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A b s t r a c t  

This paper describes the Denali isolation kernel, an 
operating system architecture that safely multiplexes a 
large number of untrusted Interact services on shared 
hardware. Denali's goal is to allow new Internet services 
to be "pushed" into third party infrastructure, relieving 
[nternet service authors from the burden of acquiring and 
maintaining physical infrastructure. Our isolation kernel 
exposes a virtual machine abstraction, but unlike conven- 
tional virtual machine monitors, Denali does not attempt 
to emulate the underlying physical architecture precisely, 
and instead modifies the virtual architecture to gain scale, 
performance, and simplicity of  implementation, b~ this 
paper, we first discuss design principles of isolation ker- 
nels, and then we describe the design and implementation 
of Denali. Following this, we present a detailed evalua- 
tion of Denali, demonstrating that the overhead of virtu- 
alization is small, that our architectural choices are war- 
ranted, and that we can successfully scale to more than 
10,000 virtual machines on commodity hardware. 

1 I n t r o d u c t i o n  

Advances in networking and computing technol- 
ogy have accelerated the proliferation of Internet ser- 
vices, an application model in which service code ex- 
ecutes in the Internet infrastructure rather than on 
client PCs. Many applications fit this model, includ- 
ing web sites, search engines, and wide area plat- 
forms such as content distribution networks, caching 
systems, and network experimentation testbeds [25]. 
The Denali project seeks to encourage and enhance 
the Internet service model by making it possible for 
untrusted software services to be "pushed" safely into 
third party hosting infrastructure, thereby separat- 
ing the deployment of services from the management 
of the physical infrastructure on which they run. 

While this has clear benefits, it also faces difficult 
technical challenges. One challenge is scale: for cost- 
efficiency and convenience, infrastructure providers 
will need to multiplex many services on each server 
machine, as it would be prohibitively expensive to 
dedicate a separate machine to each service. A sec- 
ond challenge is security: infrastructure providers 
cannot trust hosted services, and services will not 
trust  each other. There must be strong isolation be- 

tween services, both for security and to enforce fair 
resource provisioning. 

In this paper, we present the design, implemen- 
tation, and evaluation of the Denali isolation ker- 
nel, an x86-based operating system that isolates un- 
trusted software services in separate protection do- 
mains. The architecture of Denali is similar to 
that  of virtual machine monitors such as Disco [6], 
VMWare [31], and VM/370 [9]. A virtual machine 
monitor carves a physical machine into multiple vir- 
tual machines; by virtualizing all hardware resources, 
a VMM can prevent one VM from even naming the 
resources of another VM, let alone modifying them. 

To support  unmodified legacy "guest" OSs and 
applications, conventional VMMs have the burden 
of faithfully emulating the complete architecture of 
the physical machine. However, modern physical 
architectures were not designed with virtualization 
or scale in mind. In Denali, we have reconsidered 
the exposed virtual architecture, making substantial 
changes to the underlying physical architecture to en- 
hance scalability, performance, and simplicity, while 
retaining the strong isolation properties of VMMs. 

For example, although Denali exposes virtual 
disks and NICs, their interfaces have been redesigned 
for simplicity and performance. Similarly, Denali ex- 
poses an instruction set architecture which is similar 
to x86 (to gain the performance benefits of directly 
executing instructions on the host processor), but in 
which non-virtualizable aspects have been hidden for 
simplicity, and in which the interrupt model has been 
changed for scalability. 

The cost of Denali's virtual architecture modi- 
fications is backwards compatibility: Denali is not 
able to run unmodified legacy guest operating sys- 
tems. However, the Denali virtual architecture is 
complete, in the sense that  a legacy operating sys- 
tem could be ported to Denali (although this is still 
work in progress). To evaluate Denali in the ab- 
sence of a ported legacy OS, we implemented our own 
lightweight guest OS, called Ilwaco, which contains 
a port of the BSD T C P / I P  networking stack, thread 
support, and support for a subset of the POSIX API. 
We have ported several applications to Ilwaco, in- 
cluding a web server, the Quake II game server, tel- 
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net, and various utilities. 

1.1 Contributions 

The contributions of this paper are: 

1. A case for isolation kernels, an OS structure 
for isolating untrusted software services; 

2. A set of design principles for isolation kernels, 
arguing for a VMM-like structure, but with strategic 
modifications to the virtual architecture for scalabil- 
ity, performance, and simplicity; 

3. The design, implementation, and evaluation 
of the Denali isolation kernel, focusing on the chal- 
lenges of scale, and demonstrating that Denali can 
scale to over 10,000 VMs on commodity hardware. 

The rest of this paper is organized as follows. In 
Section 2, we describe the various classes of applica- 
tions we hope to enable, and derive design principles 
of isolation kernels. Section 3 discusses the design 
and implementation of the Denali isolation kernel. 
In Section 4, we evaluate our implementation, focus- 
ing on issues of scale. We compare Denali to related 
work in Section 5, and we conclude in Section 6. 

2 T h e  C a s e  fo r  I s o l a t i o n  K e r n e l s  

Many applications and services would benefit 
from the ability to push untrusted code into the Inter- 
net infrastructure. We outline some of these below, 
and use them to motivate the properties required by 
an isolation kernel. 

Supporting dynamic content in content delivery 
systems: a progression of content delivery systems 
has been introduced in recent years, including CDNs, 
proxy caches [34], and peer-to-peer networks [30]. All 
suffer from the limitation that only static content is 
supported, whereas a large and increasing fraction 
of content is dynamically generated [34]. Dynamic 
content distribution requires the ability to execute 
and isolate untrusted content generation code. 

Pushing Internet services into virtual hosting in- 
frastructure: a "virtual" hosting center would allow 
new Internet services to be uploaded into managed 
data centers. In addition to supporting commercial 
services, we believe virtual hosting centers would en- 
courage the emergence of a grassroots development 
community for Internet services, similar to the share- 
ware community that exists for desktop applications. 

lnternet measurement and experimentation in- 
frastructure: NIMI [25] and CAIRN [2] have sought 
to deploy wide-area testbeds to support network 
measurement research. Recent projects such as 
Chord [30] would benefit from the ability to de- 
ploy research prototypes at scale across the Inter- 
net. Whether for measurement or prototyping, the 

infrastructure must be able to multiplex and isolate 
mutually distrusting experiments. 

Mobile code: deploying mobile code in reuters 
and servers has been proposed by both active net- 
works and mobile agent systems [19]. 

All of these services and applications share sev- 
eral properties. For the sake of cost-efficiency, mul- 
tiple services will need to be multiplexed on shared 
infrastructure. As a result, software infrastructure 
must exist to isolate multiplexed services from each 
other: a service must not be able to corrupt another 
service or the underlying protection system. Addi- 
tionally, performance isolation is required to bound 
each service's resource consumption. Finally, the 
degree of information sharing between these multi- 
plexed services will be small, or entirely non-existent. 
Because of this, it is reasonable to strengthen isola- 
tion at the cost of high sharing overhead. 

As we will argue in detail, no existing software 
system has the correct set of properties to support 
this emerging class of Internet services. Existing 
software protection systems (including operating sys- 
tems, language-based protection techniques, and vir- 
tual machine monitors) suffer from some combina- 
tion of security vulnerabilities, complexity, insuffi- 
cient scalability, poor performance, or resource man- 
agement difficulties. We believe that a new software 
architecture called an isolation kernel is required to 
address the challenges of hosting untrusted services. 

