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LOCUS is a distributed operating system that provides a very 
high degree of network transparency while at the same lime sup- 
porting lligh performance and automatic replication of storage, 
By network transparency we mean thai at the syslem call 
interface there is no need to mention anything network 
related. Knowledge of the network and code to inleracl 
with foreign sites is below this interface and is thus hidden 
from both users and programs under norm~ll conditions. 
LOCUS is application code compatible with Unix 2, and per- 
formance compares favorably with standard, single syslem 
Unix. LOCUS runs on a high bandwidth, low delay local 
network. It is designed to permil both a significant degree 
of local autonomy for each site in the network while still 
providing a network-wide, location independent name struc- 
lure. Atomic file operations and extensive synchronization 
are supported. 

Small,  slow sites without local mass slore can coexist in 
the same network with much larger and more powerful 
machines without larger machines being slowed down 
through forced interaction with slower ones. Graceful 
operation during network topology changes is supported. 

I. Introduction 

LOCUS is an integrated distributed system whose goals 
include a) making the development of distributed applica- 
tions no more difficult than single machine programming, 
and b) realizing the potential that distributed systems with 
redundancy have for highly reliable, available operation. 
Much of the research reported in this paper is the subject of 
a forthcoming Ph.D. dissertation [Walker82]. The system is 
application code compatible with the Unix operating system, 
[Ritchie74] and a prototype running on DEC PDP-11s, 
models 44, 45, and 70, connected by local networks ranging 
in speed from 1 to 10 megabits/second is operational at 
UCLA. LOCUS has also been ported to the DEC VAX. 

IThis research was supported by the Advanced Research Projects Agency 
under research contract DSS MDA 903-77-0211. 

2Unix is a registered trademark of Western Electric. 

I.I System Design Assumptions and Goals 

Most existing distributed systems were constructed by 
making relatively minor nlodifications to adapt tile single 
machine systems to permit interaction with other copies of 
themselves, or even with other systems. The basic structure 
and operational philosophy of those systems was invariably 
preserved. Our goal was to understand, given tile freedonl 
to start largely anew, what tile structure of a distributed sys- 
tem ought to be. One fundamental  assumption we naade 
cotacerned tile interconnection network; it was of high 
bandwidth, low delay, with a low error rate - so called "thick 
wire" networks, represented by such examples as the Ether- 
net. Broadcast capability was not assumed. We explicitly 
ruled out Arpanet or Telenet style networks because of their 
limited bandwidth and significant delay. Satellite based net- 
works were also not explicitly addressed because of their 
significant delay. 

General applications were to be supported, will] focus oil 
"computer utility" functions and data management.  Essential 
goals were to provide high reliability and availability in a dis- 
tributed environment.  Performance was also critical, as was 
providing tt much simpler user and programming interface 
than that of current distributed systems. We were willing to 
insist that all sites in the network run a given system, but the 
sites should be able to vary widely in power and storage capa- 
city. 

i .2 LOCUS Overview 

LOCUS is a distributed operating system whose architec- 
ture strongly addresses our goals of network transparency, 
high reliability and availability, and good performance. The 
machines in a LOCUS net cooperate to give all users tile illu- 
sion of operating on a single machine: the network is essen- 
tially invisible, hlvisible here means that there is lao need to 
refer to a specific site or to the network tit all. There is con- 
siderable belief and evidence that a uniform interface to all 
resources is very attractive in tile distributed environn~ent. 
Support for this illusion is entirely within tile operating sys- 
tem code. Nevertheless, each machine is a complete system 
and can operate gracefully alone. LOCUS is designed to 
automatically replicate resources to tile degree indicated by 
associated reliability profiles. Graceful operation in tile face 
of network partitions, as well as nodal failures, is supported. 
Finally, all this increased functionality is provided within tile 
constraint of good performance. It is expected thai these 
characteristics are suitable for the support of a wide variety 
of applications, including general distributed computing, 
office automation, and database management.  
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Note that LOCUS was designed to provide network tran- 
sparency access to and replication of both data resources and 
processing resources or agents. This paper primarily 
addresses issues in the data resource component,  in part 
because functionality in that area is essential. More impor- 
tantly, however, concepts needed for solution in the data 
area provide a solid framework for extension, and further, 
the mechanisms that must  be built are much of what is 
needed for distributed processing support. 

Section 2 of this paper is dedicated exclusively to 
motivating the concept of low-level network transparency. In 
section 3 we discuss the components  of the software system 
architecture necessary to implement network transparency 
and to achieve increased reliability and availability. Although 
performance is ment ioned in section 3, a more detailed dis- 
cussion, including both the design principles followed and the 
results attained, is presented in section 4. 

2. Network Transparency 

As real distributed systems come into existence, an 
unpleasant truth is being learned: the development  of 
software for distributed applications is often far harder to 
design, implement,  debug and maintain than the analogous 
application written for a centralized system. There are 
several reasons. First, typically the means by which a remote 
resource is accessed is different from, and more complicated 
than, the access method for a corresponding local resource. 
For example, one opens a local file, but may have to execute 
a multistep .file transfer protocol to access a remote file. 
Second, the error modes of a collection of machines con- 
nected by a network appear much more substantive than in a 
centralized environment .  For example, on a single machine 
one rarely worries about partial .failure. In a distributed 
envi ronment ,  it is quite reasonable to expect that one or 
several of the sites supporting the application may fail at 
awkward moments  while others continue unaware. One typi- 
cally assumes by contrast on a central machine that a system 
failure causes the application to stop. 

