
THE STRUCTURING OF SYSTEMS USING
UPCALLS

David D. Clark

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, M.A 02139

A b s t r a c t

When implementing a system specified as a number of layers

of abstraction, it is tempting to implement each layer as a

process. However, this requires that communication between

layers be via asynchnonous inter-process messages. Our

experience, especially with implementing network protocols,

suggests that asynchronous communication between layers leads

to serious performance problems. In place of this structure we

propose an implementation methodology which permits

synchronous (procedure call) between layers, both when a higher

layer invokes a lower layer and in the reverse direction, from

lower layer upward. This paper discusses the motivation for this

methodology, as well as the pitfalls that accompany it.

1 I n t r o d u c t i o n

This paper is concerned with a methodology for program

structure, a methodology suitable for operating system programs,

especially programs dealing with communications and networks.

This methodology arose out of our earlier research in the

implementation of network protocols, in which recurring

performance problems with protocol software led us to the

conclusion that many operating systems failed to provide the

correct runtime support for highly interactive parallel software

packages such as protocols. This paper describes and motivates

this methodology, and discusses the operating system, Swift,

which we built to explore it.

The methodology described in this paper is relevant to

programs which have been modularized according to the

This research was supported by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research
under contrac~ N00014-75-C-0681 and N00014-83-K-0125.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 1 - 1 7 4 - 1 - 12/85-0171 $ 0 0 . 7 5

principle of layering. Traditionally, a layer is thought of as

providing services to the layer above, or the client layer. The

client uses some mechanism for invoking the layer, perhaps a

subroutine call. The layer performs the service for the client and

then returns. In other words, service invocation occurs from the

top down. As we will discuss below, there are organizational and

modularity reasons why this downward flow of control is

appealing in a layered system. However, the natural flow of

control is not always downward. In a network driven
environment, for example, most of the actions are initiated, not

by the client from above, but by the network from below. The

natural flow of control is thus upward, not downward.

Especially where such an upward flow of control crosses a

protection boundary, most systems do not permit this flow to be

implemented as a procedure call. Instead, some more

cumbersome and asynchronous mechanism must be used, such as

an interprocess communications signal. Substantial inefficiencies

and complexities can result from asynchronous upward flows. In

our methodology, the system is organized so that the

programmer has the choice as to whether an upward flow is

implemented by procedure calls or asynchronous signals. We call

this feature upcalls.

We chose the word upcall to distinguish from the structured

view of service invocation, organized around downward flow. An

upcall need not go precisely upward. Our goal is that procedure

flow should map on to the natural flow of control in the

program, whether that is up, down, or sideways. With

procedural invocation available in this way, there is thus no

reason to use processes and interprocees communication unless

there is an intrinsic source of asynchrony.

The other half of this programming methodology is an

approach towards structuring a layer. In many systems, a layer

is implemented as a task or process. In our methodology a layer

is organized as a collection of subroutines which live in a number

of tasks, each subroutine callable as appropriate from above or

below. Subroutines in different task that make up a layer
constitute, in our terminology, a multi-task module. A multi-

task module also contains a collection of state variables, which
are accessible, using shared memory, from the different tasks

which execute the subroutines of the layer.

The purpose of this paper, therefore, is to describe the

programming methodology which we call upcalls and multi-task"

171

modules, and to describe the Swift system, which is based on

these concepts. After a brief discussion of layering and its

movitation, and a brief example, we will discuss the advantages

of the methodology, as well as the problems it can cause. This

paper will also discuss two related aspects of the Swift system,

memory management and task scheduling. As mentioned above,

the various tasks that constitute a multi-task module

communicate using state variables stored in shared memory. For

this reason, as well as for the efficient passing of data between

layers, Swift was implemented in a single address space. We

thus added another goal to our project, to demonstrate program

development techniques which would provide for reliable

program execution in a single address space. The technique we

used was to implement Swift in a high level typesafe language

with garbage collection. We will briefly describe that aspect of

Swift.

2 Layering and Upcalls

A common organizing principle of modern operating systems

is to arrange the various functions of the system in layers, each

of which presents to its client an abstract view of the functions

in the lower layer. The layers are ordered according to a

principle which is usually defined as "using, ~ or "depending

upon the correct operation of." The idea of layering as an

organizational principle for operating systems is not a new one,

dating back at least to the THE system of Dijkstra [2]. Many

systems which followed after, such as the one described by

Habermann, Flan, and Cooprider [3] explicitly invoked the

layering principle as an organizing tool. A design with an acyclic

dependency relationship among its parts not only assisted in the

general methodical organization of the system, but was thought

to contribute specifically to the verification of the system, a

point which was of great concern to system builders during the

1970%. Explicit attempts to untangle and order particularly
knotty parts of operating systems were undertaken for this

reason. For example, Reed [9] developed an ordered relationship

between the parts of memory management and process

scheduling, and Janson [5] developed an ordered layering for a

virtual memory system. This layered structure for operating

systems perhaps reached its peak in the thirteen layer

specification developed by Neumann [8] as part of the system

verification effort done at SRI. Network protocols, even more

than operating systems, have been influenced in design by the

methodology of layering. Indeed, with the seven layer reference

model of the ISO [4], it is almost impossible to think about

protocols without thinking about layered organization.

Of course, a specification in layered form does not by itself

commit the implementer to any particular approach to

modularity and interface design. However, a modern operating

system offers a serious temptation to inefficient implementation.