2.1 I so la t ion  K e r n e l  D e s i g n  P r i n c i p l e s  

An isolation kernel is a small-kernel operating 
system architecture targeted at hosting multiple un- 
trusted application s that require little data sharing. 
We have formulated four principles that govern the 
design of isolation kernels. 

1. Expose  low-level resources rather than  
high-level abs t rac t ions .  In theory, one might hope 
to achieve isolation on a conventional OS by con- 
fining each untrusted service to its own process (or 
process group). However, OSs have proven ineffec- 
tive at containing insecure code, let alone untrusted 
or malicious services. An OS exposes high-level ab- 
stractions, such as files and sockets, as opposed to 
low-level resources such as disk blocks and network 
packets. High-level abstractions entail significant 
complexity and typically have a wide API, violating 
the security principle of economy of mechanism [29]. 
They also invite "layer below" attacks, in which an 
attacker gains unauthorized access to a resource by 
requesting it below the layer of enforcement [18]. 

An isolation kernel exposes hardware-level re- 
sources, displacing the burden of implementing oper- 
ating systems abstractions to user-level code. In this 
respect, an isolation kernel resembles other "small 
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kernel" architectures such as microkernels [1], vir- 
tual machine monitors [6], and Exokernels [20]. Al- 
though small kernel architectures were once viewed 
as prohibitively inefficient, modern hardware im- 
provements have made performance less of a concern. 

2. P r e v e n t  d i r e c t  s h a r i n g  by  e x p o s i n g  o n l y  
p r i v a t e ,  v i r t u a l i z e d  n a m e s p a c e s .  Conventional 
OSs facilitate protected data  sharing between users 
and applications by exposing global namespaces, 
such as file systems and shared memory regions. The 
presence of these sharing mechanisms introduces the 
problem of specifying a complex access control policy 
to protect these globally exposed resources. 

Little direct sharing is needed across Internet ser- 
vices, and therefore an isolation kernel should pre- 
vent direct sharing by confining each application to a 
private namespace. Memory pages, disk blocks, and 
all other resources should be virtualized, eliminating 
the need for a complex access control policy: the only 
sharing allowed is through the virtual network. 

Both principles 1 and 2 are required to achieve 
strong isolation. For example, the UNIX ch roo t  
command discourages direct sharing by confining ap- 
plications to a private file system name space. How- 
ever, because ch roo t  is built on top of the file sys- 
tem abstraction, it has been compromised by a layer- 
below attack in which the attacker uses a cached file 
descriptor to subvert file system access control. 

Although our discussion has focused on secu- 
rity isolation, high-level abstractions and direct shar- 
ing also reduce performance isolation. High-level 
abstractions create contention points where appli- 
cations compete for resources and synchronization 
primitives. This leads to the effect of "cross- 
talk" [23], where application resource management 
decisions interfere with each other. The presence of 
data  sharing leads to hidden shared resources like the 
file system buffer cache, which complicate precise re- 
source accounting. 

3. Z ip f ' s  Law implies the need for scale. An 
isolation kernel must be designed to scale up to a 
large number of services. For example, to support dy- 
namic content in web caches and CDNs, each cache 
or CDN node will need to store content from hun- 
dreds (if not thousands) of dynamic web sites. Sim- 
ilarly, a wide-area research testbed to simulate sys- 
tems such as peer-to-peer content sharing applica- 
tions must scale to millions of simulated nodes. A 
testbed with thousands of contributing sites would 
need to support thousands of virtual nodes per site. 

Studies of web documents, DNS names, and 
other network services show that  popularity tends 
to be driven by Zipf distributions [5]. Accordingly, 
we anticipate that isolation kernels must be able to 
handle Zipf workloads. Zipf distributions have two 

defining traits: most requests go to a small set of pop- 
ular services, but a significant fraction of requests go 
to a large set of unpopular services. Unpopular ser- 
vices are accessed infrequently, reinforcing the need 
to multiplex rnany services on a single machine. 

To scale, an isolation kernel must employ tech- 
niques to minimize the memory footprint of each ser- 
vice, including metadata  maintained by the kernel. 
Since the set of all unpopular services won't fit in 
memory, the kernel must treat  memory as a cache of 
popular services, swapping inactive services to disk. 
Zipf distributions have a poor cache hit rate [5], im- 
plying that  we need rapid swapping to reduce the 
cache miss penalty of touching disk. 

4. M o d i f y  t h e  v i r t u a l i z e d  a r c h i t e c t u r e  for  s im- 
pl ici ty,  scale,  a n d  p e r f o r m a n c e .  Virtual machine 
monitors (VMMs), such as Disco [6] and VM/370 [9], 
adhere to our first two principles. These systems also 
strive to support legacy OSs by precisely emulating 
the underlying hardware architecture. In our view, 
the two goals of isolation and hardware emulation are 
orthogonal. Isolation kernels decouple these goals by 
allowing the virtual architecture to deviate from the 
underlying physical architecture. By so doing, we can 
enhance properties such as performance, simplicity, 
and scalability, while achieving the strong isolation 
that  VMMs provide. 

The drawback of this approach is tha t  it gives 
up support  for unmodified legacy operating systems. 
We have chosen to focus on the systems issues of 
scalability and performance rather than backwards 
compatibility for legacy OSs. However, we are cur- 
rently implementing a port  of the Linux operating 
system to the Denali virtual architecture; this port 
is still work in progress. 

3 T h e  D e n a l i  I s o l a t i o n  K e r n e l  

The Denali isolation kernel embodies all of the 
principles described in the previous section of this pa- 
per. Architecturally, Denali is a thin software layer 
that  runs directly on x86 hardware. Denali exposes 
a virtual machine (VM) architecture that is based on 
the x86 hardware, and supports the secure multiplex- 
ing of many VMs on an underlying physical machine. 
Each VM can run its own "guest" operating system 
and applications (Figure 1). 

This section of the paper presents the design of 
the Denali virtual architecture, and the implemen- 
tat ion of an isolation kernel to support  it. We also 
describe the Ilwaco guest OS, which is tailored for 
building Internet services that  execute on the Denali 
virtual architecture. 
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Figure 1: The Denali architecture: the Denati isola- 
tion kernel is a thin software layer that exposes a virtual 
machine abstraction that is based on the underlying x86 
architecture. 

3.1 T h e  D e n a l i  V i r t u a l  A r c h i t e c t u r e  

The Denali virtual architecture consists of an in- 
struction set, a memory architecture, and an I /O ar- 
chitecture (including an interrupt model). We de- 
scribe each of these components in turn. 

3 .1 .1  I S A  

The Denali virtual instruction set was designed 
for both performance and simplicity. The ISA pri- 
marily consists of a subset of the x86 instruction set, 
so that most virtual instructions execute directly on 
the physical processor. The x86 ISA is not strictly 
virtualizable, as it contains instructions that behave 
differently in user mode and kernel mode [17, 27]; 
x86 virtual machine monitors must use a combination 
of complex binary rewriting and memory protection 
techniques to virtualize these instructions. Since De- 
nali is not designed to support legacy OSs, our virtual 
architecture simply defines these instructions to have 
ambiguous semantics. If a VM executes one of these 
instructions, at worst the VM could harm itself. In 
practice, they are rarely used; most deal with legacy 
architecture features like segmentation, and none are 
emitted by C compilers such as gcc (unless they ap- 
pear in inlined assembly fragments). 

