
L O C U S

A Network Transparent , High Rel iabi l i ty Distr ibuted Sys tem'

G. Popek, B. Walker , J. Chow, D. Edwards,

C. Kline, G. Rudis in , G. Thiel

Univers i ty of Cal i fornia at Los Ange les

LOCUS is a distributed operating system that provides a very
high degree of network transparency while at the same lime sup-
porting lligh performance and automatic replication of storage,
By network transparency we mean thai at the syslem call
interface there is no need to mention anything network
related. Knowledge of the network and code to inleracl
with foreign sites is below this interface and is thus hidden
from both users and programs under norm~ll conditions.
LOCUS is application code compatible with Unix 2, and per-
formance compares favorably with standard, single syslem
Unix. LOCUS runs on a high bandwidth, low delay local
network. It is designed to permil both a significant degree
of local autonomy for each site in the network while still
providing a network-wide, location independent name struc-
lure. Atomic file operations and extensive synchronization
are supported.

Small, slow sites without local mass slore can coexist in
the same network with much larger and more powerful
machines without larger machines being slowed down
through forced interaction with slower ones. Graceful
operation during network topology changes is supported.

I. Introduction

LOCUS is an integrated distributed system whose goals
include a) making the development of distributed applica-
tions no more difficult than single machine programming,
and b) realizing the potential that distributed systems with
redundancy have for highly reliable, available operation.
Much of the research reported in this paper is the subject of
a forthcoming Ph.D. dissertation [Walker82]. The system is
application code compatible with the Unix operating system,
[Ritchie74] and a prototype running on DEC PDP-11s,
models 44, 45, and 70, connected by local networks ranging
in speed from 1 to 10 megabits/second is operational at
UCLA. LOCUS has also been ported to the DEC VAX.

IThis research was supported by the Advanced Research Projects Agency
under research contract DSS MDA 903-77-0211.

2Unix is a registered trademark of Western Electric.

I.I System Design Assumptions and Goals

Most existing distributed systems were constructed by
making relatively minor nlodifications to adapt tile single
machine systems to permit interaction with other copies of
themselves, or even with other systems. The basic structure
and operational philosophy of those systems was invariably
preserved. Our goal was to understand, given tile freedonl
to start largely anew, what tile structure of a distributed sys-
tem ought to be. One fundamental assumption we naade
cotacerned tile interconnection network; it was of high
bandwidth, low delay, with a low error rate - so called "thick
wire" networks, represented by such examples as the Ether-
net. Broadcast capability was not assumed. We explicitly
ruled out Arpanet or Telenet style networks because of their
limited bandwidth and significant delay. Satellite based net-
works were also not explicitly addressed because of their
significant delay.

General applications were to be supported, will] focus oil
"computer utility" functions and data management. Essential
goals were to provide high reliability and availability in a dis-
tributed environment. Performance was also critical, as was
providing tt much simpler user and programming interface
than that of current distributed systems. We were willing to
insist that all sites in the network run a given system, but the
sites should be able to vary widely in power and storage capa-
city.

i .2 LOCUS Overview

LOCUS is a distributed operating system whose architec-
ture strongly addresses our goals of network transparency,
high reliability and availability, and good performance. The
machines in a LOCUS net cooperate to give all users tile illu-
sion of operating on a single machine: the network is essen-
tially invisible, hlvisible here means that there is lao need to
refer to a specific site or to the network tit all. There is con-
siderable belief and evidence that a uniform interface to all
resources is very attractive in tile distributed environn~ent.
Support for this illusion is entirely within tile operating sys-
tem code. Nevertheless, each machine is a complete system
and can operate gracefully alone. LOCUS is designed to
automatically replicate resources to tile degree indicated by
associated reliability profiles. Graceful operation in tile face
of network partitions, as well as nodal failures, is supported.
Finally, all this increased functionality is provided within tile
constraint of good performance. It is expected thai these
characteristics are suitable for the support of a wide variety
of applications, including general distributed computing,
office automation, and database management.

169

Note that LOCUS was designed to provide network tran-
sparency access to and replication of both data resources and
processing resources or agents. This paper primarily
addresses issues in the data resource component, in part
because functionality in that area is essential. More impor-
tantly, however, concepts needed for solution in the data
area provide a solid framework for extension, and further,
the mechanisms that must be built are much of what is
needed for distributed processing support.

Section 2 of this paper is dedicated exclusively to
motivating the concept of low-level network transparency. In
section 3 we discuss the components of the software system
architecture necessary to implement network transparency
and to achieve increased reliability and availability. Although
performance is ment ioned in section 3, a more detailed dis-
cussion, including both the design principles followed and the
results attained, is presented in section 4.

2. Network Transparency

As real distributed systems come into existence, an
unpleasant truth is being learned: the development of
software for distributed applications is often far harder to
design, implement, debug and maintain than the analogous
application written for a centralized system. There are
several reasons. First, typically the means by which a remote
resource is accessed is different from, and more complicated
than, the access method for a corresponding local resource.
For example, one opens a local file, but may have to execute
a multistep .file transfer protocol to access a remote file.
Second, the error modes of a collection of machines con-
nected by a network appear much more substantive than in a
centralized environment . For example, on a single machine
one rarely worries about partial .failure. In a distributed
envi ronment , it is quite reasonable to expect that one or
several of the sites supporting the application may fail at
awkward moments while others continue unaware. One typi-
cally assumes by contrast on a central machine that a system
failure causes the application to stop.