The process is the fundamental structuring component provided

by most systems. It is natural to try to map the basic module of

the specification to the basic component of the system; this maps

layer to process. The result, at least in our experience with

protocols, is almost always substantially inefficient. The

implementer smart enough to avoid this trap then discovers that

neither the layered specification nor the operating system

facilities really gives any implementation guidance at all, forcing

the implementer to design the program structure from scratch.

This paper attempts to solve this problem by providing an

efficient implementation approach for a layered specification.

To those systems programmers who are accustomed to

developing modules within the context of a large unstructured

supervisor, the idea of an upward subroutine invocation across

layers of abstraction may not seem particularly daring. But to

those who feel that the "depends on" relationship of layering is

important, an upward subroutine call is a substantial heresy.

Most particularly, if the upward call crosses a protection

boundary (imagine the supervisor invoking a client program as

part of its operation), not only the system organization but the

reliable and stable execution of the system is threatened. Thus,

this paper must do two things. First, it must demonstrate the

benefits of upcalls; second, it must show how to avoid their

perils. The goal of our research, and the motivation of our

development of the Swift system, was to develop constraints on

the up call programming style which would lead to coherent,

reliable and readable programs without severely impacting the

efficiency and natural structure of the code. Upcall programs, if

written by sophisticated programmers, appear to be very simple,

short and efficient. However, we must demonstrate how to avoid

the possibility of creating the parallel programming equivalent of
FORTRAN "spaghetti code. m

3 M u l t i - t a s k M o d u l e s

To this point, we have discussed how various layers should

communicate with each other, but we have not discussed how the

various parts of a layer should be organized within an

implementation. In some systems, such as the THE system [2}, a

module such as a protocol layer would be organized as one or

more processes, invocable by an interprocess signal. In our

methodology, invocation across layer boundaries occurs by
subroutine call, and a layer is organized as subroutines which

live in a number of tasks, callable as appropriate from above or

below. There must thus be a mechanism for these various

subroutines to share state in order to coordinate their actions.

For this purpose, we use shared memory, with access mediated

by a monitor lock. Subroutines in different tasks that

collaborate with each other through shared state are referred to
as a multi-task module.

Part of our programming methodology is a restriction on the

use of intertask communication. In systems based on message

passing, the exported interface to a layer is the definition of the

messages which may be sent to it. In our environment, no multi-

task module ever exports an intertask communication interface.

The only exported interfaces are subroutine calls. All intert~k

communication goes on within the layer using interfaces which
are private to that layer.

The resulting system organization is illustrated in Figure 1.
Layers of the system, represented by horizontal ovals, span a

number of tasks as they carry out some integrated function.

Individual tasks, represented by vertical boxes, realize a single

thread of activity, perhaps on behalf of a single client or single

external event, and move up and down between the layers as the

172

interprocess
commun icat ion

rnultitask
modules

subroutine
calls

F igure I:
natural flow of control dictates. As the figure shows, intertask

communication only occurs in a horizontal direction, between the

various tasks in a layer, while flow of control between layers is

achieved between through subroutine calls, both up and down:

4 A n E x a m p l e

Before proceeding to a more detailed defense of this

methodology, an example may help illustrate the concepts of
upcall and multi-task module in practice. Since the
programming style was initialy motivated by network protocols,
we will use that as an example. Figure 2 illustrates a skeleton

implementation of a three layer protocol package that provides a
remote login service. The bottom layer is responsible for
dispatch of incoming packets to the correct transport service.

The transport layer organizes the packets into the correct

sequence, detects lost or duplicate packets, etc., and delivers the

data, in this ease one character at a time, to the remote login
layer, which performs display management. Each layer
represents an instance of a multi-task module. This figure
includes the connection initiation code, which involves the
downcall sequence, and incoming packet processing which, fairly

naturally, involves an upcall. There are actually two upealls
illustrated as part of packet receipt. The subroutine net-dispatch

is upealled as part of the interrupt handler, and in turn upealls
the transport layer to determine which transport level entity
should receive this packet. Using this information, it selects the

correct task from a table, and then signals that task. That task

in turn starts running by executing the program net-receive,

which in turn upcalls the transport layer (the subroutine

transport.receive), which in turn upcalls the subroutine display-

receive.

I l lustration of System Organization
Note that there are many other ways which the receive

function could have been organized using upcalls. The net-

dispatch routine could have selected an anonymous task, rather

than one specifically associated with the particular port in
question. In Swift, we tended to use yet another approach, in
which there was one single task associated with the processing of
all incoming packets. This latter approach works fine, unless the

processing at a high level consumes a great deal of time, in which
ease the processing of other packets may be delayed.

The processing of received packets seems to fit rather
naturally into the upcall philosophy. A packet is received, and

the processing of that packet must necessarily proceed from the
lower layers to the higher, however that flow is achieved. On
the other hand, it might superficially seem that the sending of a

packet would more naturally proceed from above. The client,

having some data to send, would invoke a transport module to

format a packet, which would in turn invoke a network layer
module to send the packet. A closer inspection of network

protocols reveals, however, that sending as well as receiving is
properly structured using upcalls. The reason for this is that in

most cases, the decision as to when a packet is sent is not

determined by the client, but by the flow control mechanism of
the transport protocol, and the congestion control mechanism of

the network layer. In a simple implementation of a network

protocol, one is tempted to ignore real life resource management
issues, such as flow and congestion control, but in fact they are

the heart of protocol processing, and dictate the program

structure. Figure 3, therefore illustrates the companion modules
for sending packets, which take into account the necessity of
implementing transport layer flow control. In this example there
is both an upcall and a downcall. The downcall notifies the

