
Cellular Disco: Resource Management
Using Virtual Clusters on Shared-Memory
Multiprocessors

KINSHUK GOVIL, DAN TEODOSIU, YONGQIANG HUANG, and MENDEL
ROSENBLUM
Stanford University

Despite the fact that large-scale shared-memory multiprocessors have been commercially
available for several years, system software that fully utilizes all their features is still not
available, mostly due to the complexity and cost of making the required changes to the
operating system. A recently proposed approach, called Disco, substantially reduces this
development cost by using a virtual machine monitor that leverages the existing operating
system technology. In this paper we present a system called Cellular Disco that extends the
Disco work to provide all the advantages of the hardware partitioning and scalable operating
system approaches. We argue that Cellular Disco can achieve these benefits at only a small
fraction of the development cost of modifying the operating system. Cellular Disco effectively
turns a large-scale shared-memory multiprocessor into a virtual cluster that supports fault
containment and heterogeneity, while avoiding operating system scalability bottlenecks. Yet
at the same time, Cellular Disco preserves the benefits of a shared-memory multiprocessor by
implementing dynamic, fine-grained resource sharing, and by allowing users to overcommit
resources such as processors and memory. This hybrid approach requires a scalable resource
manager that makes local decisions with limited information while still providing good global
performance and fault containment. In this paper we describe our experience with a Cellular
Disco prototype on a 32-processor SGI Origin 2000 system. We show that the execution time
penalty for this approach is low, typically within 10% of the best available commercial
operating system for most workloads, and that it can manage the CPU and memory resources
of the machine significantly better than the hardware partitioning approach.

Categories and Subject Descriptors: D.4.1 [Software]: Operating Systems—Process Manage-
ment; D.4.2 [Software]: Operating Systems—Storage Management; D.4.5 [Software]: Oper-
ating Systems—Reliability; C.1.2 [Computer Systems Organization]: Processor Architec-
tures—Parallel Architectures

General Terms: Design, Management, Reliability, Performance

Additional Key Words and Phrases: Resource management, fault containment, virtual ma-
chines, scalable multiprocessors

Disco was developed as part of the Stanford FLASH project, funded by DARPA grant
DABT63-94-C-0054.
Authors’ address: Computer Systems Laboratory, Stanford University, Stanford, CA, 94305;
email: {kinshuk,dant,yhuang,mendel}@cs.stanford.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0734-2071/00/0800–0229 $05.00

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000, Pages 229–262.

1. INTRODUCTION

Shared-memory multiprocessor systems with up to a few hundred proces-
sors have been commercially available for the past several years. These
machines are designed as a set of tightly coupled nodes connected together
with a high-speed interconnect. Each node contains a few processors, a
portion of the globally distributed memory, a node controller, and possibly
some I/O devices. The node controller handles all the memory coherency
and I/O traffic going through the node. This design is very different from
earlier bus-based multiprocessors and requires substantial modifications to
the operating system to efficiently utilize the machine. Unfortunately, due
to the development cost and the complexity of the required changes, most
operating systems have not been adapted for these machines.

Poor scalability restricts the size of machines that can be supported by
most current commercial operating systems to at most a few dozen proces-
sors. Memory allocation algorithms that are not aware of the large differ-
ence in local versus remote memory access latencies on NUMA (Non-
Uniform Memory Access time) systems lead to suboptimal application
performance. Resource management policies not designed to handle a large
number of resources can lead to contention and inefficient usage. Finally,
the inability of the operating system to survive any hardware or system
software failure results in the loss of all the applications running on the
system, requiring the entire machine to be rebooted.

The solutions that have been proposed to date are either based on
hardware partitioning [Sequent Computer Systems 2000; Sun Microsys-
tems 2000; Unisys 2000] or require developing new operating systems with
improved scalability and fault containment characteristics [Chapin et al.
1995; Gamsa et al. 1999; IBM Corporation 2000; SGI 2000]. Unfortunately,
both of these approaches suffer from serious drawbacks. Hardware parti-
tioning limits the flexibility with which allocation and sharing of resources
in a large system can be adapted to dynamically changing load require-
ments. Since partitioning effectively turns the system into a cluster of
smaller machines, applications requiring a large number of resources will
not perform well. New operating system designs can provide excellent
performance, but require a considerable investment in development effort
and time before reaching commercial maturity.

A recently proposed alternative approach, called Disco [Bugnion et al.
1997], uses a virtual machine monitor to run unmodified commodity
operating systems on scalable multiprocessors. With a low implementation
cost and a small run-time virtualization overhead, the Disco work shows
that a virtual machine monitor can be used to address scalability and
NUMA-awareness issues. By running multiple copies of an off-the-shelf
operating system, the Disco approach is able to leverage existing operating
system technology to form the system software for scalable machines.

Although Disco demonstrated the feasibility of this new approach, it left
many unanswered questions. In particular, the Disco prototype lacked
several major features, such as fault containment and resource manage-

230 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

ment, that made it difficult to compare Disco to other approaches. For
example, while other approaches such as hardware partitioning support
hardware fault containment, the Disco prototype lacked such support. In
addition, the Disco prototype lacked the resource management mechanisms
and policies required to make it competitive compared to a customized
operating system approach.

In this work we present a system called Cellular Disco that extends the
basic Disco approach by supporting hardware fault containment and ag-
gressive global resource management, and by running on actual scalable
hardware. Our system effectively turns a large-scale shared-memory ma-
chine into a virtual cluster by combining the scalability and fault contain-
ment benefits of clusters with the resource allocation flexibility of shared-
memory systems. Our experience with Cellular Disco shows that:

(1) Hardware fault containment can be added to a virtual machine monitor
with very low run-time overheads and implementation costs. With a
negligible performance penalty over the existing virtualization over-
heads, fault containment can be provided in the monitor at only a very
small fraction of the development effort that would be needed for
adding this support to the operating system.

(2) The virtual cluster approach can quickly and efficiently correct resource
allocation imbalances in scalable systems. This capability allows Cellu-
lar Disco to manage the resources of a scalable multiprocessor signifi-
cantly better than a hardware partitioning scheme and almost as well
as a highly tuned operating-system-centric approach. Virtual clusters
do not suffer from the resource allocation constraints of actual hard-
ware clusters, since large applications can be allowed to use all the
resources of the system, instead of being confined to a single partition.

(3) The small-scale, simulation-based results of Disco appear to match the
experience of running workloads on real scalable hardware. We have
built a Cellular Disco prototype that runs on a 32-processor SGI Origin
2000 [Laudon and Lenoski 1997] and is able to host multiple instances
of SGI’s IRIX 6.2 operating system running complex workloads. Using
this system, we have shown that Cellular Disco provides all the
features mentioned above while keeping the run-time overhead of
virtualization below 10% for most workloads.

This paper focuses on our experience with the mechanisms and policies
implemented in Cellular Disco for dealing with the interrelated challenges
of hardware fault containment and global resource management.

Fault Containment. Although a virtual machine monitor automatically
provides software fault containment in that a failure of one operating
system instance is unlikely to harm software running in other virtual
machines, the large potential size of scalable shared-memory multiproces-
sors also requires the ability to contain hardware faults. Cellular Disco is
internally structured into a number of semiindependent cells. This design
allows the impact of most hardware failures to be confined to a single cell, a

Cellular Disco • 231

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

behavior very similar to that of clusters, where most failures remain
limited to a single node.

While Cellular Disco is organized in a cellular structure similar to the
one in the Hive operating system [Chapin et al. 1995], providing fault
containment in Cellular Disco required only a fraction of the development
effort needed for Hive, and it does not impact performance once the
virtualization cost has been factored out. A key design decision that
reduced cost compared to Hive was to assume that the code of Cellular
Disco itself is correct. This assumption is warranted by the fact that the
size of the virtual machine monitor (50K lines of C and assembly) is small
enough to be thoroughly tested.

Resource Management. In order to support better resource manage-
ment than hardware clusters, Cellular Disco allows virtual machines to
overcommit the actual physical resources present in the system. This offers
an increased degree of flexibility by allowing Cellular Disco to dynamically
adjust the fraction of the system resources assigned to each virtual ma-
chine. This approach can lead to a significantly better utilization of the
system, assuming that resource requirement peaks do not occur simulta-
neously.

Cellular Disco multiplexes physical processors among several virtual
machines, and supports memory paging in addition to any such mechanism
that may be provided by the hosted operating system. These features have
been carefully implemented to avoid the inefficiencies that have plagued
virtual machine monitors in the past [Seawright and MacKinnon 1979]. For
example, Cellular Disco tracks operating system memory usage and paging
disk I/O to eliminate double-paging overheads.

Cellular Disco must manage the physical resources in the system while
satisfying the often conflicting constraints of providing good fault contain-
ment and scalable resource load balancing. Since a virtual machine be-
comes vulnerable to faults in a cell once it starts using any resources from
that cell, fault containment will only be effective if all of the resources for a
given virtual machine are allocated from a small number of cells. However,
a naive policy may suboptimally use the resources due to load imbalance.
Resource load balancing is required to achieve efficient resource utilization
in large systems. The Cellular Disco implementation of both CPU and
memory load balancing was designed to preserve fault containment, avoid
contention, and scale to hundreds of nodes.

In the process of virtualizing the hardware, Cellular Disco can also make
many of the NUMA-specific resource management decisions for the operat-
ing system. The physical memory manager of our virtual machine monitor
implements first-touch allocation and dynamic migration or replication of
“hot” memory pages [Verghese et al. 1996]. These features are coupled with
a physical CPU scheduler that is aware of memory locality issues.