A further problem with distributed systems is that local
storage may be limited, necessitating that the user explicitly
move copies of files around the network, archiving and gar-
bage collecting his own storage. Redundant copies for the
sake of reliability are the user 's concern. The user must
keep track of different versions of what is intended to be the
same file, especially when the copies have resulted from net-
work partitions (leading to parallel changes). As a result, the
application program and user must explicitly deal with each
of these facts, at considerable cost in additional software) On
a centralized machine, with a single integrated file system,
many of these problems do not exist, or are more gracefully
handled.

An appealing solution to this increasingly serious problem
is to develop a network operating system that supports a high
degree of network traJtsparency; all resources are accessed in
the same manner independent of their location. If open
(file-name) is used to access local files, it also is used to
access remote files. That is, the network becomes "invisible",
in a similar manner to the way that virtual memory hides
secondary store. Of course, one still needs some way to con-
trol resource location for optimization purposes, but that

1Recently one of our staff built a network wide printer spooler for our
local network which at the time ran Arpanet software. Over twenty
processes and several thousand lines of code were required to deal with
the environment; the actual printer spooler included only two processes.

control should be separated from the syntax and semantics of
the system calls used to access the resources. Ideally then,
one would like the graceful behavior of an integrated storage
system for the entire network while still retaining the many
advantages of the distributed system architecture. That is,
the existence of the network should not concern the user or
application programs in the way that resources are accessed.
If such a goal could be achieved, its advantages would
include the following.

1. Easier software development.
Since there is only one way to access resources, and
the details of moving data across the network are
built in, individual software packages do not require
special software for this purpose. As a result, many
traditionally distributed applications could be imple-
mented in the same manner as local operations.

2. Incremental Change Supported.
Changes made below the level of the network wide
storage system are not visible to application software.
Therefore, changes in both hardware and software
resources can be made easily.

3. Potential Jbr Increased Reliability.
Local networks, with a fair level of redundancy of
resources (both hardware and stored data), possess
considerable potential for reliable, available operation.
However, if this potential is to be realized, it must be
possible to substitute various resources for one
another easily (including processors, copies of files
and programs, etc.). A uniform interface which hides
the binding of those resources to programs would
seem to be necessary if the high reliability goal is to
be realized.

4. Simpler User Model
By taking care of the details of managing the network,
the user sees a conceptually simpler storage facility,
composed merely of files, without machine boun-
daries, replicated copies, etc. The same is true for
other user visible resources.

There are a number of aspects to network transparency,
Is the location of a resource apparent in the (by necessity
global) resource name? Preferably not, since one then has
the freedom to move resources for optimization or reliability
reasons without changing application software. How are the
much richer set of errors which occur in a distributed system
reflected to the caller? Given that most implementations to
support transparency will involve considerable levels of map-
ping, how can that be done without imposing any significant
performance penalty? Each of these issues is addressed by
the LOCUS design.

There are also some system aspects that militate against
full transparency. If the hardware bases of each site aren ' t
the same, then it may be necessary to have many different
executable load modules corresponding to a given name, so
that when a user (or another program) issues a standard
name, the appropriate file is invoked as a function of the
machine on which the operation ts to be performed. There
are other examples as well; they all have the characteristic
that a standard name is desired for a function or object that
is replicated at some or all sites, and a reference to that name
needs to be mapped to the local, or nearest instance in nor-
mal circumstances.

170

Nevertheless, in other circumstances, a globally unique
name for each instance is also necessary; to install software,
do system maintenance functions, etc. A solution that
preserves network transparency and provides globally unique
names within the normal name space while still supporting
site dependent mapping for these special cases is needed.
Our solution to this problem involves appending tags to file
names which by convention indicate site dependent informa-
tion. Various system and user call options default the tag
value appropriately.

3. System Architecture

In this section, we discuss several key components of the
software system which address the goals of network tran-
sparency, reliability and availability. First there is a more
detailed discussion of global naming, which was mentioned
in section 2. Second is a description of both the policy and
mechanism involved in network-wide data access synchroni-
zation. Third is a treatment of several elements designed to
increase reliability and availability including data replication
and an atomic act ion/commit mechanism. Also reviewed are
aspects of local autonomy and prevention of error propaga-
tion from machine to machine. The final component con-
cerns the handling of sites entering and leaving the network.
Work in this area involves recognition and initialization
issues, cleanup issues and the major issue of checking and
resolving the consistency of multiple copies of files.

3.1. Global Names

In developing a naming mechanism for a distributed sys-
tem, one faces a number of issues. What is the nature of
user sensible, global names? What are the system internal
global names? How, and when, is mapping between the two
done? How, and when, are names of either sort allocated
and invalidated? Should there be multiple levels of naming?
The design choices made in LOCUS, and the basic reasons,
are outlined below.

There are two significant levels of abstraction in the
LOCUS file system, which serves as the heart of the naming
mechanism. The user and application program view of object
names in LOCUS is analogous to a single, centralized Unix
environment ; virtually all objects appear with globally unique
names in a single, uniform, hierarchical name space. Each
object is known by its path name in a tree ~, with each ele-
ment of the path being a character string. Any user and/or
program can set a "working directory" appropriately to avoid
having to employ the longer path names that this large
hierarchy may imply. No notion of object location appears in
the path name, so that an object can easily be moved without
changing its visible name.

Low level names in LOCUS are 'also globally unique.
The name space is organized around the concept of .file
groups.: As in Unix, each file group (of which there may be
many on a single standard Unix system) is composed of a
section of a mass store, and divided into two parts; a small
set of file descriptors which serve as a simple low level
"directory", and a large number of standard sized data blocks.
A file descriptor (inode) contains pointers to the data blocks
which compose that file. Data blocks can be used as indirect
pointer blocks for large files. Under these conditions, a low

IThere are a few exceptions to the tree structure, provided by Unix links.