173

d l s p l a y - s t a r t O :
l o c a l - p o r t = t r a n s p o r t - o p e n (d i s p l a y - r e c e i v e)

end

d i s p l a y - r e c e i v e (c h a r) :
w r i t e c h a r t o display

end

2a. T h e d i sp lay or r e m o t e iogln layer

t r a n s p o r t - o p e n (r e c e i v e - h a n d l e r) :
l o c a l - p o r t = n e t - o p e n (t r a n s p o r t - r e c e i v e)
t r a n s p o r t - h a n d l e r - a r r a y (l o c a l - p o r t) =

r e c e i v e - h a n d l e r
r e t u r n (l o c a l p o r t)

en_.d

t r a n s p o r t - g e t - p o r t (p a c k e t) :
/ / u p c a l l e d by i n t e r r u p t l a y e r
e x t r a c t p o r t f rom p a c k e t
r e t u r n (p o r t)

end

t r a n s p o r t - r e c e i v e (p a c k e t , p o r t) :
/ / u p c a l l e d by n e t - l a y e r
h a n d l e r = t r a n s p o r t - h a n d l e r - a r r a y (p o r t)
validate packet header
fo__r, e a c h c h a r i n p a c k e t d _ ~ h a n d l e r (c h a r)

2h . T h e t r a n s p o r t l ayer

n e t - o p e n (r e c e i v e - h a n d l e r) :
p o r t = g e n e r a t e - u l d O
t a s k - l d = c r e a t e - t a s k (n e t - r e c e i v e

(p o r t , r e c e i v e - h a n d l e r))
n e t - t a s k - a r r a y (p o r t) = t a s K - l d
r e t u r n (p o r t)

end

net-recelve(port,handler):
handler = net-handler-array(port)
do forever

remove packet from per port queue
handler(pacKet,port)
block()

en__d
end

net-dlspatch(): //upcalled by interrupt handler
read packet from device
r e s t a r t d e v i c e
p o r t = t r a n s p o r t - g e t - p o r t (p a c k e t)
p u t p a c k e t on p e r p o r t queue
t a s k - l d = n e t - t a s k - a r r a y (p o r t)

w a k e u p - t a s k (t a s k - l d)
end

2c. T h e n e t w o r k l ayer

F i g u r e 2: T h r e e L a y e r P ro t oco l P a c k a g e

lower layers that an action should be taken. In Swift, this kind

of downcall was referred to an an "arming call," because it

armed the lower layer for action. The arming downcall did no
serious processing, and always returned immediately, never

blocking. The resulting upcall executed whenever the flow
control would permit. This example includes a modified version
of the program transport-receive, to show the processing of the
flow control information in the incoming packet. In the interest
of brevity some details, such as creation and initialization of the

send side task, have been omitted.

Figure 4 illustrates the control relationships which exist
between the various modules defined in Figures 2 and 3. The

figure indicates with arrows the upcalls and downcalls between
layers, and the intertask signals internal to a single multi-task

module.

This example illustrates that the upward calls are generally

made using procedure variables. Use of a procedure variable is

not a defining characteristic of an upcall, but it is very common.
In general, layers are constructed to serve a commuity of clients

which are unknown at program definition time. Thus, the layer

cannot upcall its client until the client has first downcalled,

perhaps as part of initialization or arming, with the entry point
to be upcalled later. Thus, the upcall methodology requires a

language and system with suitable mechanisms for procedure

variables.

5 Advantages of the Methodology

The distinguishing feature of the upcall methodology is tha t

flow of control upward through the layers is done by a

subroutine call, which is synchronous, rather than by an
interprocess signal, which is asynchronous. One obvious

advantage of the synchronous flow is efficiency. First, in almost

every system the subroutine call is substantially cheaper than an

interprocess signal, no matter how cheap the interprocess signal
becomes. In a system with many layers, the cost of messages

across process boundaries can swamp the processing cost within a
single layer. However, the system overhead of interprocess

signaling is not the major Source of inefficiency when layer

crossings are done by asynchronous signals; the more serious cost

is building data buffering mechanisms to hold the information

until the next layer is scheduled and runs. This buffering of
information at each layer boundary, which in some systems can

require copying the data itself, can easily turn out to be the
dominant component of execution. In an experiment done by one

of us, rewriting a downcall protocol package as upcalls improved
performance and code size by a factor of five to ten.

A closely related advantage of upcalls is simplicity of the

implementation. Clearly, elimination of code for buffering data

at layer boundaries is an important simplification. Perhaps a
more interesting simplification results from the ability of one
layer to "ask advice" of a layer above it. In classical layering, a
lower layer performs a service without much knowledge of the
way in which that service is being used by the layers above.
Excessive contamination of the lower layers with knowledge

about upper layers is considered inappropriate, because it can

create the upward dependency which layering is atteml~ting to
eliminate. However, as a practical matter, the lower level often

substantially contorts itself to provide a service with reasonable
performance for a variety of clients. For example, file systems

often provide both a character at a time interface and a block at
a time interface, to deal with clients with different requirements.
The 'necessity of providing both of these interfaces, and especially

for dealing with a client who changes back and forth between
them as part of reading the same file, can often result in a very

complicated program. In the upcall methodology, it is

considered acceptable to make a subroutine call to the layer
above asking it questions about the details of the service it
wants. For example, in a network architecture, it is helpful to