By virtualizing the underlying hardware, Cellular Disco provides an
additional level of indirection that offers an easier and more effective
alternative to changing the operating system. For instance, we have added

232 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

support that allows large applications running across multiple virtual
machines to interact directly through shared memory by registering their
shared memory regions directly with the virtual machine monitor. This
support allows a much more efficient interaction than through standard
distributed-system protocols and can be provided transparently to the
hosted operating system.

This paper is structured as follows. We start by describing the Cellular
Disco architecture in Section 2. Section 3 describes the prototype imple-
mentation and the basic virtualization and fault containment overheads.
Next, we discuss our resource management mechanisms and policies: CPU
management in Section 4 and memory management in Section 5. Section 6
discusses hardware fault recovery. We conclude after comparing our work
to hardware- and operating-system-centric approaches and discussing re-
lated work.

2. THE CELLULAR DISCO ARCHITECTURE

Compared to previous work on virtual machine monitors, Cellular Disco
introduces a number of novel features: support for hardware fault contain-
ment, scalable resource management mechanisms and policies that are
aware of fault containment constraints, and support for large, memory-
intensive applications. For completeness, we first present a high-level
overview of hardware virtualization that parallels the descriptions given in
Bugnion et al. [1997] and Creasy [1981]. We then discuss each of the
distinguishing new features of Cellular Disco in turn.

2.1 Overview of Hardware Virtualization

Cellular Disco is a virtual machine monitor that can execute multiple
instances of an operating system by running each instance inside its own
virtual machine (see Figure 1). Since the virtual machines export an
interface that is similar to the underlying hardware, the operating system
instances need not be aware that they are actually running on top of

Fig. 1. Cellular Disco architecture.

Cellular Disco • 233

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

Cellular Disco. This subsection presents a high-level overview of hardware
virtualization and the techniques used to virtualize the MIPS architecture
in Cellular Disco; see Bugnion et al. [1997] for more details.

For each newly created virtual machine, the user specifies the amount of
resources that will be visible to that virtual machine by indicating the
number of virtual CPUs (VCPUs), the amount of memory, and the number
and type of I/O devices. The resources visible to a virtual machine are
called physical resources. Cellular Disco allocates the actual machine
resources to each virtual machine as required by the dynamic needs and the
priority of the virtual machine, similar to the way an operating system
schedules physical resources based on the needs and the priority of user
applications.

To be able to virtualize the hardware, the virtual machine monitor needs
to intercept all privileged operations performed by a virtual machine. This
can be implemented efficiently by using the privilege levels of the proces-
sor. Although the complexity of a virtual machine monitor depends on the
underlying hardware, even complex architectures such as the Intel x86
have been successfully virtualized [VMware 2000]. The MIPS processor
architecture [Laudon and Lenoski 1997] that is supported by Cellular Disco
has three privilege levels: user mode (least privileged, all memory accesses
are mapped), supervisor mode (semiprivileged, allows mapped accesses to
supervisor and user space), and kernel mode (most privileged, allows use of
both mapped and unmapped accesses to any location, and allows execution
of privileged instructions). Without virtualization, the operating system
runs at kernel level, and applications execute in user mode; supervisor
mode is not used. Under Cellular Disco, only the virtual machine monitor is
allowed to run at kernel level, and thus to have direct access to all machine
resources in the system. An operating system instance running inside a
virtual machine can only access resources visible to the supervisor and user
levels. Whenever a virtualized operating system kernel executes a privi-
leged instruction, the process will trap into Cellular Disco where that
instruction is emulated.

Since in supervisor mode all memory accesses are mapped, an additional
level of indirection thus becomes available to map physical resources to
actual machine resources. While the operating system inside a virtual
machine allocates physical memory to satisfy the needs of applications,
Cellular Disco allocates machine memory as needed to back the physical
memory requirements of each virtual machine. Similar to Mach [Rashid et
al. 1988], the virtual machine monitor maintains a pmap data structure for
each virtual machine to map its physical addresses to actual machine
addresses. In addition to the pmap, Cellular Disco needs to maintain a
memmap structure that allows it to translate back from machine to
physical pages; this structure is used for dynamic page migration and
replication, and for fault recovery (see Section 6).

Performing the physical-to-machine translation using the pmap at every
software reload of the MIPS TLB can lead to very high overheads. Cellular
Disco reduces this overhead by maintaining for every VCPU a 1024-entry

234 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

translation cache called the second-level software TLB (L2TLB). The en-
tries in the L2TLB correspond to complete virtual-to-machine translations,
and servicing a TLB miss from the L2TLB is much faster than generating a
virtual exception to be handled by the operating system inside the virtual
machine.

The limited privileges of the supervisor level also help to virtualize the
I/O devices, as the operating system executing inside a virtual machine
does not have enough privilege to perform I/O operations. Cellular Disco
checks the validity of the I/O request and either forwards it to the real I/O
device or performs the necessary actions itself in the case of devices such as
the virtual paging disk (see Section 5.3). Before forwarding the I/O request
to the real device, Cellular Disco translates the physical memory addresses
in the DMA map to the corresponding machine addresses. Because virtual-
izing the device I/O interface for each type of device from every vendor is
too complex, Cellular Disco only virtualizes a generic device interface for
each type of device, such as a keyboard, disk, and ethernet. We installed
the device drivers for these generalized devices in the virtualized operating
system. After translating the memory addresses, Cellular Disco issues the
actual I/O request using the device driver for the real device installed on
the hardware. The details of this process are covered in Section 3.1.

Although, theoretically, hardware can be virtualized without modifying
the operating system, we made some changes to IRIX 6.2 for simplicity and
efficiency. A complete list of these modifications can be found in Section 4.3
of Bugnion et al. [1997].

2.2 Support for Hardware Fault Containment

As the size of shared-memory machines increases, reliability becomes a key
concern for two reasons. First, one can expect to see an increase in the
failure rate of large systems: a technology that fails once a year for a small
workstation corresponds to a failure rate of once every three days when
used in a 128-processor system. Second, since a failure will usually bring
down the entire system, it can cause substantially more state loss than on a
small machine. Fault tolerance does not necessarily offer a satisfactory
answer for most users, due to the system cost increase and to the fact that
it does not prevent operating system crashes from bringing down the entire
machine.

Support for software fault containment (of faults occurring in the operat-
ing systems running inside the virtual machines) is a straightforward
benefit of any virtual machine monitor, since the monitor can easily restrict
the resources that are visible to each virtual machine. If the operating
system running inside a virtual machine crashes, this will not impact any
other virtual machines.

To address the reliability concerns for large machines, we designed
Cellular Disco to support hardware fault containment, a technique that can
limit the impact of faults to only a small portion of the system. After a
fault, only a small fraction of the machine will be lost, together with any

Cellular Disco • 235

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

applications running on that part of the system, while the rest of the
system can continue executing unaffected. This behavior is similar to the
one exhibited by a traditional cluster, where hardware and system software
failures tend to stay localized to the node on which they occurred.

Software techniques by themselves cannot provide hardware fault con-
tainment; they require the cooperation of the hardware, as described by
Teodosiu et al. [1997]. We assume that the hardware exhibits fail-stop
behavior, which implies that after a fault the hardware stops working
without generating erroneous results. To limit the impact of a fault, the
hardware is divided into fault containment units. Once a fault occurs, the
hardware shuts down the fault containment unit where the fault occurred,
while the rest of the machine recovers itself. A fault containment unit has
to be self-sufficient; therefore, it cannot be smaller than a node because a
node controller failure will render the entire node useless. Further details
are beyond the scope of this paper; they are covered in Teodosiu et al.
[1997].

To support hardware fault containment, Cellular Disco is internally
structured as a set of semiindependent cells, as shown in Figure 2. Cells
consist of one or more fault containment units. Each cell contains a
complete copy of the monitor code and manages its own memmap to track
all the machine memory pages belonging to the cell’s nodes. A failure in one
cell will only bring down the virtual machines that were using resources
from that cell, while virtual machines executing elsewhere will be able to
continue unaffected. We designed the system to favor a smaller overhead
during normal execution but a higher cost when a component fails, hope-
fully an infrequent occurrence. The details of the fault recovery algorithm
are covered in Section 6.

One of our basic assumptions when designing Cellular Disco was that the
monitor can be kept small enough to be thoroughly tested so that its
probability of failure is extremely low. Cellular Disco is thus considered to
be a trusted system software layer. This assumption is warranted by the
fact that with a size of less than 50K lines, the monitor is about as complex
as other trusted layers in the shared-memory machine (e.g., the cache

Fig. 2. Cellular structure.

236 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

coherence protocol implementation), and it is about two orders of magni-
tude simpler than modern operating systems, which may contain up to
several million lines of code.

The trusted-layer decision can lead to substantially smaller overheads
compared to a design in which the system software layer cannot be trusted
due to its complexity, such as in the case of the Hive operating system
[Chapin et al. 1995]. If cells do not trust each other, they have to use
expensive distributed protocols to communicate and to update their data
structures. This is substantially less efficient than directly using shared
memory. The overheads become evident when one considers the case of a
single virtual machine straddling multiple cells, all of which need to update
the monitor data structures corresponding to the virtual machine. An
example of a structure requiring frequent updates is the pmap address
translation table.

