centralized operating systems. In 
fact, because of C-FFS, some applications run considerably faster 
on XowExOS. We compare Xok/ExOS to both FreeBSD 2.2.2 and 
OpenBSD 2.1 on the same hardware. Xok uses device drivers that 
are derived from those of OpenBSD. ExOS also shares a large 
source code base with OpenBSD, including most applications and 
most of libc. Compared to OpenBSD and FreeBSD, ExOS has not 
had much time to mature; we built the system in less than two years 
and moved to the x86 platform only a year ago. 

All experiments are performed on 200-MHz Intel Pentium Pro 
processors with a 256~KByte on-chip L2 cache and 64MByte of 
main memory. The disk system consists of an NCR 815 SCSI con- 
troller connecting a fast SCSI chain with one or more Quantum 
Atlas XP32150 disk drives to the PC1 bus (vs44Ofx PC1 chip set). 
Reported times are the minimum time of ten trials (the standard 
deviations of the total run times are less than three percent). 

The measurements establish two results. First, the base per- 
formance of unaltered UNIX applications linked against ExOS is 
comparable to OpenBSD and FreeBSD. Untrusted 1ibOSe.s on an 
exokemel can support unchanged UNIX applications with the same 
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performance as centralized monolithic UNIX operating systems. 
Second, because of ExOS’s high-performance file system, some 
unaltered UNIX applications perform better on ExOS than on Free- 
BSD and OpenBSD. Applications do not need to be re-written or 
even modified in order to take advantage of an exokemel. 

It is important to note that a sufficiently motivated kernel pro- 
grammer can implement any optimization that is implemented in 
an extensible system. In fact, a member of our research group, 
Costa Sapuntzakis, has implemented a version of C-FFS within 
OpenBSD. Extensible systems (and we believe exokemels in par- 
ticular) make these optimizations significantly easier to implement 
than centralized systems do. For example, porting C-FFS to Open- 
BSD took more effort than designing C-FFS and implementing it 
as a library file system. The experiments below demonstrate that 
by using unprivileged application-level resource management, any 
skilled programmer can implement useful OS optimizations. The 
extra layer of protection required to make this application-level 
management safe costs little. 

6.1 Base system performance 
We test ExOS’s base performance by running the I/O-intensive 
benchmarks from Table 1 over ExOS’s library implementation of 
C-FFS on top of XN and comparing it to OpenBSD with a C-FFS 
file system. The workload in the experiments represents unmodi- 
fied UNIX programs involved with installing a software package: 
copying a compressed archive file, uncompressing it, unpacking it 
(which results in a source tree), copying the resulting tree, com- 
paring the two trees, compiling the source tree, deleting binaries, 
archiving the source tree, compressing the archive file, and deleting 
the source tree (see Table 1). 

Figure 2 shows the performance of these applications over 
Xok/ExOS, OpenBSDIC-FFS, OpenBSD, and FreeBSD. To es- 
tablish base system performance, we compare Xok/ExOS with 
OpenBSDK-FSS, since they both use a C-FFS file system. The total 
running time for Xok/ExOS is 41 seconds and for OpenBSDK-FFS 
is 51 seconds. Since ExOS and OpenBSDK-FFS use the same type 
of file system, one would expect that ExOS and OpenBSD perform 
equally well.- As can be seen in Figure 2, Xok/ExOS performance 
is indeed comparable to OpenBSDIC-FFS on eight of the 11 ap- 
plications. On three applications (pax, cp, diff), Xok/ExOS runs 
considerably faster (though we do not yet have a good explanation 
for this). 

From these measurements we conclude that, even though ExOS 
implements the bulk of the operating system at the application level, 
common software development operations on XokLExOS perform 
comparably to OpenBSD/C-FFS. They demonstrate that-at least 
for this common domain of applications-an exokemel’s flexibility 
can be provided for free: even without aggressive optimizations 
ExOS’s performance is comparable to that of mature monolithic 
systems. The cost of low-level multiplexing is negligible. 