2The term file group in this paper corresponds directly to the idnix term
.file system.

level file name is a <file group number, file descriptor
n u m b e r >)

LOCUS uses the same method, although since a file
group can be replicated, one speaks of a logical file group
number. There is an additional map from logical to physical
file group number; this is a one to many map. 2 Files may be
replicated only at sites which store the containing file group.
However, it is not necessary to replicate a given file at all
such sites. Thus the amount of storage allocated to the phy-
sical versions of a file group can differ, since each can be
incomplete. When a file is not stored at a physical file group,
the file descriptor there is not kept current.

The application visible naming hierarchy is implemented
by having certain low level files serve as high level direc-
tories. An entry in such a directory contains an element of a
path name and the index of the file descriptor corresponding
to the next directory or data file in the path.

The collection of file groups therefore represent a set of
naming trees; these are patched together to form the single,
network wide naming tree by system code and a network
wide mount table.

Creating a file requires allocating a file descriptor, so race
conditions could lead to the same file descriptor being allo-
cated to different files. Therefore, some control is needed.
One solution would be not to use the descriptor number as
part of the name; rather have some unique ID as the name,
and store it in the descriptor as well as in the higher level
directory entry that pointed at the descriptor. The descriptor
number would be treated only as a guess and the IDs would
be compared at each access attempt. No particular method to
manage file deletion and subsequent reuse of file descriptors
is then needed, assuming that IDs are never reused.

However, in LOCUS, this approach would have meant
changing the contents of higher level directories, which are
application code visible in Unix. Therefore, we chose to
retain the file descriptor number as part of the name. To
avoid allocation races, the file descriptor space for each file
group is logically partitioned; each storage site for a file group
may allocate descriptors only from its own part. Deletion of
a file requires interaction among all storage sites for a given
file before the descriptor may actually be reused.

Given the high and low level name space, the next issue
concerns the map between the two. In LOCUS, conversion
to low level name is done as soon as possible; then only low
level names are passed within the system. In this way, one
avoids remapping names. This philosophy could have been
carried even further; one could have found the disk address
of a page, and used that as a component of the ' name ' to be
passed. We did not do this for two reasons. First, since a
given file may not be stored at all storage sites for that file
group, address information might not be available, and so
another mechanism would be needed anyway. Second, we
wanted each storage site to be able to provide some
significant degree of internal system data structure con-
sistency by itself. For example, ~vhile a site updating a
remotely stored file can cause the contents of that file to be
inappropriately altered at the storage site, it cannot damage
other files stored at the storage site (an action which would
be possible if physical page addresses were being used.)

IDevices also appear in the file system as leaves in the name structure and
they have global names.

21t is implemented as an extension to m o u , t m g a file group.

171

3.2. Synchronization

Since storage may be replicated, and there are multiple
users, the problem of synchronization of access to logical
files and their physical counterparts must be addressed if a
consistent file system is to be presented to users. Standard
Unix is quite bereft of such controls, so these represent an
addition to the user and program interface. ~

3.2.1. Synchronization Policy in LOCUS

The policy in LOCUS is based on a global "multiple
readers, single writer" policy. Such a basic policy provides
concurrent read access to replicated copies of data while
preventing concurrent update. However, the actual policy
which has been implemented is more sophisticated for three
principal reasons. First, in a modern operating system
environment , more functionality is appropriate. For example,
when one process forks another, it is best for the newly
created process to inherit and retain the access rights held by
the parent, since in most cases the family of processes are
cooperating on the same task. They can coordinate among
themselves if intrafamily synchronization is needed.

Another example results from the hierarchical file sys-
tem. Whenever a file is opened through the use of a full
path name, it is necessary to open for read all the directory
files in the path. One expects high traffic of this sort in an
envi ronment with many users. Shared read locks would
suffice, if it were not for the fact that any file creation or
rename implies a write lock to the containing directory.
While these locks would be of short duration, the potential
performance impact of temporarily blocking all file opens in
the network that contain that directory in their path name is
significant.

The LOCUS solution for reading directories is a new
access type, nolock read. When a file is opened for nolock
read, there is essentially no synchronization with other
activity on the file. The only guarantee is that a single
operating system read call will return with a consistent set of
bits, i.e. from one version of a (possibly dynamically chang-
ing) file. 2 Directory entries, and the system software t h a t
accesses them, have suitable characteristics to be accessed in
this way (although convincing oneself of this fact is not
easy). A higher overhead alternative would have been to
implement record locks in the file system.

The third reason for a sophisticated synchronization pol-
icy is Unix compatibility. Since standard Unix has few res-
trictions, normal program behavior sometimes would be
blocked by a straightforward policy.

3.2.2. Synchronization Mechanism in LOCUS

Many techniques have been proposed for the synchroni-
zation mechanisms in distributed systems [Bernstein80].
After careful analysis, we chose a centralized synchronization
protocol with distributed recovery. For a given file group,
one site is designated as the Current Synchronization Site
(CSS) This site is responsible for coordinating access to the
files contained in the associated file group. That is, all open
calls involve a message to the CSS (except for nolock reads).
In this way it is possible for the CSS to assure that a reques-
ter gets the latest version of a file. However, it is not

IThe introduction of synchronization control is a millor source of
incompatibility for a few exist ing programs.

2This is true as long as the read did not cross a block boundary.

necessary for the CSS to be the site from which data access is
obtained. Any site which has a copy of the file can support
this open request; that is, a particular Storage Site (SS) is
designated to support an open request at the time of the
open. A fairly general synchronization policy can be sup-
ported, since the synchronizing point is centralized for any
given decision.