A further problem with distributed systems is that local 
storage may be limited, necessitating that the user explicitly 
move copies of files around the network, archiving and gar- 
bage collecting his own storage. Redundant  copies for the 
sake of reliability are the user 's  concern. The user must  
keep track of different versions of what is intended to be the 
same file, especially when the copies have resulted from net- 
work partitions (leading to parallel changes). As a result, the 
application program and user must  explicitly deal with each 
of these facts, at considerable cost in additional software) On 
a centralized machine, with a single integrated file system, 
many of these problems do not exist, or are more gracefully 
handled. 

An appealing solution to this increasingly serious problem 
is to develop a network operating system that supports a high 
degree of network traJtsparency; all resources are accessed in 
the same manner  independent  of their location. If open 
(file-name) is used to access local files, it also is used to 
access remote files. That  is, the network becomes "invisible", 
in a similar manner  to the way that virtual memory hides 
secondary store. Of course, one still needs some way to con- 
trol resource location for optimization purposes, but that 

1Recently one of our staff built a network wide printer spooler for our 
local network which at the time ran Arpanet software. Over twenty 
processes and several thousand lines of code were required to deal with 
the environment; the actual printer spooler included only two processes. 

control should be separated from the syntax and semantics of 
the system calls used to access the resources. Ideally then, 
one would like the graceful behavior of an integrated storage 
system for the entire network while still retaining the many 
advantages of the distributed system architecture. That is, 
the existence of the network should not concern the user or 
application programs in the way that resources are accessed. 
If such a goal could be achieved, its advantages would 
include the following. 

1. Easier software development. 
Since there is only one way to access resources, and 
the details of moving data across the network are 
built in, individual software packages do not require 
special software for this purpose. As a result, many 
traditionally distributed applications could be imple- 
mented in the same manner  as local operations. 

2. Incremental Change Supported. 
Changes made below the level of the network wide 
storage system are not visible to application software. 
Therefore,  changes in both hardware and software 
resources can be made easily. 

3. Potential Jbr Increased Reliability. 
Local networks, with a fair level of redundancy of 
resources (both hardware and stored data), possess 
considerable potential for reliable, available operation. 
However, if this potential is to be realized, it must  be 
possible to substitute various resources for one 
another  easily (including processors, copies of files 
and programs, etc.). A uniform interface which hides 
the binding of those resources to programs would 
seem to be necessary if the high reliability goal is to 
be realized. 

4. Simpler User Model 
By taking care of the details of managing the network, 
the user sees a conceptually simpler storage facility, 
composed merely of  files, without machine boun- 
daries, replicated copies, etc. The same is true for 
other user visible resources. 

There are a number  of aspects to network transparency, 
Is the location of a resource apparent in the (by necessity 
global) resource name? Preferably not, since one then has 
the freedom to move resources for optimization or reliability 
reasons without changing application software. How are the 
much richer set of errors which occur in a distributed system 
reflected to the caller? Given that most  implementations to 
support transparency will involve considerable levels of map- 
ping, how can that be done without imposing any significant 
performance penalty? Each of these issues is addressed by 
the LOCUS design. 

There are also some system aspects that militate against 
full transparency. If the hardware bases of each site aren ' t  
the same, then it may be necessary to have many different 
executable load modules corresponding to a given name, so 
that when a user (or another program) issues a standard 
name, the appropriate file is invoked as a function of the 
machine on which the operation ts to be performed. There 
are other examples as well; they all have the characteristic 
that a standard name is desired for a function or object that 
is replicated at some or all sites, and a reference to that name 
needs to be mapped to the local, or nearest instance in nor- 
mal circumstances. 
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Nevertheless, in other circumstances, a globally unique 
name for each instance is also necessary; to install software, 
do system maintenance functions, etc. A solution that 
preserves network transparency and provides globally unique 
names within the normal name space while still supporting 
site dependent mapping for these special cases is needed. 
Our solution to this problem involves appending tags to file 
names which by convention indicate site dependent informa- 
tion. Various system and user call options default the tag 
value appropriately. 

3. System Architecture 

In this section, we discuss several key components  of the 
software system which address the goals of network tran- 
sparency, reliability and availability. First there is a more 
detailed discussion of global naming, which was mentioned 
in section 2. Second is a description of both the policy and 
mechanism involved in network-wide data access synchroni- 
zation. Third is a treatment of several elements designed to 
increase reliability and availability including data replication 
and an atomic act ion/commit mechanism. Also reviewed are 
aspects of local autonomy and prevention of error propaga- 
tion from machine to machine. The final component  con- 
cerns the handling of sites entering and leaving the network. 
Work in this area involves recognition and initialization 
issues, cleanup issues and the major issue of checking and 
resolving the consistency of multiple copies of files. 

3.1. Global Names 

In developing a naming mechanism for a distributed sys- 
tem, one faces a number  of issues. What is the nature of 
user sensible, global names? What are the system internal 
global names? How, and when, is mapping between the two 
done? How, and when, are names of either sort allocated 
and invalidated? Should there be multiple levels of naming? 
The design choices made in LOCUS, and the basic reasons, 
are outlined below. 

There are two significant levels of abstraction in the 
LOCUS file system, which serves as the heart of the naming 
mechanism. The user and application program view of object 
names in LOCUS is analogous to a single, centralized Unix 
environment ;  virtually all objects appear with globally unique 
names in a single, uniform, hierarchical name space. Each 
object is known by its path name in a tree ~, with each ele- 
ment of the path being a character string. Any user and/or  
program can set a "working directory" appropriately to avoid 
having to employ the longer path names that this large 
hierarchy may imply. No notion of object location appears in 
the path name, so that an object can easily be moved without 
changing its visible name. 

