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ABSTRACT

Commodity computer systems contain more and more processor
cores and exhibit increasingly diverse architectural tradeoffs, in-
cluding memory hierarchies, interconnects, instruction sets and
variants, and IO configurations. Previous high-performance com-
puting systems have scaled in specific cases, but the dynamic nature
of modern client and server workloads, coupled with the impossi-
bility of statically optimizing an OS for all workloads and hardware
variants pose serious challenges for operating system structures.

We argue that the challenge of future multicore hardware is best
met by embracing the networked nature of the machine, rethinking
OS architecture using ideas from distributed systems. We investi-
gate anew OS structure, the multikernel, that treats the machine as a
network of independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to a distributed
system of processes that communicate via message-passing.

We have implemented a multikernel OS to show that the ap-
proach is promising, and we describe how traditional scalability
problems for operating systems (such as memory management) can
be effectively recast using messages and can exploit insights from
distributed systems and networking. An evaluation of our prototype
on multicore systems shows that, even on present-day machines,
the performance of a multikernel is comparable with a conventional
OS, and can scale better to support future hardware.

Categories and Subject Descriptors: D.4.7 [Operating Systems]:
Organization and Design

General Terms: Design, Experimentation, Performance

Keywords: Scalability, multicore processors, message passing

1. INTRODUCTION

Computer hardware is changing and diversifying faster than system
software. A diverse mix of cores, caches, interconnect links, 10
devices and accelerators, combined with increasing core counts,
leads to substantial scalability and correctness challenges for OS
designers.
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Figure 1: The multikernel model.

Such hardware, while in some regards similar to earlier paral-
lel systems, is new in the general-purpose computing domain. We
increasingly find multicore systems in a variety of environments
ranging from personal computing platforms to data centers, with
workloads that are less predictable, and often more OS-intensive,
than traditional high-performance computing applications. It is
no longer acceptable (or useful) to tune a general-purpose OS de-
sign for a particular hardware model: the deployed hardware varies
wildly, and optimizations become obsolete after a few years when
new hardware arrives.

Moreover, these optimizations involve tradeoffs specific to hard-
ware parameters such as the cache hierarchy, the memory consis-
tency model, and relative costs of local and remote cache access,
and so are not portable between different hardware types. Often,
they are not even applicable to future generations of the same archi-
tecture. Typically, because of these difficulties, a scalability prob-
lem must affect a substantial group of users before it will receive
developer attention.

We attribute these engineering difficulties to the basic struc-
ture of a shared-memory kernel with data structures protected by
locks, and in this paper we argue for rethinking the structure of
the OS as a distributed system of functional units communicat-
ing via explicit messages. We identify three design principles: (1)
make all inter-core communication explicit, (2) make OS structure
hardware-neutral, and (3) view state as replicated instead of shared.

The model we develop, called a multikernel (Figure 1), is not
only a better match to the underlying hardware (which is net-
worked, heterogeneous, and dynamic), but allows us to apply in-
sights from distributed systems to the problems of scale, adaptivity,
and diversity in operating systems for future hardware.

Even on present systems with efficient cache-coherent shared
memory, building an OS using message-based rather than shared-



data communication offers tangible benefits: instead of sequen-
tially manipulating shared data structures, which is limited by the
latency of remote data access, the ability to pipeline and batch mes-
sages encoding remote operations allows a single core to achieve
greater throughput and reduces interconnect utilization. Further-
more, the concept naturally accommodates heterogeneous hard-
ware.

The contributions of this work are as follows:

e We introduce the multikernel model and the design principles
of explicit communication, hardware-neutral structure, and
state replication.

e We present a multikernel, Barrelfish, which explores the im-
plications of applying the model to a concrete OS implemen-
tation.

e We show through measurement that Barrelfish satisfies our
goals of scalability and adaptability to hardware characteris-
tics, while providing competitive performance on contempo-
rary hardware.

In the next section, we survey trends in hardware which further
motivate our rethinking of OS structure. In Section 3, we introduce
the multikernel model, describe its principles, and elaborate on our
goals and success criteria. We describe Barrelfish, our multikernel
implementation, in Section 4. Section 5 presents an evaluation of
Barrelfish on current hardware based on how well it meets our cri-
teria. We cover related and future work in Sections 6 and 7, and
conclude in Section 8.

2. MOTIVATIONS

Most computers built today have multicore processors, and future
core counts will increase [12]. However, commercial multiproces-
sor servers already scale to hundreds of processors with a single OS
image, and handle terabytes of RAM and multiple 10Gb network
connections. Do we need new OS techniques for future multicore
hardware, or do commodity operating systems simply need to ex-
ploit techniques already in use in larger multiprocessor systems?

In this section, we argue that the challenges facing a general-
purpose operating system on future commodity hardware are dif-
ferent from those associated with traditional ccNUMA and SMP
machines used for high-performance computing. In a previous pa-
per [8] we argued that single computers increasingly resemble net-
worked systems, and should be programmed as such. We rehearse
that argument here, but also lay out additional scalability challenges
for general-purpose system software.

2.1 Systems are increasingly diverse

A general-purpose OS today must perform well on an increasingly
diverse range of system designs, each with different performance
characteristics [60]. This means that, unlike large systems for high-
performance computing, such an OS cannot be optimized at design
or implementation time for any particular hardware configuration.

To take one specific example: Dice and Shavit show how a
reader-writer lock can be built to exploit the shared, banked L2
cache on the Sun Niagara processor [40], using concurrent writes
to the same cache line to track the presence of readers [20]. On Ni-
agara this is highly efficient: the line remains in the L2 cache. On
a traditional multiprocessor, it is highly inefficient: the line ping-
pongs between the readers’ caches.
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Figure 2: Node layout of an 8x4-core AMD system

This illustrates a general problem: any OS design tied to a par-
ticular synchronization scheme (and data layout policy) cannot ex-
ploit features of different hardware. Current OS designs optimize
for the common hardware case; this becomes less and less efficient
as hardware becomes more diverse. Worse, when hardware vendors
introduce a design that offers a new opportunity for optimization,
or creates a new bottleneck for existing designs, adapting the OS to
the new environment can be prohibitively difficult.

Even so, operating systems are forced to adopt increasingly com-
plex optimizations [27,46,51,52,57] in order to make efficient use
of modern hardware. The recent scalability improvements to Win-
dows7 to remove the dispatcher lock touched 6000 lines of code in
58 files and have been described as “heroic” [58]. The Linux read-
copy update implementation required numerous iterations due to
feature interaction [50]. Backporting receive-side-scaling support
to Windows Server 2003 caused serious problems with multiple
other network subsystems including firewalls, connection-sharing

and even Exchange servers'.

2.2 Cores are increasingly diverse

Diversity is not merely a challenge across the range of commodity
machines. Within a single machine, cores can vary, and the trend is
toward a mix of different cores. Some will have the same instruc-
tion set architecture (ISA) but different performance characteris-
tics [34,59], since a processor with large cores will be inefficient for
readily parallelized programs, but one using only small cores will
perform poorly on the sequential parts of a program [31,42]. Other
cores have different ISAs for specialized functions [29], and many
peripherals (GPUs, network interfaces, and other, often FPGA-
based, specialized processors) are increasingly programmable.

Current OS designs draw a distinction between general-purpose
cores, which are assumed to be homogeneous and run a sin-
gle, shared instance of a kernel, and peripheral devices accessed
through a narrow driver interface. However, we are not the only
researchers to see an increasing need for OSes to manage the soft-
ware running on such cores much as they manage CPUs today [55].
Moreover, core heterogeneity means cores can no longer share a
single OS kernel instance, either because the performance tradeofts
vary, or because the ISA is simply different.

2.3 The interconnect matters

Even for contemporary cache-coherent multiprocessors, message-
passing hardware has replaced the single shared interconnect [18,
33] for scalability reasons. Hardware thus resembles a message-
passing network, as in the interconnect topology of the commodity
PC server in Figure 2. While on most current hardware the cache-
coherence protocol between CPUs ensures that the OS can continue
to safely assume a single shared memory, networking problems

ISee Microsoft Knowledge Base articles 927168, 927695 and 948496.