6.2 Invisible optimization using C-FFS 
These comparisons concentrate on I/O intensive operations that 
exploit the C-FFS library file system [15]. We again use the UO- 
intensivebenchmarksdescribedinTable 1,butnow compareXoWC- 
FFS with OpenBSD and FreeBSD. As Figure 2 shows, unaltered 
UNIX applications can run significantly faster on top of Xok/ExOS. 
Xok/ExOS completes all benchmarks in 41 seconds, 19 seconds 
faster than FreeBSD and OpenBSD. On eight of the eleven bench- 
marks Xok/ExOS performs better than Free/OpenBSD (in one case 
by over a factor of four). ExOS’s performance improvements are 
due to its C-FFS file system. 

We also ran the Modified Andrew Benchmark (MAB) [33]. 
On this benchmark, Xok/ExOS takes 11.5 seconds, OpenBSDK- 
FFS takes 12.5 seconds, OpenBSD takes 14.2 seconds, and Free- 

copy the compressed archived source tree (cp) 

recursively copy the created directories (cp). 
compute the difference between the trees (dift) 

Compile 1 compile source code (gee) 
Delete files 1 delete binarv tiles cm11 I 

1 Packtree I archive the tree hxd 1 
Compress 1 compress the Ghivd tree (gzip) 
Delete 1 delete the created source tree (rm) 

Table 1: TheI/O-intensive workload installs a large application (the 
ICC compiler). The size of the compressed archive file for ICC is 1.1 
MByte. 

23.121.6 
23.0 23.2 

cp gunzip cp pax cp diff gee rm pax gzlp rm 
Unmodified UNIX Programs 

Figure 2: Performance of unmodified UNIX applications, 
Xok/ExOS and OpenBSDIC-FFS use a C-FFS file system while 
Free/OpenBSD use their native FFS file systems. Times are in scc- 
onds. 

BSD takes 11.5 seconds. The difference in performance on MAB IS 
less profound than on the I/O-intensive benchmark, because MAB 
stresses fork, an expensive function in Xok/ExOS. ExOS’s fork per- 
formance suffers because Xok does not yet allow environments to 
share page tables. Fork takes six milliseconds on ExOS, compared 
to less than one millisecond on OpenBSD. 

6.3 The cost of protection 
In this section, we investigate the cost of protection on Xok/ExOS, 
As discussed in the previous section, we have not yet complctcd 
the protected implementation of all data structures. ExOS stores 
some tables in writeable global shared memory, includingthe lllc 
descriptor table. In order for our measurements to estimate the 
performance of a fully protected ExOS, we inserted three system 
calls before every write to these shared tables. All measurements 
reported in Section 6 include these extra calls. 

To measure the costs of all protection we ran the benchmarks 
presented in Figure 2 without XN or any of the extra system calls, 
This reduces the overall number of Xok system calls from 300,000 
to 81,000, but only changes the total running time from 41.1 seconds 
to 39.7 seconds. Real workloads are dominated by costs other than 
system call overhead. 

To investigate the cost of protection in more detail, we measure 
the cost of the protection mechanisms described in Section 3. WC do 
so by comparing two implementations of pipes (see Table 2). The 
first implementation places all data in shared memory and performs 
no sanity checking. The second implementation uses software rc- 
gions to protect pipe data and installs a wakeup predicate on every 
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Benchmark 1 Sharedmemory j Protection 1 OpenBSD 

1 
Latency 1-bvte I 13 
Latency S-I&e 1 

I 30 I 34 
150 1 148 1 160 

Table 2: The cost of a local-trust implementation of pipes (times in 
microseconds). 

read (something unnecessary even with mutual distrust). The results 
show that even with gratuitous use of Xok’s protection mechanisms, 
user-level pipes can still outperform OpenBSD. 

7 Exploiting Extensibility in Applications 

This. section demonstrates some of the interesting possibilities in 
functionality and performance enabled by application-level resource 
management. We report on a binary emtdator, a “zero-touch” file- 
copy program, and the Cheetah web server. Because XN was de- 
veloped recently, the applications in this section were not measured 
with Xl?. 

7.1 Fast, simple binary emuiation 
Xok provides facilities to efficiently reroute specific INT instrnc- 
tions. We have used this ability to build a binary emulator for Open- 
BSD applications by capturing the system calls made by emulated 
OpenBSD programs. This binary emulator is useful for OpenBSD 
programs for which we do not have source code. Although the 
emulator is only partially completed (it supports 90 of the approxi- 
mately 155 OpenBSD system calls), initial results are promising: it 
has been able to execute large programs such as Mosaic. 

