Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 1

Pragmatic nonblocking synchronization for real-time systems

Michael Hohmuth Hermann &ttig

Dresden University of Technology
Department of Computer Science

drops@os.inf.tu-dresden.de, http://o0s.inf.tu-dresden.de/drops/

Abstract 1 Introduction

We present a pragmatic methodology for designin recent years, nonblocking data structures have
ing nonblocking real-time systems. Our method-caught the attention not only of the real-time sys-
ology uses a combination of lock-free and wait-fre€tems community but of theoretical and some prac-
synch_ronlzatlontechmqugs a_nd clgarly_statgs whiclical operating-systems groups. Many researchers
technique should be applied in which situation. haye devised new methods for efficiently synchro-
: . : nizing interesting data structures in a nonblocking
This paper reports novel results in various respects1r . .
. . ashion. Others have conceived general method-
We restrict the usage of lock-free mechanisms to,~ . . . :
. . S ologies for transforming any algorithm into a non-
cases where the widely available atomic single- ; i
. . blocking one; however, these results have a more
word compare-and-swap operation suffices.

. . : heoretical nature as the methodologies often lead
show how Brinch Hansen’s monitors (alias Java'’s g

. . to very inefficient implementations. The next sec-
synchronized methods) can be implemented on to y P

. . Fon briefly discusses a number of these works.
of our mechanisms, thereby demonstrating their y usse u

versatility. We describe in detail how we used |n contrast to this boom, we know of only a few sys-
the mechanisms for a full reimplementation of atem implementations that successfully exploit non-
popular microkernel interface (L4). Our kernel— plocking synchronization. The only two operating
in contrast to the original implementation—boundssystems we are aware of that use exclusively non-

execution time of all operations. We report onpjocking synchronization areYSITHESIS [T6] and
a previous implementation of our mechanisms inthe CacHe kernel [7].

which we used Massalin’s and Pu’s single-server
approach, and on the resulting performance, whicPne of the problems with the approach is that it
lead us to abandon this well-known scheme. appears difficult to apply to many modern CPU
architectures: Many of the most efficient algo-
Our microkernel implementation is in daily use rithms available for lock-free data structures require
with a user-level Linux server running a large vari- a primitive for atomically updating two indepen-
ety of applications. Hence, our system can be condent memory words (two-word compare-and-swap,
sidered as more than just an academic prototypeCAS?2), and many processors like the popular x86
Still, and despite its implementation in C++, it com- CPUs do not provide such an instruction. Signif-
pares favorably with the original, highly optimized, icantly, SYNTHESIS and the @CHE kernel orig-
non-real-time, assembly-language implementationinate from the Motorola 68K architecture, which
does have a CAS2 primitive.

In this paper, we present a pragmatic approach
for building nonblocking real-time systems. Our
methodology works well even on CAS2-less archi-

http://os.inf.tu-dresden.de/drops/

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 2

tectures. It does not rely solely on lock-free syn-We see our contribution as leading the recent inter-
chronization for implementing nonblocking data est in nonblocking synchronization to a practicable
structures—which would be both inconvenient andinterim result, which the scientific community can
slow on the architectures we considered. Insteadyerify. The source code to the Fiasco microkernel
our methodology does allow for locks, but ensureds freely available, allowing researchers to further
that the system is wait-free nonetheless. In addistudy our technigues and experiment with them.

tion, our technique is easy to apply because from , _ _
a developer's perspective, it looks much like pro-1hiS paper is organized as follows: In Sectign 2,

gramming with mutual exclusion using monitors. W€ consider related work on nonblocking synchro-
nization. In Sectiof]3, we develop our methodology

We describe the application of our approach tofor designing wait-free real-time systems. Secfion 4
build a real system: Using our methodology, weshows how we applied this methodology to the de-
developed the Fiasco microkernel, a kernel for thevelopment of the Fiasco microkernel. In Sectjon 5,
DRrRopsreal-time operating systern [8] that runs onwe present performance values for the Fiasco mi-
x86 CPUs. This kernel is an implementation of thecrokernel, and we evaluate the kernel’s real-time
L4 microkernel interface[15], and it is sufficiently properties. In Sectiofi 6, we derive conditions for
mature to support all the software developed for L4 the applicability of our methodology for the devel-
including DRopPs servers and 1Linux [9].] We opment of multithreaded user-mode real-time pro-
evaluate the effectiveness of our methodology forgrams. We conclude the paper in Secfibn 7 with a
nonblocking design by examining the Fiasco mi-summary and suggestions for future work.
crokernel’s real-time properties and synchroniza-

tion overheads.

. : 2 Nonblocking synchronization
Fiasco currently runs only on uniprocessors. Con-

sequently, we concentrate on single-processor im- and related work

plementation details. However, our methodology

lends itself to multiprocessor-system implementa—2_1 Lock-free and wait-free synchroniza-
tions as well, gnd we point out routes for multipro- tion

cessor extensions.