Low level names in LOCUS are 'also globally unique. 
The name space is organized around the concept of .file 
groups.: As in Unix, each file group (of which there may be 
many on a single standard Unix system) is composed of a 
section of a mass store, and divided into two parts; a small 
set of file descriptors which serve as a simple low level 
"directory", and a large number  of standard sized data blocks. 
A file descriptor (inode) contains pointers to the data blocks 
which compose that file. Data blocks can be used as indirect 
pointer blocks for large files. Under these conditions, a low 

IThere are a few exceptions to the tree structure, provided by Unix links. 

2The term file group in this paper corresponds directly to the idnix term 
.file system. 

level file name is a <file group number,  file descriptor 
n u m b e r > )  

LOCUS uses the same method, although since a file 
group can be replicated, one speaks of a logical file group 
number.  There is an additional map from logical to physical 
file group number;  this is a one to many map. 2 Files may be 
replicated only at sites which store the containing file group. 
However, it is not necessary to replicate a given file at all 
such sites. Thus the amount  of storage allocated to the phy- 
sical versions of a file group can differ, since each can be 
incomplete. When a file is not stored at a physical file group, 
the file descriptor there is not kept current. 

The application visible naming hierarchy is implemented 
by having certain low level files serve as high level direc- 
tories. An entry in such a directory contains an element of a 
path name and the index of the file descriptor corresponding 
to the next directory or data file in the path. 

The collection of file groups therefore represent a set of 
naming trees; these are patched together to form the single, 
network wide naming tree by system code and a network 
wide mount table. 

Creating a file requires allocating a file descriptor, so race 
conditions could lead to the same file descriptor being allo- 
cated to different files. Therefore, some control is needed. 
One solution would be not to use the descriptor number  as 
part of the name; rather have some unique ID as the name, 
and store it in the descriptor as well as in the higher level 
directory entry that pointed at the descriptor. The descriptor 
number  would be treated only as a guess and the IDs would 
be compared at each access attempt. No particular method to 
manage file deletion and subsequent reuse of file descriptors 
is then needed, assuming that IDs are never reused. 

However, in LOCUS, this approach would have meant 
changing the contents of higher level directories, which are 
application code visible in Unix. Therefore, we chose to 
retain the file descriptor number  as part of the name. To 
avoid allocation races, the file descriptor space for each file 
group is logically partitioned; each storage site for a file group 
may allocate descriptors only from its own part. Deletion of 
a file requires interaction among all storage sites for a given 
file before the descriptor may actually be reused. 

Given the high and low level name space, the next issue 
concerns the map between the two. In LOCUS, conversion 
to low level name is done as soon as possible; then only low 
level names are passed within the system. In this way, one 
avoids remapping names. This philosophy could have been 
carried even further; one could have found the disk address 
of a page, and used that as a component  of the ' name '  to be 
passed. We did not do this for two reasons. First, since a 
given file may not be stored at all storage sites for that file 
group, address information might not be available, and so 
another mechanism would be needed anyway. Second, we 
wanted each storage site to be able to provide some 
significant degree of internal system data structure con- 
sistency by itself. For example, ~vhile a site updating a 
remotely stored file can cause the contents of that file to be 
inappropriately altered at the storage site, it cannot damage 
other files stored at the storage site (an action which would 
be possible if physical page addresses were being used.) 

IDevices also appear in the file system as leaves in the name structure and 
they have global names. 

21t is implemented as an extension to m o u , t m g  a file group. 
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3.2. Synchronization 

Since storage may be replicated, and there are multiple 
users, the problem of synchronization of access to logical 
files and their physical counterparts must be addressed if a 
consistent file system is to be presented to users. Standard 
Unix is quite bereft of such controls, so these represent an 
addition to the user and program interface. ~ 

3.2.1. Synchronization Policy in LOCUS 

The policy in LOCUS is based on a global "multiple 
readers, single writer" policy. Such a basic policy provides 
concurrent read access to replicated copies of data while 
preventing concurrent update. However, the actual policy 
which has been implemented is more sophisticated for three 
principal reasons. First, in a modern operating system 
environment ,  more functionality is appropriate. For example, 
when one process forks another,  it is best for the newly 
created process to inherit and retain the access rights held by 
the parent, since in most cases the family of processes are 
cooperating on the same task. They can coordinate among 
themselves if intrafamily synchronization is needed. 

Another  example results from the hierarchical file sys- 
tem. Whenever  a file is opened through the use of a full 
path name, it is necessary to open for read all the directory 
files in the path. One expects high traffic of this sort in an 
envi ronment  with many users. Shared read locks would 
suffice, if it were not for the fact that any file creation or 
rename implies a write lock to the containing directory. 
While these locks would be of short duration, the potential 
performance impact of temporarily blocking all file opens in 
the network that contain that directory in their path name is 
significant. 

The LOCUS solution for reading directories is a new 
access type, nolock read. When a file is opened for nolock 
read, there is essentially no synchronization with other 
activity on the file. The only guarantee is that a single 
operating system read call will return with a consistent set of 
bits, i.e. from one version of a (possibly dynamically chang- 
ing) file. 2 Directory entries, and the system software t h a t  
accesses them, have suitable characteristics to be accessed in 
this way (although convincing oneself of this fact is not 
easy). A higher overhead alternative would have been to 
implement record locks in the file system. 