The main interesting feature of the emulator is that it runs in the 
same address space as the emmated program, and consequently does 
not need any privilege. Measurements show that most programs on 
the emulator run only a few percent slower than the same programs 
running directly under XokiExOS. 

A counter-intuitive result is that, because the emulator runs in 
the same address space as ExOS, it is possible to run emulated 
programs faster than on their native OS. For example, the trivial 
“get process id” system call takes 270 cycles on OpenBSD and 100 
cycles on the emulator running on Xok/ExOS (on a 120-MHz Intel 
Pentium). This difference comes from the fact that the emulator 
replaces OpenBSD system calls with procedure calls into ExOS. 
ExOS can omit many expensive checks that UNIX must perform 
in order to guard against application errors (on an exokemel, if 
an application passes the wrong arguments to a libOS, only the 
application will be affected). 

7.2 XCP: a “zero-touch” fiIe copying program 
XCP is an efficient file copy program. It exploits the low-level disk 
interface by removing artificial ordering constraints, by improv- 
ing disk scheduling through large schedules, by eliminating data 
touching by the CPU, and by performing all disk operations asyn- 
chronously. 

Given a list of files, XCP works as follows. First, it enumerates 
and sorts the disk blocks of all files and issues large, asynchronous 
disk reads using this schedule. (If multiple instances of XCP run 
concurrently, the disk driver will merge the schedules.) Second, it 
creates new files of the correct size, overlapping inode and disk 
block allocation with the disk reads. Finally, as the disk reads com- 
plete, it constructs large writes to the new disk blocks using the 
buffer cache entries. This strategy eliminates all copies; the file is 
DMAed into and out of the buffer cache by the disk controller-the 
CPU never touches the data. 

XCP is a factor of three faster than the copy program (CP) on 
Xok/ExOS that uses UNIX interfaces, irrespective of whether all 

files are in core (because XCP does not touch the data) or on disk 
(because XCP issues disk schedules with a minimum number of 
seeks and the largest contiguous ranges of disk blocks). 

The fact that the file system is an application library allows us 
both to have integration when appropriate and to craft new abstrac- 
tions as needed. This latter ability is especially profitable for the disk 
both because of the high cost of disk operations and because of the 
demonstrated reluctance of operating systems vendors to provide 
useful, simple improvements to their interfaces (e.g., prefetching, 
asynchronous reads and writes, fine-grained disk restructuring and 
“sync” operations). 

7.3 The Cheetah HTTP/l.0 Server 
The exokemel architecture is well suited to building fast servers 
(e.g., for NFS servers or web servers). Server performance is cru- 
cial to client/server applications [23], and the I/O-centric nature of 
servers makes operating system-based optimizations profitable. 

We have developed an extensible I/O library (XIO) for fast 
servers and a sample application that uses it, the Cheetah HTIP 
server. This Iibrary is designed to alIow appIication writers to exploit 
domain-specificknowledgeand to simplify the construction of high- 
performance servers by removing the need to “trick” the operating 
system into doing what the application requires (e.g., Harvest [7] 
stores cached pages in multiple directories to achieve fast name 
lookup). 

An HTTP server’s task is simple: given a client request, it finds 
the appropriate document and sends it. The Cheetah Web server 
performs the following set of optimizations as well as others not 
listed here. 

Merged File Cache and Retransmission Pool. Cheetah avoids 
all in-memory data touching (by the CPU) and the need for a distinct 
TCP retransmission pool by transmitting file data directly from the 
file cache using precomputed file checksums (which are stored with 
each file). Data are transmitted (and retransmitted, if necessary) to 
the client directly from the file cache without CPU copy operations. 
(Pai et al. have also used this technique [34].) 

Knowledge-based Packet Merging. Cheetah exploits knowl- 
edge of its per-request state transitions to reduce the number of I/O 
actions it initiates. For example, it avoids sending redundant control 
packets by delaying ACKs on client HTTP requests, since it knows 
it will be able to piggy-back them on the response. This optimiza- 
tion is particularly valuable for small document sizes, where the 
reduction represents a substantial fraction (e.g., 20%) of the total 
number of packets. 

HTML-based File Grouping. Cheetahco-Iocates files included 
in an HTML document by allocating them in disk blocks adjacent 
to that file when possible. When the file cache does not capture 
the majority of client requests, this extension can improve HTTP 
throughput by up to a factor of two. 