An outline of how actual file open and read operations
are handled may serve to clarify the interaction of synchroni-
zation and file system structure. Suppose an open request is
made for file A. After any pathname directory searching
(described below), the requesting site has obtained A's low
level name (the pair <fi le group number , file descriptor
n u m b e r >) . This name is sent in an open message from the
requesting, or using site (US) to the CSS. The CSS selects a
storage site and sends it a message. After the storage site
decides to provide service, it replies to the CSS, which main-
rains the synchronization information and notifies the using
site. The using site installs the appropriate file descriptor in
its internal table (just as if the file were local) and the open is
complete. Note that a 3 site open (US, CSS and SS func-
tions all on different sites) is worst case. Message traffic and
processing is decreased when any two or all three of the
functions are on the same site.

Directory searching is done by the operating system using
much of the same mechanism described above. Each path-
name component is internally opened and read to find the
low-level name of the next pathname component. The major
different between these file opens and regular file opens is
the use of the nolock read open mode described in the previ-
ous section. Via that mode all message traffic is eliminated if
a copy of the desired directory file resides locally.

After a non-local file is open, processing at the using site
continues as if the file had been local, with the US requesting
pages of the file from the SS very much the same as it
requests pages from a local disk. Effectively, LOCUS "page
faults" across the network for file pages.

The mechanisna used in LOCUS is quite different than
primary copy strategies [Alsberg78], in that all physical copies
o1" a logical file may be used, even for update. The primary
copy strategy requires that all activity involve a single
specified copy, with all other copies eventually used lbr
back-up. In this way, optimization that takes into account
the location of resources can be done.

3.3. Reliability

Reliability and availability represent a whole other aspect
of distributed systems which has had considerable impact on
LOCUS. Four major classes of steps have been taken to
achieve the potential for very high reliability and availability
present in distributed systems with redundancy.

First, an important aspect of reliable operation is the abil-
ity to substitute alternate versions of resources when the ori-
ginal is found to be flawed. In order to make the act of sub-
stitution as straightforward as possible, it is desirable for the
ime~:ldces to the resource versions to look identical to the
user of those resources. While this observation may seem
obvious, especially at the hardware level, it also applies at
various levels in software, and is another powerful
justilication for network transparency. In LOCUS, copies of
a file can be substituted for one another with no visibility to
application code. Consistency issues are handled by the ver-
sion vector mechanism discussed in the next section.

172

Front another point of view, once network transparency
is present, one has the opporluHily to enhattce system reliabil-
ity by substituting software as well as hardware resources
when errors are detected. In LOCUS, considerable advan-
tage is taken of this approach. Since the file system supports
automatic replication of files transparently to application
code, it is possible for graceful operation in the face of net-
work partition to take place. If the resources for an opera-
lion are available in a given partition, then the operation may
proceed, even if some of those are data resources replicated
in other partitions. A partition merge procedure detects any
inconsistencies which may result front this philosophy, and
for those objects whose semantics the system understands
(like file directories, mailboxes, and the like), automatic
reconciliation is done. See section 3.4.

Recovery from partitioned operation is done hierarchi-
cally, in that first lower level software attempts to merge a
file; if it cannot, then the problem is reported to the next
level up, eventually to the user (owner) of the rite.

A second step in increasing the reliability of operation is
the support in LOCUS of file c o m m i n i n g [Lampson78]
/Gray78/. For a given file, one can be assured that either all
the updates are done, or none of them are done, even in the
face of system crashes and/or network failures. Commit
normally occurs automatically at file close time if the file had
been open for write, but application software may request
commits at any time during the period when a file is open.
To do a commit, first the current storage site permanently
records the changed file. Then the CSS and user code are
notified of successful commit, and user execution may go on.
Front this point on, the new version of the file is propagated
in parallel to other storage sites.

Third, even though a very high level of network tran-
sparency is present in the syntax and semantics of the system
interface, each site is still largely autonomous. When, for
example, a site is disconnected front the network, it can still
go forward with work local to it. This goal has had
sigTqlicant architectural impact, which is discussed in section
4.2.

Fourth, the interaction among machines is strongly s ty l -

i z e d to promote "arms length" cooperation. The nature of
the low level interfaces and protocols among the machines
permits each machine to perform a fair amount of defensive
consistency checking of system information. As much as
feasible, maintenance of internal consistency at any given site
does not depend on the correct behavior of other sites.
(There are, of course, limits to how well this goal can be
achieved.) Each site is master of its own resources, so it can
prevent flooding from the network.

3.4. Topology Change and Replicated File Consistency

A procedure within the operating system is executed
whenever a network topology change is observed (one or
more sites entering or leaving the network). Currently this
topology change procedure runs a simple algorithm to choose
a coordinating site which polls the others to reconstruct
network-wide data structures. It chooses new CSS's for file
groups when necessary. The new CSS is then responsible for
synchronizing information relating to that file group, and
invoking the file group recovery system to establish repli-
cated file consistency.

Given that a data resource can be replicated, a policy
issue arises. When the network is partitioned and a copy of
that resource is found in more than one partition, can the
resource be modified in the various partitions? It was felt
important for the sake of availability that such updates be
permitted. Of course, this freedom can easily lead to con-
sistency conflicts at partition merge time. However, our view
is that such conflicts are likely to be rare, since actual sharing
in computer utilities is known to be relatively low.

Further, we developed a simple, elegant algorithm to
detect conflicts if they have occurred. See /Parker80/. The
core of the method is to keep a version w, ctor with each copy
of the data object. There are as many elements in the vector
as there are sites storing the object. ~ Whenever an update is
made to a copy of the object at a given site, that site's ele-
ment of the version vector associated with the updated copy
is incremented. The conflict detection criterion is then very
simple. When merging two copies of an object, compare
their version vectors. If one dominates the other (i.e. each
element is pairwise greater than or equal to its corresponding
element), then there is no conflict; the copy associated with
the dominating vector should propagate. Otherwise a conflict
exists.

