
Scale and Performance in a Distributed
File System

JOHN H. HOWARD, MICHAEL L. KAZAR, SHERRI G. MENEES, DAVID
A. NICHOLS, M. SATYANARAYANAN, ROBERT N. SIDEBOTHAM,
and MICHAEL J. WEST

Carnegie Mellon University

The Andrew File System is a location-transparent distributed tile system that will eventually span
more than 5000 workstations at Carnegie Mellon University. Large scale affects performance and
complicates system operation. In this paper we present observations of a prototype implementation,
motivate changes in the areas of cache validation, server process structure, name translation, and
low-level storage representation, and quantitatively demonstrate Andrew’s ability to scale gracefully.
We establish the importance of whole-file transfer and caching in Andrew by comparing its perform-
ance with that of Sun Microsystem’s NFS tile system. We also show how the aggregation of files into
volumes improves the operability of the system.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management-
distributed file systems; D.4.8 [Operating Systems]: Performance-measurements

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Andrew, caching, operability, scalability, Venus, Vice, Volumes,
whole file transfer

1. INTRODUCTION

Andrew is a distributed computing environment that has been under development
at Carnegie Mellon University since 1983. A comprehensive overview of the
system has been presented by Morris et al. [3]. The characteristic of Andrew,
which is most pertinent to this paper, is its expected final size. Each individual
at CMU may eventually possess an Andrew workstation, thus implying a scale
of 5000 to 10,000 nodes.

A fundamental component of Andrew is the distributed file system that
constitutes the underlying information sharing mechanism. A detailed

This work was performed as a joint project of Carnegie Mellon University and the IBM Corporation.
M. Satyanarayanan was supported in the writing of this paper by the National Science Foundation
under contract CCR-3657907. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies of the IBM Corporation,
the National Science Foundation, or Carnegie Mellon University.
Please direct correspondence to M. Satyanarayanan, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1933 ACM 0734-2071/33/0200-0051$01.50

ACM Transactions cm Computer Systems, Vol. 6, No. 1, February 1988, Pages 51-81.

52 - J. H. Howard et al.

description of this file system has been presented in an earlier paper [6]. Using
a set of trusted servers, collectively called Vice, the Andrew File System presents
a homogeneous, location-transparent file name space to all the client worksta-
tions. Clients and servers run the 4.2 Berkeley Software Distribution (4.2BSD)
of the UNIX operating system.’ The operating system on each workstation
intercepts file system calls and forwards them to a user-level process on that
workstation. This process, called Venus, caches files from Vice and stores
modified copies of files back on the servers they came from. Venus contacts Vice
only when a file is opened or closed; reading and writing of individual bytes of a
file are performed directly on the cached copy and bypass Venus.

This file system architecture was motivated primarily by considerations of
scale. To maximize the number of clients that can be supported by a server, as
much of the work as possible is performed by Venus rather than by Vice. Only
functions essential to the integrity, availability or security of the file system are
retained in Vice. The servers are organized as a loose confederacy with minimal
communication among themselves. Venus on each workstation does the locating
of a file on a specific server and initiates a dialogue with that server.

Our intent in this paper is to examine the design of the Andrew File System
at the next level of detail. In particular, we concentrate on those features and
design decisions that bear on the scalability of the system. Large scale affects a
distributed system in two ways: it degrades performance, and it complicates
administration and day-to-day operation. This paper addresses both of these
consequences of scale on Andrew and shows that the mechanisms we have
incorporated cope successfully with these concerns.

Section 2 of the paper describes an initial prototype implementation and our
experience with it. That section also introduces a synthetic benchmark that is
used as the basis of performance comparison in the rest of the paper. On the
basis of this experience we made many design changes. The rationale for these
changes is presented in Section 3. Section 4 discusses the effect of these design
changes on performance. To place our design in perspective and quantify its
relative merits, Section 5 presents the results of running the same benchmark
on an alternative contemporary distributed file system, Sun Microsystem’s
NFS [9]. Section 6 shows how the operability of the system has been enhanced
by our design changes. Finally, in Section 7 we discuss issues that are related
peripherally to scale and examine the ways in which the present design can be
enhanced.

2. THE PROTOTYPE

Our primary goal in building a prototype was to validate the basic file system
architecture. In the implementation we had to carefully balance two opposing
constraints: the desire to obtain feedback on our design as rapidly as possible,
and the need to build a system that was usable enough to make that feedback
meaningful. In retrospect, the prototype was successful in both these respects.
The prototype was used by ourselves as well as by about 400 other users. At the

’ UNIX is a trademark of AT&T Bell Laboratories. To avoid any possible ambiguity, we use the
name “4.2 BSD” throughout this paper for the specific version of UNIX used in our system.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System l 53

peak of its usage, there were about 100 workstations and 6 servers. The worksta-
tions were Sun2 with 65MB local disks, and the servers were Sun2s or Vax-750s,
each with 2 or 3 400MB disks. As the rest of this paper illustrates, the experience
we gained from the prototype was invaluable in developing a considerably
improved implementation of the Andrew File System.

2.1 Description

In the prototype, Venus on a client workstation would rendezvous with a process
listening at a well-known network address on a server. This process then created
a dedicated process to deal with all future requests from the client. The dedicated
process persisted until its client terminated the network connection. In steady
state, a server typically operated with as many processes as there were clients
who had ever contacted it. Since 4.2BSD does not allow sharing of address spaces
between processes, all communication and manipulation of data structures be-
tween server processes took place via files in the underlying file system. User-
level file locking was implemented by a dedicated lock-server process that
serialized requests from the separate server processes and maintained a lock table
in its address space.

Data and associated Vice status information were stored in separate files. Each
server contained a directory hierarchy mirroring the structure of the Vice files
stored on it. Vice file status information, such as an access list, was stored in
shadow directories called .admin directories. The directory hierarchy contained
Stub directories that represented portions of the Vice name space located on
other servers. The location database that maps files to servers was thus embedded
in the file tree. If a file were not on a server, the search for its name would end
in a stub directory which identified the server containing that file. Below the top
levels of the Vice name tree, files in the same subtree were likely to be located
on the same server. Hence clients cached pathname prefix information and used
this as the basis of a heuristic to direct file requests to appropriate servers.

The Vice-Venus interface named files by their full pathname. There was no
notion of a low-level name, such as the inode in 4.2BSD. A rudimentary form of
read-only replication, restricted to the topmost levels of the Vice name tree, was
present. Each replicated directory had a single server site to which all updates
were directed. An asynchronous slow-propagation mechanism reflected changes
made at this site to the read-only replicas at all other sites.

All cached copies of files were considered suspect by Venus. Before using a
cached file, Venus would verify its timestamp with that on the server responsible
for the file. Each open of a file thus resulted in at least one interaction with a
server, even if the file were already in the cache and up to date.

2.2 Qualitative Observations

Our preliminary experience with the prototype was quite positive. Almost every
application program on workstations was able to use Vice files without recom-
pilation or relinking. This put to rest one of our key concerns: namely, the
successful emulation of 4.2BSD file system semantics using caching and whole-
file transfer. There were some areas of incompatibility with standard 4.2BSD
semantics, but they were never serious enough to discourage use of the prototype.

ACM Transactions on Computer Svstems. Vol. 6. No. 1. Februarv 1988.

54 * J. H. Howard et al.

Command execution involving Vice files was noticeably slower than similar
commands involving local files. However, the performance was so much better
than that of the heavily loaded timesharing systems used by the general user
community at CMU that our users willingly suffered!

As we had anticipated, the performance degradation was not uniform across
all operations. CPU-bound operations, like the compilation of a large program,
were almost as fast as on a stand-alone system. Other operations, such as the
recursive directory listing of a large subtree of files, took much larger when the
subtree was in Vice.

We were puzzled by certain application programs that ran much slower than
we had expected, even when all relevant files were in the local cache. It turned
out that such programs used the stat primitive in 4.2BSD to test for the presence
of files or to obtain status information before opening them. In pathological
cases, a file would be stat-ed twice or thrice before being actually opened. Since
each stat call involved a cache validity check, the total number of client-server
interactions was significantly higher than the number of file opens. This factor
increased both the total running time of these programs and the load on the
servers. We attempted to alleviate this problem by placing an upper bound on
the frequency with which we checked the validity of a cache entry. Although
performance did improve, it was still not satisfactory.

We found that performance was usually acceptable up to a limit of about 20
active users per server. However, there were occasions when even a few persons
using the file system intensely caused performance to degrade intolerably.

The prototype turned out to be difficult to operate and maintain. The use of a
dedicated process per client on each server caused critical resource limits to be
exceeded on a number of occasions. It also resulted in excessive context switching
overhead and in high virtual memory paging demands. However, it did have the
virtue of simplicity and resulted in a relatively robust system because the failure
of an individual server process affected only one client. The remote procedure
call (RPC) package was built on top of a reliable byte-stream abstraction provided
by the kernel. Although this simplified our implementation, it frequently caused
network-related resources in the kernel to be exeeeded. Our decision to embed
the file location database in stub directories in the Vice name tree made it
difficult to move users’ directories between servers. When disk storage on a
server was exhausted, it was easier to add another disk rather than move a
few users to another server! Our inability to enforce disk storage quotas on
individual users exacerbated this problem.