The third reason for a sophisticated synchronization pol- 
icy is Unix compatibility. Since standard Unix has few res- 
trictions, normal program behavior sometimes would be 
blocked by a straightforward policy. 

3.2.2. Synchronization Mechanism in LOCUS 

Many techniques have been proposed for the synchroni- 
zation mechanisms in distributed systems [Bernstein80]. 
After careful analysis, we chose a centralized synchronization 
protocol with distributed recovery. For a given file group, 
one site is designated as the Current Synchronization Site 
(CSS) This site is responsible for coordinating access to the 
files contained in the associated file group. That  is, all open 
calls involve a message to the CSS (except for nolock reads). 
In this way it is possible for the CSS to assure that a reques- 
ter gets the latest version of a file. However, it is not 

IThe introduction of  synchronization control is a millor source of  
incompatibility for a few exist ing programs. 

2This is true as long as the read did not cross a block boundary. 

necessary for the CSS to be the site from which data access is 
obtained. Any site which has a copy of the file can support 
this open request; that is, a particular Storage Site (SS) is 
designated to support an open request at the time of the 
open. A fairly general synchronization policy can be sup- 
ported, since the synchronizing point is centralized for any 
given decision. 

An outline of how actual file open and read operations 
are handled may serve to clarify the interaction of synchroni- 
zation and file system structure. Suppose an open request is 
made for file A. After any pathname directory searching 
(described below), the requesting site has obtained A's low 
level name (the pair <fi le group number ,  file descriptor 
n u m b e r > ) .  This name is sent in an open message from the 
requesting, or using site (US) to the CSS. The CSS selects a 
storage site and sends it a message. After the storage site 
decides to provide service, it replies to the CSS, which main- 
rains the synchronization information and notifies the using 
site. The using site installs the appropriate file descriptor in 
its internal table (just as if the file were local) and the open is 
complete. Note that a 3 site open (US, CSS and SS func- 
tions all on different sites) is worst case. Message traffic and 
processing is decreased when any two or all three of the 
functions are on the same site. 

Directory searching is done by the operating system using 
much of the same mechanism described above. Each path- 
name component  is internally opened and read to find the 
low-level name of the next pathname component.  The major 
different between these file opens and regular file opens is 
the use of the nolock read open mode described in the previ- 
ous section. Via that mode all message traffic is eliminated if 
a copy of the desired directory file resides locally. 

After a non-local file is open, processing at the using site 
continues as if the file had been local, with the US requesting 
pages of the file from the SS very much the same as it 
requests pages from a local disk. Effectively, LOCUS "page 
faults" across the network for file pages. 

The mechanisna used in LOCUS is quite different than 
primary copy strategies [Alsberg78], in that all physical copies 
o1" a logical file may be used, even for update. The primary 
copy strategy requires that all activity involve a single 
specified copy, with all other copies eventually used lbr 
back-up. In this way, optimization that takes into account 
the location of resources can be done. 

3.3. Reliability 

Reliability and availability represent a whole other aspect 
of distributed systems which has had considerable impact on 
LOCUS. Four major classes of steps have been taken to 
achieve the potential for very high reliability and availability 
present in distributed systems with redundancy. 

First, an important aspect of reliable operation is the abil- 
ity to substitute alternate versions of resources when the ori- 
ginal is found to be flawed. In order to make the act of sub- 
stitution as straightforward as possible, it is desirable for the 
ime~:ldces to the resource versions to look identical to the 
user of those resources. While this observation may seem 
obvious, especially at the hardware level, it also applies at 
various levels in software, and is another  powerful 
justilication for network transparency. In LOCUS, copies of 
a file can be substituted for one another with no visibility to 
application code. Consistency issues are handled by the ver- 
sion vector mechanism discussed in the next section. 
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Front another point of view, once network transparency 
is present, one has the opporluHily to enhattce system reliabil- 
ity by substituting software as well as hardware resources 
when errors are detected. In LOCUS, considerable advan- 
tage is taken of this approach. Since the file system supports 
automatic replication of files transparently to application 
code, it is possible for graceful operation in the face of net- 
work partition to take place. If the resources for an opera- 
lion are available in a given partition, then the operation may 
proceed, even if some of those are data resources replicated 
in other partitions. A partition merge procedure detects any 
inconsistencies which may result front this philosophy, and 
for those objects whose semantics the system understands 
(like file directories, mailboxes, and the like), automatic 
reconciliation is done. See section 3.4. 

Recovery from partitioned operation is done hierarchi- 
cally, in that first lower level software attempts to merge a 
file; if it cannot, then the problem is reported to the next 
level up, eventually to the user (owner) of the rite. 

A second step in increasing the reliability of operation is 
the support in LOCUS of file c o m m i n i n g  [Lampson78] 
/Gray78/. For a given file, one can be assured that either all 
the updates are done, or none of them are done, even in the 
face of system crashes and/or network failures. Commit 
normally occurs automatically at file close time if the file had 
been open for write, but application software may request 
commits at any time during the period when a file is open. 
To do a commit, first the current storage site permanently 
records the changed file. Then the CSS and user code are 
notified of successful commit, and user execution may go on. 
Front this point on, the new version of the file is propagated 
in parallel to other storage sites. 