Although Cellular Disco cells can use shared memory for updating
virtual machine-specific data structures, Cellular Disco procedures that
directly manipulate remote memory must be able to handle memory
exceptions raised by the hardware if the remote cell fails. Handling these
exceptions usually only requires an extra if check before accessing remote
memory. Cells are not allowed to directly modify data structures in other
cells that are essential for the survival of those cells. For these cases, as
well as when the monitor needs to request that operations be executed on a
given node or VCPU, a carefully designed communication mechanism is
provided in Cellular Disco that offers low latency and exactly-once seman-
tics.

The basic communication primitive is a fast interprocessor RPC (Remote
Procedure Call). For our prototype Origin 2000 implementation, we mea-
sured the round-trip time for an RPC carrying a cache line-sized argument
and reply (128 bytes) at 16 ms. Simulation results indicate that this time
can be reduced to under 7 ms if appropriate support is provided in the node
controller, such as in the case of the FLASH multiprocessor [Kuskin et al.
1994].

A second communication primitive, called a message, is provided for
executing an action on the machine CPU that currently owns a virtual
CPU. This obviates most of the need for locking, since per-VCPU operations
are serialized on the owner. The cost of sending a message is on average the
same as that of an RPC. Messages are based on a fault-tolerant, distributed
registry that is used for locating the current owner of a VCPU given the ID
of that VCPU. Since the registry is completely rebuilt after a failure,
VCPUs can change owners (that is, migrate around the system) without
having to depend on a fixed home. Our implementation guarantees exactly-
once message semantics in the presence of contention, VCPU migration,
and hardware faults.

2.3 Resource Management Under Constraints

Compared to traditional resource management issues, an additional re-
quirement that increases complexity in Cellular Disco is fault containment.

Cellular Disco • 237

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

The mechanisms and policies used in our system must carefully balance the
often conflicting requirements of efficiently scheduling resources and main-
taining good fault containment. While efficient resource usage requires
that every available resource in the system be used when needed, good
fault containment can only be provided if the set of resources used by any
given virtual machine is confined to a small number of cells. Additionally,
our algorithms had to be designed to scale to system sizes of up to a few
hundred nodes. The above requirements had numerous implications for
both CPU and memory management.

CPU Management. Operating systems for shared-memory machines
normally use a global run queue to perform load sharing; each idle CPU
looking for work examines the run queue to attempt to find a runnable
task. Such an approach is inappropriate for Cellular Disco because it
violates fault containment requirements and because it is a source of
contention in large systems. In Cellular Disco, each machine processor
maintains its own run queue of VCPUs. However, even with proper initial
load placement, separate run queues can lead to an imbalance among the
processors, due to variability in processor usage over the lifetime of the
VCPUs. A load-balancing scheme is used to avoid the situation in which
one portion of the machine is heavily loaded while another portion is idle.
The basic load-balancing mechanism implemented in Cellular Disco is
VCPU migration; our system supports intranode, intracell, and intercell
migration of VCPUs. VCPU migration is used by a balancing-policy module
that decides when and which VCPU to migrate, based on the current load
of the system and on fault containment restrictions.

An additional feature provided by the Cellular Disco scheduler is that all
nonidle VCPUs belonging to the same virtual machine are gang-scheduled.
Since the operating systems running inside the virtual machines use
spinlocks for their internal synchronization, gang-scheduling is necessary
to avoid wasting precious cycles spinning for a lock held by a descheduled
VCPU.

Memory Management. Fault containment requires that each Cellular
Disco cell manage its own memory allocation. However, this can lead to a
case in which a cell running a memory-intensive virtual machine may run
out of memory, while other cells have free memory reserves. In a static
partitioning scheme there would be no choice but to start paging data out to
disk. To avoid an inefficient use of the shared-memory system, Cellular
Disco implements a memory-borrowing mechanism through which a cell
may temporarily obtain memory from other cells. Since memory borrowing
may be limited by fault containment requirements, we also support paging
as a fall-back mechanism.

An important aspect of our memory-balancing policies is that they
carefully weigh the performance gains obtained by allocating borrowed
memory versus the implications for fault containment, since using memory
from a remote cell can make a virtual machine vulnerable to failures on
that cell.

238 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

2.4 Support for Large Applications

In order to avoid operating system scalability bottlenecks, each operating
system instance is given only as many resources as it can handle well.
Applications that need fewer resources than those allocated to a virtual
machine run as they normally would in a traditional system. However,
large applications are forced to run across multiple virtual machines.

The solution proposed in Disco was to split large applications and have
the instances on the different virtual machines communicate using distrib-
uted systems protocols that run over a fast shared-memory-based virtual
ethernet provided by the virtual machine monitor. This approach is similar
to the way such applications are run on a cluster or a hardware-partition-
ing environment. Unfortunately, this approach requires that shared-mem-
ory applications be rewritten, and incurs significant overhead introduced
by communication protocols such as TCP/IP.

Cellular Disco’s virtual cluster environment provides a much more effi-
cient sharing mechanism that allows large applications to bypass the
operating system and register shared-memory regions directly with the
virtual machine monitor. Since every system call is intercepted first by the
monitor before being reflected back to the operating system, it is easy to
add in the monitor additional system call functionality for mapping global
shared-memory regions. Applications running on different virtual machines
can communicate through these shared-memory regions without any extra
overhead because they simply use the cache-coherence mechanisms built
into the hardware. The only drawback of this mechanism is that it requires
relinking the application with a different shared-memory library, and
possibly a few small modifications to the operating system for handling
misbehaving applications.

Since the operating system instances are not aware of application-level
memory sharing, the virtual machine monitor needs to provide the appro-
priate paging mechanisms and policies to cope with memory overload
conditions. When paging out to disk, Cellular Disco needs to preserve the
sharing information for pages belonging to a shared-memory region. In
addition to the actual page contents, the Cellular Disco pager writes out a
list of virtual machines using that page, so that sharing can be properly
restored when the page is faulted back in.

3. THE CELLULAR DISCO PROTOTYPE

In this section we start by discussing our Cellular Disco prototype imple-
mentation that runs on actual scalable hardware. After describing the
experimental setup, we provide evaluations of our virtualization and fault
containment overheads.

3.1 Prototype Implementation

The Cellular Disco virtual machine monitor was designed to support
shared-memory systems based on the MIPS R10000 processor architecture
[Kane and Heinrich 1992]. Our prototype implementation consists of about

Cellular Disco • 239

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

50K lines of C and assembly and runs on a 32-processor SGI Origin 2000
[Laudon and Lenoski 1997].

One of the main hurdles we had to overcome in the prototype was the
handling of I/O devices. Since coping with all the details of the Origin I/O
hardware was beyond our available resources, we decided to leverage the
device driver functionality already present in the SGI IRIX 6.4 operating
system for our prototype. Our Cellular Disco implementation thus runs
piggybacked on top of IRIX 6.4.

To run our Cellular Disco prototype, we first boot the IRIX 6.4 operating
system with a minimal amount of memory. Cellular Disco is implemented
as a multithreaded kernel process that spawns a thread on each CPU. The
threads are pinned to their designated processors to prevent the IRIX
scheduler from interfering with the control of the virtual machine monitor
over the machine’s CPUs. Subsequent actions performed by the monitor
violate the IRIX process abstraction, effectively taking over the control of
the machine from the operating system. After saving the kernel registers of
the host operating system, the monitor installs its own exception handlers
and takes over all remaining system memory. The host IRIX 6.4 operating
system remains dormant but can be reactivated any time Cellular Disco
needs to use a device driver.

Whenever one of the virtual machines created on top of Cellular Disco
requests an I/O operation, the request is handled by the procedure illus-
trated in Figure 3. The I/O request causes a trap into Cellular Disco (1),
which checks access permissions and simply forwards the request to the
host IRIX (2) by restoring the saved kernel registers and exception vectors,
and requesting the host kernel to issue the appropriate I/O request (3).
From the perspective of the host operating system, it looks as if Cellular
Disco had been running all the time just like any other well-behaved kernel
process. After IRIX initiates the I/O request, control returns to Cellular
Disco, which puts the host kernel back into the dormant state. Upon I/O
completion the hardware raises an interrupt (4), which is handled by
Cellular Disco because the exception vectors have been overwritten. To
allow the host drivers to properly handle I/O completion the monitor

Fig. 3. I/O handling using IRIX device drivers.

240 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

reactivates the dormant IRIX, making it look as if the I/O interrupt had
just been posted (5). Finally, Cellular Disco posts a virtual interrupt to the
virtual machine to notify it of the completion of its I/O request (6). Since
some drivers require that the kernel be aware of time, Cellular Disco
forwards all timer interrupts in addition to device interrupts to the host
IRIX.

Our piggybacking technique allowed us to bring up our system on real
hardware quickly, and enabled Cellular Disco to handle any hardware
device IRIX supports. By measuring the time spent in the host IRIX kernel,
we found the overhead of the piggybacking approach to be small, less than
2% of the total running time for all the benchmarks we ran. The main
drawback of our current piggybacking scheme is that it does not support
hardware fault containment, given the monolithic design of the host
operating system. While the fault containment experiments described in
Section 6 do not use the piggybacking scheme, a solution running one copy
of the host operating system per Cellular Disco cell would be possible with
appropriate support in the host operating system.

3.2 Experimental Setup

We evaluated Cellular Disco by executing workloads on a 32-processor SGI
Origin 2000 system configured as shown in Table I. On this machine we
ran the following four workloads: Database, Pmake, Raytrace, and Web
server. These workloads, described in detail in Table II, were chosen
because they stress different parts of the system and because they are a
representative set of applications that commercial users run on large
machines. The execution times reported in this paper are the average of
two stable runs after an initial warm-up run. The running times range
from 4 to 6 minutes, and the noise is within 2%.