2.3 The Benchmark

To quantify the performance penalty due to remote access, we ran a series of
controlled experiments with a synthetic benchmark. This benchmark consists of
a command script that operates on a collection of files constituting an application
program. The operations are intended to be a representative sample of the kinds
of actions an average user might perform. Although we do not demonstrate any
statistical similarity between these file references and those observed in real
systems, it provides a convenient yardstick for comparing a variety of file system
implementations.
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Scale and Performance in a Distributed File System

Table I. Stand-alone Benchmark Performance

Machine type

Benchmark phase Sun2 IBM RT/25 Sun3/50

Overall 1054 (5) 798 (20) 482 (8)
MakeDir 16 (1) 13 (1) 10 (0)
COPY 40 (1) 37 (2) 31 (2)
ScanDir 70 (4) 51 (9) 44 (5)
ReadAll 106 (2) 132 (8) 51 Ku
Make 822 (2) 566 (11) 346 (1)

Notes: This table shows the elapsed time in seconds of the bench-
mark when it was run on the local tile systems of different machines.
Since no remote file accesses were made, the differences in times
are due solely to the hardware and operating system implementa-
tion. The amount of real memory used by each of the machine types
was as follows: Sun2, 2 Mbytes; IBM RT, 2.8 Mbytes; Sun 3,
4 Mbytes. All the machines were configured as workstations rather
than as servers and had relatively low performance disks. Each of
these experiments was repeated 3 times. Figures in parentheses are
standard deviations.

Throughout this paper the term Loud Unit refers to the load placed on a server
by a single client workstation running this benchmark. Server load is varied by
initiating the benchmark simultaneously on multiple client workstations and
waiting for all of them to complete. We refrain from using the term “client” in
reporting benchmark results to avoid the possible misinterpretation that we are
referring to a human user.’ Our observations of network traffic indicate that a
load unit corresponds to about five Andrew users.

The input to the benchmark is a read-only source subtree consisting of about
70 files. The files are the source code of an application program and total about
200 kilobytes in size. There are 5 distinct phases in the benchmark:

MakeDir Constructs a target subtree that is identical in structure to the
source subtree.

COPY
ScanDir

Copies every file from the source subtree to the target subtree.

Recursively traverses the target subtree and examines the status of
every file in it. It does not actually read the contents of any file.

ReadAll Scans every byte of every file in the target subtree once.
Make Compiles and links all the files in the target subtree.

On a Sun2 workstation with a local disk, this benchmark takes about 1000
seconds to complete when all files are obtained locally. The corresponding times
for other machines are shown in Table I.

2.4 Performance Observations

A fundamental quantity of interest in a caching file system is the hit ratio
observed during actual use. Venus used two caches: one for files and the other
for status information about files. A snapshot of the caches of 12 machines

* We are indebted to Jerry Saltzer for alerting us to this danger.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

56 - J. H. Howard et al.

Table II. Distribution of Vice Calls in Prototype

Call distribution

TestAutb GetFileStat Fetch Store SetFileStat ListDir All others
Server Total calls (%o) (%) 6) 60) (So) 6) 6)

cluster0 1,625,954 64.2 28.7 3.4 1.4 0.8 0.6 0.9
cluster1 564,981 64.5 22.7 3.1 3.5 2.8 1.3 2.1
emu-0 281,482 50.7 33.5 6.6 1.9 1.5 3.6 2.2
emu-1 1,527,960 61.1 29.6 3.8 1.1 1.4 1.8 1.2
emu-2 318,610 68.2 19.7. 3.3 2.7 2.3 1.6 2.2
Mean 61.7 26.8 1.8

(6.7) (5.6) ,::i, (4::) (1.1)

Notes: Data shown here was gathered over a one-month period. The figures in parentheses are
standard deviations.

Table III. Prototvne Benchmark Performance

Load units

Overall benchmark time Time per TestAuth call

Relative Relative
Absolute (s) 60) Absolute (ms) (%)

1 1789 (3) 100 87 (0) 100
2 1894 (4) 106 118 (1) 136
5 2747 (48) 154 259 (16) 298
8 5129 (177) 287 670 (23) 770

10 7326 (69) 410 1050 (13) 1207

Notes: Each data point is the mean of 3 trials. Clients and servers were Sun2s. Each
client had a 300-entry cache. Figures in parentheses are standard deviations. In each
row, the value in a column marked “Relative” is the ratio of the absolute value at that
load to its value at load 1. Part of the data presented here is reproduced in Figure 1.

showed an average file-cache hit ratio of 81 percent, with a standard deviation of
9.8 percent and an average status-cache hit ratio of 82 percent, with a standard
deviation of 12.9 percent.

Also of interest is the relative distribution of client/server interactions. Such
a profile is valuable in improving server performance, since attention can be
focused on the most frequent calls. Table II shows the observed distribution of
those Vice calls that accounted for more than 1 percent of the total. These data
were gathered over a l-month period on 5 servers. The distribution is dramatically
skewed, with 2 calls accounting for nearly 90 percent of the total. The TestAuth
call validated cache entries, whereas GetFileStat obtained status information
about files absent from the cache. The table also shows that only 6 percent of
the calls to Vice (Fetch and Store) actually involved file transfer and that the
ratio of Fetch calls to Store calls was approximately 2 : 1.

We also performed a series of controlled experiments using the benchmark.
Table III presents the total running time for the benchmark as a function of
server load. The table also shows the average response time for the most frequent
Vice operation, TestAuth, during each of the experiments. One important
observation from this table is that the benchmark took about 70 percent longer
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System 57

Table IV. Prototype Server Usage

CPU utilization Disk 1 Disk 2

Utiliza- Utiliza-
Server Samples Total User System tion KBytes xfers tion KBytes xfers

cluster0 13 37.8% 9.6% 28.2% 12.0% 380,058 132,804 6.8% 186,017 75,212
(12.5) (4.4) (8.4) (3.3) (84,330) (35,796) (4.2) (104,682) (42,972)

cluster1 14 12.6% 2.5% 10.1% 4.1% 159,336 45,127 4.4% 168,137 49,034
(4.0) (1.1) (3.4) (1.3) (41,503) (21,262) (2.1) (63,927) (32,168)

emu-0 15 7.0% 1.8% 5.1% 2.5% 106,820 28,177
(2.5) (0.7) (1.8) (0.9) (41,048) (10,289)

emu-1 14 43.2% 7.2% 36.0% 13.9% 478,059 126,257 15.1% 373,526 140,516
(10.0) (1.8) (8.7) (4.5) (151,755) (42,409) (5.4) (105,846) (40,464)

Notes: Data shown here was gathered from servers over two weeks, from 9 am to 5 pm on weekdays.
Figures in parentheses are standard deviations.

at a load of 1 than in the stand-alone case. A second observation is that the time
for TestAuth rose rapidly beyond a load of 5, indicating server saturation. For
this benchmark, therefore, a server load between 5 and 10 was the maximum
feasible.

For measuring server usage, we installed software on servers to maintain
statistics about CPU and disk utilization and about data transfers to and from
the disks. Table IV presents these data for four servers over a 2-week period.
The data are restricted to observations made during 9:00 A.M. to 5 P.M. on
weekdays, since this was the period of greatest system use. As the CPU utiliza-
tions in the table show, the servers loads were not evenly balanced. This fact is
confirmed by Table II, which shows a spread of about 5 : 1 in the total number of
Vice calls presented to each server. Under these circumstances, moving users to
less heavily loaded servers would have improved the quality of service consider-
ably.

Table IV also reveals that the 2 most heavily used servers showed an average,
CPU utilization of about 40 percent. This is a very high figure, considering that
it was an average over an g-hour period. Closer examination of the raw data
showed much higher short-term CPU utilization: Figures in the neighborhood of
75 percent over a 5-minute averaging period were common, Disk utilizations,
however, were much lower. The g-hour average was less than 15 percent, and the
short-term peaks were rarely above 20 percent. We concluded from these figures
and from server utilization data obtained during the benchmarks, that the
performance bottleneck in our prototype was the server CPU. On the basis of
profiling the servers, we deduced that the 2 factors chiefly responsible for this
high CPU utilization were the frequency of context switches between the many
server processes and the time spent by the servers in traversing full pathnames
presented by workstations.

To summarize, the measurements reported in this section indicate that signif-
icant performance improvement is possible if we reduce the frequency of cache
validity checks, reduce the number of server processes, require workstations
rather than the servers to do pathname traversals, and balance server usage by
reassigning users.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

58 . J. H. Howard et al.