Third, even though a very high level of network tran- 
sparency is present in the syntax and semantics of the system 
interface, each site is still largely autonomous. When, for 
example, a site is disconnected front the network, it can still 
go forward with work local to it. This goal has had 
sigTqlicant architectural impact, which is discussed in section 
4.2. 

Fourth, the interaction among machines is strongly s ty l -  

i z e d  to promote "arms length" cooperation. The nature of 
the low level interfaces and protocols among the machines 
permits each machine to perform a fair amount of defensive 
consistency checking of system information. As much as 
feasible, maintenance of internal consistency at any given site 
does not depend on the correct behavior of other sites. 
(There are, of course, limits to how well this goal can be 
achieved.) Each site is master of its own resources, so it can 
prevent flooding from the network. 

3.4. Topology Change and Replicated File Consistency 

A procedure within the operating system is executed 
whenever a network topology change is observed (one or 
more sites entering or leaving the network). Currently this 
topology change procedure runs a simple algorithm to choose 
a coordinating site which polls the others to reconstruct 
network-wide data structures. It chooses new CSS's for file 
groups when necessary. The new CSS is then responsible for 
synchronizing information relating to that file group, and 
invoking the file group recovery system to establish repli- 
cated file consistency. 

Given that a data resource can be replicated, a policy 
issue arises. When the network is partitioned and a copy of 
that resource is found in more than one partition, can the 
resource be modified in the various partitions? It was felt 
important for the sake of availability that such updates be 
permitted. Of course, this freedom can easily lead to con- 
sistency conflicts at partition merge time. However, our view 
is that such conflicts are likely to be rare, since actual sharing 
in computer utilities is known to be relatively low. 

Further, we developed a simple, elegant algorithm to 
detect conflicts if they have occurred. See /Parker80/. The 
core of the method is to keep a version w, ctor with each copy 
of the data object. There are as many elements in the vector 
as there are sites storing the object. ~ Whenever an update is 
made to a copy of the object at a given site, that site's ele- 
ment of the version vector associated with the updated copy 
is incremented. The conflict detection criterion is then very 
simple. When merging two copies of an object, compare 
their version vectors. If one dominates the other (i.e. each 
element is pairwise greater than or equal to its corresponding 
element), then there is no conflict; the copy associated with 
the dominating vector should propagate. Otherwise a conflict 
exists. 

Most significant, for those data items whose update and 
use semantics are simple and well understood, it may be 
quite possible to reconcile the conflicting versions automati- 
cally, in a manner that does not have a "domino effect"; i.e. 
such a reconciliation does not require any actions to data 
items that were updated during partitioned operation as a 
function of the item(s) being reconciled. 

Good examples of data types whose operations permit 
automatic reconciliation are file directories and user mail- 
boxes. The operations which apply to these data types are 
basically simple: a d d  and remove.  The reconciled version is 
the union of the several versions, less those items which 
have been removed. 2 There are of course situations where 
the system does not understand the semantics of the object 
in conflict. The LOCUS philosophy in these cases is to 
report the conflict to the next higher level of software, in 
case resolution can be done there. Data Management 
software for example might be capable of such resolution. If 
there is no higher level software to resolve the conflict, it is 
reported to the user. It is surprising how many applications 
have straightforward enough semantics that nearly full opera- 
tion can be permitted during partitioned operation while still 
allowing automated reconciliation at merge time. 

The special issues of partitioned operation and replicated 
file recovery after partition have been topics of considerable 
work, including two dissertations ([FaissolS1] considers parti- 
tioned operation in applications such as banking and airline 
reservations while [Rudisin82] will deal with the file recovery 
issue). 

IThe assumpt ion made in LOCUS is that a file is either replicated a 
relatively few number  of  t imes (the normal case for user data files), or is 
stored everywhere  (the case for system modules  needed for a site to run 
LOCUS).  When an all bit is set in the file descriptor, it is understood that 
the file is stored everywhere  that the file group exists,  and the version 
vector applies only to a limited number  of  sites, the only sites which can 
serve as a storage site for an update. 

2The situation for directories is somewhat  more  complex, since it is 
possible to have a name conflict; when two different files of  the same 
name are created in two different partitions. LOCUS detects such conflicts 
and reporls them to the users via electronic mail, and nlarks the 
conflicted files so that special action is needed before norrnal access can 
occur. 
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4. Performance and its Impact on Software Architecture 

"in software, virtually anything is possible; however, few 
things are feasible." [Cheatham71] While the goals outlined 
in the preceding sections may b,e attainable in principle, the 
more difficult goal is to meet all of the above while still 
maintaining good performance within the framework of a 
well structured system without a great deal of code. A con- 
siderable amount of the LOCUS design was tempered by the 
desire to maintain high performance. Perhaps the most 
significant design decisions in this respect are: 

a) specialized "problem oriented protocols", 

b) integrated rather than partitioned function, 

c) a lightweight process mechanism for serving network 
requests inside the operating system kernel, 

d) special handling for local operation. 

Below, we discuss each of these in turn. 