Denali defines two purely virtual instructions. 
The first is an "idle-with-timeout" instruction that 
helps VMs avoid wasting their share of the physi- 
cal CPU by executing OS idle loops. The idle-with- 
timeout instruction lets a VM halt its virtual CPU 
for either a bounded amount of physical time, or until 
an interrupt arrives for the VM.1 The second purely 
virtual instruction simply allows a virtual machine to 
terminate its own execution. 

Denali adds several virtual registers to the x86 
register file, to expose system information such as 
CPU speed, the size of memory, and the current sys- 
tem time. Virtual registers also provide a lightweight 
communication mechanism between virtual machines 

t Denali 's idle instruct ion is similar to the x86 halt instruc- 
tion, which is executed to put  the sys tem into a low-power 
s ta te  during idle periods. Denali 's t imeout  feature allows for 
fine-grained CPU sharing. 

and the kernel. For example, we implemented De- 
nail's interrupt-enabled flag as a virtual register. 

a.1.2 M e m o r y  A r c h i t e c t u r e  

Each Denali VM is given its own (virtualized) 
physical 32-bit address space. A VM may only ac- 
cess a subset of this 32-bit address space, the size 
and range of which is chosen by the isolation ker- 
nel when the VM is instantiated. The kernel itself 
is mapped into a portion of the address space that 
the VM cannot access; because of this, we can avoid 
physical TLB flushes on VM/VMM crossings. 

By default, a VM cannot virtualize its own (vir- 
tualized) physical address space: in other words, by 
default, there is no virtual MMU. In this configura- 
tion, a VM's OS shares its address space with ap- 
plications, similar to a libOS in Exokernel [20]. Ex- 
posing a single address space to each VM improves 
performance, by avoiding TLB flushes during context 
switches between applications in the same VM [31]. 

We have recently added support for an op- 
tional, virtual MMU to Denali; this virtual MMU 
looks nothing like the underlying x86-based physical 
MMU, but instead is modeled after a simple software- 
loaded TLB, similar to those of modern RISC archi- 
tectures. A software-loaded TLB has the advantage 
that the VM itself gets to define its own page-table 
structure, and the software TLB interface between 
the VMM and the VM is substantially simpler than 
the more complex page table interface mandated by 
the x86 hardware-loaded TLB architecture. 

3.1.3 I/O Devices  and I n t e r r u p t  M o d e l  

Denali exposes several virtual I /O devices, in- 
eluding an Ethernet NIC, a disk, a keyboard, a con- 
sole, and a timer. Denali's virtual devices have sim- 
ilar functionality to their physical counterparts, but 
they expose a simpler interface. Physical devices of- 
ten have "chatty" interfaces, requiring many pro- 
grammed I /O instructions per operation. VMMs 
that emulate real hardware devices suffer high over- 
head, since each PIO must be emulated [31]. Another 
benefit of simplification is portability: our virtual 
device interfaces are independent of the underlying 
physical devices. 

Denali has chosen to omit many x86 architectural 
features. Virtual devices have been simplified to be- 
gin in a well-known, pre-initialized state when a VM 
boots. This simplifies both the Denali isolation ker- 
nel and guest OSs by eliminating the need to probe 
virtual devices on boot. Denali also does not expose 
the BIOS 2 or segmentation hardware, because these 
features are rarely used outside of system boot. 

2The BIOS is also involved in power management ;  Denali 
does not expose this to VMs. 
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Denali exposes virtual interrupts to VMs, much 
in the same way that  the physical x86 architecture 
exposes real interrupts to the host processor. Vir- 
tual interrupts are typically triggered by physical in- 
terrupts, such as when an Ethernet packet arrives 
that  is destined for a particular VM. However, not 
all physical interrupts cause virtual interrupts; for 
example, a packet may arrive that  is not destined 
for any of the running VMs, in which case the isola- 
tion kernel simply drops the packet without raising 
a virtual interrupt. 

Denali's interrupt dispatch model differs signif- 
icantly from the underlying x86 hardware to bet- 
ter support the multiplexing of many virtual ma- 
chines. As the number of simultaneously running 
VMs grows, it becomes increasingly unlikely that the 
VM which is the ultimate recipient of a physical in- 
terrupt  is executing when the interrupt is raised. In 
some cases, the target VM could even be swapped 
out to disk. Rather than preserving the immediate 
interrupt semantics of x86, Denali delays and batches 
interrupts destined for non-running VMs. A VM re- 
ceives pending interrupts once it begins its normal 
scheduler quantum, and if multiple interrupts are 
pending for a VM, all interrupts are delivered in a sin- 
gle VMM/VM crossing. This is similar to the Math 
3.0 user-level I /O interface [15]. 

Denali's asynchronous, batched interrupt model 
changes the semantics of timing-related interrupts. 
For example, a conventional timer interrupt implies 
that  a fixed-size time interval has just passed. In 
Denali, a virtual t imer interrupt implies that some 
amount  of physical time has passed, but the duration 
may depend on how many other VMs are contend- 
ing for the CPU. As a result, the interpretation of 
timer interrupts in the implementation of guest OS 
software timers must be altered. 

3.2 I so la t ion  Kerne l  I m p l e m e n t a t i o n  

The Denali isolation kernel runs directly on x86 
hardware. The core of the kernel, including multi- 
programming, paging, and virtual device emulation, 
was implemented from scratch; we used the Flux OS- 
Kit [14] for device drivers and other hardware sup- 
port  routines, and some support libraries such as libc. 

The isolation kernel serves two roles: it imple- 
ments the Denali virtual architecture, and it multi- 
plexes physical resources across competing VMs. We 
have maintained a strict separation between resource 
management policy and mechanism, so that  we could 
implement different policies without affecting other 
aspects of the isolation kernel. 

3.2.1 C P U  Virtualization 

Denali uses standard muttiprogramming tech- 
niques to multiplex the CPU across VMs. The iso- 
lation kernel maintains a per-VM thread structure, 
which contains a kernel stack, space for the register 
file, and the thread status. The policy for multiplex- 
ing the CPU is split into two components: a 9ate- 
keeper policy enforces admission control by choosing 
a subset of active machines to admit into the sys- 
tem; the rest are swapped to disk, as we will describe 
later. The scheduler policy controls context switch- 
ing among the set of admitted machines. 

The gatekeeper admits machines in FIFO order 
as long as there are a minimum number of phys- 
ical backing pages available. The scheduler uses 
round-robin scheduling among the set of admitted 
machines. These policies were chosen because they 
are simple and starvation-free. When a VM issues 
an idle-with-timeout instruction, it is removed from 
scheduler consideration until its timer fires, or a vir- 
tual interrupt arrives. As compensation for idling, 
a VM receives higher scheduler priority for its next 
quantum. 

Virtual registers are stored in a page at the be- 
ginning of a VM's (virtual) physical address space. 
This page is shared between the VM and the isola- 
tion kernel, avoiding the overhead of kernel traps for 
register modifications. In other respects, the virtual 
registers behave like normal memory (for example, 
they can be paged out to disk). 

Because Denali's ISA is based on x86, we can use 
existing x86 compilers and linkers when authoring 
OS or application code to run in a Denali VM. In 
particular, we have been primarily using the gcc C 
compiler and the ld  linker on Linux, although we 
did need to change the link map used by ld  to take 
Denali's memory architecture into account. 