3. CHANGES FOR PERFORMANCE

On the basis of our experience with the prototype, we set out to build a revised
version of the Andrew File System. Although we were under no constraint to
reuse code or ideas, the resulting design uses the same fundamental architectural
principle as the prototype: Workstations cache entire files from a collection of
dedicated autonomous servers. Our analysis convinced us that the shortcomings
of the prototype were due to inadequacies in its realization rather than in its
basic architecture. We were also convinced that this was the most promising
path to our goal of supporting at least 50 clients per server.

Some aspects of the prototype implementation have remained unchanged.
Both Venus and server code run as user-level processes. Communication between
servers and clients is based on the RPC paradigm and uses an independently
optimized protocol for the transfer of bulk data. The mechanism in the worksta-
tion kernels to intercept and forward file requests to Venus is the same as in the
prototype.

Although we retained these aspects of the prototype, we have changed many
details. The changes fall into two categories: those made to enhance performance
and those made to improve the operability of the system. In this section we
describe the changes made for performance and defer discussion of changes for
operability until Section 6. The changes for performance are in four distinct
areas:

-Cache management
-Name resolution
-Communication and server process structure
-Low-level storage representation

These are orthogonal changes, although a small degree of interdependency is
inevitable. We discuss the individual changes in Sections 3.1 to 3.4 and then
describe their synthesis in Section 3.5.

3.1 Cache Management

Caching, the key to Andrew’s ability to scale well, is further exploited in our
redesign. Venus now caches the contents of directories and symbolic links in
addition to files. There are still two separate caches, one for status and the other
for data. Venus uses a simple least-recently-used (LRU) algorithm to keep each
of them bounded in size. The status cache is kept in virtual memory to allow
rapid servicing of stat system calls. Each entry contains information such as the
size of a file and its modification timestamp. The data cache is resident on the
local disk, but the 4.2BSD I/O buffering mechanism does some caching of disk
blocks in memory that is transparent to Venus.

Modifications to a cached file are done locally and are reflected back to Vice
when the file is closed. As mentioned earlier, Venus intercepts only the opening
and closing of files and does not participate in the reading or writing of individual
bytes on a cached copy. For reasons of integrity, modifications to a directory are
made directly on the server responsible for that directory. However, Venus reflects
the change in its cached copy to avoid refetching the directory.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1968.

Scale and Performance in a Distributed File System 59

A significant point of departure from the prototype is the manner in which
cache entries are kept consistent. Rather than checking with a server on each
open, Venus now assumes that cache entries are valid unless otherwise notified.
When a workstation caches a file or directory, the server promises to notify it
before allowing a modification by any other workstation. This promise, called a
Callback, dramatically reduces the number of cache validation requests received
by servers. A small amount of cache validation traffic is still present, usually to
replace callbacks lost because of machine or network failures. When a workstation
is rebooted, Venus considers all cached files and directories suspect and generates
a cache validation request for the first use of each such entry.

Callback complicates the system because each server and Venus now maintain
callback state information. Before modifying a file or directory, a server has to
notify every workstation that has a callback on that file. If the amount of callback
state maintained by a server is excessive, its performance may degrade. Under
such circumstances, it may be appropriate for servers to break callbacks and
reclaim storage. Finally, there is a potential for inconsistency if the callback state
maintained by a Venus gets out of sync with the corresponding state maintained
by the servers.

In spite of these complications, we are convinced of the importance of callback.
By reducing cache validation traffic, callback reduces the load on servers consid-
erably. Callback also makes it feasible to resolve pathnames on workstations, as
described in the next section. In the absence of callback, the lookup for every
component of a pathname would generate a cache validation request.

3.2 Name Resolution

In a conventional 4.2BSD system, a file has a unique, fixed-length name, its
inode, and one or more variable-length Pathnames that map to this inode. The
routine that performs this mapping, namei, is usually one of the most heavily
used and time consuming parts of the kernel. In our prototype, Venus was aware
only of pathnames; there was no notion of an inode for a Vice file. However,
because of the data representation on our servers, each Vice pathname presented
by a Venus involved an implicit namei operation on the server to locate the file.
This resulted in considerable CPU overhead on the servers and was an obstacle
to scaling. It also made full emulation of 4.2BSD semantics difficult.

To alleviate these problems we reintroduced the notion of two-level names.
Each Vice file or directory is now identified by a unique fixed-length Fid. Each
entry in a directory maps a component of a pathname to a fid. Venus now
performs the logical equivalent of a namei operation, and maps Vice pathnames
to fids. Servers are presented with fids and are, in fact, unaware of pathnames.
As discussed in Section 3.4, we have performed further optimizations to ensure
that no implicit namei operations are performed on a server when accessing data.

A fid is 96 bits long and has 3 components: a 32-bit Volume number, a 32-bit
Vnode number, and a 32-bit Uniquifier. The volume number identifies a collection
of files, called a Volume, located on one server. Volumes are discussed in Section
6. The vnode number is used as an index into an array containing the tile storage
information for the files in a single volume. The actual accessing of file data,
given a fid, is thus an efficient operation. The uniquifier guarantees that no fid

ACM’Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

60 - J. H. Howard et al.

is ever used twice in the history of the file system. This allows reuse of vnode
numbers, thereby keeping certain critical server data structures compact.

It is important to note that a fid contains no explicit location information.
Moving files from one server to another does not, therefore, invalidate the
contents of directories cached on workstations. Location information is contained
in a Volume Location Database replicated on each server. This is a slowly changing
database that allows every server to identify the location of every volume in the
system. It is the aggregation of files into volumes that make it possible to keep
the location database at a manageable size.

, 3.3 Communication and Server Process Structure

As the context switching and paging overheads in our prototype indicated, the
use of a server process per client did not scale well. A related problem was that
server processes could not cache critical shared information in their address
spaces because 4.2BSD does not permit processes to share virtual memory. The
redesign solves these problems by using a single process to service all clients of
a server.

Since multiple threads of control provide a convenient programming abstrac-
tion, we have built a user-level mechanism to support multiple nonpreemptive
Lightweight Processes (LWPs) within one process. Context switching between
LWPs is only on the order of a few procedure-call times. The number of LWPs
(typically five) is determined when a server is initialized and remains fixed
thereafter. An LWP is bound to a particular client only for the duration of a
single server operation. A client thus has long-term state on a server but not a
corresponding thread of control associated with it. Since Venus also uses the
LWP mechanism, it can act concurrently on remote file access requests from
multiple user processes on its workstation.

As in the prototype, clients and servers communicate via an RPC mechanism.
Unlike the prototype, however, this implementation is entirely outside the kernel
and is capable of supporting many hundreds or thousands of clients per server.
It is integrated with the LWP mechanism and thus allows the server to continue
servicing client requests unless all its LWPs are blocked on network events. The
RPC mechanism runs on a variety of workstations, provides exactly-once seman-
tics in the absence of failures, supports whole-file transfer using an optimized
bulk transfer protocol, and provides secure, authenticated communication be-
tween workstations and servers.

3.4 Low-Level Storage Representation

Our decision to retain 4.2BSD on the servers implied that files would hold Vice
data, as in the prototype. As mentioned in Section 3.2, we were wary of the cost
of the namei operations involved in accessing data via pathnames. Therefore, we
decided to access files by their inodes rather than by pathnames. Since the
internal inode interface is not visible to user-level processes, we had to add an
appropriate set of system calls. The vnode information for a Vice file identifies
the inode of the file storing its data. Data access on a server is thus quite rapid;
it consists of an index of a fid into a table to look up vnode information, followed
by an iopen call to read or write the data.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System 61

For efficiency, Venus also uses this mechanism. A local directory on the
workstation is used as the cache. Within the directory are files whose names are
placeholders for cache entries. Venus accesses these files directly by their inodes.
We have thus eliminated nearly all pathname lookups on workstations and
servers, except explicit ones performed on cached directories by Venus. Such
explicit lookups are, in fact, faster than kernel lookups because of the improved
internal organization of Vice directories.

3.5 Overall Design

The result of our redesign can be best understood by examining a remote file
access in detail. Suppose a user process opens a file with pathname P on a
workstation. The kernel, in resolving P, detects that it is a Vice file and passes
it to Venus on that workstation. One of the LWPs comprising Venus now uses
the cache to examine each directory component D of P in succession:

-If D is in the cache and has a callback on it, it is used without any network
communication.

-If D is in the cache but has no callback on it, the appropriate server is
contacted, a new copy of D is fetched if it has been updated, and a callback
is established on it.

-If D is not in the cache, it is fetched from the appropriate server, and a callback
is established on it.

When the target file F is identified, a current cache copy is created in the same
manner. Venus then returns to the kernel, which opens the cached copy of F and
returns its handle to the user process. Thus, at the end of the pathname traversal,
all the intermediate directories and the target tile are in the cache with callbacks
on them. Future references to this file will involve no network communication at
all, unless a callback is broken on a component of P. Venus regains control when
the file. is closed and, if it has been modified locally, updates it on the appropriate
server. An LRU replacement algorithm is periodically run to reclaim cache space.