3.3 Virtualization Overheads

The performance penalty that must be paid for virtualization depends
largely on the processor architecture of the virtualized system. The domi-
nant portion of this overhead is the cost of handling the traps generated by
the processor for each privileged instruction executed by the kernel.

To measure the impact of virtualization we compared the performance of
the workloads executing under two different setups. First, we ran the
workloads on IRIX 6.4 executing directly on top of the bare hardware. We
then ran the same workloads on IRIX 6.2 executing on top of the Cellular

Table I. SGI Origin 2000 Configuration

Component Characteristics

Processors 32 3 MIPS R10000 @ 195MHz
Node controllers 16 3 SGI Hub @ 100MHz
Memory 3.5GB
L2 cache size 4MB
Disks 5 (total capacity: 40GB)

Cellular Disco • 241

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

Disco virtual machine monitor. We used two different versions of IRIX to
demonstrate that Cellular Disco can leverage an off-the-shelf operating
system that has only limited scalability to provide essentially the same
functionality and performance as an operating system specifically designed
for large-scale machines. IRIX 6.2 was designed for small-scale Challenge
bus-based multiprocessors [Galles and Williams 1994], while IRIX 6.4 was
the latest operating system available for the Origin 2000 when we started
our experimental work. Another reason for using two different versions of
IRIX is that IRIX 6.2 does not run directly on the Origin 2000. Except for
scalability fixes in IRIX 6.4, the two versions are fairly similar; therefore,
the uniprocessor numbers presented in this section provide a good estimate
of the virtualization cost. However, multiprocessor numbers may be dis-
torted by the scalability limitations of IRIX 6.2.

The Cellular Disco uniprocessor virtualization overheads are shown in
Figure 4. As shown in the figure, the worst-case uniprocessor virtualization
penalty is only 9%. For each workload, the bar on the left shows the time
(normalized to 100) needed to complete the run on IRIX 6.4, while the bar
on the right shows the relative time to complete the same run on IRIX 6.2
running on top of the monitor. The execution time is broken down into time
spent in idle mode, in the virtual machine monitor (this portion also
includes the time spent in the host kernel’s device drivers), in the operating
system kernel, and in user mode. This breakdown was measured by using
the hardware counters of the MIPS R10000 processors.

Figure 4 also shows the virtualization overheads for 8- and 32-processor
systems executing a single virtual machine that spans all the processors.
We have included two cases (loaded and unloaded) for the Web workload
because the two systems perform very differently depending on the load.
The unloaded case limits the number of server and client processes to 16
each (half the number of processors), while the loaded case starts 32 clients
and does not limit the number of server processes (the exact value is

Table II. Workloads

Workload Description

Database Decision support workload based on the TPC-D [Transaction Processing
Performance Council 1997] query suite on Informix Relational Database
version 7.1.2 using a 200MB and a 1GB database. We measure the sum
of the run times of the 17 nonupdate queries.

Pmake I/O-intensive parallel compilation of the SGI IRIX 5.3 operating system
(about 500K lines of C and assembly code).

Raytrace CPU-intensive ray tracer from the SPLASH-2 [Woo et al. 1995] parallel
benchmark suite. We used the balls4 data set with varying amounts of
antialiasing so that it runs four to six minutes for single- and
multiprocess configurations.

Web Kernel-intensive Web server workload. SpecWEB96 [SPEC 2000] running
on an Apache web server. Although the workload always runs for 5
minutes, we scaled the execution times so that each run performs the
same number of requests.

242 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

determined by the Web server). IRIX 6.4 uses blocking locks in the
networking code, which results in better performance under heavy load,
while IRIX 6.2 uses spin locks, which increases kernel time but performs
better under light load. The Database, Pmake, and Web benchmarks have a
large amount of idle time due to their inability to fully exploit the available
parallelism; a significant fraction of those workloads is serialized on a
single processor. Note that on a multiprocessor virtual machine, any
virtualization overheads occurring in the serial part of a workload are
magnified, since they increase the idle time of the unused VCPUs. Even
under such circumstances, Cellular Disco introduces only 20% overhead in
the worst case.

Fig. 4. Virtualization overheads.

Cellular Disco • 243

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

3.4 Fault Containment Overheads

In order to gauge the overheads introduced by the cellular structure of
Cellular Disco, we ran our benchmarks on top of the virtual machine
monitor using two configurations. First, the monitor was run as a single
cell spanning all 32 processors in the machine, corresponding to a setup
that does not provide any fault containment. Second, we booted Cellular
Disco in an 8-cell configuration, with 4 processors per cell. We ran our
workloads inside a 32-processor virtual machine that was completely
contained in the single cell in the first case, and that spanned all 8 cells in
the second one.

Figure 5 shows that the running time for virtual machines spanning cell
boundaries is practically the same as when executing in a single cell
(except for some small differences due to scheduling artifacts). This result
shows that in Cellular Disco, hardware fault containment can be provided
at practically no loss in performance once the virtualization overheads have
been factored out. This result stands in sharp contrast to earlier fault
containment work [Chapin et al. 1995].

4. CPU MANAGEMENT

In this section, we first describe the processor-load-balancing mechanisms
provided in Cellular Disco. We then discuss the policies we use to actually
balance the system. Next we discuss our implementation of gang schedul-
ing. We conclude with an evaluation of the performance of the system and
with comments on some interesting issues regarding intercell migration.

4.1 CPU Balancing Mechanisms

Cellular Disco supports three different types of VCPU migration, each
providing a different trade-off between performance and cost.

Fig. 5. Overhead of fault containment.

244 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

The simplest VCPU migration case occurs when a VCPU is moved to a
different processor on the same node (the Origin 2000 has two CPUs per
node). Although the time required to update the internal monitor data
structures is only 37 ms, the real cost is paid gradually over time due to the
loss of CPU cache affinity. To get a rough estimate of this cost, let us
assume that half of the 128-byte lines in the 4MB second-level cache are in
use, with half of the active lines local and the other half remote. Refilling
this amount of cached information on the destination CPU requires about
8 ms.

The second type of migration occurs when a VCPU is moved to a
processor on a different node within the same cell. Compared to the cost of
intranode migration, this case incurs the added cost of copying the second-
level software TLB (described in Section 2.1) which is always kept on the
same node as the VCPU, since it is accessed very frequently. At 520 ms, the
cost for copying the entire L2TLB (32KB) is still much smaller than the
gradual cost of refilling the CPU cache. However, internode migration has
a higher long-term cost because the migrated VCPU is likely to access
machine memory pages allocated on the previous node. Unlike the cost of
cache affinity loss which is only paid once, accessing remote memory is a
continuous penalty that is incurred every time the processor misses on a
remote cache line. Cellular Disco alleviates this penalty by dynamically
migrating or replicating frequently accessed pages to the node generating
the cache misses [Verghese et al. 1996].

The third type of VCPU migration occurs when a VCPU is moved across a
cell boundary; this migration costs 1520 ms including the time to copy the
L2TLB. Besides losing cache and node affinity, this type of migration may
also increase the fault vulnerability of the VCPU. If the latter has never
before run on the destination cell and has not been using any resources
from it, migrating it to the new cell will make it vulnerable to faults in that
cell. However, Cellular Disco provides a mechanism through which depen-
dencies to the old cell can be entirely removed by moving all the data used
by the virtual machine over to the new cell; this process is covered in detail
in Section 4.5.

4.2 CPU Balancing Policies

Cellular Disco employs two separate CPU load-balancing policies: the idle
balancer and the periodic balancer. The idle balancer runs whenever a
processor becomes idle, and performs most of the balancing work. The
periodic balancer redistributes those VCPUs that are not handled well by
the idle balancer.

When a processor becomes idle, the idle balancer runs on that processor
to search for VCPUs that can be “stolen” from the run queues of neighbor-
ing processors in the same cell, starting with the closest neighbor. How-
ever, the idle balancer cannot arbitrarily select any VCPU on the remote
queues due to gang-scheduling constraints. Cellular Disco will schedule a
VCPU only when all the nonidle VCPUs of that virtual machine are

Cellular Disco • 245

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

runnable. Annotations on the idle loop of the kernel inform Cellular Disco
when a VCPU becomes idle. The idle balancer checks the remote queues for
VCPUs that, if moved, would allow that virtual machine to run. For
example, consider the case shown in Figure 6. VCPUs in the top row are
currently executing on the actual machine CPUs; CPU 0 is idle due to
gang-scheduling constraints. After checking the remote queues, the idle
balancer running on CPU 1 will migrate VCPU B1 because the migration
will allow VCPUs B0 and B1 to run on CPUs 0 and 1, respectively.
Although migrating VCPU B1 would allow it to start executing right away,
it may have enough cache and node affinity on CPU 2 to cancel out the
gains. Cellular Disco tries to match the benefits with the cost of migration
by delaying migration until a VCPU has been descheduled for some time,
depending on the migration distance: 4 ms for intranode, and 6 ms for
internode. These were the optimal values after testing a range from 1 ms to
10 ms; however, the overall performance only varies by 1–2% in this range.

We noticed an inefficiency with the policy in the previous paragraph after
experimenting with virtual machines with many VCPUs. The previous
policy migrates a VCPU only when that VCPU prevents the entire virtual
machine from running. However, large virtual machines may frequently
have two or more blocked VCPUs. We addressed this by modifying the idle
balancer such that if it is unable to find a virtual machine with only a
single blocked VCPU, and if the processor has been idle for a long time (8
ms), then it will consider migrating a VCPU even if the migration does not
directly make the virtual machine runnable right away. The balancer
chooses the virtual machine with the highest priority and the least number
of blocked VCPUs.

