
IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989 1631

The Performance Implications of Thread
Management Alternatives for

Shared-Memory
Multiprocessors

THOMAS E. ANDERSON, EDWARD D. LAZOWSKA, AND HENRY M. LEVY

Abstmct- Threads (“lightweight” processes) have become a
common element of new languages and operating systems. This
paper examines the performance implications of several data
structure and algorithm alternatives for thread management in
shared-memory multiprocessors. Both experimental measure-
ments and analytical model projections are presented.

For applications with fine-grained parallelism, small differ-
ences in thread management are shown to have significant per-
formance impact, often posing a tradeoff between throughput
and latency. Per-processor data structures can be used to im-
prove throughput, and in some circumstances to avoid locking,
improving latency as well.

The method used by processors to queue for locks is also
shown to affect performance significantly. Normal methods of
critical resource waiting can substantially degrade performance
with moderate numbers of waiting processors. We present an
Ethernet-style backoff algorithm that largely eliminates this ef-
fect.

Index Terms- Locking, multiprocessor, parallel computing,
parallel software, performance, thread.

I. INTRODUCTION

HE purpose of this paper is to study the performance im- T plications of thread management alternatives for shared-
memory multiprocessors.

In traditional operating systems, a process, consisting of a
single address space and a single thread of control within that
address space, is used to execute a program. Within the pro-
cess, program execution entails initializing and maintaining a
great deal of state information. For instance, page tables, swap
images, file descriptors, outstanding U0 requests, and saved
register values are all kept on a per-program, and thus per-
process, basis. The sheer volume of this information makes
processes expensive to create and maintain.

Manuscript received March 1, 1989; revised July 15, 1989. This mate-
rial is based on work supported by the National Science Foundation (Grants
CCR-8619663, CCR-8703049, and CCR-8700106), the Naval Ocean Systems
Center, U S WEST Advanced Technologies, the Washington Technology Cen-
ter, and Digital Equipment Corporation (the Systems Research Center and the
External Research Program). A preliminary version of this paper appeared in
the Proceedings of the 1989 ACM SIGMETRICS and Performance ’89 Inter-
national Conference on Measurement and Modeling of Computer Systems,
Performance Evaluation Review, vol. 17, no. 1 May 1989.

The authors are with the Department of Computer Science and Engineering,
University of Washington, Seattle, WA 98195.

IEEE Log Number 893 1176.

Threads, or “lightweight” processes, separate the notion of
execution from the rest of the definition of a process. A single
thread executes a portion of a program, cooperating with other
threads concurrently executing within the same address space.
Like processes, every thread must have a separate program
counter and stack of activation records, describing the state of
its execution. However, much of what is normally kept on a
per-process basis can be maintained in common for all threads
executing in a single program, with dramatic reductions in
overhead.

Thread packages have become a common element of new
languages and operating systems for both uniprocessor and
multiprocessor architectures. Mach [11, Topaz [23], Psyche
[21], DYNIX [22], and several extensions to UNIX [SI, [I l l
are examples of operating systems that provide explicit sup-
port for concurrent or parallel execution of programs. Ada
[19], CSP [12], Presto [7], Mesa [16], Concurrent Euclid
[131, and Emerald [141 evidence equal interest within the lan-
guage community.

On uniprocessors, threads are used as a program structuring
aid or to overlap 110 with processing. The metric of goodness
for these thread management implementations is simply pro-
cessing cost per thread creation or context switch. No locking
is needed inside thread routines, since only one routine can
be executing at any one time.

Programs on multiprocessors use threads to exploit paral-
lelism. The speedup achievable by any given application de-
pends on the availability of thread management routines that
provide low-cost facilities that are not a serial bottleneck. In
Sequent’s DYNIX operating system, for example, applications
must use normal UNIX-like processes for parallelism [22].
Since process creation in DYNIX takes over 25 ms, only very
coarse-grained parallelism can be exploited. As another ex-
ample, the Topaz kernel provides relatively inexpensive thread
creation and synchronization, but the routines are protected by
a single lock [23]. While this may be appropriate for archi-
tectures with small numbers of processors, as the number of
processors increases, the single lock could limit speedups for
applications with fine-grained parallelism.

Our initial experience in the area of high-performance
thread packages was with Presto, an application-level run time
library that relies on the kernel only for processor allocation
and memory management [7]. This work showed that there is

Copyright 0 1989, Association for Computing Machinery

1632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

an order of magnitude performance advantage to using threads
instead of DYNIX processes for exploiting parallelism. Draw-
ing on this experience, we implemented a thread package that
is, in turn, another order of magnitude faster than Presto. This
basic package was then modified to implement each alternative
we wanted to explore.

One consequence of the speed of our basic thread package is
that small changes in the organization of data structures and
locks have a significant impact on performance. Often, the
choice involves a tradeoff between latency and throughput.
Per-processor data structures can sometimes be used to avoid
locking, however, improving latency and throughput at the
same time.

Another consequence of the speed of our thread package
is that its performance depends noticeably on the algorithm
used to queue for locks. Earlier, we studied the relative per-
formance of spinning and blocking locks [26]. In general, a
thread that tries to acquire a lock that is already held can either
spin (“busy-wait”) until the lock is released, or relinquish the
processor. However, within the thread management routines
themselves, spinning is the only option. Thus, blocking at the
user level may require spin-waiting in thread management rou-
tines. Spin-waiting has a cost not only to the processor waiting
for the lock, but also to processors doing useful work. The
degradation of other processors becomes substantial for mod-
erate numbers of waiting processors, especially for small crit-
ical sections. We present an Ethernet-style backoff algorithm
that largely eliminates this effect.

The following sections describe these issues in more detail.
In Section 11, we present an abstraction of a thread package:
its objects, resources, and operations. Section I11 outlines
the strategies for thread management that we examined and
presents measurements of their relative performance. Section
IV compares methods of queueing for locks. Section V com-
bines these results in an analytical model. Section VI summa-
rizes our experiences.

11. AN ABSTRACT THREAD PACKAGE
As noted in Section I, threads gain efficiency by separat-

ing the notion of execution from the rest of the definition of
a process. The data structures needed by each thread are a
program counter, a stack, and a control block. (The control
block contains state information needed for thread manage-
ment. Through the control block, the thread can be put onto
lists and other threads can synchronize with it.) Another im-
portant data structure is the ready queue, which lists threads
that are ready to run. Lampson and Redell [16] provide a
good description of the functionality of a uniprocessor thread
package.

Thread operations are shown in Table I. Creating a thread
can be viewed as calling a procedure, except that the callee
can execute in parallel with the caller. In both cases, the caller
specifies a place to begin executing and some number of ar-
guments. In fact, thread creation and startup is semantically
equivalent to an asynchronous procedure call.

As Table I shows, a program can create a thread even if
there is no idle processor available to run it. Because the
parallelism cannot be immediately exploited in this case, it

TABLE I
THREAD OPERATIONS

Thread Creation
Allocate and initialize a control block, saving the initial PC.
Allocate a stack and copy in the thread’s arguments.
Place the new thread on the ready queue.

Thread Startup
Remove the thread from the ready queue and begin to execute it.

Thread Block (wait on a blocking lock, monitor condition variable, or message)
Save register values and PC on the thread‘s stack.
Place the thread on the condition queue for the event.
Look for a thread in the ready queue, and start or resume it.

Signal a Blocked Thread
Remove the thread from the condition queue.
Place the thread on the ready queue.

Thread Resume
Remove the thread from the ready queue.
Restore registers.
Continue executing it from the saved PC.

Deallocate the stack and confml block.
Look for a thread in the ready aueue, and start or resume it.