174

d i s p l a y - k e y b o a r d - h a n d l e r () :
/ / u p c a l l e d by I n t e r r u p t h a n d l e r f o r k e y b o a r d
get c h a r a c t e r from keyboard device
and p u t In k e y b o a r d - b u f f e r
t r a n s p o r t - a r m - f o r - s e n d

(p o r t , d i s p l a y - g e t - d a t a)
en.._.d

d i s p l a y - g e t - d a t a (p a c k e t) :
/ / u p c a l l e d by t o send d a t a
copy d a t a from k e y b o a r d - b u f f e r i n t o p a c k e t

en_.._d

t r a n s p o r t - a r m - f o r - s e n d (p o r t , s e n d - h a n d l e r) :
t r a n s p o r t - s e n d - h a n d l e r - a r r a y (p o r t) =

send h a n d l e r
I f o k - t o - s e n d (p o r t)

t hen w a k e u p - t a s k (s e n d - t a s k - l d)
e l s e w a n t - t o - s e n d (p o r t) = t r u e

en___d

t r a n s p o r t - s e n d (p o r t) :
/ / r u n s in t a s k I d e n t i f i e d by s e n d - t a s k - l d
i f o k - t o - s e n d (p o r t) = f a l s e t hen b l o c k ()
a l l o c a t e packe t and f i l l I n h e a d e r s
s e n d - h a n d l e r =

t r a n s p o r t - s e n d - h a n d l e r - a r r a y (p o r t)
s e n d - h a n d l e r (p a c k e t)
/ / u p c a l l d l s p l a y l e v e l to g e t d a t a
n e t - s e n d (p a c k e t , p o r t)
o k - t o - s e n d (p o r t) = f a l s e
w a n t - t o - s e n d (p o r t) = f a l s e

en__~

t r a n s p o r t - r e c e i v e (p a c k e t , p o r t) :
/ / u p c a l l e d by n e t l a y e r
h a n d l e r = t r a n s p o r t - h a n d l e r - a r r a y (p o r t)
v a l l d a t e p a c k e t heade r
i f p a c k e t a u t h o r i z e s s e n d i n g then

if want-to-send(port)
then wakeup-task(send-task-ld)
else ok-to-send(port)=true

fo_./_ each char in packet d ohandler(char)
end

neE-send(packet,port):
start net device to send packet

en__~

Figure 3: R o u t i n e s t o S e n d a Packet

make an upcall to a layer above asking if it has any further data

to send now, in order to include that data in an outgoing packet

which is being formatted for some other reason. It is our

experience, both in Swift and in other upcall experiments that we

have done, that the ability to upcall in order to ask advice

permits a substantial simplification in the internal algorithms

implemented by each layer. For a general discussion of how

protocols can be improved if communication of this sort across
the layer boundaries is permitted, see the discussion by

Cooper [1]. For another example of upcalls used to ask advice,

see the paper by Reid and Karlton on the Pilot file system [10].

Along with the upcall, we must consider the benefits of the

multi-task module. First, most programmers are more

accustomed to dealing with subroutine interfaces than

interprocess communication interfaces as standards. Thus, the
fact that only subroutine interfaces are exported leads to a layer

interface which is less threatening and easier to understand.

Second, this methodology eliminates the temptation of

architecting a systemwide codification of the format or usage of

an intertask message. Different layers, in fact, have drastically

different requirements for communicating between the tasks.

Some communicate in terms of a work queue, others in terms of

modified state variables and others in terms of requests for
execution of other tasks after a certain period of time has

elapsed. Hiding this variability inside the module makes dealing

with each module a simpler intellectual exercise. For example,

the network layer in Figure 2 dispatches a task based on the port

identifier of the incoming packet. The dispatch algorithm is

contained within a single module upcalled by the interrupt

handler. If the layer were redesigned to use a different task

allocation technique, for example a pool of anonymous tasks, this

change would be internal to the network layer rather than

requiring a change to an exported interface. The knowledge of

how tasks are used; like other design decisions, should be local

rather global.

A general characteristic of this methodology, which we

consider a strong advantage, is that decisions about how tasks

are used need not be made until late in the design. In the

example above, the decision as to which task should be used to

handle an incoming packet is not constrained in any serious way

by the example programs. For example, the program could be

initially written so that all incoming packets are processed by

one task. This decision could be later changed if a performance

bottleneck resulted from the initial design, or if a redesign were

required in order to meet one of the reliability criteria outlined

below. In a system in which layers are realized as tasks, the

deployment of tasks within the system is determined as part of

the initial architecting of the system abstractions, and it becomes

very difficult to rearrange tasks later, in order to deal with

problems such as performallce.

In the network example, the upcall structure has the

substantial advantage over the downcall structure that

"piggybacking" occurs naturally in the outgoing packets.