4.1. Problem Oriented Protocols 

It is often argued that network software should be struc- 
tured into a number of layers, each one implementing a pro- 
tocol or function using the characteristics of the lower layer. 
In this way, it is argued, the difficulties of building complex 
network software are eased; each layer hides more and more 
of the network complexities and provides additional function. 
Thus layers of "abstract networks" are constructed. More 
recently, however, it has been observed that layers of proto- 
col generally lead to layers of performance cost. (See for 
example, [Kleinrock75]). In the case of local networks, it is 
common to observe a cost of up to 5,000 instructions being 
executed to move a small collection of data from one user 
program out to the network.[Lampson79] 

In a local network, we argue that the approach of layered 
protocols is frequently wrong, at least as it has been applied 
in long haul nets. Functionally, the various layers were typi- 
cally dealing with issues such as error handling, congestion, 
flow control, name management, etc. In our case, these 
functions are not very useful, especially given that they have 
significant cost. The observed error rate on local networks is 
very low, although certainly not zero. Congestion is gen- 
erally not a problem; the token ring in use at UCLA 
[Farber74][Clark78] uses a circulating token, supported by 
hardware, to control access to the transmission medium. 
The Ethernet [Xerox80] has an analogous mechanism. 
Much flow control in LOCUS is a natural consequence of the 
nature of higher level activity, since many incoming mes- 
sages to a site result from explicit requests made by that site. 
Some additional flow control is needed, since a storage site 
can in principle be swamped by requests from using sites 
which have open files supported by the given storage site. 
Name management largely must be done at a high level 
within LOCUS, so that any nontrivial lower level mechanism 
within the network layer would largely be ignored. 

In fact, despite its limitations, Saltzer's "end to end" argu- 
ment applies very strongly in LOCUS.[Saltzer80] Summar- 
ized very quickly, Saltzer points out that much of the error 
handling that is done at low levels in computer networks is 
redone at higher levels. The reason is that low level han- 
dling cannot mask or provide recovery from higher level 
faults. 

In the design of LOCUS, we found it necessary to deal 
with a significant collection of error events within the operat- 
ing system; managing the impact of remote sites failing, syn- 
chronization difficulties, etc. Many types of low level errors 
therefore are also detected by the mechanisms that we 
needed to build anyway; hence the (expensive) low level 
supports were dropped. Notice that this principle cannot be 
followed blithefully. There are certain low level events that 
cannot be detected at a higher level. These must be 
addressed in the basic network protocols. So, for example, 
we support automatic retransmission, as well as certain forms 
of redundancy in data transmission. 

All of these observations lead one to develop specialized 
problem oriented protocols for the problem at hand. That is 
what occurred in LOCUS. For example, when a user wishes 
to read a page of a file, the only message that is sent from 
the using site to the storage site is a read message request. A 
read is one of the primitive, lowest level message types. 
There is no connection management, no acknowledgement 
overhead, etc. The only software ack in this case is the 
delivery of the requested page. (The hardware does provide 
a low level acknowledgement.) 

Our experience with these lean, problem oriented proto- 
cols has been excellent. The effect on system performance 
has been dramatic. See section 4.5. 

4.2. Functional Partitioning 

It has become common in some local network develop- 
ments to rely heavily on the idea of "servers", where a partic- 
ular machine is given a single role, such as file storage, name 
lookup, authentication or computation. [Swinehart79] 
[Rashid80] [Needham 80] We call this approach the server 
model of distributed systems. Thus one speaks of "file 
servers", "authentication servers", etc. However, to follow 
this approach purely is inadvisable, for several reasons. 
First, it means that the reliability/availability of an operation 
which depends on multiple servers is the product of the relia- 
bility of all the machines and network links involved. The 
server design insures that, for many operations of interest, 
there will be a number of machines whose involvement is 
essential. 

Second, because certain operations involve multiple 
servers, it is necessary for multiple machine boundaries to be 
crossed in the midst of performing the operation. Even 
though the cost of network use has been minimized in 
LOCUS as discussed above, it is still far from free; the cost 
of a remote procedure call or message is still far greater than 
a local procedure call. One wants a design where there is 
freedom to configure functions on a single machine when the 
situation warrants. Otherwise serious performance costs may 
result, even though the original designers believed their allo- 
cation of functions across machine boundaries did not 
require those boundaries to be crossed by the "tightloops" of 
certain applications. 

Third, since it is unreasonable to follow the server 
machine philosophy strictly, one is led to multiple implemen- 
tations of similar functions; to avoid serious performance 
costs, a local cache of information otherwise supplied by a 
server is usually provided for at least some server functions. 
The common example is file storage. Even though there 
may be several file servers on the network, each machine 
typically has its own local file system. It would be desirable 
to avoid these additional implementations if possible. 
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An alternative to the server model is to design each 
machine 's  software as a complete facility, with a general file 
system, name interpretation mechanism, etc. Each machine 
in the local network would run the same software, so that 
there would be only one implementation. Of course, the sys- 
tem would be highly configurable, so that adaptation to the 
nature of the supporting hardware as well as the characteris- 
tics of use could be made. We call this view the integrated 
model of distributed systems. LOCUS takes this approach. 

It should be noted that an integrated architecture can be 
easily made largely to look like a server oriented system if 
suitable configuration flexibility has been provided. For 
example, if there were significant cost or performance advan- 
tages to be gained by having most files stored at a few sites, 
no software changes would be necessary to LOCUS. In fact, 
one of the planned configurations for LOCUS includes 
workstation-like machines with no local file storage at all. 

4.3. Lightweight Processes 

To maximize LOCUS performance, we wished at any 
given site to be able to serve a network request without the 
usual overhead of scheduling and invoking an application 
level process. Hence, implementing much of LOCUS as user 
processes was not acceptable. Further,  the services that a 
given machine must provide to remote requesters is quite 
stylized in LOCUS; they correspond to the specific message 
types in the low level protocols. Hence implementation in 
the nucleus of LOCUS was indicated. We took this view 
even though it could have been quite convenient  to imple- 
ment network service in user processes. 