3.2.2 Memory Management  

The (virtual) physical address space exposed to a 
VM has two components: a portion that is accessible 
to the VM, and a protected portion accessible only to 
the isolation kernel. Each VM also has a swap region 
allocated on behalf of it by the isolation kernel; this 
swap region is striped across local disks. The swap 
region is used by the isolation kernel to swap or page 
out portions of the VM's address space. Swap re- 
gions are statically allocated at VM creation time, 
and are large enough to hold the entire VM-visible 
address space. Static allocation drastically reduces 
the amount of bookkeeping metadata  in the isolation 
kernel: each swap region is completely described by 
20 bytes of kernel memory. Static allocation wastes 
disk capacity in return for performance and scalabil- 
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ity, but the decreasing cost of storage capacity makes 
this trade-off worthwhile. 

The isolation kernel is pinned in physical mem- 
ory, but VMs are paged in on demand. Upon taking 
a page fault, the kernel verifies that the faulting VM 
hasn't accessed an illegal virtual address, allocates 
necessary page tables, and initiates a read from the 
VM's swap region. 

The system periodically redistributes physical 
memory from inactive VMs to active VMs. We use 
the WSClock [7] page replacement algorithm, which 
attempts to maintain each VM's working set in mem- 
ory by maintaining a virtual time stamp along with a 
clock reference bit. This helps reduce thrashing, and 
is more fair to machines that experience heavy pag- 
ing (such as reactivated machines that are entirely 
swapped out). To encourage good disk locality, all 
memory buffers for a given VM are clustered together 
in the clock circular list. 

For the remainder of this paper, we configured 
the system to expose only 16MB of accessible (vir- 
tual) physical address space to each VM. This models 
the challenging scenario of having many small ser- 
vices multiplexed on the same hardware. Because 
virtual MMUs are such a recent addition and are still 
being performance optimized, we did not turn on vir- 
tual MMU support for the experiments presented in 
Section 4. Although we hope that enabling virtual 
MMU support will not affect our overall performance 
results, we have not yet demonstrated this. 

3.2.3 I / O  Devices and Interrupt Model  

Denali emulates a switched Ethernet LAN con- 
necting all VMs. Each VM is assigned a virtual Eth- 
ernet NIC; from the perspective of external physical 
hosts, it appears as though each VM has its own 
physical Ethernet card. VMs interact with the vir- 
tual NIC using standard programmed I/O instruc- 
tions, although the interface to the virtual NIC is 
drastically simpler than physical NICs, consisting 
only of a packet send and a packet receive opera- 
tion. On the reception path, the isolation kernel em- 
ulates an Ethernet switch by demultiplexing incom- 
ing packets into a receive queue for the destination 
virtual machine. VMs can only process packets dur- 
ing their scheduler quantum, effectively implement- 
ing a form of lazy-receiver processing [11]. On the 
transmit path, the kernel maintains a per-machine 
queue of outbound packets which a VM can fill dur- 
ing i ts  scheduler quantum. These transmit queues 
are drained according to a packet scheduler policy; 
Denali currently processes packets in round-robin or- 
der from the set of actively sending VMs. 

Denali provides virtual disk support to VMs. 
The isolation kernel contains a simple file system in 

which it manages persistent, fixed-sized virtual disks. 
When a VM is instantiated, the isolation kernel ex- 
poses a set of virtual disks to it; the VM can ini- 
tiate asynchronous reads and writes of 4KB blocks 
from tile disks to which it has been given access. Be- 
cause virtual disks exist independently of virtual ma- 
chines, Denali trivially supports optimizations such 
as the read-only sharing of virtual disks across VMs. 
For example, if multiple VMs all use the same ker- 
nel boot image, that boot image can be stored on a 
single read-only virtual disk and shared by the VMs. 

Denali also enmlates a keyboard, console, and 
timer devices. These virtual devices do not differ 
significantly from physical hardware devices, and we 
do not describe them further. 

Denali's batched interrupt model is implemented 
by maintaining a bitmask of pending interrupts for 
each VM. When a virtual interrupt arrives, the kernel 
posts the interrupt to the bitmask, activates the VM 
if it is idle, and clears any pending timeouts. When a 
VM begins its next quantum, the kernel uploads the 
bitmask to a virtual register, and transfers control 
to an interrupt handler. A VM can disable virtual 
interrupts by setting a virtual register value; VMs 
can never directly disable physical interrupts. 

3.2.4 Supervisor Virtual Machine 

Denali gives special privileges to a supervisor 
VM, including the ability to create and destroy other 
VMs. Because complexity is a source of security 
vulnerabilities , wherever possible we have displaced 
complexity from the isolation kernel to the supervisor 
VM. For example, the isolation kernel does not have 
a network stack: if a remote VM image needs to be 
downloaded for execution, this is done by the super- 
visor VM. Similarly, the supervisor VM keeps track 
of the association between virtual disks and VMs, 
and is responsible for initializing or loading initial 
disk images into virtual disks. The supervisor VM 
can be accessed via the console, or through a simple 
telnet interface. In a production system, the security 
of the supervisor VM should be enhanced by using a 
secure login protocol such as ssh. 

3.3 I lwaco  G u e s t  OS 

Although the Denali virtual machine interface is 
functionally complete, it is not a convenient interface 
for developing applications. Accordingly, we have 
developed the Ilwaco guest operating system which 
presents customary high-level abstractions. Ilwaco 
is implemented as a library, in much the same lash- 
ion as a Exokernel libOS. Applications directly link 
against the OS; there is no hardware-enforced pro- 
tection boundary. 
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tlwaco contains the Alpine user-level TCP  
stack [12], a port  of the FreeBSD 3.3 stack. We mod- 
ified Alpine to utilize Denali's virtual interrupt and 
timer mechanisms, and linked the stack against a de- 
vice driver for the Denali virtual Ethernet  NIC. 

Ilwaco contains a thread package that supports 
typical thread primitives, locks, and condition vari- 
ables. If there are no runnable threads, the thread 
scheduler invokes the idle-with-timeout virtual in- 
struction to yield the CPU. Ilwaco also contains a 
subset of libc, including basic console I/O, string rou- 
tines, pseudo-random number generation, and mem- 
ory management. Most of these routines were ported 
from OSKit libraries; some functions needed to be 
modified to interact with Denali's virtual hardware. 
For example, mal loc  reads the size of (virtual) phys- 
ical memory from a virtual register. 

4 E v a l u a t i o n  

This section presents a quantitative evaluation 
of the Denali isolation kernel. We rail microbench- 
marks to (1) quantify the performance of Denali's 
primitive operations, (2) validate our claim that our 
virtual architecture modifications result in enhanced 
scale, performance, and simplicity, and (3) charac- 
terize how our system performs at scale, and why. 
As previously mentioned, none of these experiments 
were run with the virtual MMU enabled. Addition- 
ally, in all experiments, our VMs ran with their data  
in virtual core, and as such, they did not exercise the 
virtual disks. 3 

In ou r  experiments, Denali ran on a 1700MHz 
Pentium 4 with 256KB of L2 cache, 1GB of RAM, 
an Intel PRO/1000 PCI gigabit Ethernet  card con- 
nected to an Intel 470T Ethernet  switch, and three 80 
GB 7200 RPM Maxtor DiamondMax Plus IDE drives 
with 2 MB of buffering each. For any experiment in- 
volving the network, we used a 1500 byte MTU. To 
generate workloads for network benchmarks, we used 
a mixture of 1700MHz Pentium 4 and 930MHz Pen- 
t ium III machines. 

4.1 Bas ic  S y s t e m  P e r f o r m a n c e  

To characterize Denali's performance, we mea- 
sured the context switching overhead between VMs, 
and the swap disk subsystem performance. We 
also characterized virtualization overhead by analyz- 
ing packet dispatch latency, and by comparing the 
application-level TCP  and H T T P  throughput  of De- 
nali with that  of BSD. 