Thread Finish

might seem that the overhead of thread creation should be
avoided. The program may run faster by creating the thread,
however, if at some future time there will be an idle processor
that can be used to execute the thread. This idea of creating
parallelism for future use is very powerful. Unfortunately,
in the above framework, its space cost is prohibitive. Each
thread must be initially allocated a large amount of space for
its stack, since it is expensive to dynamically expand the space
if the thread later runs out of it. In Table I, the thread is
allocated space for a stack when it is created, but the space is
largely wasted until the thread is actually started. Using virtual
memory could remove the need to allocate physical memory
to back the stack space until the thread begins to run; however,
allocating extra virtual memory is itself expensive.

An important optimization to Table I, therefore, is to copy
a thread’s arguments into its control block when the thread is
created. This way, the stack need not be allocated until thread
startup; the arguments can be copied from the control block
to the stack at that time. WorkCrews [24] and Presto [7] both
take this approach.

Another important optimization is to store deallocated con-
trol blocks and stacks in free lists [7]. If these data structures
were individually located out of the heap, thread overhead
would include the cost of finding a free block of the correct
size as well as possibly coalescing the block when it is re-
turned to the heap. By using free lists, both allocation and
deallocation can normally be simple list operations.

We begin our study by assuming these optimizations. For
simplicity, we will focus on the effect of thread manage-
ment alternatives on the performance of only a few thread
operations: creation, startup, and finish. These operations ma-
nipulate each of the three shared data structures: the ready
queue, the stack free list, and the control block free list. Most
of the discussion applies as well to the performance of block
and resume operations.

ANDERSON et al. : THREAD MANAGEMENT ALTERNATIVES FOR MULTIPROCESSORS 1633

III. THREAD MANAGEMENT ALTERNATIVES
In a parallel environment, access to shared data structures

must be serialized to ensure consistency and correctness. Our
thread package uses spin-locks for this purpose: when a pro-
cessor tries io modify a data structure, it must first lock it to
obtain exclusive access; if some other processor already holds
the lock, the processor loops until the lock is released.

Locking implies dual concerns of latency and throughput
[151. Latency is the cost of thread management under the best
case assumption of no contention for locks. Throughput, on
the other hand, is the rate at which threads can be created,
started, and finished when there is contention. If part of thread
management must be done serially, then no matter how many
processors work on a problem, there will be some maximum
rate at which thread operations can be performed.

There are several ways of defining latency, with different
implications for different types of applications. If an applica-
tion keeps all of its processors continually busy, for instance
by creating threads before they are needed, then any time
spent in creating, starting, or finishing a thread is time that
could have been spent doing other useful work. When a thread
finishes, however, if there is no other work for the processor
to do, the time spent deallocating the thread’s data structures
is unimportant. Instead, the relevant issues include how much
a creating processor is delayed, since it has a thread to run,
and how much time it takes for the created thread to begin
running on a processor.

In the following subsections, we define five alternative
thread management strategies, and describe some of the poten-
tial advantages and disadvantages of each approach. We then
provide measurement and analytical comparisons of these al-
ternatives.

A . Single Lock: Central Data Structures Protected
by a Single Lock

The most obvious approach to thread management is to pro-
tect all data structures under a single lock. Once the lock is
acquired by a processor, the processor is assured that it can
modify any stored state. To perform a thread operation, a
processor must first acquire the lock, then do what is needed
to the shared data, and finally release the lock when done. In
this way, only a single lock is needed per thread operation,
but, since most of the thread management path is serialized,
throughput is limited. In the typical scheme, idle processors
loop checking the ready queue for work to do, causing use-
less contention for the ready queue lock; however, this can be
avoided if idle processors check that the ready queue is not
empty before acquiring the lock. (Ni and Wu [20] present a
different approach.)

B . Multiple Locks: Central Data Structures Each
Protected by a Separate Lock

A somewhat more modular approach to locking is to sepa-
rately protect each data structure with its own lock [161. Each
operation on the data structure can then be surrounded by a
lock acquisition and release. For thread management, this in-
volves separately locking each enqueue and dequeue operation

on the ready queue, stack free list, and control block free list,
the three shared data structures.

There is a basic tradeoff between latency and throughput
in the choice between using a single lock or multiple locks
in protecting shared data structures [15]. Since less of the
total thread activity is in a critical section, and since it is split
among several locks, the maximum rate of thread operations
is higher with multiple locks than with a single lock. There
is a cost to this increased throughput, however, more lock
accesses are needed, increasing latency.

C. Local Free List: Per-Processor Free Lists without
Locks; A Central Locked Ready Queue

One way of avoiding locking is to maintain as much state
as possible locally, with each processor. If each processor
maintains its own free lists of control blocks and stacks, these
structures need not be locked, since only one processor will
ever access them. As before, there is a single shared ready
queue whose accesses are locked.

The tradeoff between latency and throughput can be largely
avoided by using local free lists. Since fewer lock acquisitions
are needed per thread, latency is lower than with multiple
locks, yet since only accesses to the ready queue are serialized,
throughput is better.

Local free lists need to be balanced. Control blocks and
stacks can migrate between free lists if the thread is created
or started on one processor and finished on another. This can
happen, for instance, if a thread blocks and is resumed on
a different processor. Thus, one free list can be empty, re-
quiring the processor to obtain more space from the heap,
while another free list has many entries. In the worst case,
some processors only create and start threads (allocate struc-
tures), while other processors only finish them (deallocate
structures). Without balancing, the deallocated structures are
never reused; a separate stack and control block are needed
for every thread. In contrast, with a centralized free list, only
as many are needed as there are active (created or started, but
not finished) threads.

It is inexpensive, however, to balance free lists by using
global pool and a threshold T on the maximum size of each
list. When the size of a free list reaches the threshold, half the
list can be returned to the global pool; when a free list empties,
T/2 entries can be claimed from the pool. The global pool
must be locked, of course. For efficiency, it can be organized
as a list of lists. The processing cost to balancing is thus
one locked pool access amortized across at least T/2 free list
accesses. Let P be the number of processors. An application
using balanced local free lists will use no more than O(P x T)
more space than one using a central list, even if one processor
only allocates structures that other processors deallocate. The
worst case occurs when the allocating processor’s free list and
the global pool are empty even though the other local free lists
are almost full.

Thus, local free lists trade space for time. This tradeoff is
practical for control blocks. Utilization of the pool lock is at
most O(P x (R /T)) , where R is the rate of thread creation on
a single processor. To ensure that the pool lock is not a source
of contention (which would inflate the overhead per free list

1634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

access), we can set the threshold T to be equal to P. Control the rate each processor schedules work increases [9]. One way
blocks are relatively small objects (in our implementation, of increasing throughput is to divide the load on a single lock
roughly 100 bytes); provided P is not excessively large, using among several locks. An application of this idea is to keep
lOOP bytes per processor is not onerous. If P is large, then a ready queue per processor. In this way, enqueueing and
a tree of pools could be used to limit the cost to balancing to dequeueing threads can occur in parallel, with each processor
O(1og P) bytes per processor. using a different queue. There is again a tradeoff between

The tradeoff is not practical for stacks, however. Stacks are latency and throughput in the choice between using one or
at least two orders of magnitude larger than control blocks. more ready queues.
Even if sufficient memory were available, using that mem- Unlike the case of control block free lists, unlocked local
ory entails processing costs for initializing page tables and ready queues are inefficient even if balanced through a global
increased cache miss rates that could easily overwhelm the pool. Runnable threads are a scarce resource. An idle pro-
advantage gained from decreased locking. Instead, we let the cessor might have an empty queue, yet a ready thread that
local stack free lists contain at most one element. In this way, the processor could run is in some other processor’s queue,
stacks need be allocated from the global pool only when a pro- while the global pool is empty. Performance can be arbitrarily
cessor blocks a thread and then starts up a different thread, bad in any scheme where a processor can be idle indefinitely
and deallocated only when a processor finishes a thread and while there is even one ready thread in some other queue.
then resumes another thread. For instance, suppose P identical threads are created, but due

to an imbalance, only ? - 1 are started while one processor
D. Idle Queue: A Central Queue of Idle Processors; idles. The run time would then be twice as long as with any
Per-Processor Free Lists of the centralized queueing strategies.