We also discuss a number of nonblocking synchroOverview. Nonblocking synchronization strate-
nization mechanisms. In theiryS8THESIS work, gies have two important properties: First, they pro-
Massalin and Pul[16] introduced the concept ofvide full preemptability and allow for multi-CPU

a “single-server” thread (a variant of the “serial- concurrency. Second, priority inversion is avoided;
izer” pattern first described by Hauser and assolower-priority threads cannot block higher-priority
ciates [10]), which serializes complex object up-threads because there is no blocking at all. These
dates that cannot be implemented in a nonblockingharacteristics make nonblocking synchronization
fashion. In this paper, we present a simple modvery interesting for real-time systems.

ification to the single-server scheme that makes it . L .

truly nonblocking and useful for use in real-time The concepts discussed in this section are not new

systems. Furthermore, we show that the single'—n any way, and many systems implement variants
server mechanism is semantically equivalent to g

f them such as optimistic concurrency contiol [1]
locking scheme. In particular, the real-time version

and priority inheritancel[20]. We describe them
can be replaced by a locking scheme with priorityhere for completeness.
inheritance that is easier to implement and has befxonblocking synchronization comes in two flavors:

ter performance. wait-free and lock-free synchronization.

1 %Linux is a port of the Linux kernel (version 2.2.x) that) o
runs as a user program on top of L4 and is binary compatibleVait-free synchronization can be thought of as

with original Linux. locking, with helping replacing blocking. When a

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX '01) 3

higher-priority thread\’s critical section detects an Atomic memory update. The x86 CPUs have
interference with a lower-priority thred® A helps two kinds of atomic memory-modification opera-
B to finish its critical section first. During helping, tions: a test-and-set instruction (TAS) and a CAS
AlendsB its priority to ensure that no other, lower- instruction. Newer models (Intel Pentium and
prioritized activities can interfere. Whdhhas fin- newer) also have a double-size—word (8 bytes)
ished,A executes its own critical section. compare-and-swap instruction (CASW). However,

) o)] these CPUs do not support atomically updating two
Wait-free object implementations satisfy a Strongerindependent memory words (two-word compare-
form of block-freedom than lock-free synchroniza- and-swap, CAS2).

tion (discussed in the next paragraph) as they guar-

antee freedom from starvation. Therefore, manyA number of data structures can be imple-
authors point out that wait-free synchronization ismented without locks directly on top of CAS and
a special case of lock-free synchronization. How-CASW (i. e., without the overhead of a software-
ever, wait-free synchronization can also be impleimplemented multi-word CAS): counters and bit-
mented using locks, albeit with a nonblocking help-fields with widths up to 8 bytes, stacks, and FIFO
ing scheme. For example, a locking scheme withqueues.[[21.71.8]

priority inheritance can be considered a wait-free

synchronization scheme as long as critical section¥@l0is introduced a lock-free single-linked list de-
never block sign supporting insertions and deletions anywhere

in a list, as well as several other data structures
Lock-free synchronization works completely [?3,22]. These designs also work with just CAS.
without locks. Critical code sections are designedHowever, Greenwald[6] has criticized them for be-
such that they prepare their results out of line andng quite complex, difficult to get right, and com-
then try to commit them to the pool of shared putationally expensive.
data using an atomic memory update instruction i
like compare-and-swap (CAS). Trmparepart Most of tr_\e qlgorlthms for lock-free data-structure
of CAS is used to detect conflicts between tWosynchronlzatlon that have been developed recently

threads that simultaneously try to update the data; ifSSUMe availability of a stronger atomic primitive
it fails, the whole operation is restarted. If needed,iké CAS2. These data structures include general

retries can be delayed with an exponential backoffndle-linked and double-linked lists.I [6]

to avoid retry contentioff. A number of techniques exist for implement-

This synchronization mechanism has some nicd"g lock-free and wait-free general multi-word
properties: Because there are no locks, it avoig§ompare-and-swap (MWCAS) on top of CAS and

deadlocks: it provides better insulation from CAS2, enabling nonblocking synchronization for

crashed threads, resulting in higher robustness arff Pitrarily complex data structures {11 19, (2, 6].

fault tolerance, because operations do not hol&'hese techniques ha_/e con3|deraple overhegd n
locks on critical data; moreover, it is automatically both space and runtime complexity, especially

multiprocessing-safe when compared to common lock-based operations,
making them less interesting for kernel design.