Latency (cycles x 1000)

Cores

Figure 3: Comparison of the cost of updating shared state using
shared memory and message passing.

like routing and congestion are well-known concerns on large-scale
multiprocessors, and are now issues in commodity intra-machine
interconnects [18]. Future hardware will comprise fewer chips but
exhibit network effects inside the chip, such as with ring [38, 61]
and mesh networks [68, 70]. The implication is that system soft-
ware will have to adapt to the inter-core topology, which in turn
will differ between machines and become substantially more im-
portant for performance than at present.
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In 1978 Lauer and Needham argued that message-passing and
shared-memory operating systems are duals, and the choice of one
model over another depends on the machine architecture on which
the OS is built [43]. Of late, shared-memory systems have been
the best fit for PC hardware in terms of both performance and good
software engineering, but this trend is reversing. We can see evi-
dence of this by an experiment that compares the costs of updating
a data structure using shared memory with the costs using message
passing. The graph in Figure 3 plots latency against number of
cores for updates of various sizes on the 4x4-core AMD system
(described in Section 4.1).

In the shared memory case, threads pinned to each core directly
update the same small set of memory locations (without locking)
and the cache-coherence mechanism migrates data between caches
as necessary. The curves labeled SHM -8 show the latency per
operation (in cycles) for updates that directly modify 1, 2, 4 and
8 shared cache lines respectively. The costs grow approximately
linearly with the number of threads and the number of modified
cache lines. Although a single core can perform the update opera-
tion in under 30 cycles, when 16 cores are modifying the same data
it takes almost 12,000 extra cycles to perform each update. All of
these extra cycles are spent with the core stalled on cache misses
and therefore unable to do useful work while waiting for an update
to occur.

Messages cost less than shared memory

In the case of message passing, client threads issue a lightweight
remote procedure call [10], (which we assume fits in a 64-byte
cache line), to a single server process that performs the update on
their behalf. The curves labeled MSGI and MSGS, show the cost of
this synchronous RPC to the dedicated server thread. As expected,
the cost varies little with the number of modified cache lines since
they remain in the server’s local cache. Because each request is
likely to experience some queuing delay at the server proportional
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to the number of clients, the elapsed time per operation grows lin-
early with the number of client threads. Despite this, for updates
of four or more cache lines, the RPC latency is lower than shared
memory access (SHM4 vs. MSGS8). Furthermore, with an asyn-
chronous or pipelined RPC implementation, the client processors
can avoid stalling on cache misses and are free to perform other
operations.

The final curve, labeled Server, shows time spent performing
each update operation as measured at the server end of the RPC
channel. Since it excludes queuing delay, this cost is largely in-
dependent of the number of threads (and in fact decreases initially
once there are enough outstanding client requests to keep the server
100% utilized). The cache efficiency of the single server is such
that it can perform twice as many updates per second as all 16
shared-memory threads combined. The per-operation cost is dom-
inated by message send and receive, and since these costs are sym-
metric at the client end, we infer that the difference between the
Server and MSGn lines represents the additional cycles that would
be available to the client for useful work if it were to use asyn-
chronous messaging.

This example shows scalability issues for cache-coherent shared
memory on even a small number of cores. Although current OSes
have point-solutions for this problem, which work on specific plat-
forms or software systems, we believe the inherent lack of scala-
bility of the shared memory model, combined with the rate of in-
novation we see in hardware, will create increasingly intractable
software engineering problems for OS kernels.

2.5 Cache coherence is not a panacea

As the number of cores and the subsequent complexity of the inter-
connect grows, hardware cache-coherence protocols will become
increasingly expensive. As a result, it is a distinct possibility that
future operating systems will have to handle non-coherent mem-
ory [12,49, 69], or will be able to realize substantial performance
gains by bypassing the cache-coherence protocol [70].

It is already the case that programmable peripherals like NICs
and GPUs do not maintain cache coherence with CPUs. Further-
more, many multicore processors have already demonstrated the
use of non-coherent shared memory [15, 26, 68], and Mattson et
al. [49] argue that the overhead of cache coherence restricts the
ability to scale up to even 80 cores.

2.6 Messages are getting easier

There are legitimate software engineering issues associated with
message-based software systems, and one might therefore ques-
tion the wisdom of constructing a multiprocessor operating sys-
tem based on a “shared nothing” model as we propose. There are
two principal concerns, the first to do with not being able to access
shared data, and the second to do with the event-driven program-
ming style that results from asynchronous messaging.

However, the convenience of shared data is somewhat superfi-
cial. There are correctness and performance pitfalls when using
shared data structures, and in scalable shared-memory programs
(particularly high-performance scientific computing applications),
expert developers are very careful about details such as lock gran-
ularity and how fields are laid out within structures. By fine-tuning
code at a low level, one can minimize the cache lines needed to hold
the shared data and reduce contention for cache line ownership.
This reduces interconnect bandwidth and the number of processor
stalls incurred when cache contents are stale.

The same kind of expertise is also applied to make commodity
operating systems more scalable. As we have shown above, this



leads to a challenge in evolving the system as tradeoffs change,
because the knowledge required for effective sharing of a particular
data structure is encoded implicitly in its implementation. Note
that this means programmers must think carefully about a shared-
memory program in terms of messages sent by the cache-coherence
protocol in response to loads and stores to data locations.

The second concern with message passing is the resultant “stack
ripping” and obfuscation of control flow due to the event-driven
nature of such programs. However, traditional monolithic kernels
are essentially event-driven systems, even on multiprocessors. OS
developers are perhaps more accustomed to thinking in terms of
state machines and message handlers than other programmers.

Finally, we note that a message-passing, event-driven program-
ming model is also the norm for many other programming do-
mains, such as graphical user interface programming, some types
of network server, and large-scale computation on clusters (where
it has completely replaced the “distributed shared virtual memory”
paradigm). This has meant that the programmability of message-
passing or event-driven systems is an active research area with
promising results that seem a natural fit for the multikernel model,
such as the Tame/Tamer C++ libraries [41] and the X10 parallel
programming language [16]. As the need for multicore program-
ming environments at the user level becomes more pressing, we ex-
pect tools like these to support a message-passing abstraction will
become widespread.

2.7 Discussion

The architecture of future computers is far from clear but two trends
are evident: rising core counts and increasing hardware diversity,
both between cores within a machine, and between systems with
varying interconnect topologies and performance tradeofts.

This upheaval in hardware has important consequences for a
monolithic OS that shares data structures across cores. These sys-
tems perform a delicate balancing act between processor cache
size, the likely contention and latency to access main memory, and
the complexity and overheads of the cache-coherence protocol. The
irony is that hardware is now changing faster than software, and the
effort required to evolve such operating systems to perform well on
new hardware is becoming prohibitive.

Increasing system and interconnect diversity, as well as core het-
erogeneity, will prevent developers from optimizing shared mem-
ory structures at a source-code level. Sun Niagara and Intel Ne-
halem or AMD Opteron systems, for example, already require
completely different optimizations, and future system software will
have to adapt its communication patterns and mechanisms at run-
time to the collection of hardware at hand. It seems likely that
future general-purpose systems will have limited support for hard-
ware cache coherence, or drop it entirely in favor of a message-
passing model. An OS that can exploit native message-passing
would be the natural fit for such a design.

We believe that now is the time to reconsider how the OS should
be restructured to not merely cope with the next generation of hard-
ware, but efficiently exploit it. Furthermore, rather than evolving an
inherently shared-memory model of OS structure to deal with com-
plex tradeoffs and limited sharing, we take the opposite approach:
design and reason about the OS as a distributed, non-shared system,
and then employ sharing to optimize the model where appropriate.

Figure 4 depicts a spectrum of sharing and locking disciplines.
Traditional operating systems, such as Windows and variants of
Unix, have evolved from designs at the far left of the continuum
towards finer-grained locking and more replication. These changes
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Figure 4: Spectrum of sharing and locking disciplines.

have been driven by hardware developments that exposed scalabil-
ity bottlenecks, particularly the adoption of multiple processors in
commodity PCs. Mainstream OSes are currently moving towards
the center, where several “hot” data structures are partitioned or
replicated across cores. Research systems take this even further
with mechanisms like clustered objects that improve the locality
of partitioned data [24]. In contrast, we propose an OS architec-
ture positioned at the extreme right of the spectrum, where all state
is replicated by default and consistency is maintained using agree-
ment protocols.