Piggybacking is the term, in network vernacular~ to describe the

desirable situation in which information from various layers of

the protocol implementation are combined into a single outgoing

packet as an efficiency enhancement. It is the goal of almost

every protocol architecture to encourage piggybacking, since the

most influential factor in network performance is the number of

packets sent, but almost all implementations of protocols do a

very poor job of piggybacking, because of lack of communication

between the layers. In an architecture where the network code

and the client are separated by an interprocess message, there is

no obvious way for the network code to guess whether or not the

client is about to send data in response to the data just received.
Most implementations abandon this optimization and simply

send an acknowledgment packet out before signaling the client to

run. However, in the upcall case, where the client runs in the

same task as the network code, the proper interaction of the

layers occurs naturally, because the client will have armed the

send side before returning to the network code which is

processing the received packet. Thus, at the time that the send
task is triggered to format the outgoing packet, the relevant
layers will have already determined whether or not they are

175

'display
layer

t ransport
layer

network
layer

receive
create receive in terruDt send
task task handler task

qet -data

I .
transPort-open t ransport- receive transport - t ransport-send

l l--
~ e t net- receive net-dispatch net- send

,,, t
/create -task /wokeu inte'rrupt

keyboard
interrupt
handler

d isplay-
keyboard-

handler

transport-arm
for -send

wakeup

interrupt

F i g u r e 4 : Cont ro l F low I n Network Pro toco l Rout ine

ready to include information in the packet. In the network case,

the discovery that upcalls lead to a natural achievement of

piggybacking was one of the most exciting and stimulating

observations about this methodology, because it was clear to

those of us who had programmed protocols using more

traditional approaches that piggybacking was a goal which

normal program structures simply could not achieve effectively.

Although we have made no attempt to formalize the design

process which results from this methodology, it may be helpful

to describe informally how design and implementation seems to

proceed, as typified by our experience with Swift. The first

decisions, as in most systems, have to do with the layers of
abstraction, which in this case define the various multi-task

modules. Exactly which tasks will be in the modules is not

determined at first, but the modules themselves are defined

early. The next step is the determination of the various events

which trigger actions within the system. For example, in a

network implementation there are three sources of actions: the

client, the timer, and the network. The next stage in the design

defines the flow of control for each of these actions. For example

an initial hypothesis might be that sending data from the client

is a downcall, whereas a closer investigation will reveal that

sending data is best structured as an upcall from the network

layer. Once these design decisions have been made, the general

shape of the system is fully determined, and more detailed design

decisions can be undertaken, for example, exactly what upcalls

are useful for asking advice between the layers, and exactly how

tasks should be deployed to execute upealls and downealls.

In determining whether an upeall has been used properly, a

good rule of thumb seems to be that a synchronous interface

should be used unless asynehrony is really needed. If a layer
contains a strange buffering algorithm in order to move data

from one task to another, the programmer should consider

whether or not a subroutine call might possibly replace the

intertask message at this point. The result of replacing an

intertask message with a subroutine call is sometimes a

substantial wrench to the programmer's conception of the design;

programmers first encountering the upcall methodology seem to

undergo a process of retraining somewhat akin to that which

results from the first experience with recursion.

6 P r o b l e m s

Most of the participants in the Swift project were convinced

of the virtues of this methodology before we began. We had

used upcalls in a variety of experiments, and we were convinced

that this programming style led to simple, efficient code. In

Swift, we hoped to explore two further aspects of upcnlls. First,

upcaUs had been initiMly motivated entirely by network

protocols, and we wanted to see if upealls were useful in other

contexts, for example, display window management packages, or

file systems. Second, and perhaps more important, we wanted to

understand how to avoid some of the disadvantages which arise

in programming using upcalls.

To many people, the use of upcalls violates a basic religious

tenet of layering, the "using m or "depends on" relation. This

relation is valued both because of the structural simplicity it

provides, and because the lower layers are often responsible for"

managing and multiplexing shared resources, so that if a lower

layer fails, many separate clients at the upper layer may be

disrupted• For a lower layer to call up to an upper layer is thus

a very perilous thing to do, since if the module implementing the

upper layer fails, the lower layer may be left in an inconsistent

state, which may destroy not only the lower layer, but every'

other client of that layer. There was thus the possibility that

upcalls would result in a system which, while simple and

efficient, was very prone to catastrophic failures. Swift was

intended to let us understand whether this was a serious

problem.

We identified a number of techniques for controlling the

propagation of failures. When an upealled module fails, there

176

are two resources which must be recovered, the shared variables

in the lower layers and the task executing the code. To make

sure that data in a lower layer is not corrupted by a failed

upcall, it is necessary to organize the data into two categories,

that data associated ~vith each individual client and that data
which describes the way the various clients interact and share

the resources of the lower layer. The simple rule which prevents

catastrophe is that all data of the latter sort must be made

consistent and unlocked before any upcall is made. Data of the

former sort, since it is private to a particular client, need not

remain consistent during an upcall. It is perfectly acceptable, if

an upper level module fails, to destroy a vertical stripe down

through the system, provided that that vertical stripe is cleanly

isolated from the resources owned by other clients, and that the

real resources associated with this vertical stripe can be

reclaimed.

The other aspect of recovering from a failed upcall is that

the task executing the code must be recovered or terminated. If

the task executing the code is a precious resource, then serious

problems may result from a failure, because the task may be in a

sufficiently inconsistent state that its stack and related resources

are beyond recovery. The simple solution to this problem is to

make tasks expendable. For example, figure 2 shows a separate

task responsible for upcalling each client. If one of those clients

fails to return, or otherwise aborts, the task can simply be

thrown away. So long as no locks for shared resources are

associated with that task, no problems of a systemwide nature

can result from simply abandoning the task and freeing its

resources.