Most significant, for those data items whose update and
use semantics are simple and well understood, it may be
quite possible to reconcile the conflicting versions automati-
cally, in a manner that does not have a "domino effect"; i.e.
such a reconciliation does not require any actions to data
items that were updated during partitioned operation as a
function of the item(s) being reconciled.

Good examples of data types whose operations permit
automatic reconciliation are file directories and user mail-
boxes. The operations which apply to these data types are
basically simple: a d d and remove. The reconciled version is
the union of the several versions, less those items which
have been removed. 2 There are of course situations where
the system does not understand the semantics of the object
in conflict. The LOCUS philosophy in these cases is to
report the conflict to the next higher level of software, in
case resolution can be done there. Data Management
software for example might be capable of such resolution. If
there is no higher level software to resolve the conflict, it is
reported to the user. It is surprising how many applications
have straightforward enough semantics that nearly full opera-
tion can be permitted during partitioned operation while still
allowing automated reconciliation at merge time.

The special issues of partitioned operation and replicated
file recovery after partition have been topics of considerable
work, including two dissertations ([FaissolS1] considers parti-
tioned operation in applications such as banking and airline
reservations while [Rudisin82] will deal with the file recovery
issue).

IThe assumpt ion made in LOCUS is that a file is either replicated a
relatively few number of t imes (the normal case for user data files), or is
stored everywhere (the case for system modules needed for a site to run
LOCUS). When an all bit is set in the file descriptor, it is understood that
the file is stored everywhere that the file group exists, and the version
vector applies only to a limited number of sites, the only sites which can
serve as a storage site for an update.

2The situation for directories is somewhat more complex, since it is
possible to have a name conflict; when two different files of the same
name are created in two different partitions. LOCUS detects such conflicts
and reporls them to the users via electronic mail, and nlarks the
conflicted files so that special action is needed before norrnal access can
occur.

173

4. Performance and its Impact on Software Architecture

"in software, virtually anything is possible; however, few
things are feasible." [Cheatham71] While the goals outlined
in the preceding sections may b,e attainable in principle, the
more difficult goal is to meet all of the above while still
maintaining good performance within the framework of a
well structured system without a great deal of code. A con-
siderable amount of the LOCUS design was tempered by the
desire to maintain high performance. Perhaps the most
significant design decisions in this respect are:

a) specialized "problem oriented protocols",

b) integrated rather than partitioned function,

c) a lightweight process mechanism for serving network
requests inside the operating system kernel,

d) special handling for local operation.

Below, we discuss each of these in turn.

4.1. Problem Oriented Protocols

It is often argued that network software should be struc-
tured into a number of layers, each one implementing a pro-
tocol or function using the characteristics of the lower layer.
In this way, it is argued, the difficulties of building complex
network software are eased; each layer hides more and more
of the network complexities and provides additional function.
Thus layers of "abstract networks" are constructed. More
recently, however, it has been observed that layers of proto-
col generally lead to layers of performance cost. (See for
example, [Kleinrock75]). In the case of local networks, it is
common to observe a cost of up to 5,000 instructions being
executed to move a small collection of data from one user
program out to the network.[Lampson79]

In a local network, we argue that the approach of layered
protocols is frequently wrong, at least as it has been applied
in long haul nets. Functionally, the various layers were typi-
cally dealing with issues such as error handling, congestion,
flow control, name management, etc. In our case, these
functions are not very useful, especially given that they have
significant cost. The observed error rate on local networks is
very low, although certainly not zero. Congestion is gen-
erally not a problem; the token ring in use at UCLA
[Farber74][Clark78] uses a circulating token, supported by
hardware, to control access to the transmission medium.
The Ethernet [Xerox80] has an analogous mechanism.
Much flow control in LOCUS is a natural consequence of the
nature of higher level activity, since many incoming mes-
sages to a site result from explicit requests made by that site.
Some additional flow control is needed, since a storage site
can in principle be swamped by requests from using sites
which have open files supported by the given storage site.
Name management largely must be done at a high level
within LOCUS, so that any nontrivial lower level mechanism
within the network layer would largely be ignored.

In fact, despite its limitations, Saltzer's "end to end" argu-
ment applies very strongly in LOCUS.[Saltzer80] Summar-
ized very quickly, Saltzer points out that much of the error
handling that is done at low levels in computer networks is
redone at higher levels. The reason is that low level han-
dling cannot mask or provide recovery from higher level
faults.

In the design of LOCUS, we found it necessary to deal
with a significant collection of error events within the operat-
ing system; managing the impact of remote sites failing, syn-
chronization difficulties, etc. Many types of low level errors
therefore are also detected by the mechanisms that we
needed to build anyway; hence the (expensive) low level
supports were dropped. Notice that this principle cannot be
followed blithefully. There are certain low level events that
cannot be detected at a higher level. These must be
addressed in the basic network protocols. So, for example,
we support automatic retransmission, as well as certain forms
of redundancy in data transmission.

All of these observations lead one to develop specialized
problem oriented protocols for the problem at hand. That is
what occurred in LOCUS. For example, when a user wishes
to read a page of a file, the only message that is sent from
the using site to the storage site is a read message request. A
read is one of the primitive, lowest level message types.
There is no connection management, no acknowledgement
overhead, etc. The only software ack in this case is the
delivery of the requested page. (The hardware does provide
a low level acknowledgement.)

Our experience with these lean, problem oriented proto-
cols has been excellent. The effect on system performance
has been dramatic. See section 4.5.