3. THE MULTIKERNEL MODEL

In this section we present our OS architecture for heterogeneous
multicore machines, which we call the multikernel model. In a
nutshell, we structure the OS as a distributed system of cores that
communicate using messages and share no memory (Figure 1). The
multikernel model is guided by three design principles:

1. Make all inter-core communication explicit.
2. Make OS structure hardware-neutral.
3. View state as replicated instead of shared.

These principles allow the OS to benefit from the distributed sys-
tems approach to gain improved performance, natural support for
hardware heterogeneity, greater modularity, and the ability to reuse
algorithms developed for distributed systems.

After discussing the principles in detail below, in Section 4 we
explore the implications of these principles by describing the im-
plementation of Barrelfish, a new operating system based on the
multikernel model.

3.1 Make inter-core communication explicit

Within a multikernel OS, all inter-core communication is per-
formed using explicit messages. A corollary is that no memory
is shared between the code running on each core, except for that
used for messaging channels. As we have seen, using messages to
access or update state rapidly becomes more efficient than shared-
memory access as the number of cache-lines involved increases.
We can expect such effects to become more pronounced in the fu-
ture. Note that this does not preclude applications sharing memory
between cores (see Section 4.8), only that the OS design itself does
not rely on it.

Explicit communication patterns facilitate reasoning about the
use of the system interconnect. In contrast to implicit communica-
tion (such as distributed shared memory, or the messages used for
cache coherence), the knowledge of what parts of shared state are
accessed when and by who is exposed. It is, of course, established
practice in OS kernels to design point-solution data structures that
can be updated using only one or two cache misses on particular
architectures, but it is hard to evolve such operations as hardware
changes, and such optimizations ignore the wider picture of larger
state updates in the OS involving multiple structures.

We have previously argued that as the machine increasingly re-
sembles a network, the OS will inevitably behave as a distributed



system [8]. Explicit communication allows the OS to deploy well-
known networking optimizations to make more efficient use of the
interconnect, such as pipelining (having a number of requests in
flight at once), and batching (sending a number of requests in one
message, or processing a number of messages together). In Sec-
tion 5.2 we show the benefit of such techniques in the case of dis-
tributed capability management.

This approach also enables the OS to provide isolation and re-
source management on heterogeneous cores, or to schedule jobs
effectively on arbitrary inter-core topologies by placing tasks with
reference to communication patterns and network effects. Further-
more, the message abstraction is a basic requirement for spanning
cores which are not cache-coherent, or do not even share memory.

Message passing allows operations that might require commu-
nication to be split-phase, by which we mean that the operation
sends a request and immediately continues, with the expectation
that a reply will arrive at some time in the future. When requests
and responses are decoupled, the core issuing the request can do
useful work, or sleep to save power, while waiting for the reply.
A common, concrete example is remote cache invalidations. In a
highly concurrent scenario, provided that completing the invalida-
tion is not required for correctness, it can be more important not
to waste time waiting for the operation to finish than to perform it
with the smallest possible latency.

Finally, a system based on explicit communication is amenable
to human or automated analysis. The structure of a message-
passing system is naturally modular, because components com-
municate only through well-defined interfaces. Consequently it
can be evolved and refined more easily [23] and made robust to
faults [30]. Indeed, a substantial theoretical foundation exists for
reasoning about the high-level structure and performance of a sys-
tem with explicit communication between concurrent tasks, rang-
ing from process calculi such as Hoare’s communicating sequential
processes and the mr-calculus, to the use of queuing theory to ana-
lyze the performance of complex networks

3.2 Make OS structure hardware-neutral

A multikernel separates the OS structure as much as possible from
the hardware. This means that there are just two aspects of the
OS as a whole that are targeted at specific machine architectures —
the messaging transport mechanisms, and the interface to hardware
(CPUs and devices). This has several important potential benefits.

Firstly, adapting the OS to run on hardware with new per-
formance characteristics will not require extensive, cross-cutting
changes to the code base (as was the case with recent scalability
enhancements to Linux and Windows). This will become increas-
ingly important as deployed systems become more diverse.

In particular, experience has shown that the performance of an
inter-process communication mechanism is crucially dependent on
hardware-specific optimizations (we describe those used in Bar-
relfish in Section 4.6). Hardware-independence in a multikernel
means that we can isolate the distributed communication algo-
rithms from hardware implementation details.

We envision a number of different messaging implementations
(for example, a user-level RPC protocol using shared memory, or a
hardware-based channel to a programmable peripheral). As we saw
in Section 2.5, hardware platforms exist today without cache coher-
ence, and even without shared memory, and are likely to become
more widespread. Once the message transport is optimized, we can
implement efficient message-based algorithms independently of the
hardware details or memory layout.
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A final advantage is to enable late binding of both the proto-
col implementation and message transport. For example, different
transports may be used to cores on IO links, or the implementation
may be fitted to the observed workload by adjusting queue lengths
or polling frequency. In Section 5.1 we show how a topology-aware
multicast message protocol can outperform highly optimized TLB
shootdown mechanisms on commodity operating systems.

3.3 View state as replicated

Operating systems maintain state, some of which, such as the Win-
dows dispatcher database or Linux scheduler queues, must be ac-
cessible on multiple processors. Traditionally that state exists as
shared data structures protected by locks, however, in a multikernel,
explicit communication between cores that share no memory leads
naturally to a model of global OS state replicated across cores.

Replication is a well-known technique for OS scalability [4,24],
but is generally employed as an optimization to an otherwise
shared-memory kernel design. In contrast, any potentially shared
state in a multikernel is accessed and updated as if it were a lo-
cal replica. In general, the state is replicated as much as is useful,
and consistency is maintained by exchanging messages. Depend-
ing on the consistency semantics required, updates can therefore be
long-running operations to coordinate replicas, and so are exposed
in the API as non-blocking and split-phase. We provide examples
of different update semantics in Section 4.

Replicating data structures can improve system scalability by re-
ducing load on the system interconnect, contention for memory,
and overhead for synchronization. Bringing data nearer to the cores
that process it will result in lowered access latencies.

Replication is required to support domains that do not share
memory, whether future general-purpose designs or present-day
programmable peripherals, and is inherent in the idea of specializ-
ing data structures for particular core designs. Making replication
of state intrinsic to the multikernel design makes it easier to pre-
serve OS structure and algorithms as underlying hardware evolves.

Furthermore, replication is a useful framework within which to
support changes to the set of running cores in an OS, either when
hotplugging processors, or when shutting down hardware subsys-
tems to save power. We can apply standard results from the dis-
tributed systems literature to maintaining the consistency of OS
state across such changes.

Finally, a potentially important optimization of the multikernel
model (which we do not pursue in this paper) is to privately share a
replica of system state between a group of closely-coupled cores or
hardware threads, protected by a shared-memory synchronization
technique like spinlocks. In this way we can introduce (limited)
sharing behind the interface as an optimization of replication.

3.4 Applying the model

Like all models, the multikernel, while theoretically elegant, is an
idealist position: no state is shared and the OS acts like a fully
distributed system. This has several implications for a real OS.

We discussed previously (in Section 2.6) the software engineer-
ing concerns of message-passing systems in general. Within the op-
erating system kernel, which typically consists of a smaller amount
of code written by expert programmers, software development
challenges are more easily managed. However, the drawback of
a idealist message-passing abstraction here is that certain platform-
specific performance optimizations may be sacrificed, such as mak-
ing use of a shared L2 cache between cores.



The performance and availability benefits of replication are
achieved at the cost of ensuring replica consistency. Some oper-
ations will inevitably experience longer latencies than others, and
the extent of this penalty will depend on the workload, the data vol-
umes and the consistency model being applied. Not only that, the
model supports multiple implementations of the agreement proto-
cols used to maintain consistency. This increases the burden on
the developer who must understand the consistency requirements
for the data, but on the other hand, can also precisely control the
degree of consistency. For example, a global flush of the TLB on
each CPU is order-insensitive and can be achieved by issuing a sin-
gle multicast request, whereas other operations may require more
elaborate agreement protocols.

From an OS research perspective, a legitimate question is to what
extent a real implementation can adhere to the model, and the con-
sequent effect on system performance and scalability. To address
this, we have implemented Barrelfish, a substantial prototype oper-
ating system structured according to the multikernel model.