An important question, left unanswered by the above
discussion, is how the resources at each level that are associated

with a failed client can be identified and freed. The solution is

for the system to mediate between the client and the layers that

it uses. When a client first communicates with a layer, the layer

arranges to be notified if the client fails. The layer gives the

system an identifier for the client, a procedure that implemen~

the layer-specific cleanup, and perhaps some handle for the

relevant resources. If a client fails, the system intervenes and

upcalls the relevant cleanup procedures with the supplied

argument. The conventions about how resources associated with

a client should be maintained are thus localized in the layer

managing the resources.

Another important question is how to distinguish between a

task in a loop and a task running an unexpectedly long

computation. As in most systems, we can only be somewhat

arbitrary about this, and leave the decision to a timer or to an

overseeing human.

While the technique described above can prevent catastrophe

in the face of a failed upcall, we have not identified any tools

which the language or system can provide to make sure that the

resources have in fact been properly organized so that shared
variables are not locked at inappropriate times. Instead, we

must require of the programmer that he exercise skill and

knowledge to organize the system properly. Thus, in the lower
levels of the system, where sharing and multiplexing are
important, competent programmers are the key to successful

System operation. However, in the upper levels of the system

sharing and multiplexing are not usually the critical requirement,

and it is therefore reasonable to let the modules at various levels

of a vertical stripe to be considered of equal trust, so that they

all go together when they go.

In addition to the basic violation of trust between layers,

there is another more insidious problem associated with upcall%

which is the indirect recursive call. A module which has been
called from a layer below may, as part of its execution, call back

down into the same module which called it. This can cause great
confusion in the lower layer, because this return call can change

the value of variables in the lower layer, so that when control

ultimately returns back from the upeall into the lower layer

again, that layer may find that its state has changed. Such

unexpected change, if not regulated, usually leads to horrible

program bugs. One of the goals of Swift was to explore

techniques for controlling this.

In fact, we identified a number of techniques for controlling this

problem, which are discussed below.

1. The most general technique for controlling this problem is

for the lower layer to put all of its variables in a consistent state

before making the upcall, and then to completely re-evaluate its

state on return from the call. While this eliminates any program

bugs, it leads to a very clumsy programming style, which can

materially detract from the efficiency and simplicity of upcalis.

Thus, we tended to restrict the use of this technique to

circumstances in which a recursive downcall was an important

outcome of an upcall.

2. Another technique is to prohibit, as part of the

specification of an upeall, any reeursive downcall. This

technique, while apparently rather restrictive, in fact makes very

good sense for a large number of upeails. One tends to make

upcalls into the client above to ask simple questions, such as

whether there is more data to send now. A simple query of this

sort should not under any circumstances trigger a recursive

downcall. If a recursive downcall is prohibited, then the lower
layer may leave its variables locked and inconsistent during the

upcall. This has the side effect of immediately catching

programming errors, for any recursive downcall will attempt to

lock again the locked variables, leading to an immediate hard

failure of the program. It is regrettable that such bugs can only

be caught at run time, but it is our experience that they are

caught very early in the debugging process, so the practical peril

associated with this kind of interface specification is not great.

3. A.nother technique for dealing with recursive downealls is

for the downcall to perform the requested action directly if

possible, but to queue a work request for later execution by the
task holding the lock, if it should find a lock already set.

Although we did not experiment with this technique in Swift, it

is a well understood approach for insuring smooth cooperation

between a process and an interrupt handler, where the interrupt

handler is prohibited by system structure from using the normal

process scheduling tools if it finds a lock set. The drawback of
this technique is the complexity associated with the work queue.
A subroutine package would be helpful if this technique were to

he widely used within the system.

177

4. A technique which is somewhat similar to the technique

above is to restrict the semantics of downcalls so that they never

perform any important actions on their own, but merely set flags

which are examined at known times by other tasks, including the

task making the upcall. In many cases, this is a natural

structure for downcalls, because downcalls are often just requests

to perform an action in the future, such as a request to send a

packet whenever it is convenient.

5. A final technique is possible in the special case that an

upeall almost always triggers the same return downcall. For

example, an upcall to get data to send will often cause a

downcall to arm for further sending. In this special case, the

downcall can be replaced by one of two alternatives, extra return

arguments to the upcall or another special upcall to query the

client. Since these generate overhead every time, they should

only be used if the function is needed often.

We found that these techniques made upcalls relatively easy

to program and bug free. However, no one of these techniques is

suitable for all circumstances. Rather, we found different parts

of Swift being programmed with different combinations of these

techniques. Thus, once again, we were forced to depend on the

competence of the programmer for the production of good code.

We are not embarrassed by this, since we tend to believe in the

importance of competent programmers. However,some of the

design decisions required in programming with upcalls are of a

subtle and unfamiliar nature, and require a period of

familiarization.

A multi-task module, like an upcall, is an unfamiliar style to

many programmers. Parallelism has always been a difficult

phenomenon for programmers to grasp. The principal

implementation problem which seems to arise in multi-task

modules is failure to use monitor locks properly, so that the

interactions between different tasks are not harmonious. The

more serious conceptual problem is restructuring what had been

previously thought of as a sequential program as a variety of

subroutines which can be upcalled in different tasks. For

example, one traditionally thinks of a screen-oriented text editor

aa a single task which blocks until a character is received and

which then manipulates the file being edited in some way,

perhaps updating the display as a side effect before returning to

the blocked state waiting for another key stroke. After some

thought it is possible to see that a text editor can equally be

thought of as a subroutine which is called by the handler for the

network (or the terminal) whenever a character is received, and

which manipulates the file before returning, possibly arming a

send task in order to update the display if necessary.