None of the algorithms described so far exploit parallelism One simple way of avoiding indefinite idling is to lock each
in creating threads. The creating processor allocates and ini- ready queue; each idle processor can then Scan the ready
tializes the control block; only when it is done is the starting queues for work, beginning with its own [9]. If there is a
processor allowed to allocate and initialize the stack. The cost ready thread, an idle processor will eventually find it. Pro-
of thread creation could be reduced if some of the work was cessors can queue created threads locally, since balancing is
done by idle processors in parallel with the creating processor. achieved by idle processors. However, contention can still oc-

In addition to a central queue of threads, we can maintain a cur if a single processor enqueues (during create or signal)
central queue of idle processors. When there is a backlog of every ready thread; that processor’s queue would operate as
ready threads, there is no point to attempting parallel thread if it was a central ready queue, except that idle processors
creation since all processors are already doing useful work. would have to waste time scanning for it. A simple way of
When a processor becomes idle and there is no backlog, it avoiding this situation is to randomly choose a queue for each
preallocates a control block and stack, puts itself on the idle newly ready thread.
queue, and spins on a local flag waiting for work. Thread If each queue is equally likely to get a new ready thread,
Creation then dequeues the idle processor, initializes the pre- latency is bad when the number of runnable threads is near
allocated control block and stack, and sets that processor’s to the number of processors. There are two cases. Consider
flag, indicating *at it now has a thread that is ready to run. the cost of scheduling a thread onto a newly idle processor.
Instead of Processors searching for work, searches for If there are no ready threads, there is effectively no cost until
processors. a new thread is created. If there are ready but not running

In fact, this approach does not alter the essentially sequential threads, any time spent finding a thread to run could have
nature Of thread Creation. The idle processor must first queue been spent running that thread. This tirne is small when there
itself before the creating processor can dequeue it, which in are many ready threads, because the idle processor will find
turn must Set the flag before the idle processor can Start run- the thread after scanning only a few queues; however, when
ning the thread. The critical path between the beginning of there is only a single ready but not yet running thread, the
thread creation and when the thread starts running is reduced processor will have to examine on average haif of the queues
by doing some of the work (allocating structures, acquiring a in order to find it. The cost of scheduling a newly created
lock, enqueueing) before the critical path begins. Since this thread onto an idle processor is similar: the thread will be
adds complexity, and there is no benefit in the absence of idle found quickly if there are many idle processors and more
processors, the effect is to trade off reduced latency when slowly if there are only a few.
there are idle processors for increased latency when all Pro- One reason to have a one-to-one correspondence between
cessors are busy. Maximum throughput should be unchanged processors and ready queues is to maintain locality. There
since two locked queue operations are still needed per thread is an application-specific cost to migrating a newly resumed
life cycle. Wagner et al. [251 describe a different Way of using thread from the processor it last ran on, due to increased cache
idle PrOCeSSOrS to avoid work during blocking and resuming. misses. The ability to avoid migration depends on the backlog

of ready threads [101.
E . Local Ready Queue: Per-Processor Ready Queues; If maintaining locality is not important, then there is a trade-
Per-Processor Free Lists off between latency and throughput in choosing the number of

Once free lists are made local, the ready or idle queue lock queues [20]. Up to some maximum, throughput is higher with
can become a serial bottleneck as the number of processors or more queues, but the number of queues that must be scanned

ANDERSON et al.: THREAD MANAGEMENT ALTERNATIVES FOR MULTIPROCESSORS

to find work, and thus the latency, is also higher. We set the
number of queues equal to the number of processors for all
measurements.

F. Measurement Results
To validate our intuitions about the relative merits of the

alternative approaches, we implemented each on a Sequent
Symmetry Model A shared-memory multiprocessor. All code
was written in C and compiled with Sequent’s standard com-
piler, with the exception of the locking and context switching
code, which was programmed in assembler. Our Symmetry
has 20 Intel 80386 processors, a shared bus, and a write-
through cache coherency protocol [17]. The Symmetry has a
timer with microsecond resolution that was used for all mea-
surements. Table I1 contains times for sample Symmetry op-
erations.

For all measurements, free lists were “warm started:” suf-
ficient control blocks and stacks were preallocated for use
by the benchmark. Our purpose was to measure the relative
merits of each alternative, rather than the efficiency of the
underlying memory management system. The cache was not
warm-started, but we ran each benchmark long enough for
this effect to become insignificant.

Fig. 1 is the principal performance comparison: it shows
the elapsed time in seconds for each thread management alter-
native to create, start, and finish one million “null” threads,
for varying numbers of processors. The one processor case
shows the latency for a single thread in microseconds when
there is no contention for locks.

Table I11 lists the code for this test. Initially, P threads are
created; each recursively creates a thread then finishes, al-
lowing that processor to start up one of the waiting threads.
The test terminates when each processor has executed 1 mil-
ionlP threads; in practice, we found that the processors all
completed at roughly the same time. For the multiple ready
queue alternative, each newly created thread was added to a
random queue to avoid biasing the results with the effect of
locality. This test is not intended to be representative of a real
parallel program, but it does expose the tradeoffs between the
five alternatives. (“numberOfI’hreads” is a location private to
each processor, initially set to 0.)

Fig. 2 shows the inverse graph for the same test: speedup
as a function of the number of processors. We define speedup
to be the ratio of the time for the fastest alternative on one
processor (single lock) to the time each alternative takes on P
processors. Speedup is proportional to throughput; this graph
shows the maximum number of thread creates, starts, and
finishes that can be performed in parallel for each alternative.

Before examining the relative performance of the five al-
ternatives, we note that each of them has quite good perfor-
mance. Threads are only an order of magnitude more expen-
sive than a procedure call, and 500 times less expensive than
normal DYNIX processes. Threads in Presto cost 600 ps on
the same Symmetry hardware, an order of magnitude worse
than our threads although an order of magnitude better than
DYNIX processes.

While Presto’s speedup relative to DYNIX is due to using
threads instead of processes, our speedup relative to Presto

t
E
P
3 -
E“ x
0

UI U
-
P

Fig. 1

1635

TABLE I1
RUN TIMES FOR SYMMETRY OPERATIONS (MEASURED)

I Operation Runtime (pec.)

Acquire and release a lock
F’rwedure call with no arguments
Each Cbyte argument
Iteration of null loop

100

80

* single lock
* multiple lffiks
-D. lxal freelist

* lxalreadyq

60

40 idle queue

20

1 3 5 7 9 1 1

number of processors

Principal results for thread management- elapsed time to create,
start, and finish 1 ooOooO null threads (measured).

is due to attention to implementation details. We implemented
Presto in C++; while this enhanced its ability to be modi-
fied [8], its C++ was first preprocessed into C, then com-
piled. This resulted in much less efficient code than could
be achieved by direct coding in C. Another factor is that we
stripped thread control blocks of all nonessential state, reduc-
ing the cost of initialization dramatically. We did not remove
functionality: our thread package could be given Presto’s user
interface without sacrificing its performance.