4.2. Functional Partitioning

It has become common in some local network develop-
ments to rely heavily on the idea of "servers", where a partic-
ular machine is given a single role, such as file storage, name
lookup, authentication or computation. [Swinehart79]
[Rashid80] [Needham 80] We call this approach the server
model of distributed systems. Thus one speaks of "file
servers", "authentication servers", etc. However, to follow
this approach purely is inadvisable, for several reasons.
First, it means that the reliability/availability of an operation
which depends on multiple servers is the product of the relia-
bility of all the machines and network links involved. The
server design insures that, for many operations of interest,
there will be a number of machines whose involvement is
essential.

Second, because certain operations involve multiple
servers, it is necessary for multiple machine boundaries to be
crossed in the midst of performing the operation. Even
though the cost of network use has been minimized in
LOCUS as discussed above, it is still far from free; the cost
of a remote procedure call or message is still far greater than
a local procedure call. One wants a design where there is
freedom to configure functions on a single machine when the
situation warrants. Otherwise serious performance costs may
result, even though the original designers believed their allo-
cation of functions across machine boundaries did not
require those boundaries to be crossed by the "tightloops" of
certain applications.

Third, since it is unreasonable to follow the server
machine philosophy strictly, one is led to multiple implemen-
tations of similar functions; to avoid serious performance
costs, a local cache of information otherwise supplied by a
server is usually provided for at least some server functions.
The common example is file storage. Even though there
may be several file servers on the network, each machine
typically has its own local file system. It would be desirable
to avoid these additional implementations if possible.

174

An alternative to the server model is to design each
machine 's software as a complete facility, with a general file
system, name interpretation mechanism, etc. Each machine
in the local network would run the same software, so that
there would be only one implementation. Of course, the sys-
tem would be highly configurable, so that adaptation to the
nature of the supporting hardware as well as the characteris-
tics of use could be made. We call this view the integrated
model of distributed systems. LOCUS takes this approach.

It should be noted that an integrated architecture can be
easily made largely to look like a server oriented system if
suitable configuration flexibility has been provided. For
example, if there were significant cost or performance advan-
tages to be gained by having most files stored at a few sites,
no software changes would be necessary to LOCUS. In fact,
one of the planned configurations for LOCUS includes
workstation-like machines with no local file storage at all.

4.3. Lightweight Processes

To maximize LOCUS performance, we wished at any
given site to be able to serve a network request without the
usual overhead of scheduling and invoking an application
level process. Hence, implementing much of LOCUS as user
processes was not acceptable. Further, the services that a
given machine must provide to remote requesters is quite
stylized in LOCUS; they correspond to the specific message
types in the low level protocols. Hence implementation in
the nucleus of LOCUS was indicated. We took this view
even though it could have been quite convenient to imple-
ment network service in user processes.

The solution chosen was to build a fast but limited pro-
cess facility called server processes. These are processes which
have no non-privileged address space at all. All their code
and stack are resident in the operating system nucleus. Any
of their globals are part of the operating system nucleus' per-
manent storage. Server processes also can call internal sys-
tem subroutines directly. As a result of this organization,
the body of server processes is quite small; the total amount
of code to process all message types is several hundred lines
of C code (some of which is subroutine calls to already exist-
ing system functions). As network requests arrive, they are
placed in a system queue, and when a server process finishes
an operation, it looks in the queue for more work to do.
Each server process serially serves a request. The system is
statically configured with some number of these processes at
system initialization time.

These lightweight processes permit efficient serving of
network requests (therefore keeping protocol support cost
low) while at the same time avoiding implementation of
another structuring facility besides processes. In retrospect,
th~s was an excellent early design decision, both because of
the structuring simplicity which resulted, and because of the
contribution to performance.

4.4. Local Operation

The site at which the file access is made, the Using Site
(US), may or may not be the same as the CSS or SS. In
fact, any combination of these roles are possible, or all may
be played by different sites.

When multiple roles are being played by a single site, it is
important to avoid much of the mechanism needed to sup-
port full, distributed operation. These optirnizations are sup-
ported in LOCUS. For example if, for a given file open,

C S S = S S = U S , then this fact is detected immediately and vir-
tually all the network support overhead is avoided. The cost
of this approach is some additional complexity in protocols
and system nucleus code.

The system design is intended to support machines of
heterogeneous power interacting in an efficient way; large
mainframes and small personal computers sharing a repli-
cated file system, for example. Therefore, when a file is
updated, it is not desirable for the requesting site to wait
until copies of the update have propagated to all sites storing
copies of the file, even if a commit operation is desired. The
design choice made in LOCUS is for updated pages to be
posted, as they are produced, at the storage site providing
the service. When the file is closed, the disk image at the
storage site is updated and the using site program now con-
tinues. Copies of the file are propagated to all other storage
sites for that file in a demand paging manner) In this way, it
is straightforward for a system with no local file storage to
participate in a LOCUS network.

4.5. Performance Results

To evaluate the performance of a network transparent
system such as LOCUS satisfactorily, one would like answers
to at least the following questions. First, when all the
resources involved in an operation are local, what is the cost
of that operation, especially compared to the corresponding
system that does not provide for network operation, either in
its design or implementation? This is often a difficult com-
parison to make. It is not sufficient just to "turn off" the net-
work support code in LOCUS, as the existence of that code
altered the very structure of the system in ways that
wouldn' t happen otherwise. Fortunately, in our case, we
could compare local operation under LOCUS with the
corresponding situation under standard Unix.

The performance of remote behavior is also of
paramount importance, since after all, it is distributed opera-
tion that largely motivated the LOCUS architecture.