Specifically, the goals for Barrelfish are that it:

e gives comparable performance to existing commodity oper-
ating systems on current multicore hardware;

e demonstrates evidence of scalability to large numbers of
cores, particularly under workloads that stress global OS data
structures;

e can be re-targeted to different hardware, or make use of a
different mechanism for sharing, without refactoring;

e can exploit the message-passing abstraction to achieve good
performance by pipelining and batching messages;

e can exploit the modularity of the OS to place OS functional-
ity according to the hardware topology or load.

In the next section we describe Barrelfish, and in Section 5 we ex-
plore the extent to which it achieves these goals.

4. IMPLEMENTATION

While Barrelfish is a point in the multikernel design space, it is not
the only way to build a multikernel. In this section we describe our
implementation, and note which choices in the design are derived
from the model and which are motivated for other reasons, such as
local performance, ease of engineering, policy freedom, etc. — we
have liberally borrowed ideas from many other operating systems.

4.1 Test platforms

Barrelfish currently runs on x86-64-based multiprocessors (an
ARM port is in progress). In the rest of this paper, reported per-
formance figures refer to the following systems:

The 2x4-core Intel system has an Intel sS5000XVN motherboard
with 2 quad-core 2.66GHz Xeon X5355 processors and a single ex-
ternal memory controller. Each processor package contains 2 dies,
each with 2 cores and a shared 4MB L2 cache. Both processors
are connected to the memory controller by a shared front-side bus,
however the memory controller implements a snoop filter to reduce
coherence traffic crossing the bus.

The 2x2-core AMD system has a Tyan Thunder n6650W board
with 2 dual-core 2.8GHz AMD Opteron 2220 processors, each
with a local memory controller and connected by 2 HyperTrans-
port links. Each core has its own 1MB L2 cache.
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Figure 5: Barrelfish structure

The 4x4-core AMD system has a Supermicro H8QM3-2 board
with 4 quad-core 2.5GHz AMD Opteron 8380 processors con-
nected in a square topology by four HyperTransport links. Each
core has a private 512kB L2 cache, and each processor has a 6MB
L3 cache shared by all 4 cores.

The 8x4-core AMD system has a Tyan Thunder S4985 board
with M4985 quad CPU daughtercard and 8 quad-core 2GHz AMD
Opteron 8350 processors with the interconnect in Figure 2. Each
core has a private 512kB L2 cache, and each processor has a 2MB
L3 cache shared by all 4 cores.

4.2 System structure

The multikernel model calls for multiple independent OS instances
communicating via explicit messages. In Barrelfish, we factor the
OS instance on each core into a privileged-mode CPU driver and
a distinguished user-mode monitor process, as in Figure 5 (we dis-
cuss this design choice below). CPU drivers are purely local to a
core, and all inter-core coordination is performed by monitors. The
distributed system of monitors and their associated CPU drivers en-
capsulate the functionality found in a typical monolithic microker-
nel: scheduling, communication, and low-level resource allocation.

The rest of Barrelfish consists of device drivers and system ser-
vices (such as network stacks, memory allocators, etc.), which run
in user-level processes as in a microkernel. Device interrupts are
routed in hardware to the appropriate core, demultiplexed by that
core’s CPU driver, and delivered to the driver process as a message.

4.3 CPU drivers

The CPU driver enforces protection, performs authorization, time-
slices processes, and mediates access to the core and its associ-
ated hardware (MMU, APIC, etc.). Since it shares no state with
other cores, the CPU driver can be completely event-driven, single-
threaded, and nonpreemptable. It serially processes events in the
form of traps from user processes or interrupts from devices or
other cores. This means in turn that it is easier to write and de-
bug than a conventional kernel, and is small?> enabling its text and
data to be located in core-local memory.

As with an exokernel [22], a CPU driver abstracts very little but
performs dispatch and fast local messaging between processes on
the core. It also delivers hardware interrupts to user-space drivers,
and locally time-slices user-space processes. The CPU driver is in-
voked via standard system call instructions with a cost comparable
to Linux on the same hardware.

The current CPU driver in Barrelfish is heavily specialized for
the x86-64 architecture. In the future, we expect CPU drivers
for other processors to be similarly architecture-specific, including

2The x86-64 CPU driver, including debugging support and libraries, is
7135 lines of C and 337 lines of assembly (counted by David A. Wheeler’s
“SLOCCount”), 54kB of text and 370kB of static data (mainly page tables).



System cycles (o) ns
2x4-core Intel 845(32) 318
2x2-core AMD 757 (19) 270
4x4-core AMD 1463 (21) 585
8x4-core AMD 1549 20) 774

Table 1: LRPC latency

data structure layout, whereas the monitor source code is almost
entirely processor-agnostic.

The CPU driver implements a lightweight, asynchronous (split-
phase) same-core interprocess communication facility, which de-
livers a fixed-size message to a process and if necessary unblocks
it. More complex communication channels are built over this using
shared memory. As an optimization for latency-sensitive opera-
tions, we also provide an alternative, synchronous operation akin
to LRPC [9] or to L4 IPC [44].

Table 1 shows the one-way (user program to user program) per-
formance of this primitive. On the 2x2-core AMD system, L4 per-
forms a raw IPC in about 420 cycles. Since the Barrelfish figures
also include a scheduler activation, user-level message dispatching
code, and a pass through the thread scheduler, we consider our per-
formance to be acceptable for the moment.

4.4 Monitors

Monitors collectively coordinate system-wide state, and encapsu-
late much of the mechanism and policy that would be found in the
kernel of a traditional OS. The monitors are single-core, user-space
processes and therefore schedulable. Hence they are well suited to
the split-phase, message-oriented inter-core communication of the
multikernel model, in particular handling queues of messages, and
long-running remote operations.

On each core, replicated data structures, such as memory alloca-
tion tables and address space mappings, are kept globally consistent
by means of an agreement protocol run by the monitors. Applica-
tion requests that access global state are handled by the monitors,
which mediate access to remote copies of state.

Monitors perform some further housekeeping functions in Bar-
relfish. As described in Section 4.6, monitors are responsible for
interprocess communication setup, and for waking up blocked lo-
cal processes in response to messages from other cores. A monitor
can also idle the core itself (to save power) when no other processes
on the core are runnable. Core sleep is performed either by waiting
for an inter-processor interrupt (IPI) or, where supported, the use
of MONITOR and MWAIT instructions.

4.5 Process structure

The multikernel model leads to a somewhat different process struc-
ture than a typical monolithic multiprocessor OS. A process in Bar-
relfish is represented by a collection of dispatcher objects, one
on each core on which it might execute. Communication in Bar-
relfish is not actually between processes but between dispatchers
(and hence cores).

Dispatchers on a core are scheduled by the local CPU driver,
which invokes an upcall interface that is provided by each dis-
patcher. This is the mechanism used in Psyche [48] and scheduler
activations [3], and contrasts with the Unix model of simply resum-
ing execution. Above this upcall interface, a dispatcher typically
runs a core-local user-level thread scheduler.
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The threads package in the default Barrelfish user library pro-
vides an API similar to POSIX threads. We anticipate that lan-
guage runtimes and parallel programming libraries will take ad-
vantage of the ability to customize its behavior, but in the meantime
the library provides enough support for implementing the more tra-
ditional model of threads sharing a single process address space
across multiple cores, as we describe in Section 4.8.

4.6 Inter-core communication

In a multikernel, all inter-core communication occurs with mes-
sages. We expect to use different transport implementations for
different hardware scenarios. However, the only inter-core commu-
nication mechanism available on our current hardware platforms
is cache-coherent memory. Barrelfish at present therefore uses a
variant of user-level RPC (URPC) [10] between cores: a region
of shared memory is used as a channel to transfer cache-line-sized
messages point-to-point between single writer and reader cores.

Inter-core messaging performance is critical for a multiker-
nel, and our implementation is carefully tailored to the cache-
coherence protocol to minimize the number of interconnect mes-
sages used to send a message. For example, on the fast path for
a HyperTransport-based system, the sender writes the message se-
quentially into the cache line, while the receiver polls on the last
word of the line, thus ensuring that in the (unlikely) case that it
polls the line during the sender’s write, it does not see a partial
message. In the common case, this causes two round trips across
the interconnect: one when the sender starts writing to invalidate
the line in the receiver’s cache, and one for the receiver to fetch
the line from the sender’s cache. The technique also performs well
between cores with a shared cache.