The idle balancer performs well even in a fairly loaded system because
there are usually still a few idle cycles available for balancing decisions due
to the fragmentation caused by gang scheduling. However, by using only
local load information to reduce contention, the idle balancer is not always

Fig. 6. CPU load-balancing scenario.

246 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

able to make globally optimal decisions. For this reason, we included in our
system a periodic balancer that uses global load information to balance
load in heavily loaded systems and across different cells. Querying each
processor individually is impractical for systems with hundreds of proces-
sors. Instead, each processor periodically updates the load tree, a low-
contention distributed data structure that tracks the load of the entire
system.

The load tree, shown in Figure 6, is a binary tree encompassing the
entire machine. Each leaf of the tree represents a processor, and stores the
load on that processor. Each inner node in the tree contains the sum of the
loads of its children. To reduce memory contention, the tree nodes are
physically spread across the machine. Starting from its corresponding leaf,
each processor updates the tree on every 10 ms timer interrupt. Cellular
Disco reduces the contention on higher-level nodes by halving the number
of processors that can update a level at every level with more than 8
processors.

The periodic balancer traverses this tree depth-first, checking the load
disparity between the two children. If the disparity is larger than one
VCPU, the balancer will try to find a VCPU from the loaded side that is a
good candidate for migration. Gang scheduling requires that two VCPUs of
the same VM not be scheduled on the same processor; therefore, one of the
requirements for a good candidate is that the less-loaded side must have a
processor that does not already have another VCPU of the same virtual
machine. If the two sides belong to different cells, then migrating a VCPU
will make it vulnerable to faults in the new cell. To prevent VCPUs from
being vulnerable to faults in many cells, Cellular Disco keeps track of the
list of cells each VCPU is vulnerable to, and the periodic balancer prefers
migrating VCPUs that are already vulnerable to faults on the less-loaded
cell.

Executing the periodic balancer across the entire system can be expen-
sive for large machines. However, running it too infrequently can cause
load imbalance because heavily loaded systems can have local load imbal-
ances that are not handled by the idle balancer due to the lack of idle
cycles. Cellular Disco addresses this problem by running the periodic
balancer at each level in the tree with more than 8 processors. The lowest
level (8 CPU region) balancer runs every 10 ms, and each subsequent
higher-level balancer runs at half that frequency. This combination allows
the periodic balancer to run frequently enough at lower levels of the tree to
handle local imbalances, and still balance global load without significant
overhead.

4.3 Scheduling Policy

Both of the balancing schemes described in the previous section would be
ineffective without a scalable gang scheduler. Most gang schedulers use
either space or time partitioning, but these schemes require a centralized
manager that becomes a scalability bottleneck. Cellular Disco’s scheduler

Cellular Disco • 247

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

uses a distributed algorithm similar to the IRIX gang scheduler [Barton
and Bitar 1995].

When selecting the next VCPU to run on a processor, our scheduler
always picks the highest-priority gang-runnable VCPU that has been
waiting the longest. A VCPU becomes gang-runnable when all the nonidle
VCPUs of that virtual machine are either running or waiting on run queues
of processors executing lower-priority virtual machines. After selecting a
VCPU, the scheduler sends RPCs to all the processors that have VCPUs
belonging to this virtual machine waiting on the run queue. On receiving
this RPC, those processors deschedule the VCPU they were running, follow
the same scheduling algorithm, and converge on the desired virtual ma-
chine. Each processor makes its own decisions, but ends up converging on
the correct choice without employing a central global manager.

4.4 CPU Management Results

We tested the effectiveness of the complete CPU management system by
running the following three-part experiment. First, we ran a single virtual
machine with 8 VCPUs executing an 8-process raytrace, leaving 24 proces-
sors idle. Next, we ran four such virtual machines, each one running an
8-process raytrace. Finally, we ran eight virtual machines configured the
same way, a total of 64 VCPUs running raytrace processes. An ideal system
would run the first two configurations in the same time, while the third
case should take twice as long. We measured only a 0.8% increase in the
second case, and the final configuration took 2.04 times as long. The extra
time can be attributed to migration overheads, cache affinity loss due to
scheduling, and some load imbalance. To get a baseline number for the
third case, we ran the same experiment on IRIX 6.4 and found that IRIX
actually exhibits a higher overhead of 2.15.

Unfortunately, we did not have access to a larger machine to fully explore
system scalability; therefore, we used simulation to study the effect on
systems with more than 32 processors. We wrote a scheduling simulator,
Schedsim, which uses the same scheduling code as Cellular Disco. The
parameters of the simulator are the number of processors, cells, virtual
machines, and VCPUs; and the required execution time for each VCPU. We
calibrated the simulator using the numbers obtained from the 32-processor
experiment performed on hardware. We estimated the impact of scalability
by simulating a 128-processor system, running 16 virtual machines, each
with 16 VCPUs. The end-to-end execution time was 2.17 times as long as
executing just a single 16-VCPU virtual machine.

4.5 Intercell Migration Issues

Migrating VCPUs across cell boundaries raises a number of interesting
issues. One of these is when to migrate the data structure associated with
the entire virtual machine, not just a single VCPU. The size of this data
structure is dominated by the pmap, which is proportional to the amount of
physical memory the virtual machine is allowed to use. Although the

248 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

L2TLB reduces the number of accesses to the pmap, it is still desirable to
place the pmap close to the VCPUs so that software-reloaded TLB misses
can be satisfied quickly. Also, if all the VCPUs have migrated out of a cell,
keeping the pmap in the old cell leaves the virtual machine vulnerable to
faults in the old cell. We could migrate the virtual machinewide data
structures when most of the VCPUs have migrated to a new cell, but the
pmap is big enough that we do not want to move it that frequently.
Therefore, we migrate it only when all the VCPUs have migrated to a
different cell. We have carefully designed this mechanism to avoid blocking
the VCPUs, which can run concurrently with this migration. This operation
takes 80 ms to copy I/O-related data structures other than the pmap, and
copying the pmap takes 161 ms per MB of physical memory the virtual
machine is allowed to use.

Although Cellular Disco migrates the virtual machine data structures
when all the VCPUs have moved away from a cell, this is not sufficient to
remove vulnerability to faults occurring in the old cell. To become com-
pletely independent from the old cell, any data pages being used by a
virtual machine must be migrated as well. This operation takes 25 ms per
MB of memory being used by the virtual machine and can be executed
without blocking any of the VCPUs.

5. MEMORY MANAGEMENT

In this section, we focus on the problem of managing machine memory
across cells. We will present the mechanisms to address this problem,
policies that use those mechanisms, and an evaluation of the performance
of the complete system. The section concludes by looking at issues related
to paging.

5.1 Memory-Balancing Mechanism

Before describing the Cellular Disco memory-balancing mechanism, it is
important to discuss the memory allocation module. Each cell maintains its
own freelist (list of free pages) indexed by the home node of each memory
page. Initially, the freelist entries for nodes not belonging to this cell are
empty, as the cell has not yet borrowed any memory. Every page allocation
request is tagged with a list of cells that can supply the memory (this list is
initialized when a virtual machine is created). When satisfying a request,
preference is given to memory from the local node and local cell, in order to
reduce the memory access latency on NUMA systems (first-touch allocation
strategy).

The memory-balancing mechanism is fairly straightforward. A cell wish-
ing to borrow memory issues a fast RPC to a cell which has available
memory. The lender cell allocates memory from its freelist and returns a
list of machine pages as the result of the RPC. The borrower adds those
pages to its freelist, indexed by their home node. This operation takes 758
ms to borrow 4MB of memory.

Cellular Disco • 249

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

5.2 Memory-Balancing Policies

A cell starts borrowing memory when its number of free pages reaches a
low threshold, but before completely running out of pages. This policy seeks
to avoid forcing small virtual machines that fit into a single cell to have to
use remote memory. For example, consider the case of a cell with two
virtual machines: one with a large memory footprint, and one that entirely
fits into the cell. The large virtual machine will have to use remote memory
to avoid paging, but the smaller one can achieve good performance with
just local memory, without becoming vulnerable to faults in other cells. The
cell must carefully decide when to allocate remote memory so that enough
local memory is available to satisfy the requirements of the smaller virtual
machine.

Depending on their fault containment requirements, users can restrict
the set of cells from which a virtual machine can use borrowed memory.
Paging must be used as a last recourse if free memory is not available from
any of the cells in this list. To avoid paging as much as possible, a cell
should borrow memory from cells that are listed in the allocation prefer-
ences of the virtual machines it is executing. Therefore, every cell keeps
track of the combined allocation preferences of all the virtual machines it is
executing, and adjusts that list whenever a virtual machine migrates into
or out of the cell.

A policy we have found to be effective is the following: when the local free
memory of a cell drops below 16MB, the cell tries to maintain at least 4MB
of free memory from each cell in its allocation preferences list; the cell
borrows 4MB from each cell in the list from which it has less than 4MB
available. This heuristic biases the borrowing policy to solicit memory from
cells that actively supply pages to at least one virtual machine. Cells will
agree to loan memory as long as they have more than 32MB available. Cells
periodically publish the amount of available memory to stop other cells
from requesting memory when free memory is running low. The above
thresholds are all tunable parameters. These default values were selected
to provide hysteresis for stability, and they are based on the number of
pages that can be allocated during the interval between consecutive execu-
tions of the policy, every 10 ms. In this duration, each CPU can allocate at
most 732KB, which means that a typical cell with 8 CPUs can only allocate
6MB in 10 ms if all the CPUs allocate memory as fast as possible, a very
unlikely scenario; therefore, we decided to borrow 4MB at a time. Cells
start borrowing when only 16MB are left because we expect the resident
size of small virtual machines to be in the range of 10–15 megabytes.