When processing a pathname component, Venus identifies the server to be
contacted by examining the volume field of the fid of that component. If an entry
for this volume is not present in a mapping cache, Venus contacts any server
that it already has a connection to, requests the location information, and enters
it into the mapping cache. Unless Venus already has a connection to the server
responsible for that volume, it establishes a new connection. It then uses this
connection to fetch the file or directory. Connection establishment and future
requests from the workstation are serviced by any of the LWPs comprising the
server process.

The above description is a simplified view of the actual sequence of events
[2]. In particular, authentication, protection checking, and network failures
complicate matters considerably. Also, since the other LWPs in Venus may be
concurrently servicing file access requests from other processes, accesses to cache
data structures must be synchronized. However, although the initial access of a
file may be complex and rather expensive, further accesses to it are much simpler
and cheaper. It is the locality inherent in actual file access patterns that makes
this strategy viable.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

62 - J. H. Howard et al.

Table V. Vice Interface

Fetch Returns the status and (optionally) data of the specified file or directory and

Store
Remove

Create
Rename
Symlink

Link
Makedir

Removedir
SetLock

Releaselock
GetRootVolume
GetVolumeInfo

GetVolumeStatus
SetVolumeStatus

ConnectFS
DisconnectFS

RemoveCallBack
GetTime

GetStatistics
CheckToken

DisableGroup
EnableGroup

BreakCallback

places a callback on it.
Stores the status and (optionally) data of the specified file.
Deletes the specified file.
Creates a new file and places a callback on it.
Changes the name of a file or a directory. Cross-volume renames are illegal.
Creates a symbolic link to a tile or directory.
Creates a hard link to a file. Cross-directory links are illegal.
Creates a new directory.
Deletes the specified directory which must be empty.
Locks the specified file or directory in shared or exclusive mode. Locks expire

after 30 minutes.
Unlocks the specified file or directory.
Returns the name of the volume containing the root of Vice.
Returns the name(s) of servers that store the specified volume.
Returns status information about the specified volume.
Modifies status information on the specified volume.
Initiates dialogue with a server.
Terminates dialogue with a server.
Specifies a file that Venus has flushed from its cache.
Synchronizes the workstation clock.
Returns server CPU, memory, and I/O utilization.
Determines whether the specified authentication token for a user is valid.
Temporarily disables membership in a protection group.
Enables membership in a temporarily disabled protection group.
Revokes the callback on a tile or directory. Made by a server to Venus.

Some of the complexity of our implementation arises from our desire to provide
a useful yet efficient notion of file consistency across multiple machines. We
examined a variety of choices ranging from the strict serializability of operations
typically provided by database systems to the laissez-faire attitude exemplified
by the SUN NFS file system in which a file created on a workstation may not be
visible on another workstation for 30 seconds. Our design converged on the
following consistency semantics:

-Writes to an open file by a process on a workstation are visible to all other
processes on the workstation immediately but are invisible elsewhere in the
network.

-Once a file is closed, the changes made to it are visible to new opens anywhere
on the network. Already open instances of the file do not reflect these changes.

-All other file operations (such as protection changes) are visible everywhere
on the network immediately after the operation completes.

-Multiple workstations can perform the same operation on a file concurrently.
In conformance with 4.2BSD semantics, no implicit locking is performed.
Application programs have to cooperate in performing the necessary synchro-
nization if they care about the serialization of these operations.

Actual usage has convinced us that this is a useful and easily understood model
of consistency in a distributed file system. It is also one that we have successfully
implemented without serious performance penalty.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System

Table VI. Andrew Benchmark Times

l 63

Load units

1
2
5
8

10
15
20

Overall time Time for each phase
(in seconds) (in seconds)

Relative
Absolute (%I

949 (33) 100
948 (35) 100

1050 (19) 111
1107 (5) 117
1293 (70) 136
1518 (28) 160
1823 (42) 192

MakeDir COPY

14 (1)
14 (1)
17 0)
22 (1)
34 (9)
45 (3)
58 (1)

85 (28)
82 (16)

125 (30)
159 (1)
209 (13)
304 (5)
433 (45)

ScanDir

64 (3)
65 (9)
86 (0)
78 (2)
76 (5)
81 (4)
77 (4)

ReadAll Make

179 (14) 608 (16)
176 (13) 611 (14)
186 (17) 637 (1)
206 (4) 641 (6)
200 (7) 775 (81)
192 (7) 896 (12)
192 (6) 1063 (64)

Notes: The clients were IBM RT/25s on a token ring, and the server was a Sun2 on an Ethernet.
Most of the clients were 1 router hop away from the server, but a few were 2 hops away. Each of the
experiments was repeated 3 times. Figures in parentheses are standard deviations. In each row,
the value in a column marked “Relative” is the ratio of the absolute value at that load to its value at
load 1.

Finally, it is important to note that the changes we describe in this paper are
only those relevant to scale. Other changes, typically for better 4.2BSD emulation
or security, are not discussed here. The current interface between Venus and
Vice is summarized in Table V.

4. EFFECT OF CHANGES FOR PERFORMANCE

The revised implementation of the Andrew File System has been operational for
over a year. The evaluation of this system focuses on two questions. First, how
effective were our changes? In particular, has the anticipated improvement in
scalability been realized? Second, what are the characteristics of the system in
normal operation? The first question is addressed in Section 4.1, and information
pertinent to the second question is presented in Section 4.2.

4.1 Scalability

To investigate the behavior of the system, we repeated the experiments that we
had performed on the prototype. The server was a Sun2, as in the experiments
on the prototype, but the clients were IBM-RTs. Table VI shows the absolute
and relative times of the benchmark as a function of server load. The times for
the individual phases of the benchmark are also shown in this table. Figure 1
presents some of this data graphically and compares it with prototype data from
Table III.

The performance penalty for remote access has been reduced considerably.
Data from Tables I and VI show that an Andrew workstation is 19 percent slower
than a stand-alone workstation. The prototype was 70 percent slower. The
improvement in scalability is remarkable. In the prototype, the benchmark took
more than 4 times as long at a load of 10 as at a load of 1. In the current system,
it takes less than twice as long at a load of 20 as at a load of 1. At a load of 10, it
takes only 36 percent longer.

Table VI shows that the Copy and Make phases are most susceptible to server
load. Since files are written in both these phases, interactions with the server for

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

64 l J. H. Howard et al.

- Prototype
--- Revised Andrew File System

1 4
0 2 4 6 8 70 12 14 16 18 20

Load Units

Fig, 1. Relative running time of benchmark. This figure compares the degradation in performance
of the prototype and the current Andrew file system as a function of load. The clients were Sun2s
in the prototype and IBM RTs in the current file system. The server was a Sun2 in both cases.
Tables III and VI present this information in greater detail.

Table VII. Andrew Server Utilization During
Benchmark

Load units

Utilization (percent)

CPU Disk

1 8.1 (0.7) 2.7 (0.1)
2 15.0 (1.3) 4.7 (0.4)
5 29.4 (1.5) 9.2 (0.3)
8 41.8 (0.8) 12.8 (0.6)

10 54.6 (6.6) 17.8 (3.6)
15 64.7 (1.2) 20.9 (0.1)
20 70.9 (2.2) 23.6 (0.6)

Notes: This table shows the Sun2 server CPU
and disk utilization as a function of load. The
utilizations are averaged over the entire duration
of the benchmark. These data were obtained from
the same experiment as Table VI. Each of the
experiments was repeated 3 times. Figures in pa-
rentheses are standard deviations. A part of the
data is reproduced in Figure 2.

file stores are necessary. Further, it is during the Copy phase that files are fetched
and callbacks established. In contrast, the ScanDir and ReadAll phases are barely
affected by load. Callback eliminates almost all interactions with the server
during these phases.

Table VII and Figure 2 present CPU and disk utilization on the server during
the benchmark. CPU utilization rises from about 8 percent at a load of 1 to over

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System l 65

- Andrew CPU Utilization
--- Andrew Disk Utilization

30.

-e---- -4 20.
/e----

10.

4
0 2 4 6 8 10 12 14 16 18 20

Load Units

Fig. 2. Andrew server utilization during benchmark. Server CPU and disk utilization are presented
in this figure as a function of load. All clients are IBM RTs and use a single Sun2 server. Table VII
presents this information in greater detail.

70 percent at a load of 20. But disk utilization is below 25 percent even at a load
of 20. This indicates that the server CPU still limits performance in our system,
though it is less of a bottleneck than in the prototype. Better performance under
load will require more efficient server software or a faster server CPU. Figure 2
shows an anomaly at a load of 10. Since the corresponding data in Table VII
show a high standard deviation, we suspect that server activity unrelated to our
experiments occurred during one of these trials.

In summary, the results of this section demonstrate that our design changes
have improved scalability considerably. At a load of 20, the system is still not
saturated. Since a load unit corresponds to about 5 typical Andrew users, we
believe our scale goal of 50 users per server has been met.