As an optimization, pipelined URPC message throughput can be
improved at the expense of single-message latency through the use
of cache prefetching instructions. This can be selected at channel
setup time for workloads likely to benefit from it.

Receiving URPC messages is done by polling memory. Polling
is cheap because the line is in the cache until invalidated; in addi-
tion, keeping the endpoints in an array can allow a hardware stride
prefetcher to further improve performance. However, it is unrea-
sonable to spin forever; instead, a dispatcher awaiting messages on
URPC channels will poll those channels for a short period before
blocking and sending a request to its local monitor to be notified
when messages arrive. At present, dispatchers poll incoming chan-
nels for a predetermined time before blocking, however this can be
improved by adaptive strategies similar to those used in deciding
how long to spin on a shared-memory spinlock [37].

All message transports are abstracted behind a common inter-
face, allowing messages to be marshaled, sent and received in a
transport-independent way. As in most RPC systems, marshaling
code is generated using a stub compiler to simplify the construc-
tion of higher-level services. A name service is used to locate other
services in the system by mapping service names and properties to
a service reference, which can be used to establish a channel to the
service. Channel setup is performed by the monitors.

Table 2 shows the URPC single-message latency and sustained
pipelined throughput (with a queue length of 16 messages); hop
counts for AMD refer to the number of HyperTransport hops be-
tween sender and receiver cores.

Table 3 compares the overhead of our URPC implementation
with L4’s IPC on the 2x2-core AMD system®. We see that inter-
core messages are cheaper than intra-core context switches in direct

3L4 IPC figures were measured using L4Ka::Pistachio of 2009-02-25.



System Cache Latency Throughput
cycles (o) ns  msgs/kcycle

2x4-core Intel shared 180 (34) 68 11.97
non-shared 570 (50) 214 3.78

2x2-core AMD  same die 450 (25) 161 342
one-hop 532 (26) 190 3.19

4x4-core AMD  shared 448 (12) 179 3.57
one-hop 545 (11) 218 3.53

two-hop 558 (11) 223 3.51

8x4-core AMD  shared 538 (8) 269 2.77
one-hop 613 (6) 307 2.79

two-hop 618 (7) 309 2.75

Table 2: URPC performance

Latency  Throughput  Cache lines used

cycles msgs/kcycle Icache Dcache

URPC 450 3.42 9 8
L4 IPC 424 2.36 25 13

Table 3: Messaging costs on 2x2-core AMD

cost, but also have less cache impact and do not incur a TLB flush.
They can also be pipelined to trade off latency for throughput.

4.7 Memory management

Although a multikernel OS is itself distributed, it must consistently
manage a set of global resources, such as physical memory. In
particular, because user-level applications and system services may
make use of shared memory across multiple cores, and because OS
code and data is itself stored in the same memory, the allocation
of physical memory within the machine must be consistent — for
example, the system must ensure that one user process can never
acquire a virtual mapping to a region of memory used to store a
hardware page table or other OS object.

Any OS faces the same problem of tracking ownership and type
of in-memory objects. Most systems use some kind of unique iden-
tifiers together with accounting information, such as file descriptors
in Unix or object handles in Windows, managed by data structures
in shared memory. For Barrelfish, we decided to use a capabil-
ity system modeled on that of seL4 [39]. In this model, all mem-
ory management is performed explicitly through system calls that
manipulate capabilities, which are user-level references to kernel
objects or regions of physical memory. The model has the useful
property of removing dynamic memory allocation from the CPU
driver, which is only responsible for checking the correctness of
operations that manipulate capabilities to memory regions through
retype and revoke operations.

All virtual memory management, including allocation and ma-
nipulation of page tables, is performed entirely by user-level code
[28]. For instance, to allocate and map in a region of memory, a
user process must first acquire capabilities to sufficient RAM to
store the required page tables. It then retypes these RAM capabil-
ities to page table capabilities, allowing it to insert the new page
tables into its root page table; although the CPU driver performs
the actual page table and capability manipulations, its sole task
is checking their correctness. The user process may then allocate
more RAM capabilities, which it retypes to mappable frame capa-
bilities, and finally inserts into its page tables to map the memory.

We chose capabilities so as to cleanly decentralize resource al-
location in the interests of scalability. In hindsight, this was a mis-
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take: the capability code is unnecessarily complex, and no more
efficient than scalable per-processor memory managers used in con-
ventional OSes like Windows and Linux. All cores must still keep
their local capability lists consistent, to avoid situations such as
user-level acquiring a mapping to a hardware page table.

However, one benefit has been uniformity: most operations re-
quiring global coordination in Barrelfish can be cast as instances of
capability copying or retyping, allowing the use of generic consis-
tency mechanisms in the monitors. These operations are not spe-
cific to capabilities, and we would have to support them with any
other accounting scheme.

Page mapping and remapping is an operation which requires
global coordination — if an address space mapping is removed or
its rights are reduced, it is important that no stale information re-
mains in a core’s TLB before any action occurs that requires the
operation to have completed. This is implemented by a one-phase
commit operation between all the monitors.

A more complex problem is capability retyping, of which revo-
cation is a special case. This corresponds to changing the usage of
an area of memory and requires global coordination, since retyp-
ing the same capability in different ways (e.g. a mappable frame
and a page table) on different cores leads to an inconsistent sys-
tem. All cores must agree on a single ordering of the operations to
preserve safety, and in this case, the monitors initiate a two-phase
commit protocol to ensure that all changes to memory usage are
consistently ordered across the processors.

4.8 Shared address spaces

We are interested in investigating language runtimes that extend the
multikernel model to user-space applications. However, for most
current programs, Barrelfish supports the traditional process model
of threads sharing a single virtual address space across multiple
dispatchers (and hence cores) by coordinating runtime libraries on
each dispatcher. This coordination affects three OS components:
virtual address space, capabilities, and thread management, and is
an example of how traditional OS functionality can be provided
over a multikernel.

A shared virtual address space can be achieved by either sharing
a hardware page table among all dispatchers in a process, or repli-
cating hardware page tables with consistency achieved by message
protocols. The tradeoff between these two is similar to that investi-
gated in Corey [13]; the former is typically more efficient, however
the latter may reduce cross-processor TLB invalidations (because it
is possible to track which processors may have cached a mapping),
and is also the only way to share an address space between cores
that do not support the same page table format.

As well as sharing the address space, user applications also ex-
pect to share capabilities (for example, to mappable memory re-
gions) across cores. However, a capability in a user’s address space
is merely a reference to a kernel-level data structure. The monitors
provide a mechanism to send capabilities between cores, ensuring
in the process that the capability is not pending revocation, and is of
a type that may be transferred. The user-level libraries that perform
capability manipulation invoke the monitor as required to maintain
a consistent capability space between cores.

Cross-core thread management is also performed in user space.
The thread schedulers on each dispatcher exchange messages to
create and unblock threads, and to migrate threads between dis-
patchers (and hence cores). Barrelfish is responsible only for multi-
plexing the dispatchers on each core via the CPU driver scheduler,
and coordinating the CPU drivers to perform, for example, gang
scheduling or co-scheduling of dispatchers. This allows a variety



of spatio-temporal scheduling policies from the literature [62, 65]
to be applied according to OS policy.

4.9 Knowledge and policy engine

Dealing with heterogeneous hardware and choosing appropriate
system mechanisms is a crucial task in a multikernel. Barrelfish
employs a service known as the system knowledge base (SKB) [60],
which maintains knowledge of the underlying hardware in a sub-
set of first-order logic.* It is populated with information gath-
ered through hardware discovery (including ACPI tables, PCI bus
probes, and CPUID data), online measurement (such as URPC
communication latency and bandwidth between all core pairs in the
system), and pre-asserted facts that cannot be discovered or mea-
sured (such as the interconnect topology of various system boards,
and quirks that correct known flaws in discovered information, such
as ACPI tables). Using this rich repository of data, the SKB allows
concise expression of optimization queries, for example to allo-
cate device drivers to cores in a topology-aware manner, to select
appropriate message transports for inter-core communication, and
to provide the topology information necessary for NUMA-aware
memory allocation.