Because our threads are inexpensive, the choice of alterna-
tives has a large relative impact on both latency and throughput
for applications with fine-grained parallelism. Specifically:

0 Adding even a single lock acquisition into the thread man-
agement path can increase latency significantly. Locking each
of the data structures separately results in a much higher la-
tency than locking all data structures under the same lock.
Using per-processor data structures to avoid locking is thus
crucial to decreasing latency without sacrificing throughput,

0 Additional complexity results in a noticeable increase in
latency. There are on the order of 100 instructions in the
thread management path; adding even a few extra instructions
impacts performance. For example, the idle queue strategy
checks for idle processors on thread creation. If the idle queue
is always empty, as in the measurements in Fig. 1, it defaults
to a normal ready queue. Even this simple check markedly
increases in cost of threads. This implies that thread manage-
ment routines must be kept simple; enhancements that would
otherwise seem plausible but add complexity are unlikely to
work, since there is little computation to save, and it is easy
to swamp the savings with increased overhead.

0 A large portion of the thread management path is locked,
since little work is required beyond manipulation of shared
data. When all data are kept under a single lock, throughput is
limited by contention for this lock. However, even with local
free lists, the lock on the ready queue limits throughput to

1636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

n s

6 1

TABLE 111
BENCHMARK: CREATE, START, AND FINISH 1 MILLION NULL THREADS

Threadcycle 0 (

numberOfThreads = numberOfThreads + 1;
if (number0fThread.s == 1000000 / number0fProcessorS)

Synchronize(); / * wait for a l l processors to reach here * /
else

Threadcreate (Threadcycle) ;

1

BeginTimer (1 ;
for (i = 1; i < numberofprocessors; i++)

ThreadCreate(ThreadCyc1e);
Threadcycle 0 ;
StopTimer 0 ;

1

4

3

-c single lock
-& multiple lmks 3

-e local freelist
U idle queue f

2 * local readyq

1

0 3
1 3 5 7 9 1 1

number of processors

Fig. 2. Speedup to create, start, and finish 1OOOOOO null threads (mea-
sured).

a few concurrent thread operations. Only local ready queues
can support higher throughput.

0 When lock contention is not a problem, the bandwidth of
the bus limits thread management throughput. The curve in
Fig. 2 levels out for the local ready queue alternative, even
though there is no significant contention for locks. While the
high bus demand per thread may be specific to the write-
through cache protocol on the Symmetry, bus contention is
likely to be a problem on any bus-structured shared-memory
system.

In Figs. 1 and 2 , threads do no work except to create other
threads. It is natural to ask whether the performance impli-
cations of the thread management alternatives would still be
significant in the presence of user-mode computing. We mod-
ified the test in Table I11 so that each thread performs an
average of 300 p s of user work, taken from a uniform dis-
tribution. This simulates the behavior of an application with
fine-grained parallelism.

Fig. 3 graphs speedup for this modified benchmark. Dif-
ferences appear as the number of processors increases.

Fig. 4 graphs thread cost in microseconds as a function
of the number of runnable threads (parallelism). Thread cost
was directly measured by taking timestamps before and after
each thread was created and whenever a thread was started or
finished. Multiple creations and completions were measured
and averaged to improve accuracy; they were synchronized to
avoid measuring lock contention.

There are a few things to note in Fig. 4:
0 The curve for the central ready queue alternative jumps

when the number of runnable threads reaches the number of

12

O T . , . , . 1 . I

1 5 9 13 17
number of processors

Fig. 3. Speedup, user work = 300 ps (measured).

loo 1
1

E 1
x

single lock
muitiple locks
lxal freelist
idle queue
lxal readyq

nl freelist - ,,,equeue
* local readyq U

t
40

5

. , . I . I - I . I

1 6 1 1 16 21 26 31
number of runnsble threads

Fig. 4. Thread latency (ps) versus number of runnable threads, 18 proces-
sors (measured).

processors because of a change in the definition of thread
latency. When there are fewer threads than processors, thread
cost is taken to be the time to create and start running a new
thread. The time to finish a thread is unimportant if the idling
processor has no work to do. When there are as many or
more runnable threads as processors, the cost is the sum of
the time to create a thread plus the time to finish it and start
a new thread. The thread latency reported in Fig. 1 with one
processor corresponds closely to the latency reported in Fig.
4 when there are more runnable threads than processors.

0 Using an idle queue is faster when there are idle proces-
sors, but slower when there are more runnable threads than
processors. Thread creation is faster if an idle processor can
be used to do work before the thread is created, but checking
the idle queue incurs overhead even if it is not used. Whether
a particular application will run faster with an idle queue de-
pends on how much time it spends in each case.

ANDERSON et al. : THREAD MANAGEMENT ALTERNATIVES FOR MULTIPROCESSORS 1637

The spike in the curve for per-processor ready queues
shows that finding a ready thread among many queues is ex-
pensive when the parallelism of the application is near to the
number of processors, but the expense fades when more ready
threads or more idle processors are available. Since the height
of the spike grows linearly with the number of queues, latency
increases in proportion to the maximum throughput. However,
the amount of user computing per thread needed to avoid con-
tention for a central ready queue also grows linearly with the
number of processors. Thus, the cost of searching for work
among per-processor ready queues as a fraction of the time
to do that work is not large unless the multiple ready queues
are needed for additional throughput.

One area of further research is to examine hybrid thread
management strategies to combine the advantages of some
of the alternatives we have presented. For example, a per-
processor version of the central idle queue could exploit
locality and parallelize thread creation without compromis-
ing throughput. As another example, both central and per-
processor ready queues could be used, by placing threads in
a local queue if the lock on the central queue is busy. The
drawback to any such approach is that complexity adds cost
which may outweigh any benefits.

G . Analytical Explanation of Fig. 4

We now derive a formula that explains in detail the spike
for the per-processor ready queue alternative in Fig. 4. When
there are idle processors, we need to know the time between
the queueing of a ready thread and the dequeueing of that
thread by an idle processor; when there is a backlog of ready
threads, we need to know how long it takes a newly idle
processor to find one of the threads.

Let E(r , q) be the expected number of queues examined by
a newly idle processor to find one of r ready threads, which
are randomly distributed among q queues. Without loss of
generality, let the queues be numbered from 1 to q, let threads
be numbered from 1 to r , let i , be the queue containing the jth
thread, and let the idle processor begin searching with queue
1. The idle processor must examine the number of queues
equal to the lowest numbered nonempty queue. The number
of ways of putting r threads into q queues is q' .

a a a

We can separately sum when each i j is the minimum. When
more than one thread is at the minimum, we count the value
once in the sum for the least numbered thread. Thus, the value
of ij is counted whenever for all k < j , i k > i , , and for all
k > j , ik 2 i j . There are (q -i,)jp1 values for the ik, k < j
that satisfy the first condition and (q - i j + l)r-j values for
the i k , k > j that satisfy the second.

By symmetry, (3.1) also holds when there are more pro-
cessors than runnable threads. Let r be the number of idle

lo 1 **

it- lmlreadyq

o ! . , . , . , . 1 . I . I .
1 6 1 1 1 6 21 2 6 3 1

number of runnable threads

Fig. 5. Queues examined versus number of runnable threads, 18 processors

processors, let ij be the queue currently scanned by the jth
idle processor, and let the newly created thread be put into
queue 1. Then the processor that actually dequeues the thread
will have to look through E (r , q) queues, after the thread is
queued, in order to find it.

Fig. 5 graphs (3.1) for 18 processors. In order to corre-
spond to Fig. 4, the x-axis is the number of runnable threads,
rather than the number of ready but not running threads or
the number of idle processors. Since part of the spike in Fig.
4 is due to the difference in the measurements when there are
idle processors or not, the curves in Figs. 4 and 5 correspond
well.

The above analysis assumes that events occur one at a time.
Since finding a ready thread among a number of queues can
take a nontrivial amount of time, it is reasonable to con-
sider what happens when another thread is created or an-
other processor becomes idle during the interim. Suppose an-
other thread is created before a newly idle processor finds
one of the r ready threads. Let C be the cost (in number
of queues examined) of finding a thread in this situation.
C can be no better than if the new thread had been there
all along and no worse than if the new thread is ignored.
In other words, E(r + 1, q) 5 C 5 E(r , 4). Similarly,
if another processor becomes idle in the interim, provided
r 2 2, the combined cost for both processors to find threads
is E(r , q) + E(r - 1, q), assuming the processors do not con-
tend for the same queue, independent of which processor finds
a ready thread first.