We measured the effectiveness of this policy by running a 4-processor
Database workload. First, we ran the benchmark with the monitor config-
ured as a single cell, in which case there is no need for balancing. Next, we
ran in an 8-cell configuration, with 4 CPUs per cell. In the second
configuration, the cell executing the Database virtual machine did not have
enough memory to satisfy the workload and ended up borrowing 596MB of

250 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

memory from the other cells. Borrowing this amount of memory had a
negligible impact on the overall execution time (less than 1% increase).

5.3 Issues Related to Paging

If all the cells are running low on memory, there is no choice but to page
data out to disk. In addition to providing the basic paging functionality, our
algorithms had to solve three additional challenges: identifying actively
used pages, handling memory pages shared by different virtual machines,
and avoiding redundant paging.

Cellular Disco implements a second-chance FIFO queue to approximate
LRU page replacement, similar to VMS [Levy and Lipman 1982]. Each
virtual machine is assigned a resident set size that is dynamically trimmed
when the system is running low on memory. Although any LRU approxima-
tion algorithm can find frequently used pages, it cannot separate the
infrequently used pages into pages that contain active data and unallocated
pages that contain garbage. Cellular Disco avoids having to write unallo-
cated pages out to disk by nonintrusively monitoring the physical pages
actually being used by the operating system. Annotations on the operating
system’s memory allocation and deallocation routines provide the required
information to the virtual machine monitor.

A machine page can be shared by multiple virtual machines if the page is
used in a shared memory region as described in Section 2.4, or as a result of
a COW (Copy-On-Write) optimization. The sharing information is usually
kept in memory in the control data structures for the actual machine page.
However, this information cannot remain there once the page has been
written out if the machine page is to be reused. In order to preserve the
sharing, Cellular Disco writes the sharing information out to disk along
with the data. The sharing information is stored on a contiguous sector
following the paged data so that it can be written out using the same disk
I/O request; this avoids the penalty of an additional disk seek.

Redundant paging is a problem that has plagued early virtual machine
implementations [Seawright and MacKinnon 1979]. This problem can occur
since there are two separate paging schemes in the system: one in Cellular
Disco, the other in the operating systems running in the virtual machines.
With these schemes making independent decisions, some pages may have
to be written out to disk twice, or read in just to be paged back out. Cellular
Disco avoids this inefficiency by trapping every read and write to the
kernel’s paging disk, identified by designating for every virtual machine a
special disk that acts as the virtual paging disk. Figure 7 illustrates the
problem and the way Cellular Disco avoids it. In both cases shown, the
virtual machine kernel wishes to write a page to its paging disk that
Cellular Disco has already paged out to its own paging disk. Without the
paging disk, as shown in Case A, the kernel’s pageout request appears to
the monitor as a regular disk write of a page that has been paged out to
Cellular Disco’s paging disk. Therefore, Cellular Disco will first fault that
page in from its paging disk, and then issue the write for the kernel’s

Cellular Disco • 251

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

paging disk. Case B shows the optimized version with the virtual paging
disk. When the operating system issues a write to this disk, the monitor
notices that it has already paged out the data, so it simply updates an
internal data structure to make the sectors of the virtual paging disk point
to the real sectors on Cellular Disco’s paging disk. Any subsequent operat-
ing system read from the paging disk is satisfied by looking up the actual
sectors in the indirection table and reading them from Cellular Disco’s
paging disk.

We measured the impact of the paging optimization by running the
following microbenchmark, called stressMem. After allocating a very large
chunk of memory, stressMem writes a unique integer on each page; it then
loops through all the pages again, verifying that the value it reads is the
same as what it wrote out originally. StressMem ran for 258 seconds when
executing without the virtual paging disk optimization, but it took only 117
seconds with the optimization (a 55% improvement).

6. HARDWARE FAULT RECOVERY

Due to the tight coupling provided by shared-memory hardware, the effects
of any single hardware fault in a multiprocessor can very quickly ripple
through the entire system. Current commercial shared-memory multipro-
cessors are thus extremely likely to crash after the occurrence of any
hardware fault. To resume operation on the remaining good resources after
a fault, these machines require a hardware reset and a reboot of the
operating system.

As shown in Teodosiu et al. [1997], it is possible to design multiproces-
sors that limit the impact of most faults to a small portion of the machine,
called a hardware fault containment unit. Cellular Disco requires that the
underlying hardware be able to recover itself with such a recovery mecha-
nism. After detecting a hardware fault, the fault recovery support described
in Teodosiu et al. [1997] diagnoses the system to determine which resources
are still operational and reconfigures the machine in order to allow the
resumption of normal operation on the remaining good resources. An
important step in the reconfiguration process is to determine which cache
lines have been lost as a result of the failure. Following a failure, cache

Fig. 7. Redundant paging.

252 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

lines can be either coherent (lines that were not affected by the fault) or
incoherent (lines that have been lost because of the fault). Since the
shared-memory system is unable to supply valid data for incoherent cache
lines, any cache miss to these lines must be terminated by raising an
exception.

After completing hardware recovery, the hardware informs Cellular
Disco that recovery has taken place by posting an interrupt on all the good
nodes. This interrupt will cause Cellular Disco to execute its own recovery
sequence to determine the set of still-functioning cells and to decide which
virtual machines can continue execution after the fault. This recovery
process is similar to that done in Hive [Chapin et al. 1995], but our design
is much simpler for two reasons: we did not have to deal with operating
system data structures, and we can use shared-memory operations because
cells can trust each other. Our simpler design results in a much faster
recovery time.

In the first step of the Cellular Disco recovery sequence, all cells agree on
a liveset (set of still-functioning nodes) that forms the basis of all subse-
quent recovery actions. While each cell can independently obtain the
current liveset by reading hardware registers [Teodosiu et al. 1997], the
possibility of multiple hardware recovery rounds resulting from back-to-
back hardware faults requires the use of a standard n-round agreement
protocol [Lynch 1996] to guarantee that all cells operate on a common
liveset.

The agreed-upon liveset information is used in the second recovery step
to “unwedge” the communication system, which needs to be functional for
subsequent recovery actions. In this step, any pending RPCs or messages to
failed cells are aborted; subsequent attempts to communicate with a failed
cell will immediately return an error.

The final recovery step determines which virtual machines had essential
dependencies on the failed cells and terminates those virtual machines.
Memory dependencies are determined by scanning all machine memory
pages and checking for incoherent cache lines; the hardware provides a
mechanism to perform this check. Using the memmap data structure, bad
machine memory pages are translated back to the physical memory pages
that map to them, and then to the virtual machines owning those physical
pages. A tunable recovery policy parameter determines whether a virtual
machine that uses a bad memory page will be immediately terminated or
will be allowed to continue running until it tries to access an incoherent
cache line. I/O device dependencies are treated similarly to memory depen-
dencies.

The experimental setup used throughout the rest of this paper could not
be used for testing the Cellular Disco fault recovery support, since the
necessary hardware fault containment support required by Cellular Disco
is not implemented in the Origin 2000 multiprocessor, and since in the
piggybacking solution of Section 3.1 the host operating system represents a
single point of failure. Fortunately, Cellular Disco was originally designed
to run on the FLASH multiprocessor [Kuskin et al. 1994], for which the

Cellular Disco • 253

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

hardware fault containment support described in Teodosiu et al. [1997] was
designed. When running on FLASH, Cellular Disco can fully exploit the
machine’s hardware fault containment capabilities. The main difference
between FLASH and the Origin 2000 is the use in FLASH of a programma-
ble node controller called MAGIC. Most of the hardware fault containment
support in FLASH is implemented using MAGIC firmware.

We tested the hardware fault recovery support in Cellular Disco by using
a simulation setup that allowed us to perform a large number of fault
injection experiments. We did not use the FLASH hardware because the
current FLASH prototype only has four nodes and because injecting multi-
ple controlled faults is extremely difficult and time consuming on real
hardware. The SimOS [Rosenblum et al. 1997] and FlashLite [Kuskin et al.
1994] simulators provide enough detail to accurately observe the behavior
of the hardware fault containment support and of the system software after
injecting any of a number of common hardware faults into the simulated
FLASH system.

Figure 8 shows the setup used in our fault injection experiments. We
simulated an 8-node FLASH system running Cellular Disco. The size of the
Cellular Disco cells was chosen to be one node, the same as that of the
FLASH hardware fault containment units. We ran 8 virtual machines, each
with essential dependencies on two different cells. Each virtual machine
executed a parallel compile of a subset of the GnuChess source files.

On the configuration shown in Figure 8 we performed the fault injection
experiments described in Table III. After injecting a hardware fault, we
allowed the FLASH hardware recovery and the Cellular Disco recovery to
execute, and ran the surviving virtual machines until their workloads
completed. We then checked the results of the workloads by comparing the
checksums of the generated object files with the ones obtained from a
reference run. An experiment was deemed successful if exactly one Cellular
Disco cell and the two virtual machines with dependencies on that cell were
lost after the fault, and if the surviving six virtual machines produced the
correct results. Table III shows that the Cellular Disco hardware fault

Fig. 8. Setup for fault injection experiments.