As one example, we describe in Section 5.1 how the SKB is
used to construct a cache- and topology-aware network for efficient
communication within multicore machines. Space precludes fur-
ther discussion of policy decisions, but we believe that such a high-
level, declarative approach to reasoning about the machine hard-
ware (augmented with online measurements) is an essential part of
a multikernel-based system.

4.10 Experiences

Barrelfish is one concrete implementation of the multikernel model
in Section 3, and its structure differs substantially from that of
a monolithic OS like Linux or indeed a hypervisor like Xen [7].
However, we emphasize that Barrelfish is not the only way to build
a multikernel.

In particular, the factoring of the OS node into separate CPU
driver and monitor components is not required by the model; our
experience is that it is not optimal for performance, but has com-
pelling engineering advantages. The downside of the separation
is that invocations from processes to the OS are now mostly lo-
cal RPC calls (and hence two context switches) rather than system
calls, adding a constant overhead on current hardware of several
thousand cycles. However, this is constant as the number of cores
increases. Moving the monitor into kernel space would remove this
penalty, at the cost of a more complex kernel-mode code base.

In addition, our current network stack (which runs a separate in-
stance of IwIP [47] per application) is very much a placeholder. We
are interested in appropriate network stack design for multikernels,
and in particular we feel many ideas from RouteBricks [21] are
applicable to a scalable end-system multikernel.

The principal difference between current OS designs and the
multikernel model is not the location of protection or trust bound-
aries between system components, but rather the reliance on shared
data as the default communication mechanism. Examples from
monolithic systems include process, thread, and virtual machine
control blocks, page tables, VFS objects, scheduler queues,5 net-
work sockets and inter-process communication buffers.

4The initial implementation of the SKB is based on a port of the ECLIPS®
constraint programming system [5].

SSystems with per-processor run queues implement load balancing and
thread migration either via a work stealing or work offloading model. In
both cases this involves access to the run queues of remote processors.
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Some of this state can be naturally partitioned, but (as we saw in
Section 1) the engineering effort to do this piecemeal in the process
of evolving an OS for scalability can be prohibitive. Furthermore,
state which is inherently shared in current systems requires more
effort to convert to a replication model. Finally, the shared-memory
single-kernel model cannot deal with cores that are heterogeneous
at the ISA level.

In contrast, starting with a multikernel model, as in Barrelfish,
allows these issues to be addressed from the outset. From a research
perspective, Barrelfish can be seen as a useful “proving ground” for
experimenting with such ideas in an environment freed from the
constraints of an existing complex monolithic system.

S. EVALUATION

In this section we evaluate how well Barrelfish meets the goals
in Section 3.4: good baseline performance, scalability with cores,
adaptability to different hardware, exploiting the message-passing
abstraction for performance, and sufficient modularity to make use
of hardware topology-awareness. We start with a detailed case-
study of TLB shootdown, and then look at other workloads de-
signed to exercise various parts of the OS.

5.1 Case study: TLB shootdown

TLB shootdown — the process of maintaining TLB consistency by
invalidating entries when pages are unmapped — is one of the sim-
plest operations in a multiprocessor OS that requires global coor-
dination. It is also a short, but latency-critical, operation and so
represents a worst-case comparison for a multikernel.

In Linux and Windows, inter-processor interrupts (IPIs) are used:
a core that wishes to change a page mapping writes the operation
to a well-known location and sends an interrupt to every core that
might have the mapping in its TLB. Each core takes the trap, ac-
knowledges the IPI by writing to a shared variable, invalidates the
TLB entry, and resumes. The initiating core can continue imme-
diately after every IPI has been acknowledged, since by the time
each core resumes to user space the TLB entry is guaranteed to be
flushed. This has low latency, but can be disruptive as each core
immediately takes the cost of a trap (about 800 cycles). The TLB
invalidation itself is fast, taking 95-320 cycles on a current x86-64
core.

In Barrelfish, we use messages for shootdown. In the naive al-
gorithm, the local monitor broadcasts invalidate messages to the
others and waits for all the replies. We would expect this to show
higher latency than the IPI approach, since the remote monitors
handle the messages only when “convenient”. However, fortu-
nately, the message-passing paradigm allows us to improve on this
approach without significantly restructuring the code. In particular,
we can exploit knowledge about the specific hardware platform, ex-
tracted from the system knowledge base at runtime, to achieve very
good TLB shootdown performance.

Figure 6 shows the costs of the raw inter-core messaging mecha-
nisms (without TLB invalidation) for four URPC-based TLB shoot-
down protocols on the 8x4-core AMD system.

In the Broadcast protocol, the master monitor uses a single
URPC channel to broadcast a shootdown request to every other
core. Each slave core polls the same shared cache, waiting for the
master to modify it, and then acknowledges with individual UR-
PCs to the master. This performs badly due to the cache-coherence
protocol used by AMD64 processors [1, section 7.3]. When the
master updates the line, it is invalidated in all other caches. Each
slave core then pulls the new copy from the master’s cache. With N
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Figure 6: Comparison of TLB shootdown protocols

cores, the data crosses the interconnect N times, and latency grows
linearly with the number of cores.

The Unicast protocol sends individual requests to each slave over
unicast URPC so that the cache lines are only shared by two cores.
While this performs much better than the broadcast protocol, par-
ticularly for a small number of cores, it still has linear scalability.
The flatter curve below eight cores is likely to be the processor’s
hardware “stride prefetcher” predicting correctly which cache lines
are likely to be accessed in the master’s receive loop.

The HyperTransport interconnect is effectively a broadcast net-
work, where each read or write operation results in probes being
sent to all other nodes. However, newer 4-core Opteron processors
have a shared on-chip L3 cache and appear as a single HyperTrans-
port node, and so cache lines shared only by these cores will not
result in interconnect traffic. This motivates using an explicit two-
level multicast tree for shootdown messages. Hence in the Multi-
cast protocol, the master sends a URPC message to the first core
of each processor, which forwards it to the other three cores in the
package. Since they all share an L3 cache, this second message is
much cheaper, but more importantly all eight processors can send in
parallel without interconnect contention. As shown in Figure 6, the
multicast protocol scales significantly better than unicast or broad-
cast.

Finally, we devised a protocol that takes advantage of the NUMA
nature of the machine by allocating URPC buffers from memory
local to the multicast aggregation nodes, and having the master
send requests to the highest latency nodes first. Once again, there
are many analogies to networked systems which motivate these
changes. The resulting protocol, labeled NUMA-Aware Multicast
on Figure 6 scales extremely well across the 32-way system, show-
ing steps only when the number of levels in the tree increases.

This communication protocol has good performance for the 8x4-
core AMD system, but relies on hardware knowledge (including the
interconnect topology and memory locality) that differs widely be-
tween systems, and only works when initiated from the first core.
In Barrelfish, we use a query on the system knowledge base to con-
struct a suitable multicast tree at runtime: for every source core
in the system, the SKB computes an optimal route consisting of
one multicast aggregation node per processor socket, ordered by
decreasing message latency, and its children. These routes are cal-
culated online at startup, and used to configure inter-monitor com-
munication.

End-to-end unmap latency: The complete implementation of
unmapping pages in Barrelfish adds a number of costs to the base-
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Figure 8: Two-phase commit on 8x4-core AMD

line protocol, and so in practice is much slower. These include the
fixed overhead of LRPC to the local monitor, the per-message cost
of marshaling and event demultiplexing, scheduling effects in the
monitors, and variable overhead when a core’s monitor is not cur-
rently its polling channels.

Nevertheless, as Figure 7 shows, the complete message-based
unmap operation in Barrelfish quickly outperforms the equivalent
IPI-based mechanisms in Linux 2.6.26 and Windows Server 2008
R2 Beta, Enterprise Edition. The error bars on the graphs are stan-
dard deviation. We show the latency to change the permissions of
a page mapped by a varying number of cores, using mprotect on
Linux and VirtualProtect on Windows. Despite the fact that up
to 32 user-level processes are involved in each unmap operation,
performance scales better than Linux or Windows, both of which
incur the cost of serially sending IPIs. The large overhead on top of
the baseline protocol figures is largely due to inefficiencies in the
message dispatch loop of the user-level threads package, which has
not been optimized.