3of course, our scaling experiments do stress the swapping 
functionality in the isolation kernel itself. 

4.1.1 V M  C o n t e x t  S w i t c h i n g  O v e r h e a d  

To measure context-switching overhead, we con- 
sidered two workloads: a "worst-case" that  cycles 
through a large memory buffer between switches, 
and a "best-case" that does not touch memory be- 
tween switches. For the worst-case workload, context 
switch time starts at 3.9 ,us for a single virtual ma- 
chine, and increases to 9 ,us for two or more VMs. 
For the best-case workload, the context switch time 
starts at 1.4 #sfor  a single virtual machine, and it in- 
creases slightly as the number of VMs increases; the 
slight increases coincide with the points at which the 
capacity of the L1 and L2 caches become exhausted. 
These results are commensurate with process context 
switching overheads in modern OSs. 

4.1.2 Swap Disk Microbenehmarks 

Denali stripes VM swap regions across physi- 
cal disks. To better understand factors that  influ- 
ence swap performance at scale, we benchmarked De- 
nali's disk latency and throughput for up to three 
attached physical disks. The results are presented 
in Table 1; all measured throughputs and latencies 
were observed to be limited by the performance of 
the physical disks, but not the Denali isolation ker- 
nel. For three disks, a shared PCI bus became the 
bottleneck, limiting sequential throughput.  

4.1.3 Packet Dispatch Latency 

Figure 2 shows packet processing costs for 
application-level UDP packets, for both 100 and 1400 
byte packets. A transmitted packet first traverses 
the Alpine T C P / I P  stack and then is processed by 
the guest OS's Ethernet  device driver. This driver 
signals the virtual NIC using a PIO, resulting in a 
trap to the isolation kernel. Inside the kernel, the 
virtual NIC implementation copies the packet out of 
the guest OS into a transmit FIFO. Once the net- 
work scheduler has decided to transmit the packet, 
the physical device driver is invoked. Packet recep- 
tion essentially follows the same path in reverse. 

On the transmission path, our measurement ends 
when the physical device driver signals to the NIC 
that  a new packet is ready for transmission; packet 
transmission costs therefore do not include the time it 
takes the packet to be DMA'ed into the NIC, the time 
it takes the NIC to transmit the packet on the wire, or 
the interrupt that  the NIC generates to indicate tha t  
the packet has been transmitted successfully. On the 
reception path, our measurement starts when a phys- 
ical interrupt arrives from the NIC; packet reception 
costs therefore include interrupt processing and in- 
teracting with the PIC. 

The physical device driver and VM's T C P / I P  
stack incur significantly more cost than the isolation 
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Figure 2: Packe t  processing overhead:  these two timelines illustrate the cost (in cycles) of processing a packet, 
broken down across various functional stages, for both packet reception and packet transmission. Each pair of numbers 
represents the number of cycles executed in that stage for 100 byte and 1400 byte packets, respectively. 

latency random sequential 
throughput throughput 

1 d isk  7.1/5.9 2.20 / 2.66 38.2 / 31.5 
......................................... i ................................................................................. 

2 d isks  7.0 / 5,8 4.45 / 5.41 75.6 / 63.5 ! 
i i 3 disks 7.0/5.8 6.71/8.10 91.3/67.1 

Table 1: Swap disk mic robenchmarks :  latency (ms), 
random throughput (MB/s), and sequential through- 
put (MB/s) versus the number of disks. Numbers sep- 
arated by a slash are for reads and writes, respectively. 

kernel, confirming that  the cost of network virtualiza- 
tion is low. The physical driver consumes 43.3% and 
38.4% of the total  packet reception costs for small 
and large packets, respectively. Much of this cost is 
due to the Flux OSKit 's  interaction with the 8259A 
PIC; we plan on modifying the OSKit to use the more 
efficient APIC in the future. The T C P  stack con- 
sumes 37.3% and 41.8% of a small and large packet 
processing time, respectively. 

The  transmit  path incurs two packet copies and 
one VM/kernel  boundary crossing; it may be pos- 
sible to eliminate these copies using copy-on-write 
techniques. The receive path  incurs the cost of a 
packet copy, a buffer deallocation in the kernel, and 
a VM/kernel  crossing. The buffer deallocation proce- 
dure a t tempts  to coalesce memory back into a global 
pool and is therefore fairly costly; with additional 
optimization, we believe we could eliminate this. 

4 .1 .4  T C P  a n d  H T T P  T h r o u g h p u t  

As a second measurement of networking per- 
formance on Denali, we compared the TCP-level 
throughput  of BSD and a Denali VM running Ilwaco. 
To do this, we compiled a benchmark application on 
both Denali and BSD, and had each application run a 
T C P  throughput  test to a remote machine. We con- 
figured the T C P  stacks in all machines to use large 
socket buffers. The BSD-Linux connection was able 
to a t ta in  a maximum throughput  of 607 Mb/s,  while 
Denali-Linux achieved 569 Mb/s ,  a difference of 5%. 

As further evaluation, we measured the perfor- 
mance of a single web server VM running on Denali. 
Our home-grown web server serves static content out 
of (virtual) physical memory. For comparison, we 
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Figure 3: Co m p ar in g  web server  p e r f o r m a n c e  on 
Denal i  and BSD: performance is comparable, con- 
firming that virtualization overhead is low. The "BSD- 
syscall" line corresponds to a version of the BSD web 
server in which an extra system call was added per packet, 
to approximate user-level packet delivery in Denali. 

ported our web server to BSD by compiling and link- 
ing the unmodified source code against a BSD library 
implementation of the Ilwaco system call API. Fig- 
ure 3 shows the results. 

Denali's application-level performance closely 
tracks that  of BSD, although for medium-sized doc- 
uments (50-100KB), BSD outperforms Denali by up 
to 40%. This difference in performance is due to the 
fact that  Denali's T C P / I P  stack runs at the user- 
level, implying that  all network packets must cross 
the user/kernel  boundary. In contrast,  in BSD, most 
packets are handled by the kernel, and only da ta  
destined for the application crosses the user-kernel 
boundary. A countervailing force is system calls: in 
Denali, system calls are handled within the user-level 
by the Ilwaco guest OS; in BSD, system calls must 
cross the user-kernel boundary. 

For small documents, there are about  as many 
sYstem calls per connection in BSD (accep t ,  r eads ,  
writes, and close) as there are user/kernel packet 
crossings in Denali. For large documents,  the sys- 
tem bottleneck becomes the Intel PRO/1000 Ether- 
net card. Therefore, it is only for medium-sized doc- 
uments tha t  the packet delivery to the user-level net- 
working stack in Denali induces a noticeable penalty; 
we confirmed this effect by adding a system call 
per packet to the BSD web server, observing that  
with this additional overhead, the BSD performance 
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Figure 4: Benefi ts  of batched,  asynchronous  inter- 
rupts :  Denali's interrupt model leads to a 30% perfor- 
mance improvement in the web server when compared 
to synchronous interrupts, but at large scale (over 800 
VMs), paging costs dominate. 

closely matched that  of Denali even for medium-sized 
documents (Figure 3). 

4 . 2  S c a l e r  P e r f o r m a n c e ~  a n d  S i m p l i c i t y  
a n d  t h e  D e n a l i  V i r t u a l  A r c h i t e c t u r e  

The virtual architecture exposed by Denali was 
designed to enhance scalability, performance, and 
simplicity. In this section, we provide quantita- 
tive evidence to back these claims. Specifically, we 
demonstrate tha t  batched asynchronous interrupts 
have performance and scalability benefits, that  De- 
nali's idle-with-timeout instruction is crucial for scal- 
ability, that  Denali's simplified virtual NIC has per- 
formance advantages over an emulated real NIC, and 
tha t  the source code complexity of Denali is substan- 
tially less than that  of even a minimal Linux kernel. 