254 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

recovery support was 100% effective in 1000 experiments that covered
router, interconnect link, node, and MAGIC firmware failures.

In order to evaluate the performance impact of a fault on the surviving
virtual machines, we measured the recovery times in a number of addi-
tional experiments. Figure 9 shows how the recovery time varies with the
number of nodes in the system and the amount of memory per node. The
figure shows that the total recovery time is small (less than half a second)
for all tested hardware configurations. While the recovery time only shows
a modest increase with the number of nodes in the system, there is a steep
increase with the amount of memory per node. For large memory configu-
rations, most of the time is spent in two places. First, to determine the
status of cache lines after a failure, the hardware fault containment
support must scan all node coherence directories. Second, Cellular Disco
uses MAGIC firmware support to determine which machine memory pages
contain inaccessible or incoherent cache lines. Both of these operations
involve expensive directory-scanning operations that are implemented us-
ing MAGIC firmware. The cost of these operations could be substantially
reduced in a machine with a hardwired node controller.

7. COMPARISON TO OTHER APPROACHES

In the previous sections we have shown that Cellular Disco combines the
features of both hardware partitioning and traditional shared-memory
multiprocessors. In this section we compare the performance of our system
against both hardware partitioning and traditional operating-system-cen-
tric approaches. The hardware-partitioning approach divides a large-scale
machine into a set of small-scale machines, and a separate operating
system is booted on each one, similar to a cluster of small machines with a
fast interconnect. This approach is also similar to Cellular Disco without
intercell resource sharing. In fact, because IRIX 6.2 does not run on the
SGI Origin, we evaluated the performance of this approach using Cellular
Disco without intercell sharing. We used IRIX 6.4 as the representative of
operating-system-centric approaches.

Small applications that fit inside a single hardware partition run equally
well on all three systems, except for the small virtualization overheads of
Cellular Disco. Large resource-intensive applications that do not fit inside
a single partition, however, can experience significant slowdown when
running on a partitioned system due to the lack of resource sharing. In this

Table III. Results of Fault Injection Experiments

Simulated Hardware Fault Number of Experiments Success Rate

Node power supply failure 250 100%
Router power supply failure 250 100%
Link cable or connector failure 250 100%
MAGIC firmware failure 250 100%

Cellular Disco • 255

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

section we evaluate all three systems using such a resource-intensive
workload to demonstrate the need for resource sharing.

For our comparison, we use a workload consisting of a mix of applications
that resembles the way large-scale machines are used in practice: we
combine an 8-process Database workload with a 16-process Raytrace run.
By dividing the 32-processor Origin system into 4 cells (each with 8
processors), we obtain a configuration in which there is neither enough
memory in any single cell to satisfy Database, nor enough CPUs in any cell
to satisfy Raytrace. Because the hardware-partitioning approach cannot
automatically balance the load, we explicitly placed the two applications on
different partitions. In all three cases, we started both applications at the
same time, and measured the time it took them to finish, along with the
overall CPU utilization. Table IV summarizes the results of our experimen-
tal comparison. As expected, the performance of our virtual clusters solu-
tion is very close to that of the operating-system-centric approach, as both
applications are able to access as many resources as they need. Also, as
expected, the hardware-partitioning approach suffers serious performance
degradation due to the lack of resource sharing.

The hardware partitioning and cluster approaches typically avoid such
serious problems by allocating enough resources in each partition to meet
the expected peak demand; for example, the database partition would have
been allocated with more memory and the raytrace partition with more
processors. However, during normal operation this configuration wastes
resources, and prevents efficient resource utilization because a raytrace
workload will not perform well on the partition configured for databases,
and similarly, a database workload will not perform well on the partition
configured for raytrace.

8. RELATED WORK

In this section we compare Cellular Disco to other projects that have some
similarities to our work: virtual machines, hardware partitioning, operat-
ing-system-based approaches, fault containment, and resource load balanc-
ing.

Fig. 9. Fault recovery times.

256 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

8.1 Virtual Machines

Virtual machines are not a new idea: numerous research projects in the
1970’s [Goldberg 1974], as well as commercial product offerings [Creasy
1981; Seawright and MacKinnon 1979] attest to the popularity of this
concept in its heyday. The VAX VMM Security Kernel [Karger et al. 1991]
used virtual machines to build a compatible secure system at a low
development cost. While Cellular Disco shares some of the fundamental
framework and techniques of these virtual machine monitors, it is quite
different in that it adapts the virtual machine concept to address new
challenges posed by modern scalable shared-memory servers.

Disco [Bugnion et al. 1997] first proposed using virtual machines to
provide scalability and to hide some of the characteristics of the underlying
hardware from NUMA-unaware operating systems. Compared to Disco,
Cellular Disco provides a complete solution for large-scale machines by
extending the Disco approach with the following novel aspects: the use of a
virtual machine monitor for supporting hardware fault containment; the
development of both NUMA- and fault-containment-aware scalable re-
source balancing and overcommitment policies; and the development of
mechanisms to support those policies. We have also evaluated our approach
on real hardware using long-running realistic workloads that more closely
resemble the way large machines are currently used.

8.2 Hardware-Centric Approaches

Hardware partitioning has been proposed as a way to solve the system
software issues for large-scale shared-memory machines. Some of the
systems that support partitioning are Sequent’s Application Region Man-
ager [Sequent Computer Systems 2000], Sun Microsystems’ Dynamic Sys-
tem Domains [Sun Microsystems 2000], and Unisys’ Cellular MultiProcess-
ing (CMP) architecture [Unisys 2000]. The benefits of this approach are
that it only requires very small operating system changes, and that it
provides limited fault isolation between partitions [Sun Microsystems
2000; Unisys 2000]. The major drawback of partitioning is that it lacks
resource sharing, effectively turning a large and expensive machine into a
cluster of smaller systems that happen to share a fast network. As shown
in Section 7, the lack of resource sharing can lead to serious performance
degradation.

To alleviate the resource-sharing problems of static partitioning, dy-
namic partitioning schemes have been proposed that allow a limited
redistribution of resources (CPUs and memory) across partitions. Unfortu-

Table IV. Performance Comparison to Other Approaches

Approach Raytrace Database CPU Utilization

Operating system 216 s 231 s 55%
Virtual cluster 221 s 229 s 58%
Hardware partitioning 434 s 325 s 31%

Cellular Disco • 257

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

nately, repartitioning is usually a very heavyweight operation requiring
extensive hardware and operating system support. An additional drawback
is that even though whole nodes can be dynamically reassigned to a
different partition, the resources within a node cannot be multiplexed at a
fine granularity between two partitions.

8.3 Software-Centric Approaches

Attempts to provide the support for large-scale multiprocessors in the
operating system can be divided into two strategies: tuning an existing
SMP operating system to make it scale to tens or hundreds of processors,
and developing new operating systems with better scalability characteris-
tics.

The advantages of adapting an existing operating system are backward
compatibility and the benefit of an existing sizable code base, as illustrated
by SGI’s IRIX 6.4 and IRIX 6.5 operating systems. Unfortunately, such an
overhaul usually requires a significant software development effort. Fur-
thermore, adding support for fault containment is a daunting task in
practice, since the base operating system is inherently vulnerable to faults.

Compaq’s Open VMS Galaxy [Compaq 2000] reduces some of this devel-
opment cost by partitioning the resources in software and running multiple
instances of the kernel. The various instances cooperatively share and
manage resources. Although this approach does not require that the
operating system scale to a large number of resources, it does require that
the operating system be able to handle dynamically varying number of
resources. Furthermore, the Galaxy architecture does not provide fault
containment.

New operating systems have been proposed to address scalability re-
quirements (Tornado [Gamsa et al. 1999] and K42 [IBM 2000]) and fault
containment (Hive [Chapin et al. 1995]). While these approaches tackle the
problem at the basic level, they require a very significant development time
and cost before reaching commercial maturity. Compared to these ap-
proaches, Cellular Disco is about two orders of magnitude simpler, while
providing almost the same performance.

8.4 Fault Containment

While a considerable amount of work has been done on fault tolerance, this
technique does not seem to be very attractive for large-scale shared-
memory machines, due to the increase in cost and to the fact that it does
not defend well against operating system failures. An alternative approach
that has been proposed is fault containment, a design technique that can
limit the impact of a fault to a small fraction of the system. Fault
containment support in the operating system has been explored in the Hive
project [Chapin et al. 1995], while the necessary hardware and firmware
support has been implemented in the FLASH multiprocessor [Kuskin et al.
1994]. Cellular Disco requires the presence of hardware fault containment
support such as that described in Teodosiu et al. [1997], and is thus

258 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

complementary. Hive and Cellular Disco are two attempts to provide fault
containment support in the system software; the main advantage of Cellu-
lar Disco is its extreme simplicity when compared to Hive. Our approach is
the first practical demonstration that end-to-end hardware fault contain-
ment can be provided at a realistic cost in terms of implementation effort.
Cellular Disco also shows that if the basic system software layer can be
trusted, fault containment does not add any performance overhead.

A production version of Cellular Disco would have to include many device
drivers, which may contain some bugs, as they cannot be expected to be as
thoroughly tested as the core virtual machine monitor. This concern could
be addressed by executing the device drivers in a less privileged level to
ensure they cannot harm the rest of the system; a similar approach is used
by microkernels such as Mach [Rashid et al. 1988].