The solution chosen was to build a fast but limited pro- 
cess facility called server processes. These are processes which 
have no non-privileged address space at all. All their code 
and stack are resident in the operating system nucleus. Any 
of their globals are part of the operating system nucleus'  per- 
manent  storage. Server processes also can call internal sys- 
tem subroutines directly. As a result of this organization, 
the body of server processes is quite small; the total amount  
of code to process all message types is several hundred lines 
of C code (some of which is subroutine calls to already exist- 
ing system functions). As network requests arrive, they are 
placed in a system queue, and when a server process finishes 
an operation, it looks in the queue for more work to do. 
Each server process serially serves a request. The system is 
statically configured with some number  of these processes at 
system initialization time. 

These lightweight processes permit efficient serving of 
network requests (therefore keeping protocol support cost 
low) while at the same time avoiding implementation of 
another structuring facility besides processes. In retrospect, 
th~s was an excellent early design decision, both because of 
the structuring simplicity which resulted, and because of the 
contribution to performance. 

4.4. Local Operation 

The site at which the file access is made, the Using Site 
(US), may or may not be the same as the CSS or SS. In 
fact, any combination of these roles are possible, or all may 
be played by different sites. 

When multiple roles are being played by a single site, it is 
important to avoid much of the mechanism needed to sup- 
port full, distributed operation. These optirnizations are sup- 
ported in LOCUS. For example if, for a given file open, 

C S S = S S = U S ,  then this fact is detected immediately and vir- 
tually all the network support overhead is avoided. The cost 
of this approach is some additional complexity in protocols 
and system nucleus code. 

The system design is intended to support machines of 
heterogeneous power interacting in an efficient way; large 
mainframes and small personal computers sharing a repli- 
cated file system, for example. Therefore, when a file is 
updated, it is not desirable for the requesting site to wait 
until copies of the update have propagated to all sites storing 
copies of the file, even if a commit operation is desired. The 
design choice made in LOCUS is for updated pages to be 
posted, as they are produced, at the storage site providing 
the service. When the file is closed, the disk image at the 
storage site is updated and the using site program now con- 
tinues. Copies of the file are propagated to all other storage 
sites for that file in a demand paging manner )  In this way, it 
is straightforward for a system with no local file storage to 
participate in a LOCUS network. 

4.5. Performance Results  

To evaluate the performance of a network transparent 
system such as LOCUS satisfactorily, one would like answers 
to at least the following questions. First, when all the 
resources involved in an operation are local, what is the cost 
of that operation, especially compared to the corresponding 
system that does not provide for network operation, either in 
its design or implementation? This is often a difficult com- 
parison to make. It is not sufficient just  to "turn off" the net- 
work support code in LOCUS, as the existence of that code 
altered the very structure of the system in ways that 
wouldn' t  happen otherwise. Fortunately, in our case, we 
could compare local operation under LOCUS with the 
corresponding situation under standard Unix. 

The performance of remote behavior is also of  
paramount importance, since after all, it is distributed opera- 
tion that largely motivated the LOCUS architecture. 

Three initial experiments are reported here: 
i) reading one file page, 
ii) writing one file page, and 
iii) sequentially reading a 600 block file. 

Each experiment was run oa: 
a) standard Version 7 Unix, 
b) local LOCUS (i.e. the program and data both 

resided at the same machine),  
c) distributed LOCUS (i.e. the data resided on the 

machine used in cases a and b, but the pro- 
gram ran on another machine.) 

For the first two experiments, the quantity reported is 
system time - the amount  of cpu time consumed in servicing 
the request. For distributed LOCUS, the quantity given is 
the sum of the system time at the using site and the storage 
site. In the third experiment,  total elapsed time is reported. 

A great deal of care was taken to assure comparability of  
results; the same data blocks were read, numbers  of buffers 
were comparable, the same disk was employed, etc. The 
tests were repeated multiple times. The values reported are 

Iwhile this method avoids useless waiting at the using site, it does raise 
the possibility that a new copy of the file is successfully created and then 
immediately made unavailable by a crash or partition. In fact, this is just 
one of the many race conditions which can occur. They are all handled by 
the version management algorithm described in [ParkerS0]. 

175 



means, but the standard deviations were very small. The 
machines on which these measurements  were run are DEC 
PDP-11/45s, with an average time of greater than 2 
microseconds per instruction. The disk used is capable of 
delivering one data page per 15 milliseconds if there is no 
head movement .  The network speed at the time of the 
measurements  was I megabit/second. 

System Time Measurements 
(one data-page access - results in milliseconds) 

System Read Write 

Unix 6.1 4.3 
Local LOCUS 6.2 4.3 
Distributed LOCUS ~ 6 .3+8 .0=14 .3  4 .3+3 .2=7 .5  

The sequential activity results are as follows. 

System 

Elapsed Time Measurements 
(600 block sequential read) 

Time (seconds) Milliseconds/page 

9.40 15.6 
9.15 15.25 
10.31 17.18 

Unix 
Local LOCUS 
Distributed LOCUS 

4.5.1. Interpretation of Results 

In our view, these results strongly support the argument 
for network transparency. Local operation for the cases 
measured is clearly comparable to a system without such a 
facility. There is more system overhead for remote opera- 
tion, but this is not surprising. Two network interface dev- 
ices are involved in every remote access in addition to the 
one storage device. For a read, there are two messages 
involved, the request and the data-reply; hence a total of 
four additional I /Os must occur beyond the single disk 1/O 
that was always present. That additional cost is about 4000 
instructions in LOCUS (8 milliseconds, 2 
microseconds/instructions).  In the absence of special 
hardware or microcode to support network I/O, we consider 
this result quite reasonable. 