4 .2 .1  B a t c h e d ,  A s y n c h r o n o u s  I n t e r r u p t s  

Denali utilizes a batched, asynchronous model 
for virtual interrupt delivery. In Figure 4, we quan- 
tify the performance gain of Denali's batched, asyn- 
chronous interrupt model, relative to the perfor- 
mance of synchronous interrupts. To gather the syn- 
chronous interrupt data, we modified Denali's sched- 
uler to immediately context switch into a VM when 
an interrupt arrives for it. We then measured the 
aggregate performance of our web server application 
serving a 100KB document,  as a function of the num- 
ber of simultaneously running VMs. For a small 
number of VMs, there was no apparent benefit, but  
up to a 30% gain was achieved with batched inter- 
rupts for up to 800 VMs. Most of this gain is at- 
tr ibutable to a reduction in context switching fie- 
quency (and therefore overhead). For a very large 
number of VMs (over 800), performance was domi- 
hated by the costs of the isolation kernel paging VMs 
in and out of core. 

4 .2 .2  I d l e - w i t h - t i m e o u t  I n s t r u c t i o n  

To measure the benefit of the idle-with-timeout 
virtual instruction, we compared the performance of 
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Figure 5: Idle-with-timeout benefits: idle-with- 
timeout leads to higher performance at scale, when com- 
pared to an idle instruction with no timeout feature. 

web server VMs serving 100KB documents across in 
two scenarios. In the first scenario, the VMs ex- 
ploited the timeout feature: a guest OS with no 
schedulable threads invokes the idle-with-timeout in- 
struction with a t imeout value set to the smallest 
pending TCP retransmission timer. In the second 
scenario, VMs did not use the t imeout feature, idling 
only when there were no schedulable threads and no 
pending TCP  retransmission timers. 

The  performance difference was substantial: Fig- 
ure 5 shows that  as the number of VMs scales up, 
overall performance drops by more than  a factor of 
two without the t imeout feature. The  precipitous 
drop in performance for small numbers of VMs hap- 
pens because the entire offered load is focused on 
those few VMs, ensuring that  all of them have ac- 
tive connections; an active connection means that  
retransmission timers are likely pending, preventing 
the VM from idling. As the number of VMs grows, 
the same aggregate workload is spread over more 
VMs, meaning that  any individual VM is less likely 
to have active connections preventing it from idling. 
This results in an easing off of additional overhead 
as the system scales. 

In general, a t imeout serves as a hint to the iso- 
lation kernel; without this hint, the kernel cannot de- 
termine whether any software timers inside a VM are 
pending, and hence will not know when to reschedule 
the VM. As a result, without the t imeout  feature, a 
VM has no choice but  to spin inside its idle loop to 
ensure that  any pending software timers fire. 

4.2.3 Simplified Virtual  Ethernet  

Denali's virtual Ethernet  has been streamlined 
for simplicity and performance. Real hardware net- 
work adapters often require multiple programmed 
I /O  instructions to transmit or receive a single 
packet. For example, the Linux pcnet32 driver used 
by VMWare workstation [31] issues 10 PIOs to re- 
ceive a packet and 12 PIOs to transmit  a packet. 
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Figure 6: Source code complex i t y :  number of source 
lines in Linux 2.4.16 and Denali. Denali is roughly half 
the size of Linux in total source lines. Denali's core kernel 
(without device drivers and platform-dependent code) is 
an order-of-magnitude smaller than Linux. 

VMMs which support unmodified legacy OSs must 
trap and emulate these PIOs, resulting in additional 
overhead. By contrast, Denali's virtual Ethernet re- 
quires only a single PIO to send or receive a packet. 

To estimate the benefit of Denali's simple virtual 
Ethernet, we modified the guest OS device driver to 
perform as many PIOs as the pcnet32 driver. Doing 
so increased the packet reception cost by 18,381 cy- 
cles (10.9 ms) and the packet transmission cost by 
22,955 cycles (13.7 ms). This increases the overhead 
of receiving a single 100-byte UDP packet by 42%. 

4.2.4 Source Code Complexi ty  

As a final measure of the impact of Denali's vir- 
tual architecture, we quantify the size of the Denali 
source tree relative to Linux. This comparison there- 
fore gives an indication of how complex it is to im- 
plement an isolation kernel that exposes Denali's ar- 
chitecture, as compared to the complexity of imple- 
menting an OS that exports high-level abstractions. 
Code size is important because it serves as an indi- 
cation of the size of the trusted computing base, and 
it also impacts how easily the system can be main- 
tained, modified, and debugged over time. 

We compared Denali against Linux 2.4.16. For 
fairness of comparison, we choose a subset of Linux 
files that comprise a "bare-bones" kernel: no module 
support, no SMP support, no power management, 
only the ext2 file system, limited driver support, and 
so on. We use semicolon count as the metric of source 
lines, to account for different coding conventions. 

Denali contains 26,634 source lines, while Linux 
has 66,326 source lines (Figure 6a). Only a small 
fraction (18%) of the Denali source is consumed by 
the "core kernel"; the remainder is dedicated to de- 
vice drivers and architecture-dependent routines. Al- 
though drivers are known to be more buggy than core 
kernel code [8], the drivers used by Denali and "bare- 
bones" Linux consist of rnature source code that has 

not changed substantially over time, e.g., tile IDE 
driver, terminal support, and PCI bus probing. 

In Figure 6b, we present a breakdown of tile core 
kernel sizes of Denati and Linux. The Linux core ker- 
nel is an order-of-magnitude larger than Denali. The 
majority of the difference is attributable to Linux's 
implementation of stable storage (the ext2 file sys- 
tem) and networking (TCP/IP)  abstractions. By de- 
ferring the implementation of complex abstractions 
to guest operating systems, Denali realizes a substan- 
tial reduction in core kernel source tree size. 

4 .3  D e n a l i  a t  S c a l e  

In this section, we characterize Denali's per- 
formance at scale. We first analyze two scaling 
bottlenecks, which we removed before performing 
application-level scaling experiments. We then an- 
alyze two applications with fairly different perfor- 
mance requirements and characteristics: a web server 
and the Quake II game server. 

4.3.1 Scal ing Bottlenecks 

The mlmber of virtual machines to which our iso- 
lation kernel can scale is limited by two factors: per- 
machine metadata maintained by the kernel when a 
VM has been completely paged out, and the working 
set size of active VMs. 

P e r - V M  kernel  m e t a d a t a :  To minimize the 
amount of metadata the isolation kernel must main- 
tain for each paged-out VM, wherever possible we al- 
locate kernel resources on demand, rather than stat- 
ically on VM creation. For example, page tables and 
packet buffers are not allocated to inactive VMs. Ta- 
ble 2 breaks down the memory dedicated to each VM 
in the system. Each VM requires 8,472 bytes, of 
which 97% are dedicated to a kernel thread stack. Al- 
though we could use continuations [10] to bundle up 
the kernel stack after paging a VM out, per-VM ker- 
nel stacks have simplified our implementation. Given 
the growing size of physical memory, we feel this is an 
acceptable tradeoff: supporting 10,000 VMs requires 
81 MB of kernel metadata, which is less than 4% of 
memory on a machine with 2GB of RAM. 