Figure 3 shows HTTP request throughput as a function of the re- 
quested document size for five servers: the NCSA 1.4.2 server [32] 
running on OpenBSD 2.0, the Harvest cache [7] running on Open- 
BSD 2.0, the base socket-based server running on OpenBSD 2.0 
(i.e., our HTTP server without any optimizations), the base socket- 
based server running on the Xok exokemel system (i.e., our H’lTP 
server without any optimizations with vanilla socket and file de- 
scriptor implementations layered over XIO), and the Cheetah server 
running on the Xok exokemel (i.e., our HTTP server with all opti- 
mizations enabled). 

Figure 3 provides several important pieces of information. First, 
ourba.seHTTPserverperformsroughlyaswellas theHarvestcache, 
which has been shown to outperform many other HTTP server im- 
plementations on general-purpose operating systems. Both outper- 
form the NCSA server. This gives us a reasonable starting point 
for evaluating extensions that improve performance. Second, the 
default socket and file system implementations built on top of XI0 
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Figure 3: HTTP document throughput as a function of the doc- 
ument size for several HTTP/1.0 servers. NCSA/BSD represents 
the NCSA1l.4.2 server running on OpenBSD. Harvest/BSD repre- 
sents the Harvest proxy cache running on OpenBSD. Socket/BSD 
represents our HTTP server using TCP sockets on OpenBSD. 
Socket/Xok represents our I-ITI‘P server using the TCP socket 
interface built on our extensible TCP/IP implementation on the 
Xok exokemel. Cheetab/Xok represents the Cheetah HTIP server, 
which exploits the TCP and file system implementations for speed. 

perform significantly better than the OpenBSD implementations of 
the same interfaces (by SO-loo%). The improvement comes mainly 
from simple (though generally valuable) extensions, such as packet 
merging, application-level caching of pointers to file cache blocks, 
and protocol control block reuse. 

Third, and most importantly, Cheetah significantly outperforms 
the servers that use traditional interfaces. By exploiting Xok’s exten- 
sibility, Cheetah gains a four times performance improvement for 
small documents (1 KByte and smaller), making it eight times faster 
than the best performance we could achieve on OpenBSD. Further- 
more, the large document performance for Cheetah is limited by 
the available network bandwidth (three lOOMbit/s Ethernet@ rather 
than by the server hardware. While the socket-based implementa- 
tion is limited to only 16.5 MByte/s with 100% CPU utilization, 
Cheetah delivers over 29.3 MByte/s with the CPU idle over 30% of 
the time. The extensibility of ExOS’s default unprivileged TCP/IP 
and file system implementations made it possible to achieve these 
performance improvements incrementally and with low complexity. 

The optimizations performed by Cheetah are architecture inde- 
pendent. In Aegis, Cheetah obtained similar performance improve- 
ments over Ultrix web servers [24]. 

8 Global Performance 

Xok/ExOS’s decentralization of resource management allows the 
performance of individual applications to be improved, but Xok/ 
ExOS must also guarantee good global performance when running 
multiple applications concurrently. The experiments in this section 
measure the situation where the exokemel architecture seems po- 
tentially weak: under substantial load where selfish applications are 
consuming large resources and utilizing I/O devices heavily. The 
results indicate that an exokemel can successfully reconcile local 
control with global performance. 

Global performance has not been extensively studied. We use 
the total time to complete a set of concurrent tasks as a measure of 
system throughput, and the minimum and the maximum latency of 
individual applications as a measure of interactive performance. For 
simplicity we compare Xok/ExOS’s performance under high load to 
that of FreeBSD; in these experiments, FreeBSD always performs 
better than OpenBSD, because of OpenBSD’s small, non-unified 
buffer cache. While this Fethodology does not guarantee that an 
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Figure 4: Measured global performance of Xok/ExOS (the tlrst 
bar) and FreeBSD (the second bar), using the first application pool. 
Times arein seconds and on alog scale. number/nl#berrefcrs to tho 
the total number of applications run by the script and the maximum 
number of jobs run concurrently. Total is the total running timo of 
each experiment, Max is the longest runtime of any process in a 
given run (giving the worst latency). Mln is the minimum. 

exokemel can compare to any centralized system, it does offer a 
useful relative metric. 