It .is especially encouraging that for operations which can 
take advantage of the involvement  of multiple processors, 
the speed of remote transparent access is indeed comparable 
to local access. Sequential processing is one such example, 
since prefetching of data, both from the disk and across the 
network, is supported in LOCUS. Here, access in all cases is 
running at the maximum limit of the storage medium. No 
significant delay is imposed by the network transparent sys- 
tem. 

Most important however, one should compare the perfor- 
mance of a distributed system such as LOCUS, where the 
network support is integrated deep into the software system 
architecture, with alternate ways of gaining access to remote 
resources. The traditional means of layering software on top 
of centralized systems leads to dramatically greater overhead. 
Before the development  of LOCUS, Arpanet protocols were 
run on on the same network hardware connecting the PDP- 

IThe total read and write time given are the sum of the system time used 
at the using site and the storage site. 

1 Is. Throughput  was not even within an order of magnitude 
of the results reported here. 

Several caveats are in order however as these results are 
examined. First, these measurements  were made before 
replicated storage was implemented. Hence no conclusions 
in that respect can be made. Second, because of the lack of 
available network interconnection hardware, only a small net- 
work configuration is available for study, and so only light 
loading occurs. On the other hand, since most computer 
utility experience shows limited concurrent  sharing, we 
expect little synchronization interference when the network 
is significantly larger and more users are supported. 

LOCUS also requires more memory to operate than stan- 
dard Unix for comparable performance. This fact occurs for 
two principal reasons. First, there is more code in the 
LOCUS nucleus than in the Unix kernel, in part because of 
low level network support and synchronization mechanisms, 
but also because of more sophisticated buffer management,  
and because of the server process code. Second, LOCUS 
data structures are generally larger than the corresponding 
structures in Unix (to keep track to network-related informa- 
tion). For the configuration at UCLA, Unix requires 41K 
bytes code and 44K bytes data. The equivalent LOCUS sys- 
tem (with the same number  of buffers, etc.) would require 
65K bytes code and 51K bytes data. 

LOCUS also contains considerable additional code to han- 
dle recovery, but this code is run as a conventional user pro- 
cess, and therefore is not locked down. It is also rarely 
involved. 

5. Current State and Future Plans 

A LOCUS prototype that supports network transparency 
for the file system is operational. Remote process creation 
and cooperation of processes on different machines was 
being implemented when this paper was written. Transparent  
access to most remote devices is operational. Replicated 
storage of files is now supported, al though the currently 
operational recovery mechanism is simplistic; the methods 
discussed earlier, while coded, are not yet integrated into the 
rest of the LOCUS system. Finishing these various portions 
of the system, followed by additional testing and perfor- 
mance tuning, are obvious next steps. 

In addition to the PDP-11 version of LOCUS, a LOCUS 
prototype for the VAX 780/750 is also operational. One of 
the goals of this porting effort was to investigate the effect of 
having different hardware on the network. 

In designing remote process support, it was concluded 
that the Unix model of process interaction is not quite suited 
for distributed systems. In Unix, two processes in the same 
family can operate in a very intimate fashion; they may share 
the same current pointer into an open file for example, so 
that when one process reads one character, the next read call 
by the other process gets the following character. To support 
so intimate and unstructured a shared state can be expensive 
without shared memory. It also seems unnecessary. 
Nevertheless,  our first version of network process support is 
fully compatible with the strict Unix model. 

Beyond these issues, there are two major sets of plans. 
First, to best demonstrate  the value of network transparency, 
one would wish to build a distributed application on top of 
LOCUS, and show that doing so was considerably easier than 
using a collection of machines running conventional operat- 
ing systems, and that the result operated satisfactorily. Data 
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management is one planned application. To support it prop- 
erly, a few changes to LOCUS will be necessary, including 
more powerful user available synchronization primitives, a 
way to modify portions of a file without the entire file being 
transmitted when replicated copies need to be updated, and 
support for multimachine, multifile commit. 

Second, we wish to be able to make stronger statements 
about reliable and available operation. While network tran- 
sparency provides considerable opportunity for smooth and 
graceful resource substitution, more advantage of this fact 
needs to be taken. For example, modest extension of 
LOCUS would support the ability to snapshot a process and 
move that snapshot to another machine in preparation for 
continued running if the original computation site should fail. 
Synchronization of that snapshot with open files and other 
resources can be done with the multiobject commit mechan- 
ism. Additional work in detecting software conditions which 
would suggest reconflguration or otherwise altered operation 
would be profitable. Lastly, we cannot yet make a quantita- 
tive statement about the level of reliability and availability 
actually achieved. ~ 

6. Conclusions 

The two most significant specific conclusions we draw 
from our LOCUS experience are: 

1. High performance network transparency in a local net- 
work is feasible. 

2. Network transparency in a local network possesses so 
many advantages that a choice not to adopt it ought to be 
very carefully justified. 

We have not gained enough experience with the effects 
of the integrated vs. server model to make a strong state- 
ment. Nothing we have seen so far shakes our confidence in 
the integrated model, however. 

In general, our experience suggests that the system archi- 
tectures suitable for local networks differ markedly from 
those for significantly lower bandwidth, higher delay environ- 
ments. Remaining with ~he more traditional structures 
misses significant opportunities. 
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