8.5 Load Balancing

CPU and memory load balancing have been studied extensively in the
context of networks of workstations, but not on single shared-memory
systems. Traditional approaches to process migration [Milojicic et al. 1996]
that require support in the operating system are too complex and fragile,
and very few have made it into the commercial world so far. Cellular Disco
provides a much simpler approach to migration that does not require any
support in the operating system, while offering the flexibility of migrating
at the granularity of individual CPUs or memory pages.

Research projects such as GMS [Feeley et al. 1995] have investigated
using remote memory in the context of clusters of machines, where remote
memory is used as a fast cache for VM pages and file system buffers.
Cellular Disco can directly use the hardware support for shared memory,
thus allowing substantially more flexibility.

9. CONCLUSION

With a size often exceeding a few million lines of code, current commercial
operating systems have grown too large to adapt quickly to the new
features that have been introduced in hardware. Off-the-shelf operating
systems currently suffer from poor scalability, lack of fault containment,
and poor resource management for large systems. This lack of good support
for large-scale shared-memory multiprocessors stems from the tremendous
difficulty of adapting the system software to the new hardware require-
ments.

Instead of modifying the operating system, our approach inserts a
software layer between the hardware and the operating system. By apply-
ing an old idea in a new context, we show that our virtual machine monitor
(called Cellular Disco) is able to supplement the functionality provided by
the operating system and to provide new features. In this paper, we argue
that Cellular Disco is a viable approach for providing scalability, scalable
resource management, and fault containment for large-scale shared-mem-
ory systems at only a small fraction of the development cost required for

Cellular Disco • 259

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

changing the operating system. Cellular Disco effectively turns those large
machines into “virtual clusters” by combining the benefits of clusters and
those of shared-memory systems.

Our prototype implementation of Cellular Disco on a 32-processor SGI
Origin 2000 system shows that the virtualization overhead can be kept
below 10% for many practical workloads, while providing effective resource
management and fault containment. Cellular Disco is the first demonstra-
tion that end-to-end fault containment can be achieved in practice with a
reasonable implementation effort. Although the results presented in this
paper are based on virtualizing the MIPS processor architecture and on
running the IRIX operating system, our approach can be extended to other
processor architectures and operating systems. A straightforward exten-
sion of Cellular Disco could support the simultaneous execution on a
scalable machine of several operating systems, such as a combination of
Windows NT, Linux, and UNIX.

Some of the remaining problems that have been left open by our work so
far include efficient virtualization of low-latency I/O devices (such as fast
network interfaces), system management issues, and checkpointing and
cloning of whole virtual machines.

ACKNOWLEDGMENTS

We would like to thank SGI for kindly providing us access to a 32-processor
Origin 2000 machine for our experiments, and to the IRIX 5.3, IRIX 6.2 and
IRIX 6.4 source code. The experiments in this paper would not have been
possible without the invaluable help we received from John Keen, Casey
Leedom, and Simon Patience.

The FLASH and Hive teams built most of the infrastructure needed for
this paper, and provided an incredibly stimulating environment for this
work. Our special thanks go to the Disco, SimOS, and FlashLite developers
whose work has enabled the development of Cellular Disco and the fault
injection experiments presented in the paper.

REFERENCES

BARTON, J. M. AND BITAR, N. 1995. A scalable multi-discipline, multiple-processor schedul-
ing framework for IRIX. Lecture Notes in Computer Science 949, 45–69.

BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM, M. 1997. Disco: Running commodity
operating systems on scalable multiprocessors. ACM Transactions on Computer Systems 15,
4 (November), 412–447.

CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEODOSIU, D., AND GUPTA, A. 1995. Hive:
Fault containment for shared-memory multiprocessors. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP) (December 1995), pp. 12–25.

COMPAQ. 2000. OpenVMS Galaxy. Available: http://www.openvms.compaq.com/availability/
galaxy.html.

CREASY, R. 1981. The origin of the VM/370 time-sharing system. IBM J. Res. Develop 25, 5,
483–490.

FEELEY, M. J., MORGAN, W. E., PIGHIN, F. H., KARLIN, A. R., LEVY, H. M., AND THEKKATH, C.
1995. Implementing global memory management in a workstation cluster. In Proceedings

260 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

of the 15th ACM Symposium on Operating Systems Principles (SOSP) (December 1995), pp.
201–212.

GALLES, M. AND WILLIAMS, E. 1994. Performance optimizations, implementation, and verifi-
cation of the SGI Challenge multiprocessor. In T. N. Mudge and B. D. Shriver Eds.,
Proceedings of the 27th Hawaii International Conference on System Sciences. Volume 1:
Architecture (Los Alamitos, CA, USA, January 1994), pp. 134–143. IEEE Computer Society
Press.

GAMSA, B., KRIEGER, O., APPAVOO, J., AND STUMM, M. 1999. Tornado: Maximizing locality
and concurrency in a shared memory multiprocessor operating system. In Proceedings of the
3rd Symposium on Operating Systems Design and Implementation (OSDI) (February 1999),
pp. 87–100.

GOLDBERG, R. P. 1974. Survey of virtual machine research. IEEE Computer Magazine 7, 4
(June), 34–45.

IBM. 2000. The K42 Project. Available: http://www.research.ibm.com/K42/index.html.
KANE, G. AND HEINRICH, J. 1992. MIPS RISC Architecture. Prentice Hall.
KARGER, P. A., ZURKO, M. E., BONIN, D. W., MASON, A. H., AND KAHN, C. E. 1991. A

retrospective on the VAX VMM security kernel. IEEE Transactions on Software Engineering
17, 11 (November), 1147–1165. Special Section on Security and Privacy.

KUSKIN, J., OFELT, D., HEINRICH, M., HEINLEIN, J., SIMONI, R., GHARACHORLOO, K., CHAPIN, J.,
NAKAHIRA, D., BAXTER, J., HOROWITZ, M., GUPTA, A., ROSENBLUM, M., AND HENNESSY, J.
1994. The Stanford FLASH Multiprocessor. In Proceedings of the 21st International
Symposium on Computer Architecture (ISCA) (April 1994), pp. 302–313.

LAUDON, J. AND LENOSKI, D. 1997. The SGI Origin: A ccNUMA highly scalable server. In
Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA)
(June 1997), pp. 241–251.

LEVY, H. M. AND LIPMAN, P. H. 1982. Virtual memory management in the VAX/VMS
operating system. Computer 15, 3 (March), 35–41.

LYNCH, N. A. 1996. Distributed Algorithms. Morgan Kaufmann series in data management
systems. Morgan Kaufmann Publishers, Los Altos, CA.

MILOJICIC, D. S., DOUGLIS, F., PAINDAVEINE, Y., WHEELER, R., AND ZHOU, S. 1996. Process
migration. Technical report (December), TOG Research Institute.

RASHID, R., TEVANIAN, A., YOUNG, M., GOLUB, D., BARON, R., BALCK, D., BOLOSKY, W. J., AND

CHEW, J. 1988. Machine-independent virtual memory management for paged uniproces-
sor and multiprocessor architectures. IEEE Transactions on Computer 37, 8 (August),
896–908.

ROSENBLUM, M., BUGNION, E., HERROD, S. A., AND DEVINE, S. 1997. Using the SimOS
machine simulator to study complex computer systems. ACM Transactions on Modeling and
Computer Simulation 7, 1 (January), 78–103.

SEAWRIGHT, L. H. AND MACKINNON, R. A. 1979. VM/370: a study of multiplicity and useful-
ness. IBM Systems Journal 18, 1, 4–17.

SEQUENT COMPUTER SYSTEMS. 2000. Application Region Manager. Available: http://www.
sequent.com/dcsolutions/agile_wp1.html.

SGI. 2000. IRIX6.5. Available: http://www.sgi.com/software/irix6.5.
SPEC. 2000. SPECweb96 Benchmark. Available: http://www.spec.org/osg/web96.
SUN MICROSYSTEMS. 2000. Sun Enterprise 10000: Dynamic System Domains. Available:

http://www.sun.com/servers/highend/10000/Tour/domains.html.
TEODOSIU, D., BAXTER, J., GOVIL, K., CHAPIN, J., ROSENBLUM, M., AND HOROWITZ, M. 1997.

Hardware fault containment in scalable shared-memory multiprocessors. In Proceedings of
the 24th Annual International Symposium on Computer Architecture (ISCA), Volume 25, 2 of
Computer Architecture News (New York, June 1997), pp. 73–84. ACM Press.

TRANSACTION PROCESSING PERFORMANCE COUNCIL. 1997. TPC Benchmark D (Decision Sup-
port) Standard Specification. TPC, San Jose, CA.

UNISYS. 2000. Cellular MultiProcessing Architecture. Available: http://www.unisys.com/
marketplace/ent/cmp.html.

VERGHESE, B., DEVINE, S., GUPTA, A., AND ROSENBLUM, M. 1996. Operating system support
for improving data locality on CC-NUMA computer servers. In Proceedings of the Seventh

Cellular Disco • 261

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (October 1996), pp. 279–289.

VMWARE. 2000. VMware Virtual Platform. Available: http://www.vmware.com/products/
virtualplatform.html.

WOO, S. C., OHARA, M., TORRIE, E., SHINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2
programs: Characterization and methodological considerations. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture (Santa Margherita Ligure,
Italy, June 1995), pp. 24–36. ACM SIGARCH and IEEE Computer Society TCCA.

Received January 2000; accepted May 2000

262 • Kinshuk Govil et al.

ACM Transactions on Computer Systems, Vol. 18, No. 3, August 2000.