(3.1).

IV . SPIN-LOCK MANAGEMENT ALTERNATIVES

If a processor finds a thread management lock busy, it spin-
waits for the lock to be released. An alternative would be to
block, relinquishing the processor to do other useful work
while the lock is busy. However, since thread management
locks are held for only a short time, the overhead of per-
forming this context switch would be prohibitive; in addition,
any other work that the processor might do is controlled by
a (or possibly the same) thread management lock. When an
application lock is busy, a thread does have a choice between
spin-waiting or blocking, but blocking at the user level may
result in spin-waiting in a thread routine.

Spin-waiting has a hidden cost. Processors doing useful
work may be slowed by processors that are merely waiting
for a lock, due to bus contention. As a result, adding to the
number of processors executing an application may in fact

1638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

slow it down by increasing the average number of spinning
processors. Worse, the more spinning processors, the more
the processor holding the lock is slowed, increasing the effec-
tive size of the critical section, resulting in even more waiting
processors.

In this section, we evaluate three different approaches to
spin-waiting .
A . Hardware Description

On the Symmetry Model A, each processor has its own
cache; provided all of its memory references can be satisfied
out of that cache, a processor’s progress is independent of the
activity of other processors. Whenever a processor reads data
that are not in its cache, it must wait for the data to come
from memory via the bus; with a write-through protocol, a
processor may also have to wait for writes to be sent to mem-
ory. In both cases, the wait can be longer and the processor’s
progress slowed because of bus contention.

The Symmetry has a basic test-and-set instruction, xchgb
(exchange byte), that atomically reads a memory location and
writes in a new value. The atomicity of the xchgb operation is
enforced by the bus: a copy of the memory location is brought
into the processor’s cache, modified there, and then written
back to memory. As the value is written to memory, all copies
of the old memory value in other caches are invalidated. No
comparison of the old and new values is performed; memory
is written and other copies invalidated even if the value is un-
changed. Any requests for that memory location in the interim
are delayed until the processor is done modifying it [17].

The Sequent locking protocol is as follows. The lock is
held if the value is a 1 and free if 0. To lock, a processor
exchanges in a 1. If the old value was a 0, it got the lock; if
the value was a 1, the lock was already held by someone else,
and the processor must try again. In either case, the value is
1 afterwards. The lock is released by exchanging in a 0; this
allows some other processor to get a 0 back in exchange for
a 1. There are several potential protocols for spin-waiting,
which are described below.

B . Spin on Xchgb
Perhaps the simplest way to implement spin-waiting is for

each processor to loop on the xchgb instruction until it suc-
ceeds. The drawback to this approach is that every xchgb in-
struction consumes bus resources, whether or not it succeeds.
As additional processors spin on the lock, the holder of the
lock is slowed both because the bus is busier and because
to free the lock it must contend for permission to update the
lock value with the xchgb’s of processors uselessly trying to
acquire the lock.

the spinning processor will see the value change to 0 and
can then try to acquire the lock using an xchgb operation.
Sequent’s run-time library uses this implementation [22].

A problem arises when there are a number of processors
waiting for a small critical section. When the lock is freed,
every spinning processor’s cache copy is invalidated, causing
each processor to fetch the new value in turn. The first to try
to acquire the lock succeeds; however, each processor that
sees the value as 0 before this occurs will also, in turn, try to
acquire the lock, fail, and go back to looping on a read. Un-
fortunately, each processor that does an unsuccessful xchgb
operation invalidates all cache copies, forcing all processors
that were looping to miss again. Thus, after each such oper-
ation, almost every spinning processor contends for the bus,
some still waiting to do an xchgb and the rest to fetch the lock
value. Eventually, each processor sees that the lock has been
acquired and quiesces, looping in its cache.

For a given number of spinning processors, the performance
of this algorithm is better for longer critical sections. After
the lock is released and before quiescence, each spinning pro-
cessor spends most of its time with a pending bus request; any
normal bus request during this time will be correspondingly
delayed. After quiescence, the spinning processors place no
load on the bus, allowing the processor holding the lock to
progress unhindered. With longer critical sections, the initial
degradation is less significant. By contrast, spinning on the
xchgb instruction degrades bus performance evenly through-
out the critical section.

D. Ethernet-Style Backoff
The source of the difficulty is that there is a cost to at-

tempting to acquire the lock. A generic solution to problems
of this sort is to have each processor estimate its likelihood of
success, and only try the lock when the probability is high.
The estimate can be made from experience. The more times a
processor has tried and failed, the more likely it is that many
processors are spinning for the lock. When the lock is re-
leased, then, instead of every processor rushing to try to get
it, each waits a period of time dependent on the number of
past failures. If the lock is still free after this period, then the
probability of success is high enough to try the lock. We used
this algorithm for our measurements in Section 111.

The analogy with Ethernet is revealing. In the Ethernet pro-
tocol, a processor can start a network transmission in any time
slot that the network is free [181. If two try to start transmitting
in the same slot, both fail and must be retried later. To avoid
further collisions, the length of time before retrying depends
on the number of collisions encountered so far. In our case,
when a number of processors simultaneously try to acquire a
lock, one will succeed, but its progress will be slower than if - -
there were no collisions.

The downside to Ethernet-style protocols is that they are un-
fair. A processor that has just arrived is more likely to acquire
the lock (or network) than one who has been waiting, and fail-
ing, for some time. Spinning on a test-and-set instruction and
spinning on a read of the lock location are both probabilis-
tically fair; each spinning processor has an equal likelihood
of getting the lock, even though the possibility of indefinite

C . Spin on Read
Coherent caches seem to allow processors to spin without

using bus cycles. A processor can try to acquire the lock
once; if this fails, the processor can spin reading the lock
memory location. As long as the value is 1, the lock is still
held. This spinning is done in the cache, avoiding bus traffic.
When the lock is released, the cache copy will be invalidated;

ANDERSON et al. : THREAD MANAGEMENT ALTERNATIVES FOR MULTIPROCESSORS 1639

starvation exists. Lock fairness is sometimes important to an
application.

Another drawback of the backoff algorithm is that it takes
longer for a spinning processor to acquire a newly free lock.
The processor must check the lock value, delay, and check it
again before trying the lock. Once the lock is acquired, how-
ever, the processor will proceed faster, relatively unimpaired
by other spinning processors.

Even using this algorithm, there will be processor degra-
dation when there are large numbers of spinning processors.
When the lock is released, every spinning processor encoun-
ters a cache miss. After this initial miss, most processors delay
locally until some other processor has acquired the lock, and
then miss again to see that the lock has been acquired. With
enough spinning processors, the bus can be saturated with
these misses, slowing down the processor executing in the
critical section.

These cache misses can be avoided. A processor can delay
whenever it reads the lock value as busy. If the lock is not
busy, the processor can immediately try to acquire it. Thus,
spinning processors miss their cache every time the delay pe-
riod expires, rather than every time the lock is released. This
is analogous to the Ethernet notion of persistence [181. A re-
sult of this variation is an even greater delay between when a
lock is released and when a spinning processor will acquire
the lock.

Processors can spin-wait (degrading other processors) for
things other than locks. Agarwal and Cherian [2] apply back-
off to spin-waiting for data to become available. Spin-waiting
can also be a problem with idle processors polling a central
or distributed ready queue. When a ready thread is queued, if
every idle processor rushes to acquire the lock, bus saturation
will result. Even if each idle processor delays after observ-
ing that a thread is queued, then makes sure that it is still
queued, there is still a cache miss per idle processor, hurting
performance for large numbers of idle processors.