Three initial experiments are reported here:
i) reading one file page,
ii) writing one file page, and
iii) sequentially reading a 600 block file.

Each experiment was run oa:
a) standard Version 7 Unix,
b) local LOCUS (i.e. the program and data both

resided at the same machine),
c) distributed LOCUS (i.e. the data resided on the

machine used in cases a and b, but the pro-
gram ran on another machine.)

For the first two experiments, the quantity reported is
system time - the amount of cpu time consumed in servicing
the request. For distributed LOCUS, the quantity given is
the sum of the system time at the using site and the storage
site. In the third experiment, total elapsed time is reported.

A great deal of care was taken to assure comparability of
results; the same data blocks were read, numbers of buffers
were comparable, the same disk was employed, etc. The
tests were repeated multiple times. The values reported are

Iwhile this method avoids useless waiting at the using site, it does raise
the possibility that a new copy of the file is successfully created and then
immediately made unavailable by a crash or partition. In fact, this is just
one of the many race conditions which can occur. They are all handled by
the version management algorithm described in [ParkerS0].

175

means, but the standard deviations were very small. The
machines on which these measurements were run are DEC
PDP-11/45s, with an average time of greater than 2
microseconds per instruction. The disk used is capable of
delivering one data page per 15 milliseconds if there is no
head movement . The network speed at the time of the
measurements was I megabit/second.

System Time Measurements
(one data-page access - results in milliseconds)

System Read Write

Unix 6.1 4.3
Local LOCUS 6.2 4.3
Distributed LOCUS ~ 6 .3+8 .0=14 .3 4 .3+3 .2=7 .5

The sequential activity results are as follows.

System

Elapsed Time Measurements
(600 block sequential read)

Time (seconds) Milliseconds/page

9.40 15.6
9.15 15.25
10.31 17.18

Unix
Local LOCUS
Distributed LOCUS

4.5.1. Interpretation of Results

In our view, these results strongly support the argument
for network transparency. Local operation for the cases
measured is clearly comparable to a system without such a
facility. There is more system overhead for remote opera-
tion, but this is not surprising. Two network interface dev-
ices are involved in every remote access in addition to the
one storage device. For a read, there are two messages
involved, the request and the data-reply; hence a total of
four additional I /Os must occur beyond the single disk 1/O
that was always present. That additional cost is about 4000
instructions in LOCUS (8 milliseconds, 2
microseconds/instructions). In the absence of special
hardware or microcode to support network I/O, we consider
this result quite reasonable.

It .is especially encouraging that for operations which can
take advantage of the involvement of multiple processors,
the speed of remote transparent access is indeed comparable
to local access. Sequential processing is one such example,
since prefetching of data, both from the disk and across the
network, is supported in LOCUS. Here, access in all cases is
running at the maximum limit of the storage medium. No
significant delay is imposed by the network transparent sys-
tem.

Most important however, one should compare the perfor-
mance of a distributed system such as LOCUS, where the
network support is integrated deep into the software system
architecture, with alternate ways of gaining access to remote
resources. The traditional means of layering software on top
of centralized systems leads to dramatically greater overhead.
Before the development of LOCUS, Arpanet protocols were
run on on the same network hardware connecting the PDP-

IThe total read and write time given are the sum of the system time used
at the using site and the storage site.

1 Is. Throughput was not even within an order of magnitude
of the results reported here.

Several caveats are in order however as these results are
examined. First, these measurements were made before
replicated storage was implemented. Hence no conclusions
in that respect can be made. Second, because of the lack of
available network interconnection hardware, only a small net-
work configuration is available for study, and so only light
loading occurs. On the other hand, since most computer
utility experience shows limited concurrent sharing, we
expect little synchronization interference when the network
is significantly larger and more users are supported.

LOCUS also requires more memory to operate than stan-
dard Unix for comparable performance. This fact occurs for
two principal reasons. First, there is more code in the
LOCUS nucleus than in the Unix kernel, in part because of
low level network support and synchronization mechanisms,
but also because of more sophisticated buffer management,
and because of the server process code. Second, LOCUS
data structures are generally larger than the corresponding
structures in Unix (to keep track to network-related informa-
tion). For the configuration at UCLA, Unix requires 41K
bytes code and 44K bytes data. The equivalent LOCUS sys-
tem (with the same number of buffers, etc.) would require
65K bytes code and 51K bytes data.

LOCUS also contains considerable additional code to han-
dle recovery, but this code is run as a conventional user pro-
cess, and therefore is not locked down. It is also rarely
involved.

5. Current State and Future Plans

A LOCUS prototype that supports network transparency
for the file system is operational. Remote process creation
and cooperation of processes on different machines was
being implemented when this paper was written. Transparent
access to most remote devices is operational. Replicated
storage of files is now supported, al though the currently
operational recovery mechanism is simplistic; the methods
discussed earlier, while coded, are not yet integrated into the
rest of the LOCUS system. Finishing these various portions
of the system, followed by additional testing and perfor-
mance tuning, are obvious next steps.

In addition to the PDP-11 version of LOCUS, a LOCUS
prototype for the VAX 780/750 is also operational. One of
the goals of this porting effort was to investigate the effect of
having different hardware on the network.

In designing remote process support, it was concluded
that the Unix model of process interaction is not quite suited
for distributed systems. In Unix, two processes in the same
family can operate in a very intimate fashion; they may share
the same current pointer into an open file for example, so
that when one process reads one character, the next read call
by the other process gets the following character. To support
so intimate and unstructured a shared state can be expensive
without shared memory. It also seems unnecessary.
Nevertheless, our first version of network process support is
fully compatible with the strict Unix model.