4.2 General Observations

Table VIII presents server CPU and disk utilizations in Andrew. The figures
shown are averages over the a-hour period from 9:00 A.M. to 5:00 P.M. on
weekdays. Most of the servers show CPU utilizations between 15 and 25 percent.
One of the servers, vice4, shows a utilization of 35.8 percent, but the disk
utilization is not correspondingly high. The high standard deviation for the
CPU utilization leads us to believe that this anomaly was caused by system
maintenance activities that were unexpectedly performed during the day rather
than at night. Server vice9, on the other hand, shows a CPU utilization of
37.6 percent with a small standard deviation. The disk utilization is 12.1 percent,
the highest of any server. The high utilization is explained by the fact that this

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

66 l J. H. Howard et al.

Table VIII. Andrew Server Usage

CPU utilization Disk 1 Disk 2 Disk 3

Utili- Utili- Utili-
Server Samples Total User System zation KBytes xation KBytes zation KBytes

vice2

vice3

vice4

vice5

vice6

vice7

vice8

vice9

vice10

vice11

vice12

vice13

vice14

4 16.7 3.5 13.2
(4.5) (1.2) (3.6)

5 19.2 5.1 14.1
(2.8) (2.1) (1.6)

4 35.8 14.1 21.7.
(24.5) (16.9) (8.9)

5 19.9 3.5 16.4
(2.9) (0.7) (2.4)

5 14.3 2.4 12.0
(1.4) (0.3) (1.2)

5 26.0 6.4 19.5
(3.2) (1.0) (2.3)

5 7.5 1.5 6.0
(1.2) (0.4) (0.8)

5 37.6 7.2 30.4
(2.7) (0.4) (2.3)

5 23.3 6.1 17.2
(8.6) (5.0) (4.8)

5 18.0 5.6 12.5
(6.0) (4.4) (2.0)

5 13.2 5.8 7.5
(10.1) (7.9) (2.7)

5 12.5 3.1 9.4
(2.4) (1.2) (1.3)

5 15.3 7.0 8.3
(12.0) (8.6) (3.5)

2.9%

(0.3)
3.0%

(0.6)
4.8%

(3.0)
3.2%

(0.4)
2.4%

(0.3)
6.9%

(0.2)
1.4%

(0.3)
12.1%
(1.4)
5.8%

(1.8)
3.0%

(0.5)
2.7%

(1.0)
1.6%

(0.2)
2.3%

(1.1)

149,525
(15,461)
126,951
(24,957)
195,618

(132,128)
152,764
(19,247)
117,050
(17,244)
349,075

K-G=)
62,728

(12,226)
558,839
(63,592)
262,846
(82,210)
124,783
(23,398)
118,960
(49,760)
70,632
W-3

104,861
(57,648)

1.9%
(1.0)
2.7%

(0.7)
3.6%

(1.1)
3.2%

(0.5)
2.3%

(0.3)
0.2%

(0.1)
0.3%

(0.1)
2.5%

(‘3.8)
2.1%

(0.7)
3.0%

(0.9)
1.5%

(0.5)
0.9%

(0.3)
1.1%

(0.3)

109,058
(64,453)
98,441

(26,975)
140,147
(47,836)
174,229
C&849)
131,305
(15,950)

4,143
(4,217)
6,079

(9,025)
103,109
(38,392)
82,502

(44,606)
129,667
(39,455)
49,022

(20,452)
26,687

(10,974)
34,442

(12,202)

0.5%
(0.1)
2.3%

(0.3)
5.2%

(3.5)
0.9%

(0.2)
0.4%

(0.1)
1.4%

(1.2)
0.6%

(0.4)
2.2%

(0.5)
1.7%

(0.8)
0.8%

(0.2)
0.2%

(0.0)
1.9%

(0.5)
1.0%

(0.5)

20,410
(2,794)
96,445

(13,758)
217,331

(151,199)
37,851
(9,167)
14,923
(3,985)
59,567

(60,504)
28,704

(24,248)
103,517
(21,171)
74,043

(35,699)
24,321
(7,715)

(Z,
84,874

(26,433)
36,587

(25,190)

Notes: These data were gathered over a week from 9 February 1987 to 15 February 1987. Omitted
from this table are servers used for experimental versions of the system. Three of the servers in the
table above (vicell, vicel3, vicel4) had a fourth disk. In all cases the utilization of that disk was less
than 0.5 percent. All the servers listed above were Sun2s. Figures in parentheses are standard
deviations.

server stores the bulletin boards, a collection of directories that are frequently
accessed and modified by many different users.

The distribution of Vice calls over a three-day period is shown in Table IX.
The servers with the most calls are vice7, which stores common system files used
by all workstations, and vice9, the server that stores bulletin boards. The most
frequent call is GetTime, which is used by workstations to synchronize their
clocks and as an implicit keepalive. The next most frequent call is FetchStatus.
We conjecture that many of these calls are generated by users listing’directories
in parts of the file name space that they do not have cached. It is interesting that
despite caching, fetches dominate stores. The call RemoveCB is made by Venus
when it flushes a cache entry. Server vice9 shows one of the highest occurrences
of RemoveCB which indicates that the files it stores exhibit poor locality. This is
precisely the behavior one would expect of bulletin boards, since users tend not
to read bulletin board entries more than once. Only vice& which is a special
server used by the operations staff, shows a higher occurrence of RemoveCB. On
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

68 l J. H. Howard et al.

Table X. Active Users on Andrew Servers

Average active users

Server Type of volumes Overall Peak period

vice2 Read-only, System 23 64
vice3 Read-write, User 23 56
vice4 Read-write, User 27 68
vice5 Read-only and Read-write 28 76
vice6 Read-only, System 18 52
vice7 Read-write, System 59 128
vice8 Special 2 3
vice9 Read-write, BBoard 25 63
vice10 Read-write, User 29 77
vice1 1 Read-write, User 23 58
vice12 Read-write, User 8 24
vice13 Read-write, User 13 31
vice14 Read-write, User 11 29

Notes: The second column describes the kind of volumes stored on each server.
Server vice9 stores the bulletin boards, which are the most frequently updated set of
directories shared by many users. Server vice5 has the read-write volumes whose
read-only clones are on vice2, vice5 and vice6. Vice7 has the common system volumes
that cannot be read-only and are therefore used by all of the workstations in the
system. Data for 3 servers running an experimental version of the system are not
shown here. An active user on a server is one on whose behalf some workstation has
interacted with that server during the past 15 minutes. Peak period is defined to be
9:00 A.M. to 5:00 P.M. on weekdays.

the basis of these measurements, we have modified Venus to remove callback on
groups of files rather than one file at a time, when possible. This modification
has reduced the observed frequency of RemoveCB considerably.

Table X, derived from the same set of observations as Table IX, shows the
type of data stored on each server and the average number of persons actively
using that server. During the peak period of use, most of the servers have between
50 and 70 active users, that is, those on whose behalf a request other than
GetTime has been received in the last 15 minutes. In interpreting this data it
should be kept in mind that a user often uses files from many different servers.

Although we do not present detailed data here, network utilization is quite low,
typically in the neighborhood of 5 percent for the lo-megabit Ethernet and
12 percent for the 4-megabit token ring. The routers that interconnect segments
of the local area network have occasionally shown signs of overload. This problem
does not yet cause us concern but may require attention in the future.

5. COMPARISON WITH A REMOTE-OPEN FILE SYSTEM

The caching of entire files on local disks in the Andrew File System was motivated
primarily by the following considerations of scale:

-Locality of tile references by typical users makes caching attractive: server
load and network traffic are reduced.

-A whole-file transfer approach contacts servers only on opens and closes. Read
and write operations, which are far more numerous, are transparent to servers
and cause no network traffic.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System l 69

-The study by Ousterhout et al. [4] has shown that most tiles in a 4.2BSD
environment are read in their entirety. Whole-file transfer exploits this prop-
erty by allowing the use of efficient bulk data transfer protocols.

-Disk caches retain their entries across reboots, a surprisingly frequent event
in workstation environments. Since few of the files accessed by a typical user
are likely to be modified elsewhere in the system, the amount of data fetched
after a reboot is usually small.

-Finally, caching of entire files simplifies cache management. Venus only has
to keep track of the tiles in its cache, not of their individual pages.

Our approach does have its drawbacks. Although diskless operation is possible,
workstations require local disks for acceptable performance. Files that are larger
than the local disk cache cannot be accessed at all. Strict emulation of 4.2BSD
concurrent read and write semantics across workstations is impossible, since
reads and writes are not intercepted. Building a distributed database using such
a file system is difficult, if not impossible.

Despite these disadvantages, we persisted in our approach because we believed
it would provide superior performance in a large scale system. The drawbacks
listed in the previous paragraph have not proved to be significant in actual usage
in our environment. And, as the discussions of Section 4 have established, the
Andrew File System does scale well. But could an alternative design have
produced equivalent or better results? How critical to scaling are caching and
whole-file transfer? The rest of this section examines these questions in detail.