V M  work ing  set  size: The kernel cannot con- 
trol the size of a VM's working set, and the ker- 
nel's paging mechanism may cause a VM to per- 
form poorly if the VM scatters small memory ob- 
jects across its pages. One instance where memory 
locality is especially important is the management of 
the mbuf packet buffer pool inside the BSD TCP/ IP  
stack of our Ilwaco guest OS. Initially, mbufs are 
allocated from a large contiguous byte array; this 
"low entropy" initial state means that a request that 
touches a small number of mbufs would only touch a 
single page in memory. After many allocations and 
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Component  S ~  

thread stack 8192 

.......... register [!!e . . . . . . . . . . . . . . . . . . . . .  24 ............. 

swap region metadata 20 

paging metadata 40 

virtual Ethernet structure 80 

pending alarms 8 

VM boot command line 64 

other  72 

Total 8472 

Table 2: P e r - V M  kernel metada ta :  this table de- 
scribes the residual kernel footprint of each VM, assum- 
ing the VM has been swapped out. 
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Figure 7: M b u f  en t ropy  and m e m o r y  footprint :  
eliminating mbuf entropy with a hash table can halve 
memory footprint. 

deallocations from the mbuf pool, the default BSD 
implementation of the mbuf pool scatters back-to- 
back mbuf allocations across pages: in the worst case, 
as many pages are necessary as referenced mbufs, in- 
creasing the memory footprint of a VM. 

We have observed the effects of mbuf entropy in 
practice, especially if a VM is subjected to a burst 
of high load. Figure 7 shows the effect of increasing 
the offered load on a web server inside a VM. The 
memory footprint of the VM using the default, linked 
list BSD implementation of the mbuf pool increases 
by 83% as the system reaches overload. We improved 
memory locality by replacing the linked list with a 
hash table that  hashes mbufs to buckets based on 
the memory address of the mbufs; by allocating from 
hash buckets, the number of memory pages used is 
reduced. With this improvement, the VM's memory 
footprint remained constant across all offered loads. 
The savings in memory footprint resulted in nearly 
a factor of two performance improvement for large 
numbers of concurrent web server VMs. 

More generally, the mbuf entropy problem is in- 
dicative of two larger issues inherent in the design 
of a scalable isolation kernel. First, the paging be- 
havior of guest operating systems is a crucial com- 
ponent of overall performance; most existing OSs are 
pinned in memory and have little regard for memory 
locality. Second, memory allocation and dealloeation 
routines (e.g., garbage collection) may need to be re- 
examined to promote memory locality; existing work 
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Figure 8: In-core vs. out-of-core:  (a) shows aggre- 
gate performance up to the "cliff" at approximately 1000 
VMs; (b) shows aggregate performance beyond the cliff. 

on improving paging performance in object-oriented 
languages could prove useful. 

4 .3.2 W e b  s e r v e r  p e r f o r m a n c e  

To understand the factors that  influence scala- 
bility for a throughput-centric workload, we analyzed 
Denali's performance when running many web server 
VMs. We found that  three factors strongly influenced 
scalability: disk transfer block size, the popularity 
distribution of requests across VMs, and the object 
size transferred by each web server. 

To evaluate these factors, we used a modified 
version of the ht tperf  H T T P  measurement tool to 
generate requests across a parameterizable number 
of VMs. We modified the tool to generate requests 
according to a Zipf distribution with parameter  o~. 
We present results for repeated requests to a small 
object of 2,258 bytes (approximately the median web 
object size). Requests of a larger web object  (134,007 
bytes) were qualitatively similar. 

The performance of Denali at scale falls into two 
regimes. In the in-core regime, all VMs fit in mem- 
ory, and the system can sustain nearly constant ag- 
gregate throughput  independent of scale. When the 
number of active VMs grows to a point that  their 
combined working sets exceed the main memory ca- 
pacity, the system enters the disk-bound regime. Fig- 
ure 8 demonstrates the sharp performance cliff sepa- 
rating these regimes. 

I n - c o r e  r eg ime :  To better understand the per- 
formance cliff, we evaluated the effect of two vari- 
ables: disk block transfer size, and object popularity 
distribution. Reducing the block size used during 
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Figure 9: Block size and popu la r i t y  dis t r ibut ion:  
this graph shows the effect of varying block size and pop- 
ularity distribution on the "cliff"; the web servers were 
serving a 2,258 byte document. 

paging can improve performance by reducing inter- 
nal fragmentation, and as a consequence, reducing a 
VM's in-core footprint.  This has the side-effect of de- 
laying the onset of the performance cliff (Figure 9): 
by using a small block size, we can push the cliff to 
beyond 1000 VMs. 

D i s k - b o u n d  r e g i m e :  To illustrate Denali's 
performance in the disk-bound regime, we examined 
web server throughput  for 4,000 VMs serving the 
"small" document; the footprint of 4,000 VMs easily 
exceeds the size of main memory. Once again, we 
considered the impact of block size and object pop- 
ularity on system performance. 

To explore the effect of heavy-tailed distribu- 
tions, we fixed the disk block transfer size at 32 kilo- 
bytes, and varied the Zipf populari ty parameter  c~. 
As c~ increases, the distribution becomes more con- 
centrated on the popular  VMs. Unlike the CPU and 
the network, Denali's paging policy is purely demand 
driven; as a result, Denali is able to capitalize on the 
skewed distribution, as shown in Figure 10. 

Figure 11 illustrates the effect of increased block 
size on throughput.  As a point of comparison, we 
include results from a performance model that  pre- 
dicts how much performance our three disk subsys- 
tem should support,  given microbenehmarks of its 
read and wr i te throughput ,  assuming that  each VM's 
working set is read in using random reads and writ- 
ten out using a single sequential write. Denali's per- 
formance for random requests tracks the modeled 
throughput ,  differing by less than 35% over the range 
of block sizes considered. 

This suggests tha t  Denali is utilizing most of 
the available raw disk bandwidth, given our choice 
of paging policy. For heavy-tailed requests, Denali 
is able to outperform the raw disk bandwidth by 
caching popular virtual machines in main memory. 
To improve performance beyond tha t  which we have 
reported, the random disk reads induced by paging 
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Figure 11: Out-of-core  p e r f o r m a n c e  vs. block size: 
increased block size leads to increased performance in the 
out-of-core regime. 

would need to be converted into sequential reads; this 
could be accomplished by reorganizing the swap disk 
layout so that  the working sets of VMs are laid out 
sequentially, and swapped in ra ther  than  paged in. 

4 .3 .3  Q u a k e  I I  s e r v e r  p e r f o r m a n c e  

As a second workload to test  the scalability of 
Denali, we ported the GPL 'ed  Quake II game server 
to Ilwaco. Quake II is a latency-sensitive multiplayer 
game. Each server maintains s tate  for a single game 
session; clients participating in the session send and 
receive coordinate updates from the server. We use 
two metrics as a measure of the quality of the game 
experience: the latency between a client sending an 
update  to the server and receiving back a causally de- 
pendent update,  and the throughput of updates sent 
from the server. Steady latency and throughput  are 
necessary for a smooth, lag-free game experience. 

To generate load, we used modified Linux Quake 
II clients to play back a recorded game session to a 
server; for each server, we ran a session with four 
clients. As a test of scalability, we measured the 
throughput  and latency of a Quake server as a func- 
tion of the number of concurrently active Quake 
VMs. Figure 12 shows our results. 