5.2 Messaging performance

Two-phase commit

As we discussed in Section 4, Barrelfish uses a distributed two-
phase commit operation for changing memory ownership and usage
via capability retyping. This necessarily serializes more messages



Barrelfish  Linux
Throughput (Mbit/s) 2154 1823
Dcache misses per packet 21 77
source — sink HT traffic” per packet 467 657
sink — source HT traffic” per packet 188 550
source — sink HT link utilization 8% 11%
sink — source HT link utilization 3% 9%

* HyperTransport traffic is measured in 32-bit dwords.

Table 4: IP loopback performance on 2x2-core AMD

than TLB shootdown, and is consequently more expensive. Never-
theless, as Figure 8 shows, using the same multicast technique as
with shootdown we achieve good scaling and performance. If there
are enough operations to perform, we can also pipeline to amortize
the latency. The “cost when pipelining” line shows that a typical
capability retype operation consumes fewer cycles than IPI-based
TLB-shootdowns on Windows and Linux.

The cost of polling

It is reasonable to ask whether polling to receive URPC messages
is a wasteful strategy under real workloads and job mixes. This
depends on a number of factors such as scheduling policy and mes-
saging load, but we present a simplistic model here: assume we poll
for P cycles before sleeping and waiting for an IPI, which costs C
cycles. If a message arrives at time #, the overhead (cost in extra
cycles) of message reception is therefore:

t ift <P,
overhead = .
P+ C otherwise.
— and the latency of the message is:
0 ift<P,
latency = .
C otherwise.

In the absence of any information about the distribution of message
arrival times, a reasonable choice for P is C, which gives upper
bounds for message overhead at 2C, and the latency at C.
Significantly, for Barrelfish on current hardware, C is around
6000 cycles, suggesting there is plenty of time for polling before
resorting to interrupts. C in this case includes context switch over-
head but not additional costs due to TLB fills, cache pollution, etc.

IP loopback

IP loopback (with no physical network card to impose a bottle-
neck) can be a useful stress-test of the messaging, buffering, and
networking subsystems of the OS, since in many systems a loop-
back interface is often used for communication between networked
services on the same host, such as a web application and database.

Linux and Windows use in-kernel network stacks with packet
queues in shared data structures, thus loopback utilization requires
kernel interaction and shared-memory synchronization. On Bar-
relfish, we achieve the equivalent functionality for point-to-point
links by connecting two user-space IP stacks via URPC. By execut-
ing a packet generator on one core and a sink on a different core, we
can compare the overhead induced by an in-kernel shared-memory
IP stack compared to a URPC approach.

Our experiment runs on the 2x2-core AMD system and con-
sists of a UDP packet generator on one core sending packets of
fixed 1000-byte payload to a sink that receives, reads, and discards
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the packets on another core on a different socket. We measure
application-level UDP throughput at the sink, and also use hard-
ware performance counters to measure cache misses and utilization
of the HyperTransport interconnect. We also compare with Linux,
pinning both source and sink to cores using 1ibnuma.

Table 4 shows that Barrelfish achieves higher throughput, fewer
cache misses, and lower interconnect utilization, particularly in the
reverse direction from sink to source. This occurs because sending
packets as URPC messages avoids any shared-memory other than
the URPC channel and packet payload; conversely, Linux causes
more cache-coherence traffic for shared-memory synchronization.
Barrelfish also benefits by avoiding kernel crossings.

5.3 Compute-bound workloads

In this section we use compute-bound workloads, in the form of
the NAS OpenMP benchmark suite [36] and the SPLASH-2 paral-
lel application test suite [63], to exercise shared memory, threads,
and scheduling. These benchmarks perform no IO and few virtual
memory operations but we would expect them to be scalable.

The Barrelfish user-level scheduler supports POSIX-like threads,
and allows processes to share an address space across multiple
cores as in a traditional OS. We compare applications running un-
der Linux and Barrelfish on the same hardware, using GCC 4.3.3
as the compiler, with the GNU GOMP OpenMP runtime on Linux,
and our own implementation over Barrelfish.

Figure 9 shows the results of five applications from the 4x4-core
AMD machine®. We plot the compute time in cycles on Barrelfish
and Linux, averaged over five runs; error bars show standard devia-
tion. These benchmarks do not scale particularly well on either OS,
but at least demonstrate that despite its distributed structure, Bar-
relfish can still support large, shared-address space parallel code
with little performance penalty. The differences we observe are
due to our user-space threads library vs. the Linux in-kernel imple-
mentation — for example, Linux implements barriers using a system
call, whereas our library implementation exhibits different scaling
properties under contention (in Figures 9a and 9c).

5.4 10 workloads

The experiments in this section are designed to exercise device
drivers, interrupts and OS buffering using high-bandwidth IO, with
the aim again of exposing any performance penalty due to the mul-
tikernel architecture.

Network throughput

We first measure the UDP throughput of Barrelfish when commu-
nicating over Gigabit Ethernet using an Intel e1000 card. This
exercises DMA, inter-process communication, networking and
scheduling.

Using Barrelfish on the 2x4-core Intel machine, we ran an e1000
driver and a single-core application that listens on a UDP socket
and echos every received packet back to the sender. The network
stack is IwIP [47] linked as a library in the application’s domain.
Receive and transmit buffers are allocated by IwIP and passed to the
network card driver, which manages the card’s receive and transmit
rings. The two processes communicate over a URPC channel, al-
lowing us to vary the placement of the driver and client on cores.

We use two load generators, also with e1000 NICs, running
Linux and the ipbench daemon [71], which generates UDP traffic

The remaining OpenMP applications depend upon thread-local storage,
which Barrelfish does not yet support.
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Figure 9: Compute-bound workloads on 4x4-core AMD (note different scales on y-axes)

at a configurable rate and measures the achieved echo throughput.
We obtained UDP echo payload throughput of up to 951.7 Mbit/s,
at which point we are close to saturating the card. By comparison,
Linux 2.6.26 on the same hardware also achieves 951 Mbit/s; note
that we pinned the Linux inetd server to a single core to prevent
sub-optimal process migration in this experiment.

Web server and relational database

Our final IO example is of serving both static and dynamic web
content from a relational database. This scenario, while still syn-
thetic, is closer to a realistic I/O bound application configuration.

The 2x2-core AMD machine is used with an Intel e1000 NIC.
First, the machine serves a 4.1kB static web page to a set of clients,
and we measure the throughput of successful client requests using
httperf [54] on a cluster of 17 Linux clients.

On Barrelfish, we run separate processes for the web server
(which uses the IwIP stack), e1000 driver, and a timer driver (for
TCP timeouts). These communicate over URPC, allowing us to
experiment with placement of domains on cores. The best per-
formance was achieved with the e1000 driver on core 2, the web
server on core 3 (both cores on the same physical processor), and
other system services (including the timer) on core 0.

For comparison, we also run lighttpd [45] 1.4.23 over Linux
2.6.26 on the same hardware; we tuned lighttpd by disabling all
extension modules and logging, increasing the maximum number
of connections and file descriptors to 1,500,000, using the Linux
epoll event handler mechanism, and enabling hardware check-
summing, scatter gather and TCP segmentation offload on the net-
work interface.

The Barrelfish €1000 driver does not yet support the offload

features, but is also substantially simpler. It sustained 18697 re-
quests per second (640 Mbit/s), versus 8924 for lighttpd on Linux
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(316 Mbit/s). The performance gain is mainly due to avoiding
kernel-user crossings by running entirely in user space and com-
municating over URPC.

Finally, we use the same load pattern to execute web-based SE-
LECT queries modified from the TPC-W benchmark suite on a
SQLite [64] database running on the remaining core of the ma-
chine, connected to the web server via URPC. In this configuration
we can sustain 3417 requests per second (17.1 Mbit/s), and are bot-
tlenecked at the SQLite server core.

5.5 Summary

It would be wrong to draw any quantitative conclusions from our
large-scale benchmarks; the systems involved are very different.
An enormous investment has been made in optimizing Linux and
Windows for current hardware, and conversely our system is in-
evitably more lightweight (it is new, and less complete). Instead,
they should be read as indication that Barrelfish performs reason-
ably on contemporary hardware, our first goal from Section 3.4.