If idle processors are kept on a queue, this problem does
not occur. Each idle processor spins on a separate flag. When
a thread becomes ready to run, only one processor’s flag
is modified; every other processor continues spinning with-
out even a cache miss . The performance advantage of having
work look for processors instead of processors looking for
work will therefore be more important in systems with large
numbers of processors. This effect can be seen in Fig. 4; the
cost of the central ready queue is higher when there are only
a few runnable threads, since there are more idle processors
spin-waiting for work to appear in the ready queue.

E . Measurement Results
Fig. 6 shows the elapsed time for various numbers of pro-

cessors to cooperatively increment and test a shared counter
in a critical section 1 million times, for each method of spin-
waiting. Each processor executes a loop: wait for the lock,
increment the counter, and release the lock. We do not claim
that this test is representative of the normal use of critical
sections, but similar curves have been measured with more
significant computation between lock accesses. Since there is

80 7

+ spinxchgb
+ spin read
+ backoff

1 3 5 7 9 1 1 1 3
number of processors

Fig. 6. Principal results for spin-waiting: elapsed time in seconds to incre-
ment a shared counter to 1 OOOOOO (measured).

+ spinxchgb
+ spin read
+ backoff

1 0 6 0 1 1 0 160 210
usecs. In critical section

Fig. 7. Relative processor speed (8 processors to 1 processor) versus critical
section size (measured).

little parallelism, if spinning processors did not slow the pro-
cessor holding the lock, the curve would be flat.

The magnitude of this effect is striking. Both spinning on
the xchgb instruction and spinning on a read degrade processor
performance badly for even a moderate number of spinning
processors. For small critical sections, in either alternative,
every spinning processor spends all of its time doing cache
read misses or atomic xchgb operations, consuming bus cycles
as fast as possible. By contrast, the backoff algorithm results
in only slight degradation unless the number of spin-waiting
processors exceeds ten.

Fig. 7 shows the effect of increasing the size of the crit-
ical section on each algorithm’s performance. In addition to
incrementing a counter, the critical section contains varying
amounts of other work. We normalized the time for eight pro-
cessors by the time for one processor. This measures relative
processor speed. Again, if spin-waiting did not slow the pro-
cessor holding the lock, one processor would not be faster than
eight, and the relative processor speed would always be equal
to 1. As expected, spinning on a read degrades performance
less as the size of the critical section grows, while spinning on
the xchgb instruction degrades performance evenly throughout
the critical section.

To test the tradeoff between processor degradation and the
delay in acquiring a newly released lock, we measured the
elapsed time for a number of processors to each increment
a shared counter within a critical section. Once a processor
acquired the lock and bumped the counter once, it was set to
loop until all processors were done. This test is indicative of
the cost of using a lock for barrier synchronization. Fig. 8
shows the elapsed time divided by the number of processors.

1640 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

40 1
1 5

5 30

0 -

t f
-C spinxchgb
+ spin read
+ backoff

Fig. 8.
number of processors

Normalized time (microseconds per processor) to
(measured).

achieve barrier

If there is no processor degradation or delay in acquiring the
lock, the elapsed time to achieve the barrier should increase
linearly with each additional processor; t i e normalized curve
in Fig. 8 should be flat.

Fig. 8 shows that for small numbers of processors, spinning
on the xchgb instruction is fastest, since a processor immedi-
ately acquires the lock when it is released. As more processors
are added, however, even though the lock is acquired faster,
this is outweighed by the degradation of the processor hold-
ing the lock. The backoff algorithm shows a similar curve to
spinning on a read, but for a different reason. Initially, many
processors are queued for the lock; this leads spinning proces-
sors to guess large delay times. As more processors acquire
the lock, there are fewer queued processors, and the delays
become inappropriate.

Processors doing work are slowed proportional to the num-
ber of times they access the bus. Thus, the results of these
tests depend somewhat on the content of the critical section.
However, since the purpose of a critical section is to serial-
ize modifications to shared data, its code is likely to be bus
intensive. Our measurements indicate that almost half of the
bus service demand of thread management is due to the criti-
cal section. Furthermore, thread management critical sections
also tend to be small. For example, enqueueing or dequeueing
a ready thread in a critical section both take less than 10 ps,
roughly the same as for Fig. 6.

F. Implications for Other Systems
In this section, we show that the performance of spin-

waiting is of concern on architectures other than the Symmetry
Model A.

Some multiprocessors do not provide hardware cache co-
herency; the BBN Butterfly [6] is an example. For these sys-
tems, every test of a lock value by a spinning processor re-
quires a memory access. By inserting a delay between each
test, the effect of spinning on busy processors can be reduced;
backoff can be used to adapt the frequency of reads to the
number of waiting processors.

The Symmetry Model A has a write-through protocol: when
a processor modifies a location, the value is written to memory
and all old copies of the location in other caches are invali-
dated. There is a cost to spin-waiting, even in architectures
with a write-back cache coherency protocol. In a write-back
protocol, the value is stored in the cache and later written to

memory when the cache block is replaced. There are two ma-
jor approaches to keeping other caches consistent with the new
value: all old copies in other caches can either be invalidated
or updated with the new value (distributed-write) [4].

In the case of an invalidation-based write-back protocol, the
spin-waiting alternatives have much the same effect as with
write-through. If processors spin on the atomic test-and-set
operation, the valid copy of the lock bounces from cache to
cache, consuming bus resources. Provided test-and-sets inval-
idate all cache copies whether or not the lock value changes,
spinning on a read does not help; there is still a cascade of
repeated invalidations when the lock is released.

One possibility, then, is to add hardware to compare the old
and new value of the lock on a test-and-set and to invalidate
other copies only if they differ. While this would improve
the performance of spinning on a read, it does not eliminate
the problem. With P spinning processors, there are O(P) bus
requests per lock acquisition. Each processor must cache miss
when the lock is released; it must also acquire the bus to ensure
the atomicity of its subsequent test-and-set.

Systems with distributed-write coherency have similar per-
formance. When a processor performs an atomic operation,
every cache with an old copy is updated with the new value;
thus no cache misses occur. If processors spin on a read, how-
ever, there will still be a rush of processors to try the lock
when it is first released. Since the backoff algorithm reduces
the number of unsuccessful lock attempts, it would reduce the
bus load due to spinning even further.

Explicitly queueing spinning processors can further im-
prove performance. Each processor in the queue spins on
a separate flag; when a processor finishes with the lock, it
passes control of the lock by setting the flag of the next one
in the queue, without invalidating the flags of the other waiting
processors.

In a related paper, we devised an efficient queue-based
spin-waiting algorithm that uses only O(1) bus transactions
per execution of the critical section [3]. Each arriving pro-
cessor does an atomic read-and-increment to obtain a unique
sequence number. When a processor finishes with the lock,
it taps the processor with the next highest sequence number;
that processor now owns the lock. Since processors are se-
quenced, no atomic read-then-write instruction is needed to
pass control of the lock. Table IV lists the code for this ap-
proach (“myPlace” is a location private to each processor).
Measurements of this algorithm appear in that paper.

V. ANALYTICAL RESULTS
We developed a simple queueing network model for our

thread package to demonstrate that the combination of proces-
sor degradation due to bus contention and the effect of lock
contention can account for our measurements. We then used
the validated model to project the performance of our thread
package under varying conditions.