The space of possible combinations of applications to run is 
large. The experiments use randomization to ensure we get a rca- 
sonable sample of this space. The inputs are a set of applications to 
pick from, the total number to run, and the maximum number that 
can be running concurrently. Each experiment maintains the num- 
ber of concurrent processes at the specified maximum. The outputs 
are the total running time, giving throughput, and the time to run 
each application. Poor interactive performance will show up as a 
high minimum latency. 

The first application pool includes a mix of I/O-intensive and 
CPU-intensive programs: pack archive (pax -w), search for a word 
in a large file &rep), compute a checksum many times over a small 
set of files (&sum), solve a traveling salesman problem (tsp), solvo 
iteratively a large discrete Laplace equation using successive over- 
relaxation @or), count words (WC), compile (gee), compress (gzlp), 
and uncompress (gunzip). For this experiment, we chose applica- 
tions on which both Xok/ExOS and FreeBSD run roughly equiva- 
lently. Each application runs for at least several seconds and IS run 
in a separate directory from the others (to avoid cooperative buffer 
cache reuse). The pseudo-random number generators are identical 
and start with the same seed, thus producing identical schedules, 
The applications we chose compete for the CPU, memory, and the 
disk. 

Figure 4 shows on a log scale the results for five diffcrcnt cx- 
periments: seven jobs with a maximum concurrency of one job 
through 35 jobs with a maximum concurrency of five jobs. Tho 
results show that an exokemel system can achieve performance 
roughly comparable to UNIX, despite being mostly untuned for 
global performance. 

With a second application pool, we examine global performance 
when specialized applications (emulated by applications that benc- 
fit from C-FFS’s performance advantages) compete with each other 
and non-specialized applications. This pool includes tsp and sor 
from above, unpack archive (pax -r) from Section 6, recursive copy 
(cp -r) from Section 6, and comparison (diff) of two identical 5 MB 
files. The pax and cp applications represent the specialized applica- 
tions. 

Figure 5 shows on a log scale the results for five experiments: 
seven jobs with amaximum concurrency of one job through 35 jobs 
with amaximum concurrency of 5 jobs. The results show that global 
performance on an exokemel system does not degrade oven when 
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Figure 5: Measured global performance of Xok/ExOS (the first bar) 
and FreeBSD (the second bar), using the second application pool. 
Methodology and presentation are as described for Figure 4. 

some applications use resources aggressively. In fact, the relative 
performance difference between FreeBSD and Xok/ExOS increases 
with job concurrency. 

The central challenge in an exokemel system is not enforcing 
a global system policy but, rather, deriving the information needed 
to decide what enforcement involves and doing so in such a way 
that application flexibility is minimally curtailed. Since an exo- 
kernel controls resource allocation and revocation, it has the power 
to enforce global policies. Quota-based schemes, for instance, can 
be trivially enforced using only allocation denial and revocation. 
Fortunately, the crudeness of successful global optimizations al- 
lows global schemes to be readily implemented by an exokemel. 
For example, Xok currently tracks global LRU information that 
applications can use when deallocating resources. 

We believe that an exokemel can provide global performance 
superior to current systems. First, effective local optimization can 
mean there are more resources for the entire system. Second, an 
exokemel gives application writers machinery to orchestrate inter- 
application resource management, allowing them to perform domain- 
specific global optimizations not possible on current centralized 
systems (e.g., the UNIX “make” program could be modified to 
orchestrate the complete build process). Third, an exokemel can 
unify the many space-partitioned caches in current systems (e.g., 
the buffer cache, network buffers, etc.). Fourth, since applications 
can know when resources are scarce, they can make better use of 
resources when layering abstractions. For example, a web server 
that caches documents in virtual memory could stop caching docu- 
ments when its cache does not fit in main memory. Future research 
will pursue these issues. 

9 Experience 

Over the past three years, we have built three exokemel systems. 
We distill our experience by discussing the clear advantages, the 
costs, and lessons learned from building exokemel systems. 

9.1 Clear advantages 
Exposing kernel data strnctores. Allowing 1ibOSes to map kernel 
and hardware data structures into their address spaces is a powerful 
extensibility mechanism. (Of course, these structures must not con- 
tain sensitive information to which the application lacks privileges.) 
The benefits of mapping data structures are two-fold. First, exposed 
data structures can be accessed without system call overhead. More 
importantly, however, mapping the dam structures directly allows 
1ibOSes to make use of information the exokemel did not anticipate 
exporting. 