5.1 Remote Open

A number of distributed file systems such as Locus [12], IBIS [ll], and the
Newcastle Connection [l], have been described in the research literature and
surveyed by Svobodova [lo]. The design of such systems has matured to
the point where vendor-supported implementations like Sun Microsystem’s NFS
[9], AT&T’s RFS [5], and Locus are available.

Although the details of these systems vary considerably, all of them share one
fundamental property: the data in a file are not fetched en masse; instead, the
remote site potentially participates in each individual read and write operation.
Buffering and read-ahead are employed by some of the systems to improve
performance, but the remote site is still conceptually involved in every I/O
operation. We call this property Remote Open, since it is reminiscent of the
situation in which a file is actually opened on the remote site rather than the
local site. Only the Andrew File System and the Cedar File System [7] employ
caching of entire files as their remote access mechanism.

To explore how vital our approach is to scaling, we compared Andrew under
controlled conditions to a representative of the set of remote open file systems.
We selected Sun Microsystem’s NFS as the candidate for comparison for the
following reasons:

(1) NFS is a mature product from a successful vendor of distributed computing
hardware and software. It is not a research prototype.

(2) Sun has spent a considerable amount of time and effort to tune and refine
NFS. Deficiencies in its performance are therefore likely to be due to its

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

70 l J. H. Howard et al.

basic architecture, rather than inadequacies in implementation. A compari-
son of Andrew and NFS is thus most likely to yield significant insights into
the scaling characteristics of caching and remote-open file systems.

(3) NFS and Andrew can run on precisely the same hardware and operating
system. They can, in fact, coexist on the same machine and be used simul-
taneously. Using NFS allowed us to conduct controlled experiments in which
the only significant variable was the file system component. The performance
differences we observed were due to the design and implementation of the
distributed file systems and were not artifacts of hardware, network, or
operating system variation.

(4) There is a perception in the 4.2BSD user community that NFS is a de facto
standard. We were curious to see how well Andrew measured up to it.

To be fair, it must be pointed out that NFS was not designed for operation in
a large environment. It was designed as a distributed file system for use by a
small collection of trusted workstations. It must also be emphasized that our
comparison is based on a single benchmark. Other benchmarks may yield
different results.

We also wish to emphasize that the focus of this comparison is scalability. The
question of interest is “How does the performance perceived by a workstation
degrade as the load on its server increases ?” This justifies our comparison of
NFS and Andrew on identical hardware configurations. A different question
would be to compare the cost of NFS and Andrew configurations for a given level
of performance at a given load. Since the price of hardware is subject to a variety
of factors beyond the scope of this paper, we do not address this issue here.

5.2 The Sun Network File System

In this section we present a minimal overview of NFS. Only those details relevant
to this paper are discussed here. Further information can be obtained from the
documentation [9 J .

NFS does not distinguish between client and server machines. Any workstation
can export a subtree of its file system and thus become a server. Servers must be
identified and mounted individually; there is no transparent file location facility
as in Andrew. Both the client and server components of NFS are implemented
within the kernel and are thus more efficient than their counterparts in Andrew.

NFS caches inodes and individual pages of a file in memory. On a file open,
the kernel checks with the remote server to fetch or revalidate the cached inode.
The cached file pages are used only if the cached inode is up-to-date. The validity
check on directory inodes is suppressed if a check was made within the last
30 seconds. Once a file is open, the remote site is treated like a local disk with
read-ahead and write-behind of pages.

It is difficult to characterize the consistency semantics of NFS. New files
created on a workstation may not be visible elsewhere for 30 seconds. It is
indeterminate whether writes to a file at one site are visible to other sites that
have file open for reading. New opens of that file will see the changes that have
been flushed to the server. Because of the caching of file pages, processes on
different workstations that perform interleaved write on a file will produce a

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1968.

Scale and Performance in a Distributed File System 71

result that is different from the same sequence of writes by processes on one
workstation. Thus NFS neither provides strict emulation of 4.2BSD semantics,
nor the open/close action consistency of Andrew.

5.3 Results of Comparison

The benchmark described in Section 2.3 was used as the basis of comparison
between NFS and Andrew. Eighteen Sun3 workstations with local disks were
available to us for our experiments. We added the Andrew kernel intercepts to
these workstations so that Venus could be run on them. These modifications
were orthogonal to NFS. A Sun3 was used as the server for both the Andrew and
NFS trials. Clients and servers communicated on a lo-megabit Ethernet.

A set of experiments operating on files in NFS and another set operating on
files in Andrew were run. The Andrew experiments consisted of two subsets:
a Cold Cache set, in which workstation caches were cleared before each trial,
and a Warm Cache set, in which caches were left unaltered. Since the target
subtree is entirely re-created in each trial of a benchmark, the only benefit of a
warm cache is that it avoids fetching of tiles from the source subtree. In all cases,
at least three trials were performed for each experiment.

We ran into serious functional problems with NFS at high loads. At loads of
ten or greater we consistently observed that some of the workstations terminated
the final phase of the benchmark prematurely because of file system errors.
Examination of the NFS source code revealed that the problem was probably
being caused by lost RPC reply packets from servers during periods of high
network activity. The RPC protocol used in NFS is based on unreliable datagrams
and depends on retries at the operation level rather than at the RPC level.
Nonidempotent file system calls that were retried by NFS sometimes failed, and
these were reflected as file system errors in the running of the benchmark. Since
the effective server load was lower than the nominal load in the last phase of
these experiments, the results presented here are biased in favor of NFS at high
loads. We did not encounter any functional problems of this nature with Andrew.

Table XI and Figure 3 present the overall running time in seconds of the
benchmark as a function of server load. NFS performs slightly better than
Andrew at low loads, but its performance degrades rapidly with increasing load.
The crossover point is at a load of about 3 in the warm cache case and about 4
in the cold cache case. Close examination of Table XI reveals that the ScanDir,
ReadAll, and Make phases contribute most to the difference in NFS and Andrew
performance. Caching and callback in Andrew result in having the time for these
phases only slightly affected by load. In NFS, the lack of a disk cache and the
need to check with the server on each file open cause the time for these phases
to be considerably more load dependent. The use of a warm cache in Andrew
improves the time only for the Copy phase.

Figure 4 and Table XII present data on server CPU utilization during these
experiments. At a load of 1, server CPU utilization is about 22 percent in NFS;
in Andrew it is approximately 3 percent in both the cold and warm cache cases.
At a load of 18, server CPU utilization saturates at 100 percent in NFS; in
Andrew it is about 38 percent in the cold cache case and about 42 percent in the
warm cache case.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

72 - J. H. Howard et al.

Table XI. Benchwork Times of NFS and Andrew

Phase
Load
units NFS

Time (seconds)

Andrew Andrew
cold warm

Stand-
alone

COPY

Make

Overall 1
2
5
7

10
15
18

MakeDir 1
2
5
7

10
15
18

1
2
5
7

10
15
18

ScanDir 1
2
5
7

10
15
18

ReadAll 1
2
5
7

10
15
18

1
2
5
7

10
15
18

511 (1)
535 (2)
647 (5)
736 (5)
888 (13)

1226 (12)
1279 (84)

5 (1)
8 (0)

18 (1)
33 (2)
59 (2)
82 (5)
81 (7)

44 (0)
51 (1)
84 (2)
95 (2)

107 (9)
164 (2)
245 (10)

67 (1)
67 (0)
72 (1)
78 (2)
85 (1)

107 (1)
111 (5)

68 (1)
76 (2)
93 (0)

117 (3)
152 (8)
215 (14)
211 (17)

327 (1)
334 (3)
380 (4)
414 (3)
485 (8)
658 (15)
638 (73)

588 (2)
582 (4)
605 (2)
636 (4)
688 (4)
801 (2)
874 (2)

5 (1)
5 (1)
7 (1)
9 (1)

12 (1)
18 (1)
24 (1)

71 (4)
72 (3)
85 (1)

104 (2)
137 (5)
200 (3)
241 (4)

100 (2)
98 (0)
97 (0)
97 (1)
94 (0)
91 (0)
90 (1)

50 (3)
50 (2)
47 (0)
48 (0)
48 (0)
48 (1)
48 (0)

363 (3)
356 (2)
368 (2)
377 (2)
395 (2)
442 (2)
469 (3)

564 (23)
567 (29)
564 (7)
573 (19)
621 (30)
659 (8)
697 (14)

5 (1)
5 (1)
7 (0)
8 (0)

12 (1)
19 (1)
18 (1)

56 (8)
57 (3)
58 (1)
62 (3)
88 (18)

116 (5)
133 (4)

98 (14)
96 (10)
95 (5)
96 (13)
99 (4)
82 (0)
96 (4)

48 (1)
57 (17)
49 (3)
48 (0)
49 (1)
48 (0)
48 (0)

357 (5)
352 (1)
355 (1)
359 (3)
373 (10)
394 (6)
410 (11)

482 (8)

10 (0)

31 (2)

44 (5)

51 (60)

346 (1)

Notes: These data correspond to the same set of experiments as Table XII, which
describes the hardware configuration as well as problems encountered with NFS at
loads of 10, 15, and 18. The stand-alone numbers are reproduced from Table I. A
part of these data is reproduced in Figure 3. Figures in parentheses are standard
deviations.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System l 73

(r) 1300-

2
“0 1200 -

&
o Andrew Cold Cache
A Andrew Warm Cache

-5 1100.
0 NFS

E
./’

./ ‘000 -
,/.