One other problem with multi-task modules is that it is

difficult to find all of the pieces of the module if it is necessary

to change the global state of a module, for example to shut it

down. The various subroutines of the layer may be running in

different tasks, and some of the tasks normally stationed in this

layer may be off temporarily in some other layer, perhaps

blocked waiting for some event. A solution to this problem is to

define a global cleanup signal which can be sent to all of the

relevant tasks, defining which module is attempting to cleanup.

This leaves unanswered tile question of which tasks should
receive this signal; the obvious solution is to signal any ' task on

whose stack there is a frame associated with the subroutine of

this module. However, it is unclear to us whether the

bookkeeping associated with finding the necessary tasks for

cleaning up should be done by the system or by the application

code of the layer in question. We hope that current research

underway will clarify this question.

7 Related System Features

Our development of the Swift system was motivated by a

desire to better understand the programming methodology of

upcalls and multi-task modules. However, that methodology

alone is not sufficient to describe the nature of the complete

system. Such functions as memory management and task

scheduling are not specifically constrained by the methodology,

but must be designed to meet its needs. In this section, we will

discuss task scheduling and memory management in the Swift

system.

7.1 Task Scheduling

In many systems, processes have some form of priority,

which the scheduler uses to determine which of the ready

processes to run. On the basis of our earlier experience with

network protocols, we felt very strongly that such a priority

mechanism was needed, and further that the priorities could not

be static, but must be assigned dynamically each time a task is

scheduled, since the urgency associated with a particular task has

to do with the particular operation it is carrying out at the time.

Swift thus allows the priority associated with the task to be set

as part of the scheduling request.

Priori ty is usually expressed it, terms of some ordered

sequence of arbitrary numbers. This works well if the system

has been designed by one person, who can keep track, external to

the system, of the meaning of these arbitrary numbers. We felt

that a more reasonable approach would be to express the

importance of each task by characterizing the time within which

it must run. By describing priority in terms of deadline,

measured in microseconds, rather than by an arbitrary number,

we created a representation of priority whose meaning was self-

evident to the various system programmers.

As part of multi-task modules, we provided monitor locks to

control shared access to regions of memory by multiple tasks.

This implies that the implementation of monitors and the

scheduler must interact, for if a task encounters a lock which is

set, its execution must be suspended until the lock is free, at

which time it must be scheduled. In Swift, we have a queue of

suspended tasks associated with each monitor; a task must check

on monitor exit to see if this queue is empty.

There is a further interaction between the monitor

mechanism and the scheduler. It is possible that a task with a

short deadline will encounter a monitor which has been locked by

a task with a longer deadline. That task may not be running,

because it has been preempted by other tasks with short

178

deadlines, and thus the task encountering the lock is prevented

from meeting its deadline. To circumvent this problem we

implemented a mechanism called mdeadline promotion," in which

a task with a short deadline, on encountering a monitor held by

a task with a long deadline, can temporarily change the deadline

of that other task to the shorter value until such time as the

monitor is unlocked. This mechanism, we believe, is an

important part of deadline scheduling, and we invested

substantial effort to develop a promotion strategy which would

not substantially add to the overhead of monitor entry and exit.

Our current design has at most one instruction overhead unless

promotion has occurred.

7.2 Address Space Management

As discussed above, Swift executes all tasks in a single shared

address space. Shared memory between tasks is critical, both to

permit common access to shared state variables in monitors, and

to permit the efficient passing of data from one task to another.

Earlier experimentation made clear to us that it is almost

impossible to build an efficient protocol implementation if it is

necessary to copy data in order to pass it from one process to

another.

The problem with shared address spaces is arbitrary memory

corruption due to program bugs. Several of us, prior to Swift,

had had experiences attempting to program in a shared address

space, and the failures caused by programs that write into

unexpected words of memory are very difficult to debug.

The technique we chose to control the propagation of errors

within our single address space, was to program the system in a
high level language, specifically CLU [6], which provided strong

checking at compile time and run time to insure that the address

space was not corrupted. CLU checks the bounds of all

references to arrays and structures, it validates the use of all

pointers, and so on. While there is some coat at run time

associated with these checks, we felt that this was a reasonable

price to pay for efficiency of the single address space, if the

system was in fact reliable.

Another important aspect of orderly address space

management is insuring that all pointers to an object have been

destroyed before the object is freed. Otherwise, programs may

use such a pointer to modify s reallocated area of memory,

causing arbitrary corruption of storage. To prevent this

problem, the system rather than the user must deallocate objects

that are no longer needed. This function, called garbage

collection, is not a novel idea for an operating system; it has

been demonstrated before in the LISP machine [7] and in the

CEDAR [11] operating system. Development of a production
garbage collector was not the major focus of the project, but we

implemented a simple mark/sweep garbage collector to permit

system testing and demonstration.

We had two reliability goals. The first, and simplest, is that

after a system failure the address space should be sufficiently

uncorrupted so that the debugger would run, so that we could

analyse the failure. The more ambitious goal is that the damage
caused by failure should be sufficiently isolated and recoverable

so that the system can continue to run without degradation after

a serious failure. In systems with multiple address spaces, the
solution to a failure is usually to sacrifice one or more address

spaces, and hope that there are no cross address space
dependencies which disable other parts of the system. In a single

address space system such as Swift, it is necessary to define some

other entity which is sacrificed after a failure. We used the term

"job" to characterize this entity in Swift; it corresponds to the

vertical stripe through the system described earlier, the stripe

associated with the resources for a particular client. The

research to demonstrate the complete recovery of the system

after a failure is not yet complete, but the definition of the

necessary mechanisms seems straightforward. The simpler goal,

that of at least permitting the debugger to run after a serious

crash, was very straightforward, and we achieved it without any

special effort.