We make stronger claims for the microbenchmarks. Barrelfish
can scale well with core count for these operations, and can easily
adapt to use more efficient communication patterns (for example,
tailoring multicast to the cache architecture and hardware topol-
ogy). Finally we can also demonstrate the benefits of pipelining
and batching of request messages without requiring changes to the
OS code performing the operations.

Since the Barrelfish user environment includes standard C and
math libraries, virtual memory management, and subsets of the
POSIX threads and file IO APIs, porting applications is mostly
straightforward. In the course of this evaluation we ported a web
server, network stack [47], and various drivers, applications and
libraries to Barrelfish, which gives us confidence that our OS de-
sign offers a feasible alternative to existing monolithic systems.



Nevertheless, bringing up a new OS from scratch is a substantial
undertaking, and limits the extent to which we can fully evaluate
the multikernel architecture. In particular, this evaluation does not
address complex application workloads, or higher-level operating
system services such as a storage system. Moreover, we have not
evaluated the system’s scalability beyond currently-available com-
modity hardware, or its ability to integrate heterogeneous cores.

6. RELATED WORK

Although a new point in the OS design space, the multikernel
model is related to much previous work on both operating systems
and distributed systems.

In 1993 Chaves et al. [17] examined the tradeoffs between mes-
sage passing and shared data structures for an early multiprocessor,
finding a performance tradeoff biased towards message passing for
many kernel operations.

Machines with heterogeneous cores that communicate using
messages have long existed. The Auspex [11] and IBM System/360
hardware consisted of heterogeneous cores with partially shared
memory, and unsurprisingly their OSes resembled distributed sys-
tems in some respects. We take inspiration from this; what is new
is the scale of parallelism and the diversity of different machines on
which a general-purpose OS must run. Similarly, explicit commu-
nication has been used on large-scale multiprocessors such as the
Cray T3 or IBM Blue Gene, to enable scalability beyond the limits
of cache-coherence.

The problem of scheduling computations on multiple cores that
have the same ISA but different performance tradeoffs is being ad-
dressed by the Cypress project [62]; we see this work as largely
complementary to our own. Also related is the fos system [69]
which targets scalability through space-sharing of resources.

Most work on OS scalability for multiprocessors to date has
focused on performance optimizations that reduce sharing. Tor-
nado and K42 [4,24] introduced clustered objects, which optimize
shared data through the use of partitioning and replication. How-
ever, the base case, and the means by which replicas communi-
cate, remains shared data. Similarly, Corey [13] advocates reducing
sharing within the OS by allowing applications to specify sharing
requirements for OS data, effectively relaxing the consistency of
specific objects. As in K42, however, the base case for commu-
nication is shared memory. In a multikernel, we make no specific
assumptions about the application interface, and construct the OS
as a shared-nothing distributed system, which may locally share
data (transparently to applications) as an optimization.

We see a multikernel as distinct from a microkernel, which
also uses message-based communication between processes to
achieve protection and isolation but remains a shared-memory,
multithreaded system in the kernel. For instance, Barrelfish has
some structural similarity to a microkernel, in that it consists of a
distributed system of communicating user-space processes which
provide services to applications. However, unlike multiprocessor
microkernels, each core in the machine is managed completely in-
dependently — the CPU driver and monitor share no data structures
with other cores except for message channels.

That said, some work in scaling microkernels is related: Uhlig’s
distributed TLB shootdown algorithm is similar to our two-phase
commit [67]. The microkernel comparison is also informative: as
we have shown, the cost of a URPC message is comparable to that
of the best microkernel IPC mechanisms in the literature [44], with-
out the cache and TLB context switch penalties.

Disco and Cellular Disco [14, 25] were based on the premise
that large multiprocessors can be better programmed as distributed
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systems, an argument complementary to our own. We see this as
further evidence that the shared-memory model is not a complete
solution for large-scale multiprocessors, even at the OS level.

Prior work on “distributed operating systems” [66] aimed to
build a uniform OS from a collection of independent computers
linked by a network. There are obvious parallels with the mul-
tikernel approach, which seeks to build an OS from a collection
of cores communicating over links within a machine, but also im-
portant differences: firstly, a multikernel may exploit reliable in-
order message delivery to substantially simplify its communica-
tion. Secondly, the latencies of intra-machine links are lower (and
less variable) than between machines. Finally, much prior work
sought to handle partial failures (i.e. of individual machines) in a
fault-tolerant manner, whereas in Barrelfish the complete system is
a failure unit. That said, extending a multikernel beyond a single
machine to handle partial failures is a possibility for the future that
we discussion briefly below.

Despite much work on distributed shared virtual memory sys-
tems [2, 56], performance and scalability problems have limited
their widespread use in favor of explicit message-passing models.
There are parallels with our argument that the single-machine pro-
gramming model should now also move to message passing. Our
model can be more closely compared with that of distributed shared
objects [6,32], in which remote method invocations on objects are
encoded as messages in the interests of communication efficiency.

7. EXPERIENCE AND FUTURE WORK

The multikernel model has been strongly influenced by the process
of building a concrete implementation. Though not by any means
yet a mature system, we have learned much from the process.

Perhaps unsurprisingly, queuing effects become very important
in a purely message-oriented system, and we encountered a number
of performance anomalies due to extreme sensitivity to message
queue lengths. Understanding such effects has been essential to
performance debugging. Scheduling based on queue lengths, as in
Scout [53], may be a useful technique to apply here.

When implementing transports based on cache-coherent shared
memory, we found it important to understand exactly the cache-
coherence protocol. We experimented with many URPC imple-
mentations, with often unexpected results that were explained by a
careful analysis of cache line states and interconnect messages.

Related future work includes efficient multicast, incast and any-
cast URPC transports. As we found in the case of unmap, there
are cases where a multicast tree is more efficient for performing
global operations than many point-to-point links, and we expect
such transports will be important for scalability to many cores.

Our current implementation is based on homogeneous Intel and
AMD multiprocessors, and so does not represent a truly hetero-
geneous environment. A port is in progress to the ARM processor
architecture, which will allow us to run a Barrelfish CPU driver and
monitor on programmable network cards. This will also allow us to
experiment with specializing data structures and code for different
processors within the same operating system.

There are many ideas for future work that we hope to explore.
Structuring the OS as a distributed system more closely matches
the structure of some increasingly popular programming models
for datacenter applications, such as MapReduce [19] and Dryad
[35], where applications are written for aggregates of machines.
A distributed system inside the machine may help to reduce the
“impedance mismatch” caused by the network interface — the same
programming framework could then run as efficiently inside one
machine as between many.



Another area of interest is file systems. Barrelfish currently uses
a conventional VFS-style file-oriented API backed by NFS. It may
be fruitful to draw on techniques from high-performance cluster file
systems and the parallel IO models of cloud computing providers
to construct a scalable, replicated file system inside the computer.

Barrelfish is at present a rather uncompromising implementation
of a multikernel, in that it never shares data. As we noted in Sec-
tion 2.1, some machines are highly optimized for fine-grained shar-
ing among a subset of processing elements. A next step for Bar-
relfish is to exploit such opportunities by limited sharing behind
the existing replica-oriented interfaces. This also raises the issue of
how to decide when to share, and whether such a decision can be
automated.

8. CONCLUDING REMARKS

Computer hardware is changing faster than system software, and
in particular operating systems. Current OS structure is tuned for
a coherent shared memory with a limited number of homogeneous
processors, and is poorly suited to efficiently manage the diversity
and scale of future hardware architectures.

Since multicore machines increasingly resemble complex net-
worked systems, we have proposed the multikernel architecture as
a way forward. We view the OS as, first and foremost, a distributed
system which may be amenable to local optimizations, rather than
centralized system which must somehow be scaled to the network-
like environment of a modern or future machine. By basing the OS
design on replicated data, message-based communication between
cores, and split-phase operations, we can apply a wealth of expe-
rience and knowledge from distributed systems and networking to
the challenges posed by hardware trends.

Barrelfish, an initial, relatively unoptimized implementation of
the multikernel, already demonstrates many of the benefits, while
delivering performance on today’s hardware competitive with ex-
isting, mature, monolithic kernels. Its source code is available at
http://www.barrelfish.org/.
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