900 - /

800 -

700 * #A
c - -A-

600 -

500- 4
0 2 4 6 8 10 12 14 16 18

Load Units

Fig. 3. NFS and Andrew overall benchmark times. This figures compares the benchmark times of
NFS and the Andrew file system as a function of load. Table XI presents these data in greater detail.
Table XII describes the conditions under which the data were obtained.

C-- .o
.-.4.---B- .--

.’
*s.“‘--

.’

.’
d’

*’

Y’

o Andrew Cold Cache
A Andrew Warm Cache
o NFS

./
#/

30.

20-

70.

0 2 4 6 8 10 12 14 16 18
Load Units

Fig. 4. NFS and Andrew server CPU utilization. This figure compares the server CPU utilizations
of NFS and Andrew as a function of load. Table XII presents these data in greater detail and describes
the conditions under which they were obtained.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System l 75

A Andrew Warm Cache
a NFS, Disk 2 M-’
+ NFS, Diik 1 /0'

).H.

.E' ,fl .H
.'

Ad

.a
./ ,"

0 2 4 4
6 8 10 12 14 16 16

Load Units

Fig. 5. NFS and Andrew server disk utilization. This figure compares the server disk utilizations
of NFS and Andrew as a function of load. Table XII presents these data in greater detail and
describes the conditions under which they were obtained.

Table XIII. Network Traffic for Andrew and NFS

Andrew NFS

Total packets 3,824 (463)
Packets from Server to Client

10,225 (106)

Packets from Client to Server
2,003 (279) 6,490 W
1,818 (189) 3,735 (23)

Notes: This table presents the observed network traffic
generated by the benchmark when a single client was using
a server. In the Andrew ease, the server was a Sun2 on an
Ethernet connected via a router to an IBM RT client on a
token ring. In the NFS case, the server was a Sun2 on the
same Ethernet cable as its Sun 3 cliant. Each of the esperi-
ments was repeated 3 times. Figures in parentheses are
standard deviations.

Data on server disk utilization are presented in Figure 5 and Table XII. NFS
used both disks on the server, with utilizations rising from about 9 and 3 percent
at a load af 1 to nearly 95 and 29 percent at a load of 18. Andrew used onIy one
of the server disks, with utilization rising from about 4 percent at a load of 1 to
about 33 percent at a load of 18 in the cold cache case. Disk utilization is slightly,
but not substantially, lower in the warm cache case.

Another quantity of interest is the relative amount of network traffic generated
by NFS and Andrew during the execution of the benchmark. Table XIII presents
this information. As the table indicates, NFS generates nearly three times as
many packets as Andrew at a load of one.

ACM Transactions on Computer Systems, Vol. 6, No. 1, Febnary 1988.

76 l J. H. Howard et al.

Table XIV. Latency of NFS and Andrew

File size
(byte4 Andrew cold

Time (milliseconds)

Andrew warm NFS Stand-alone

3 160.0 (34.6) 16.1 (0.5) 15.7 (0.1) 5.1 (0.1)
1,113 148.0 (17.9)
4,334 202.9 (29.3)

10,278 310.0 (53.5)
24,576 515.0 (142.0) 15.9 (0.9)

Notes: This table shows the latency in milliseconds as a function of file
size. Latency is defined here as the total time to open a file, read one byte,
and then close the file. A Sun3 server and a single Sun3 client were used in
all cases. In the Andrew warm cache case, the file being accessed was already
in the cache. The cold cache numbers correspond to cases in which the file
had to be fetched from the server. The figures in parentheses are standard
deviations.

Low latency is an obvious advantage of remote-open file systems. To quantify
this fact, we ran a series of experiments that opened 3 file, read the first byte,
and then closed it. Table XIV illustrates the effect of file size on latency in NFS
and Andrew. Latency is independent of tile size in NFS and is about thrice that
of 3 local file. In Andrew, when the file is in the cache, latency is close to that of
NFS. When the file is not in the cache, latency increases with file size. In
interpreting Andrew data it is important to note that the close-system call
completes before Venus transfers the tile to the server.

What can we conclude from these observations? First, it is clear that Andrew’s
scaling characteristics are superior to those of NFS. Second, the improved scaling
of Andrew is not achieved at the price of substantially poorer small-scale
performance. Andrew is implemented almost entirely in user space, whereas NFS
is entirely in the kernel. We anticipate a significant reduction in overhead if we
move Andrew code into the kernel. There is thus untapped potential for improved
performance in Andrew, whereas we see no similar potential in NFS. Finally,
Andrew provides a well-defined consistency semantics, as well as support for
security and operability. We are pleased to observe that such additional func-
tionality has been incorporated without detriment to our primary goal of scala-
bility.

6. CHANGES FOR OPERABILITY

As the scale of 3 system grows, its users become increasingly dependent on it and
operability assumes major significance. Since the prototpye paid scant attention
to operability, it was imperative that we address this aspect of the system seriously
in the redesign. Our goal was to build a system that would be easy for a small
operational staff to run and monitor with minim31 inconvenience to users.

At the heart of the operability problems in the prototype was an inflexible
mapping of Vice files to server disk storage. This mapping, described in Section
2.1, was deficient in 3 number of ways:

(1) Vice w3s constructed out of collections of files glued together by the
4.2BSD Mount mechanism. Only entire disk partitions could be mounted.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System 77

Consequently, only sets of files on different disk partitions could be independently
located in Vice. To minimize internal fragmentation on the disks, such partitions
had to be quite large, typically consisting of the files of ten or more users. The
fact that repartitioning of a disk had to be done off-line further reduced flexibility.

(2) The embedding of file location information in the file storage structure
made movement of files across servers difficult. It required structural modifica-
tions to storage on the servers, and modifications to the files while the move was
in progress were sometimes lost.

(3) It was not possible to implement a quota system, which we believe to be
important in a system with a large number of users.

(4) The mechanisms for file location and for file replication were cumbersome
because of the lack of well-defined consistency guarantees. The embedded loca-
tion database was often wrong, and failures during the propagation of replicated
files sometimes left it inconsistent.

(5) Standard utilities were used to create backup copies of the files in the
system. Although these utilities are adequate for a single-site system, they are
not convenient for use in a distributed environment, where files may have been
moved since they were last backed up. The wiring-in of location information
made restoration of files particularly difficult.

(6) Backup was further complicated by the fact that a consistent snapshot of
a user’s files could not be made unless the entire disk partition containing those
files was taken off-line. We felt that this factor was an unacceptable imposition
on users.

To address these problems, our redesign uses a data structuring primitive called
a Volume [a]. In the rest of this section we describe volumes and show how they
have improved the operability of the system.

6.1 Volumes

A Volume is a collection of files forming a partial subtree of the Vice name space.
Volumes are glued together at Mount Points to form the complete name space.
A mount point is a leaf node of a volume that specifies the name of another
volume whose root directory is attached at that node. Mount points are not
visible in pathnames; Venus transparently recognizes and crosses mount points
during name resolution. The mount mechanism in Vice is thus conceptually
similar to the standard 4.2BSD mount mechanism.

A volume resides within a single disk partition on a server and may grow or
shrink in size. Volume sizes are usually small enough to allow many volumes per
partition. We have found it convenient to associate a separate volume with each
user. As mentioned in Section 3.2, volume-to-server mapping information is
maintained in a volume location database replicated at all servers.

6.2 Volume Movement

Balancing of the available disk space and utilization on servers is accomplished
by redistributing volumes among the available partitions on one or more servers.
When a volume is moved, the volume location database is updated. The update
does not have to be synchronous at all servers since temporary forwarding

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

78 l J. H. Howard et al,

information is left with the original server after a move. It is thus always possible
for a workstation to identify the server responsible for a volume. A volume may
be used, even for update, while it is being moved.

The actual movement is accomplished by creating a frozen copy-on-write
snapshot of the volume called a Clone, constructing a machine-independent
representation of the clone, shipping it to the new site, and regenerating the
volume at the remote site. During this process the volume may be updated at the
original site. If the volume does change, the procedure is repeated with an
incremental clone by shipping only those files that have changed. Finally the
volume is briefly disabled, the last incremental changes shipped, the volume
made available at the new site, and requests directed there. The volume move
operation is atomic; if either server crashes the operation is aborted.

6.3 Quotas

Quotas are implemented in this system on a per volume basis. Each user of the
system is assigned a volume, and each volume is assigned a quota. The respon-
sibility for managing the allocated space within a volume is left to the user.
Access lists permitting, a user may store files in a volume belonging to another
user. However, it is always the owner of a volume who is charged for its usage.
System administrators can change quotas easily on volumes after they are created.