8 S w i f t S ta tus

Currently, the kernel of Swift has been programmed, and a

number of system function, such as network protocol and stubs

to remote file systems have been written in order to experiment

with the upcall methodology. A small number of applications

have been programmed but we do not intend to put Swift in

service as any sort of production system. Initially, Swift was

implemented bn the Digital Equipment Corporation VAX

architecture; it was subsequently moved to a machine based on

the Motorola 68000. This change did prove that the operating

system was substantially portable, but practical difficulties which

have arisen with the 68000 machine mean that there is currently

no good vehicle on which Swift could run as a service machine.
Currently, our major effort is the demonstration of recovery of

the system after a job failure.

9 C o n c l u s i o n s

Our experience in programming Swift convinces us of the

utility of the basic programming methodology of upcalls and

multi-task modules. It also convinces us of the utility of

programming in a strongly checked typesafe language inside a

single address space. We are confident that the methodology is

suitable for many operating system functions, obviously

including network and input/output support. We are not yet

sure of the scope of problem for which upcalls is a good

methodology. We designed a display window-management

system for Swift, and concluded that a window package would

also benefit from the upeall design; however, that design was not

validated by implementation. We feel that some applications,

such as text editors, which are naturally driven from below by

arriving characters, could be profitably structured as upcalls,

and we are currently designing an upcail driven text editor to

explore this hypothesis. However, for many large applications

such as compilers, the whole methodology seems irrelevant.

Perhaps the most interesting and general result of this

research is some further understanding about the organization of

parallel computations. The process is the moat obvious

abstraction provided by an operating system to decompose a
computation. At the same time, according to the current

179

religion of structured programming, layers are the most
important abstraetion tool in decomposing a function. It is,
therefore, somewhat tempting to think of mapping layers onto
processes. Swift has clearly shown us that realizing a layer as a
process can be a very bad idea; conversely that organizing a
layer as a multi-task module, where the tasks correspond to
vertical stripes representing particular client requests rather than
horimntal stripes representing particular functional
decompositions, is an effective system organization technique.

This line of reasoning leads to the further, and perhaps
controversial conclusion, that since shared memory was the
obvious vehicle for linking the various tasks in a multi-task
module, that a system which was based on the idea of
communication between tasks only through messages, and not
through shared memory, would not be as suitable a vehicle for
support of this sort of system. It is possible to imagine building
a multi-task module in a system where tasks cannot share
memory, but the only obvious way to structure such a system
would be to create, as part of each multi-task module, one task
which was responsible for managing the state variables, and to
require that anyone wishing to manipulate the state variables do
so by sending a message to that task. This structure seems to
take the already parallel structure of the multi-task module and
make it substantially more convoluted and confusing, as well as
arguably leas efficient. Certainly, we feel that the good
performance of the upcall methodology and the simplicity of the
programs we write argue in favor of this methodology, at least
for a large clam of programming problems.

[6] Liskov, Barbara, et al.
CLU Reference Manual.
Springer-Verlag, NY, NY, 1981.

[7] Moon, David A.
Garbage Collection in a Large LISP System.
In Proceedings of 198~ ACM Symposium on LISP

Functional Programming, August 0-8, Austin, TX.
ACM, 1984.

[8] Neumann, P. G., etal,
A Provably Secure Operating System.
Technical Report Final Report of SRI Project 2581, SRI,

Menlo Park, CA, June, 1975.

[9] Reed, David P.
Processor Multiplezing in a Layered Operating System.
Technical Report TR-164, Massachusetts Institute of

Technology, LCS, Cambridge, MA, June, 1976.

[10] Reid, L. G., and Karlton, P.
A File System Supporting Co-operation Between

Programs.
In Ninth ACM Symposium on Operating systems

Principles, Brctton Woods, NH. ACM, 1983.

[11] Teitelman, Warren.
The Cedar Programming Environment: A Midterm

Report and Examination.
Technical Report CSL-83-11, P83-00012, Xerox

Corporation, Pals Alto, CA, June, 1984.

10 Acknowledgement

The author wouuld like to thank Michael Grecnwald, Pui
Ng, Lixia Zhang and James Gibson for their substantial help in
the revision of this paper, and Larry Allen, Dave Reed and the
other members off the Swift development team whose
contribution to the project made the paper possible.

References

[1] Cooper, Geoffrey H.
An Argument for Soft Layering of Protocols.
Technical Report TR-300, Massachusetts Institute of

Technology, LCS, Cambridge, }viA, May, 1983.

[2] Dijkstra, E. W.
The Structure of the THE Multiprogramming System.
CACM 11(5):341-346, May, 1968.

[3] Habermann, A. N., Flon, Lawrence, and Cooperider, L.
Modularisatin and Hierarchy in a Family of Operating

Systems.
CACM 19(5):266-272, May, 1976.

[4 l leO.
P~fercnee Model Of Open Systems Interconncction.
Technical Report IS0/TC97/SC16 4798, ISO, 1982.

[5] Janeon, Philippe A.
Using Type Eztension to Organize Virtual Memory

Mechanisms.
Technical Report TR-167, Massachusetts Institute of

Technology, LCS, Cambridge, MA, September, 1976.

180