Because exposed data structures do not constitute a well-defined 
API, software that directly relies on them (e.g., the hardware ab- 
straction layer in a 1ibOS) may need to be recompiled or modified 
if the kernel changes. This can be seen as a disadvantage. On the 
other hand, code tie&d by changes in exposed data structures will 
typically reside in dynamically-linked IibOSes, so that applications 
need not concern themselves with these changes. Moreover, most 
improvements that would require kernel modification on a tradi- 
tional operating systems need only effect 1ibOSes on exokemels. 
This is one of the main advantages of the exokemel, as 1ibOSes can 
be modified and debugged considerably more easily than kernels. 
Finally, we expect most changes to the exokemel proper to be along 
the lines of new device drivers or hardware-oriented functionality, 
which expose new structures rather than modify existing ones. 

In the end, some aggressive applications may not work across 
all versions of the exokemel, even if they are dynamically linked. 
This problem is nothing new, however. A number of UNlX pro- 
grams such as top, gated, Isof, and netstat already make use of 
private kernel data structures through the kernel memory device 
/dev/kraem. Administrators have simply learned to reinstall these 
programs whenever major kernel data structures change. 

The use of “wakeup predicates” has forcefully driven home the 
advantages of exposing kernel data structures. Frequently, we have 
required unusual information about the system. In all cases, this 
information was already provided by the kernel data structures, 

The CPU interface. The combination of time slices, initia- 
tion/termination upcalls, and directed yields has proven its value 
repeatedly. (Subsequent to our work, others have found these prim- 
itives useful [14].) We have used the primitives for inter-process 
communication optimization (e.g., two applications communicat- 
ing through a shared message queue can yield to each other), global 
gang-scheduling, and robust critical sections (see below). 

Librariesaresimplerthankernels.The“edit,compile, debug” 
cycle of applications is considerably faster than the “edit, compile, 
reboot, debug” cycle of kernels. A practical benefit of placing OS 
functionality inlibraries is that the “reboot” is replaced by “relink!’ 
Accumulated over many iterations, this repIacement reduces devel- 
opment time substantially. Additionally, the fact that the library is 
isolated from the rest of the system allows easy debugging of ba- 
sic abstractions. Untrusted user-level servers in microkemel-based 
systems also have this benefit. 

9.2 Costs 
Exokemels are not a panacea, This subsection lists some of the costs 
we have encountered. 

Exokemel interface design is not simple. The goal of an exo- 
kernel system is for privileged software to export interfaces that 
let unprivileged applications manage their own resources. At the 
same time, these interfaces must offer rich enough protection that 
1ibOSes can assure themselves of invariants on high-level abstrac- 
tions. It generally takes several iterations to obtain a satisfactory 
interface, as the designer struggles to increase power and remove 
unnecessary functionality while still providing the necessary level 
of protection. Most of our major exokemel interfaces have gone 
through multiple designs over several years. 

Information loss. Valuable information can be lost by imple- 
menting OS abstractions at application level. For instance, if virtual 
memory and the file system are completely at application level, 
the exokemel may be unable to distinguish pages used to cache 
disk blocks and pages used for virtual memory. Glaze, the Fugu 
exokemel, has the additional complication that it cannot distinguish 
such uses from the physical pages used for buffering messages 1291. 
Frequently-used information can often be derived with little effort. 
For example, if page tables are managed by the application, the 
exokemel can approximate LRU page ordering by tracking the in- 
sertion of translations into the TLB. However, at the very least, this 
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inference requires thought. 
Self-paging 1ibOSes. Self-paging is difficult (only a few com- 

mercial operating systems page their kernel). Self-paging lib0Se-s 
are even more difficult because paging can be caused by external 
entities (e.g.. the kernel touching a paged-out buffer that a,libOS 
provided). Careful planning is necessaryto ensure that 1ibOSes can 
quickly select and return a page to the exokemel, and that there is 
a facility to swap in processes without knowledge of their internals 
(otherwise virtual memory customization will be infeasible). 