6.4 Read-Only Replication

Executable files corresponding to system programs and files in the upper levels
of the Vice name space are frequently read but seldom updated. Read-only
replication of these files at multiple servers improves availability and balances
load. No callbacks are needed on such files, thereby making access more efficient.
Read-only replication is supported at the granularity of an entire volume. The
volume location database specifies the server containing the read-write copy of a
volume and a list of read-only replication sites.

As described in Section 6.2, a read-only clone of a volume can be created and
propagated efficiently to the replication sites. Since volume propagation is an
atomic operation, mutual consistency of files within a read-only volume is
guaranteed at all replication sites. However, there may be some period of time
during which certain replication sites have an old copy of the volume while others
have the new copy.

Read-only volumes are valuable in system administration since they form the
basis of an orderly release process for system software. It is easy to back out a
new release in the event of an unanticipated problem with it. Any one of a
collection of servers with identical sets of read-only volumes (and no read-write
volumes) can be introduced or withdrawn from service with virtually no impact
on users. This provides an additional measure of availability and serviceability.

6.5 Backup

Volumes form the basis of the backup and restoration mechanism in our redesign.
To backup a volume, a read-only clone is first made, thus creating a frozen
snapshot of those files. Since cloning is an efficient operation, users rarely notice
any loss of access to that volume. An asynchronous mechanism then transfers

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System 79

this clone to a staging machine from where it is dumped to tape. The staging
software is not aware of the internal structure of volumes but merely dumps and
restores them in their entirety. Volumes can be restored to any server, since
there is no server-specific information embedded in a volume.

Experience has shown that a large fraction of file restore requests arise from
accidental deletion by users. To handle this common special case, the cloned
read-only backup volume of each user’s files is made available as a read-only
subtree in that user’s home directory. Restoration of files within a 24-hour period
can thus be performed by users themselves using normal file operations. Since
cloning uses copy-on-write to conserve disk storage, this convenient backup
strategy is achieved at modest expense.

6.6 Summary

Our experience with volumes as a data structuring mechanism has been entirely
positive. Volumes provide a level of Operational Transparency that is not sup-
ported by any other file system we are aware of. From an operational standpoint,
the system is a flat space of named volumes. The file system hierarchy is
constructed out of volumes but is orthogonal to it.

The ability to associate disk usage quotas with volumes and the ease with
which volumes may be moved between servers have proved to be of considerable
value in actual operation of the system. The backup mechanism is simple and
efficient and seldom disrupts normal user activities. These observations lead us
to conclude that the volume abstraction, or something similar to it, is indispen-
sible in a large distributed file system.

7. CONCLUSION

Scale impacts Andrew in areas besides performance and operability. The large
number of users and workstations in the system has resulted in sizable authen-
tication and network databases. As the system grows, the existing mechanisms
to update and query these databases will become inadequate. Fault-tolerance is
another area in which scaling stresses Andrew. The access of a Vice file can, in
the worst case, involve multiple servers and network elements. Every one of these
components has to be up for the file access to succeed. Read-only replication of
system files alleviates this problem to a certain extent but does not entirely solve
it. Although a uniform, location-transparent file name space is a major conceptual
simplification, the failure modes that arise can be quite difficult for a naive user
to comprehend. The issue of software version control and orderly release of
critical software to workstations will also increase in importance as the system
grows in size.

In choosing to focus on scale, we have omitted discussion of many other
important aspects of the evolution of the Andrew File System. Security and
emulation of UNIX semantics, for example, are two areas fundamental to the
file system. Network topology, hardware, and software are other such examples.
We have had to pay close attention to these and other similar areas in the course
of our design and implementation.

At the time this paper was written, in early 1987, there were about 400
workstations and 16 servers. About a fifth of the workstations were in public

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

80 - J. H. Howard et al.

terminal rooms. There were over 3500 registered users of the system, of whom
over 1000 used Andrew regularly. The data stored on the servers was approxi-
mately 6000 megabytes and was distributed over about 4000 volumes. Although
Andrew is not the sole computing facility at CMU, it is used as the primary
computational environment of many courses and research projects.

What do we see for the future? Usage experience gives us confidence that this
system will scale with minimal changes to about 500 to 700 workstations. From
there to our eventual goal of 5000 workstations is, of course, a large gap. Although
the performance data presented in this paper confirms that our high-level
architecture is appropriate for scaling, it is inevitable that significant changes
will have to be made with each quantum increase in the size of the system.

The changes we have thought of address a variety of issues. Moving Venus
and the server code into the kernel would improve performance considerably.
Changing the kernel intercept mechanism to an industry standard would simplify
the maintenance and portability of the system. The ability to allow users to
define their own protection groups would simplify administration. As users
become more dependent on the system, availability becomes increasingly impor-
tant. Some form of replication of writable files will be necessary eventually. The
distributed nature of the system and its inherent complexity make it a difficult
system to troubleshoot. Monitoring, fault isolation, and diagnostic tools that
span all levels of the hardware and software will become increasingly important.
Finally, as the system grows, decentralized administration and physical dispersal
of servers will be necessary.

In conclusion, we look upon the present state of the Andrew File System with
satisfaction. We are pleased with its current performance and with the fact that
it compares favorably with the most prominent alternative distributed file system.
At the same time, we are certain that further growth will stress our skill, patience,
and ingenuity.

ACKNOWLEDGMENTS

The Andrew File System was developed at the Information Technology Center
of Carnegie-Mellon University. We wish to thank our colleagues for their many
contributions to this project and our users for their patience in dealing with a
system under development. We wish to express our special appreciation to Vasilis
Apostolides who assisted us in running the benchmarks that compared Andrew
and NFS. The suggestions of James Kistler, Richard Snodgrass, James Peterson,
and the SOSP referees improved this paper in many ways.

REFERENCES

1. BROWNBRIDGE, D. R., MARSHALL, L. F., AND RANDELL, B. The Newcastle connection. Softw.
Pratt. Exper. 12 (1982), 1147-1162.

2. KAZAR, M. L. Synchronization and caching issues in the Andrew file system. Tech. Rep. CMU-
ITC-058, Information Technology Center, Carnegie Mellon Univ., Pittsburgh, Pa., June, 1987.

3. MORRIS, J. H., SATYANARAYANAN, M., CONNER, M. H., HOWARD, J. H., ROSENTHAL, D. S.,
AND SMITH, F. D. Andrew: A distributed personal computing environment. Comnun. ACM 29,
3 (Mar. 1986), 184-201.

4. OUSTERHOUT, J., DA COSTA, H., HARRISON, D., KUNZE, J., KUPFER, M., AND THOMPSON, J. A
trace-driven analysis of the UNIX 4.2BSD file system. In Proceedings of the 20th ACMSymposium

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Scale and Performance in a Distributed File System 81

on Operating System Principles (Orcas Island, Wash., Dec. 1-4, 1985). ACM, New York, 1985,
pp. 15-24.

5. RIFKIN, A. P., FORBES, M. P., HAMILTON, R. L., SABRIO, M., SHAH, S., AND YUEH, K. RFS
architectural overview. In Usenix Conference Proceedings (Atlanta, Ga., Summer 1986). USENIX
Association, Berkeley, Calif., pp 248-259.

6. SATYANARAYANAN, M., HOWARD, J. H., NICHOLS, D. A., SIDEBOTHAM, R. N., SPECTOR, A. Z.,
AND WEST, M. J. The ITC distributed file system: Principles and design. In Proceedings of the
10th ACM Symposium on Operating System Principles (Orcas Island, Wash., Dec. 1-4, 1985).
ACM, New York, 1985, pp. 35-50.

7. SCHROEDER, M. D., GIFFORD, D. K., AND NEEDHAM, R. M. A caching file system for a
programmer’s workstation. In Proceedings of the 10th ACM Symposium on Operating System
Principles (Orcas Island, Wash., Dec. l-4, 1985). ACM, New York, 1985, pp. 25-34.

8. SIDEBOTHAM, R. N. Volumes: The Andrew file system data structuring primitive. European
Unix User Group Conference Proceedings (August 1986). Also available as Tech. Rep. CMU-
ITC-053, Information Technology Center, Carnegie Mellon Univ., Pittsburgh, Pa.

9. SUN MICROSYSTEMS, INC. Networking on the SUN Workstation. Sun Microsystems, Mountain
View, Calif., 1986.

10. SVOBODOVA, L. File servers for network-based distributed systems. Comput. Suru. 16, 4
(Dec. 1984), 353-398.

11. TICHY, W. F., AND RUAN, Z. Towards a distributed file system. Tech. Rep. CSD-TR-480,
Computer Science Dept., Purdue Univ., West Lafayette, In. 1984.

12. WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND THIEL, G. The LOCUS distributed
operating system. In Proceedings of the 9th ACM Symposium on Operating System Principles
(Bretton Woods, N.H., Oct. 11-13, 1983). ACM, New York, 1983, pp. 49-70.

Received May 1987; Revised August 1987; accepted September 1987.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