As we scaled up the number of VMs (and 
the number of clients generating load), the average 
throughput  and latency of each server VM remained 
essentially constant. At 32 VMs, we ran out of client 
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Figure 12: Quake II  server scaling benchmarks:  
even with 32 concurrent active Quake II server VMs, the 
throughput and latency to each server remained constant. 
At 32 servers, we ran out of client machines to drive load. 

machines to generate load. Even with this degree of 
multiplexing, both throughput and latency remained 
constant, suggesting that the clients' game experi- 
ences would still be good. 

Although the Quake server is latency-sensitive, it 
is in many ways an ideal application for Denali. The 
default server configuration self-imposes a delay of 
approximately 100 ms between update packets, in ef- 
fect introducing a sizable "latency buffer" that  masks 
queuing and scheduling effects in Denali. Addition- 
alIy, because the server-side of Quake is much less 
computationally intensive than the client-side, mul- 
tiplexing large numbers of servers is quite reasonable. 

5 R e l a t e d  W o r k  

We consider related work along two axes: operat- 
ing system architectures, and techniques for isolating 
untrusted code. 

5.1 O S  a r c h i t e c t u r e s  

The idea of hosting multiple isolated protection 
contexts on a single machine is not new: Rushby's 
separation kernel [28] is an instance of this idea. De- 
nali puts these ideas into practice, and explores the 
systems issues when scaling to a large number of pro- 
tection domains. 

Exokernels [20] eliminate high-level abstractions 
to enable OS extensibility. Denali differs from Exok- 

ernels in its approach to naming: Denali exposes vir- 
tual, private name spaces, whereas Exokernels expose 
the physical names of disk, memory, and network 
resources. The Exokernel's global namespace allow 
resources to be shared freely, necessitating complex 
kernel mechanisms to regulate sharing. 

Denali is similar to microkernet operating sys- 
tems like Math [1]. Indeed, Denali's VMs could be 
viewed as single-threaded applications on a low-level 
microkernel. However, the focus of microkernel re- 
search has been to push OS functionality into shared 
servers, which are themselves susceptible to the prob- 
lems of high-level abstractions and data  sharing. De- 
nali emphasizes scaling to many untrusted applica- 
tions, which was never an emphasis of microkernels. 

Nemesis [23] shares our goal of isolating per- 
formanee between competing applications. Nemesis 
adopts a similar approach, pushing most kernel func- 
tionality to user-level. Nemesis was not designed to 
sandbox untrusted code; Nemesis applications share 
a global file system and a single virtual address space. 

The Fluke OS [13] proposes a reeursive virtual 
machine model, in which a parent can re-implement 
OS functionality on behalf of its children. Like De- 
nali, Fluke exposes private namespaces through its 
"state-encapsulation" property. The primary moti- 
vation for this is to support cheekpointing and mi- 
gration, though the security benefits are alluded to 
in [22]. Denali exposes a virtual hardware API, 
whereas Fluke virtualizes at the level of OS API. 
By virtualizing below abstractions, Denali's kernel 
is simple, and we avoid layer-below vulnerabilities. 

Virtual machine monitors have served as the 
foundation of several "security kernels" [21]. More 
recently, the NetTop proposal aims to create secure 
virtual workstations running on VMWare [24]. De- 
nali differs from these efforts in that  we aim to pro- 
vide scalability as well as isolation. We assume a 
weaker threat model; for example, we are not con- 
cerned with covert channels between VMs. 

VMMs like Disco [6] and VM/370 [9] have the 
goal of supporting legacy systems, and therefore min- 
imize architectural modifications to maintain com- 
patibility. In comparison, isolation kernels rely on 
virtualization for isolation: backwards compatibility 
is not their primary goal. As a result, isolation ker- 
nels have the freedom to make strategic changes to 
the exposed virtual architecture for scalability, per- 
formance, and simplicity. 

5 .2  E n f o r c i n g  i s o l a t i o n  

Many projects provide OS support for isolat- 
ing untrusted code, including system call interpo- 
sition [16] and restricted execution contexts [32]. 
These proposals provide mechanisms for enforcing 
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the principle of least privilege. However, expressing 
an appropriate access control policy requires a se- 
curity expert  to reason about  access permissions to 
grant applications; this is a difficult task on modern 
systems with thousands of files and hundreds of de- 
vices. Denali imposes a simple security policy: com- 
plete isolation of VMs. This obviates the policy prob- 
lem, and provides robust isolation for applications 
with few sharing requirements. 

WindowBox [3] confines applications to a virtual 
desktop, imposing a private namespace for files. Be- 
cause it is implemented inside a conventional OS, 
WindowBox's  security is limited by high-level ab- 
stractions and global namespaces. For example, all 
applications have access to the Windows registry, 
which has been involved in many vulnerabilities. 

Software VMs (like Java) have been touted as 
platforms for isolating untrusted code. Experience 
with these systems has demonstrated a tradeoff be- 
tween security and flexibility. The Java sandbox was 
simple and reasonably secure, but  lacked the flexi- 
bility to construct complex applications. Extensible 
security architectures [33] allow more flexibility, but  
reintroduce the problem of expressing an appropri- 
ate access control policy. Denali avoids this tradeoff 
by exposing a raw hardware API, complete with I /O 
devices, which allows VMs to build up arbitrary ab- 
stractions inside a guest OS. In addition, Denali's 
virtual architecture closely mirrors the underlying 
physical architecture, avoiding the need for a com- 
plex runtime engine or just-in-time compiler. 

The  problem of performance isolation has been 
addressed by server and multimedia systems [4, 26, 
23]. Resource containers demonstrate tha t  OS ab- 
stractions for resource management (processes and 
threads) are poorly suited to applications' needs. De- 
nali's VMs provide a comparable resource manage- 
ment mechanism. We believe that  isolation kernels 
can provide more robust performance isolation by op- 
crating beneath OS abstractions and da ta  sharing. 
As an example, Reumann et al. conclude that  there 
is no simple way to account for the resources in the 
file system buffer cache [26]. 

Finally, numerous commercial and open-source 
products provide support  for virtual hosting, includ- 
ing freeVSD, Apache virtual hosts, the Solaris re- 
source manager, and Ensi~ifs ServerXchange. All 
work within a conventional OS or application, and 
therefore cannot provide the same degree of isolation 
as an isolation kernel. Commercial VMMs provide 
virtual hosting services, including VMWare's ESX 
server and IBM's z /VM system. By selectively mod- 
ifying the underlying physical architecture, Denali 
can scale to many more machines for a given hard- 
ware base. We are not aware of detailed studies of 

the scalability of these systems. 

6 Conc lus ions  

This paper presented the design and implemen- 
tation of the Denali isolation kernel, a virtualiza- 
tion layer that  supports the secure multiplexing of a 
large number of untrusted Internet services on shared 
infrastructure. We have argued that  isolation ker- 
nels are necessary to provide adequate isolation be- 
tween untrusted services, and to support  scaling to 
a large number of Internet services, as required by 
cost-efficiency. Quantitative evaluation of our isola- 
tion kernel has demonstrated that  the performance 
overhead of virtualization is reasonable, that  our de- 
sign choices were both necessary and reasonable, and 
that  our design and implementation can successfully 
scale to over 10,000 services on commodity hardware. 

We believe that  isolation kernels have the po- 
tential to dramatically change how Internet  services 
are deployed. An isolation kernel allows a service to 
be "pushed" into third party infrastructure, thereby 
separating the management of physical infrastructure 
from the management of software services and low- 
ering the barrier to deploying a new service. 
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