Beyond these issues, there are two major sets of plans.
First, to best demonstrate the value of network transparency,
one would wish to build a distributed application on top of
LOCUS, and show that doing so was considerably easier than
using a collection of machines running conventional operat-
ing systems, and that the result operated satisfactorily. Data

176

management is one planned application. To support it prop-
erly, a few changes to LOCUS will be necessary, including
more powerful user available synchronization primitives, a
way to modify portions of a file without the entire file being
transmitted when replicated copies need to be updated, and
support for multimachine, multifile commit.

Second, we wish to be able to make stronger statements
about reliable and available operation. While network tran-
sparency provides considerable opportunity for smooth and
graceful resource substitution, more advantage of this fact
needs to be taken. For example, modest extension of
LOCUS would support the ability to snapshot a process and
move that snapshot to another machine in preparation for
continued running if the original computation site should fail.
Synchronization of that snapshot with open files and other
resources can be done with the multiobject commit mechan-
ism. Additional work in detecting software conditions which
would suggest reconflguration or otherwise altered operation
would be profitable. Lastly, we cannot yet make a quantita-
tive statement about the level of reliability and availability
actually achieved. ~

6. Conclusions

The two most significant specific conclusions we draw
from our LOCUS experience are:

1. High performance network transparency in a local net-
work is feasible.

2. Network transparency in a local network possesses so
many advantages that a choice not to adopt it ought to be
very carefully justified.

We have not gained enough experience with the effects
of the integrated vs. server model to make a strong state-
ment. Nothing we have seen so far shakes our confidence in
the integrated model, however.

In general, our experience suggests that the system archi-
tectures suitable for local networks differ markedly from
those for significantly lower bandwidth, higher delay environ-
ments. Remaining with ~he more traditional structures
misses significant opportunities.

7. Bibliography

Alsberg, P. A., Day, J. D., A Principle./'or Resilient Sharing of
Distributed Resources, Second International Conference
on Software Engineering, San Francisco, California,
October 13-15, 1976, pp. 562-570.

Bernstein, P., AIgoritbms.[br Concurrency Control in Distributed
Database Syswms, Technical Report CCA-80-05, Com-
puter Corporation of America, February 1980.

Cheatham, T., Private communication 1971.

Clark, D., K. Pogran, and D. Reed, An hm'oduction to Local
Area Networks, Proceedings of the IEEE, Vol. 66, No.
11, November, 1978, pp. 1497-1517.

Faissol, S., Availability and Reliability Issues in Diso'ibuted
Databases, Ph.D. Dissertation, Computer Science
Department, University of California, Los Angeles,
August 1981.

1Empirical observations can be made. ttowever, there is not yet enough
experience with heavy loading of LOCUS in a non-toy network
configuration to make meaningful statements.

Gray, J., Notes on Database Operating Systems, in Operating
Systems: An Advanced Course, Vol 60 of Lecture Notes
in Computer Science, Springer-Verlag, (1978), pp. 393-
481.

Kleinrock, L., Opderbeck, H., Throughput in the Arpanet -
Protocols and Measurement Fourth Data Communica-
tions Symposium, Quebec City, Canada, October 7-9,
1975, pp. 6-1 to 6-11.

Lampson, B., and H. Sturgis, Crash Recovety in a Distributed
Data Storage System working paper, Xerox PARC, Nov
1976.

Lampson, B., Private Communication, 1979.

Mockapetris, P. V., Lyle, M.R., Farber, D.J., On the Design
of Local Network lntel:[aces, Proceedings of IFIP
Congress '77, Toronto, August 8-12, 1977, pp. 427-
430.

Parker, S., G. Popek, et. al., Detection o/'Muntal Inconsistency
of Distributed Systems, accepted for publication in IEEE
Transactions on Software Engineering.

Rashid, R., and P. Hibbard, Research into loosely-coupled Dis-
tributed Systems at CMU, Notes from IEEE Workshop
on Fundamental Issues in Distributed Systems, Pala
Mesa, Ca., Dec 15-17, 1980.

Ritchie, D., "The Unix Time-Sharing System," Communk'a-
tions ol'the ACM, Vol. 17, No. 7, July 1974, pp. 365-
375.

Rudisin, G. Reliability and Recovely Methods .[br Partitioned,
Distribuwd File Systems, Ph.D. Dissertation, Computer
Science Department, University of California, Los
Angeles, 1982 (forthcoming).

Saltzer, J., D. Reed, and D. Clark, End-to-End Arguments m
System Design, Notes from IEEE Workshop on Funda-
mental Issues in Distributed Systems, Pala Mesa, Ca.,
Dec 15-17, 1980.

Swinehart, D., G. McDaniel, D. Boggs, W F S : A Simple
Shared File Syswm ./or a Distributed Environment
Proceedings of the Seventh Symposium on Operating
Systems Principles, Dec 10-12, 1979, Asilomar, Ca. pp
9-17.

Walker, B. J., Issues o/Network Transparency and File Replica-
tion in Dis;ributed Systems: LOCUS, Ph.D. Dissertation,
Computer Science Department, University of Califor-
nina, Los Angeles, 1982 (forthcoming).

Wilkes, M., and R. Needham, The Cambridge Model Dis#'#
buted System, Notes from IEEE Workshop on Funda-
mental Issues in Distributed Systems, Pala Mesa, Ca.,
Dec 15-17, 1980.

Xerox, The Ethernet: A Local Area Network - Data Link Layer
and Physical Layer Specifications, Version 1.0, Sept 30,
1980. Available from Digital Equipment Corporation,
Maynard, Massachusetts; Intel Corporation, Santa
Clara, California; Xerox Corporation, Stamford, Con-
necticut.

177