Our model is hierarchical. The low-level model represents
the effect of bus contention on processor speed. The high-level
model represents the effect of lock contention on throughput
and response time. Since processor speed affects the amount
of lock contention and the number of spinning processors af-

ANDERSON et al. : THREAD MANAGEMENT ALTERNATIVES FOR MULTIPROCESSORS

Init

Lock

Unlock

1 6 4 1

flags[Ol = HAS-LOCK;
flags[l..P-11 = MUST-WAIT;
queueLast = 0;

myplace = ReadAndIncrement(queueLast);
while (flags[myPlace mod PI == MUST-WAIT)

flags[myPlace mod PI = MUSTWAIT;

flags[(myPlace + 1) mod PI = HAS-LOCK;

fects bus contention and thus processor speed, we iterate be-
tween levels to convergence. We describe the two submodels
in more detail below.

A . Modeling Bus Contention
In the low-level model, we represent each processor as a

customer in a closed queueing network. The network has two
service centers: a queueing center for the bus and a delay
center for nonbus activity. Each processor spends some of its
time referencing memory through the bus and thus contending
with other processors also using the bus, and some of its time
processing out of its cache, independent of the activity of other
processors. Processor speed is degraded by the percentage of
time spent queueing, but not in service, at the bus.

cessing

customers =
processors

30
Diagram 5.1 Low-level model of bus contention.

This model is an approximation of the real bus mechanism,
which is considerably more complex [17]. At moderate loads,
our model will be pessimistic by predicting more contention
than is actually experienced. Because of the regularity of the
time each processor spends computing between accesses to
the bus, if two processors collide at the bus, they are unlikely
to collide at their next visit. Our model assumes that arrivals
are more nearly independent.

There are three components to bus utilization. A processor
can be executing user code, thread management code, or spin-
waiting, each with different service demands on the bus. Given
these service demands and the ratio of time each processor
spends in each type of activity, we determine the aggregate
service demands at the bus and at the delay center and use
these aggregate demands to solve the model.

Since it is difficult to analytically determine the bus demand
of a section of code, we determine a portion of it inductively
from measurements. We provide each processor with its own
copy of all data structures; we then run the code in parallel
on each processor. Since there is no shared data, there can be
no contention for software resources; any delay experienced
by a processor relative to when it is running the code by itself
must be due to contention for hardware resources, such as for
memory or the bus. We then match a curve from our model of
the bus to the measured curve and use the result as the service

demand for that section of code. The curves matched well in
practice, deviating only at moderate loads, as expected.

Since bus contention may disproportionately impact the crit-
ical section execution time, affecting lock contention in the
high-level model, we used this approach separately for the
critical section and noncritical section code within thread man-
agement. The critical section code turns out to account for
much of the bus demand of thread management.

Even though it could affect bus usage, we did not include
in our model the effect of different numbers of processors
on cache hit ratios. When a processor writes a location, the
Symmetry updates both memory and that processor’s cache.
As a result, on a single processor, data that are both writ-
ten and read will tend to stay in the cache, avoiding cache
misses. When multiple processors read and write shared data,
the cache copies of the data will be repeatedly invalidated as
different processors update it, resulting in more cache misses
than in the single processor case. Our model therefore under-
estimates bus demand, making it optimistic, especially as the
bus nears saturation.

The bus demand of spinning processors was also determined
inductively. P processors were set to run the critical section
with separate copies of the data structures; by the experiment
described above, we know the bus service demand of these
processors. Q processors were set to run a shared copy of
the critical section; one of these processors has the normal
bus service demand, and Q - 1 spin-wait. By measuring the
processor degradation of the P copies, we can determine the
aggregate bus demand of the Q - 1 spinning processors. A
two-class model was used, one class representing processors
executing critical sections and one representing spinning pro-
cessors. Only the response time of the processors executing
the critical section is important.

The bus demand, at least for the backoff algorithm, is linear
with the number of processors. While there is no a priori
reason for this, it intuitively makes sense. The effect of adding
a spinning processor with the backoff algorithm is to add two
cache misses per execution of the critical section. The bus
demand of other processors is relatively unaffected. While this
invariance would also hold for the spin on xchgb algorithm, it
is less true when processors spin on memory reads, because
the cascade of cache misses is longer for every processor
when more processors are spinning. Note that the graphs in
Section IV could be used to infer the bus demand of spinning
processors. We did not choose this approach because there
is a correlation between when the processor holding the lock
and when the processors spinning on the lock use the bus.
The curve for the backoff algorithm in Fig. 6, for example,
is similar to that of an optimistic asymptotic bound.

B . Modeling Lock Contention
In the high-level model, we represent each lock in the thread

management path by a separate queueing center. Processing
time spent not holding a lock is modeled as a delay center.
Service demands were directly measured, then the part of each
service demand due to bus accesses was inflated by the bus
response time of the low-level model. As in the low-level
model, each processor is represented as a single customer in

1642 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

a closed class. By solving this model, we can determine the
average amount of time each processor spends spin-waiting
for a lock versus executing thread operations or user code.
This ratio is then used as an input to the low-level model.
(Note that it is a simple matter in this model to add queueing
centers if the application-level code does further locking.)

processing

customers =
processors

I O
ready queue lock

Diagram 5.2 High-level model of lock contention for the local free list
alternative.

If the time between thread operations is deterministic, our
model is pessimistic at moderate loads. As for the bus, if
two processors collide at a lock, the effect of deterministic
processing times is to reduce the likelihood that they will
collide at the next visit. Fig. 2 shows this effect. The curves
are similar in shape to asymptotic optimistic bounds, since the
processing time to do each thread operation is deterministic.
Fig. 3 does not show this effect, since the user computation for
each thread was randomly chosen from a uniform distribution.

Our model does not explicitly represent an applicaiton’s
distribution of parallelism, although Fig. 4 shows that this
affects performance. We chose not to include this in our
model since the distribution, and more importantly the ef-
fect of lock queueing delay on that distribution, are almost
always application-dependent.

Given the distribution, the model could be evaluated sep-
arately for each population of threads; these separate eval-
uations could then be averaged, weighted by the proportion
of time for that population. The population of the high-level
model should be the minimum between the number of proces-
sors and the number of threads, reflecting the number of active
processors. The population of the low-level model should be
set similarly, except that since idle processors consume bus
resources, a second class should be added to represent them.

This method of separate evaluations ignores the fact that
lock contention can only occur when the parallelism is being
incremented or decremented; we believe that any distortion
introduced by the adaptive nature of the mechanism will be
outweighed by the effects of lock and bus contention. Ni and
Wu [20] also discuss this issue.

C . Comparison to Measured Results, and Projections
Fig. 9 compares our model results with our measurement

results previously reported in Fig. 3. We modeled two alter-
natives: per-processor ready queues (local readyq) and per-
processor free lists with a central ready queue (local free-
list). Our model agrees well with the measurements, within 5
percent except for the central ready queue with 18 processors.
The model predicts the shape of the curve, but is somewhat
optimistic; this appears to be due to underestimating the bus
demand, which is important in determining the effective size

o ? . , . , . , . ,
1 5 9 13 17

number of processors

Fig. 9. Comparison of analytic and measured results from Fig. 3.

2o 1

+ local freelist
-w local readyq

0 200 400 600 800 1000
usecs. of user mode computing

Fig. 10. Speedup versus microseconds of user computation per thread, 20
processors, bus load = 5 percent (analytic).

2o 1

+ local freelist
* local readyq

0.0 0.1 0.2 0.3 0 .4 0 . 5

Speedup versus bus load, user work = 200 ps, 20 processors
bus load as % of user Computation

Fig. 11.
(analytic).

of the critical section. The model does capture the difference
between the alternatives.

Having validated our model, we used it to investigate the
effect of varying key parameters. Fig. 10 shows speedup of
a hypothetical application with 20 processors as a function of
the amount of user computation per thread. As we would ex-
pect, as an application uses finer grained parallelism (smaller
amounts of computation per thread), the central lock on the
ready queue becomes a bottleneck. For sufficiently coarse-
grained parallelism, the performance of the thread package
ceases to matter. In the limit, even DYNIX processes could
be used.