9.3 Lessons 
Provide space for application data in kernel structures. LibOSes 
areofteneasiertodevelopiftheycanstoresharedstateinkemeldata 
structures. In particular, this ability can simplify the task of locating 
shared state and often avoids awkward (and complex) replication of 
indexing structures at the application level. For example, Xok lets 
1ibOSes use the software-only bits of page tables, greatly simplify- 
ing the implementation of copy on write. 

Fast applications do not require good microbenchmark per- 
formance. The main benefit of an exokemel is not that it makes 
primitive operations efficient, but that it gives applications control 
over expensive operations such as I/O; It is this control that gives 
order of magnitude performance improvements to applications, not 
fast system calls. We heavily tuned Aegis to achieve excellent mi- 
crobenchmark performance. Xok,’ on the other hand, is completely 
untuned. Nevertheless, applications perform well. 

Inexpensive critical sections are useful for LibOSes. In tra- 
ditional OSes, inexpensive critical sections can be implemented by 
disabling interrupts [3]. ExOS implements such critical sections by 
disabling software interrupts (e.g., time slice termination upcalls). 
Using critical sections instead of locks removes the need to com- 
municate to manage a lock, to trust software to acquire and release 
locks correctly, and to use complex algorithms to reclaim a lock 
when a process dies while still holding it. This approach has proven 
to be similarly useful on the Fugu multiprocessor; it is the basis of 
Fugu’s fast message passing. 

User-level page tables are complex. If page tables are migrated 
to user level (as on Aegis), a concerted effort must be made to en- 
sure that the user’s TLB refill handler can run in unusual situations. 
The reason is not performance, but that the naming context pro- 
vided by virtual memory mappings is a requirement for most useful 
operations. For example, in the case of downloaded code run in an 
interrupt handler, if the kernel is not willing to allow application 
code to service TLB misses then there are many situations where 
the code will be unable to make progress. User-level page tables 
made the implementation of 1ibOSes tricky on Aegis; since the x86 
has hardware page tables, this issue disappeared on XowExOS. 

Downloaded interrupt handlers are of questionable utility 
on exokernels. Aegis used downloaded code extensively in in- 
terrupt servicing [44]. The two main benefits are elimination of 
kernel crossings and fast upcalls to unscheduled processes, thereby 
reducing processing latency (e.g., of send-response style network 
messages). On current generation chips, however, the latency of I/O 
devices is large compared to the overhead of kernel crossings, mak- 
ing the first benefit negligible. The second does not require down- 
loading code, only anppcall mechanism. In practice, it is the latter 
ability that gives us speed. Downloading interrupt handlers seems 
more useful on commercial operating systems with extremely high 
overhead for kernel crossing than on exokemel systems. It is easier 
to download interrupt handlers into an existing commercial OS than 
to turn the commercial OS into an exokemel system. 

Downloaded code is powerful. Downloaded code lets the ker- 
nel leave decisions to untrusted software. We have found this dele- 
gation invaluable in many places. The main benefit of downloaded 
code is lrot execution speed, but rather trust and consequently power: 
The kernel can invoke downloaded code in cases where it cannot 

trust application code. For example, packet filters are downloaded 
code fragments ,used by applications to claim incoming network 
packets. Because they are in the kernel, the kernel can inspect them 
and verity that they do not steal packets intended for other applica- 
tions. The alternative, asking each application if it claims a given 
packet, is clearly unworkable; the kernel would not know how deci- 
sions were made and could not guarantee their correctness. Another 
example is the use of downloaded code for metadata interpretation: 
since the kernel can ensure that UDFs arc deterministic and do not 
change, it can trust their output without having to understand whnt 
they do. 

10 Conclusion 

This paper evaluates the exokemel architecture proposed in [l 11. 
It shows how we built an exokemel system that separates pro- 
tection from management to give untrusted software control over 
resource management. Our exokemel system gives significant per- 
formance advantages to aggressively-specialized applications while 
maintaining competitive performance on unmodified UNIX appli- 
cations, even under heavily multitasked workloads. Exokcmels nlso 
simplify the job of operating system development by allowing one 
library operating system to be developed and debugged from an- 
other one running on the same machine. The advantages of rapid 
operating system development extend beyond specialized niche ap- 
plications. Thus, while some questions about the full implications 
of the exokemel architecture remain to be answered, it is a viable 
approach that offers many advantages over conventional systems. 
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