Contention for the bus can also reduce the difference be-
tween the alternatives. Fig. l l shows speedup as a function
of the percentage usage of the bus by each thread. As the bus
usage increases, the bus limits the speedup with local ready
queues, but it also limits the speedup with the central ready
queue, since bus contention inflates the critical section time.

On the other hand, the central ready queue lock can

ANDERSON et al. : THREAD MANAGEMENT ALTERNATIVES FOR MULTIPROCESSORS 1643

n a

40 -

30 -

20 -

10 -
,

+ localfmelist
.) localreadyq

d

0 10 20 30 40 5 0
number of processors

Fig. 12. Speedup versus number of processors, user work = 2 ms (ana-
lytic).

again limit speedup even for more coarsely-grained paral-
lelism, given a sufficient number of processors. Fig. 12 shows
speedup as a function of the number of processors when
threads each compute for 2 ms. The sharp dropoff for the
central ready queue alternative shows the inherent instability
of a system where spinning processors consume resources.

VI. CONCLUSIONS
Threads have become a common element of new languages

and operating systems. Efficient thread management is critical
to achieving good performance from parallel applications. We
have studied the performance implications of several thread
management and locking alternatives. We showed the follow-
ing.

0 It is possible to implement a fast thread package. Sim-
plicity is crucial for this.

0 For fine-grained parallelism, small changes in data struc-
tures and loclung have a significant effect on both latency and
throughput.

0 Per-processor data structures can be used to improve
throughput; if a resource is not scarce, localizing data can
avoid locking, improving latency as well.

0 Spin-waiting can delay not only the processor waiting for
a lock, but other processors doing work. This appears to be
independent of the cache coherency protocol.

0 The cost of spin-waiting can be reduced by using an
Ethernet-style backoff or a queue-based algorithm.

0 A simple queueing model can accurately predict the ef-
fect of a combination of factors on the performance of shared-
memory multiprocessors.

An area of future research is to determine the extent to
which our results, developed in the context of thread manage-
ment systems, also apply to application programs that exploit
fine-grained parallelism on shared-memory multiprocessors.

ACKNOWLEDGMENT

We would like to thank D. Wagner for suggesting that an
Ethernet-style algorithm might solve the spin-waiting problem.

REFERENCES
[l] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,

and M. Young, “Mach: A new kernel foundation for UNIX develop-
ment,” in Proc. Summer 1986 USENIX Tech. Conf. Exhibition,

A. AganvaJ and M. Cherian, “Adaptive backoff synchronization tech-
pp. 93-112.

[2]

niques,” in Proc. 16th In t . Symp. Compur. Architecture, June 1989,

T. E. Anderson, “The performance implications of spin-waiting alter-
natives for shared-memory multiprocessors,” in P m . 1989 Int. Conf.
Parallel Processing, Aug. 1989.
J . Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation
using a multiprocessor simulation model,” ACM Trans. Comput.
Syst., vol. 4, no. 4, pp. 273-298, Nov. 1986.
M. J. Bach and S . J. Buroff, “Multiprocessor UNIX operating sys-
tems,” AT&T Bell Labs. Tech. J . , vol. 63, no. 8, pp. 1733-1749,
Oct. 1984.
BBN Laboratories, Butterfly Parallel Processor Overview, 1985.
B. Bershad, E. Lazowska, and H. Levy, “Presto: A system for object-
oriented parallel programming, ” Software: Practice and Experience,
vol. 18, no. 8, pp. 713-732, Aug. 1988.
B. Bershad, E. Lazowska, H. Levy, and D. Wagner, “An open
environment for building parallel programming systems,” in Proc.
ACM/SIGPLAN PPEALS 1988, pp. 1-9.
K. W. Dritz and J. M. Boyle, “Beyond “speedup”: Performance anal-
ysis of parallel programs,” Tech. Rep. ANL-87-7, Math. and Comput.
Sci. Division, Argonne Nat. Lab., Feb. 1987.
D. Eager, E. Lazowska, and J. Zahorjan, “Adaptive load sharing in
homogeneous distributed systems,” IEEE Trans. Software Eng., vol.
12, no. 5, pp. 662-675, May 1986.
J . Edler, J . Lipkis, and E. Schonberg, “Process management for highly
parallel UNIX systems,’’ Ultracomputer Note 136, Apr. 1988.
C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.
R. Holt, “A short introduction to concurrent Euclid,” SIGPLAN No-
tices, vol. 17, pp. 60-79, May 1982.
E. Jul, H. Levy, N. Hutchinson, and A. Black, “ Fine-grained mobility
in the Emerald system,” ACM Trans. Comput. Syst., vol. 6, no. 1,

B. Kumar and T. Gonsalves, “Modelling and analysis of distributed
software systems,” in Proc. 7th ACM Symp. Oper. Syst. Principles,
Dec. 1977, pp. 2-8.
B. W. Lampson and D. D. Redell, “Experiences with processes and
monitors in Mesa,” Commun. ACM, vol. 23, no. 2, pp. 104-117,
Feb. 1980.
T. Lovett and S . Thakkar, “The Symmetry multiprocesor system,” in
Proc. 1988 Int. Conf. Parallel Processing, pp. 303-310.
R. Metcalfe and D. Boggs, “Ethernet: Distributed packet switching
for local computer networks,” Commun. ACM, vol. 19, no. 7, pp.

D. A. Mundie and D. A. Fisher, “Parallel processing in Ada,” IEEE
Comput. Mag., pp. 20-25, Aug. 1985.
L. Ni and C.-F. Wu, “Design tradeoffs for process scheduling in tightly
coupled multiprocesor systems,” IEEE Trans. Software Eng., vol.
15, no. 3, pp. 327-334, Mar. 1989.
M. Scott, T. LeBlanc, and B. Marsh, “Design rationale for Psyche, a
general purpose multiprocessor operating system,’’ in Proc. 1988 Int.
Conf. Parallel Processing, Aug. 1988.
Sequent Computer Systems, Inc., Symmetry Technical Summary.
C. Thacker, L. Stewart, and E. Satterthwaite Jr., “Firefly: A multi-
processor workstation,” IEEE Trans. Comput., vol. 37, no. 8, pp.

M. Vandevoorde and E. Roberts, “ WorkCrews: An abstraction for
controlling parallelism,” Int . J . Parallel Programming, vol. 17, no.

pp. 396-406.

pp. 109-133, Feb. 1988.

395-404, July 1976.

909-920, Aug. 1988.

4, pp. 347-366, Aug. 1988.

1644 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 12, DECEMBER 1989

D. Wagner, E. Lazowska, and B. Bershad, “Techniques for efficient
shared-memory parallel simulation,’’ Distribut. Simulation 1989, So-
ciety for Computer Simulation, pp. 29-37.
J . Zahorjan, E. Lazowska, and D. Eager, “Spinning versus blocking
in parallel systems with uncertainty,” in P m . Int. Seminar Perform.
Distribut. Parallel Syst., North Holland, Dec. 1988.

Edward D. Lazowska, for a photograph and biography, see this issue, p.
1610.

Thomas E. Anderson received the A B degree in
1983 from Haward University, Cambridge, MA

Since 1987, he has pursued a doctoral degree in
the Department of Computer Science, University of
Washington, Seattle. His research interests include
multiprocessor operating systems and performance
modeling

Mr Anderson won an IBM Graduate Fellowship
in 1989.

Henry M. Levy is Research Associate Professor in
the Department of Computer Science at the Univer-
sity of Washington, Seattle His research involves
computer architecture, distributed and parallel op-
erating systems, object-oriented systems, and per-
formance evaluation Formerly, he was a consult-
ing engineer with Digital Equipment Corporation
He is author of the books Computer Programmrng
and Architecture: The VAX (second edition), and
Capability-Based Computer Systems