Preconditions for using lock-free synchronization h hni ol .
are that primitives for atomic memory modifica- The most common technique to implement atomic

tions are available, and data is stored in type-stabllépum'Wo_rd udpdz_nltes hon ur;:proceis_ors IS to I?rzvent
memory management. We do not digress into typepreemptlon uring the update. This is usually done

stable memory management in this paper (s2e [ﬁ)y disabling interrupt delivery in the CPU. The dis-

for a discussion of operating-systems—related isadvantage of this method is (of course) that it does

sues); the rest of this subsection discusses atomfXt work on multiprocessors.

memory modification. Bershad 4] has proposed to implement CAS in
2Backoff is never needed on single-CPU systems. software using an implementation and lock known

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX '01) 4

to the operating system. When preempting a threadhe performance, reliability, and modularity of soft-
the operating system consults the lock, and if it isware especially when there is a lot of communica-
set, it rolls back the thread and releases the lockion in the system.

Greenwald and Cheritori![7] discuss a generaliza- _
tion of this technique to implement CAS2 or MW- However, they also warn that their results may not

CAS. This method has the disadvantage of incurP€ applicable if the CPU does not support a CAS2
ring overhead for maintaining the lock. Also, on Primitive. In this paper, we will investigate how
multiprocessors, the lock must be set even whefonblocking systems can be implemented in such
reading from shared data structures because othef! €nvironment.

wise readers can see intermediate states.

Another technique to facilitate complex object up-2.3 Nonblocking synchronization vs. real-
dates is the “serializer” or “single-server” approach time systems
[I0]. It uses a single server thread to serialize op-

erations. Other threads enqueue messages into thgnblocking object implementations are of inter-
server thread’s work queue to request execution ogst for real-time systems because they provide pre-
Operations on their behalf. If the server thread run%mptabi“ty and avoid priority inversion. However,
at a high priority, it does not block the requestingwhile it is well-known that wait-free method im-
thread any more than if it had executed the operaplementations are bounded in time (there is only a
tion directly. fixed number of threads we have to help; no retry
loop), it is not immediately apparent that this also
] o applies to lock-free synchronization. On the sur-
2.2 Nonblocking synchronization in Oper- face, |ock-free methods (like the ones in Fighre 3 in
ating systems Section43) look dangerous because of their poten-
tially unlimited number of retries.
We know of two other operating system projects

that have explored nonblocking synchronization inFortunately, Anderson and colleagués [3] recently
the kernel: the GcHE kernel [7] and SNTHESIS determined upper bounds for the number of retries

[16]. that occur in priority-based systems. They derived
scheduling conditions for hard—real-time, periodic

Both systems run on architectures with a CAS2tasks that share lock-free objects, and reported that

primitive (the Motorola 68K CPU), and their au- lock-free shared objects often incur less overhead

thors found CAS2 to be sufficient to synchronizethan object implementations based on wait-free or

accesses to all of their kernel data structures. Théck-based synchronization schemes.

authors report that lock-free implementation is a vi-

able alternative for operating-system kernels.

Massalin and Pu[16] originally also implemented3 A deSIQn mEthOdomgy for real-

a single-server mechanism for use in their lock-free ~ tIme systems
SYNTHESIS kernel, but later they found no need to
use it; the same was true for Greenwald and Cherii3
ton [7] in their CacHE kernel. We will revisit the
single-server approach in Sectipn|4.4.

.1 Design goals

Our main design goal was to allow for good real-
Greenwald and Cheritom![7] report that they foundtime properties of our systems. More specifically,
a powerful synergy between nonblocking synchro-we wanted higher-priority threads to be able to pre-
nization and good structuring techniques for operatempt the system (including the kernel) at virtually
ing systems. They assert that nonblocking synchroany time, as soon as they are ready to run—thus
nization can reduce the complexity and improvesallowing for good schedulability of event handlers

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 5

[IZ]. This should be true for sets of threads that deWith the x86 CPU lacking anything better than
pend on common resources, but even more so fasingle-word CAS, we suggest that other global data
independent thread sets. (like double-linked lists) are also implemented in a

_ _lock-free fashion, based on a software implementa-
Secondary goals to the first one are that short critsioy of MWCAS.

ical sections working on global state should in-

duce essentially no overhead for synchronizationjn a kernel, the atomic update can be protected by
also, the synchronization scheme should work fodisabling interrupts as discussed in Secfioh 2.1. Of
both single-processor and multi-processor architeceourse, disabling interrupts does not help on mul-
turesd tiprocessors; there, we suggest using spin locks to

) .) protect very short critical sections.
Finally, the design should be applicable to x86-

compatible uniprocessors, that is, it must be impleWe discuss software-MWCAS for user-mode pro-
mentable without CAS2. grams in Sectiof 6.

Global state not relevant for real-time comput-
3.2 Design guidelines ing, and local datacan be accessed using wait-free
synchronization. We propose a wait-free priority-

, _inheritance locking mechanism that can be charac-
The first design goal rules out any synchronization

L . terized as “locking with helping,” explained in more
scheme that suffers from priority inversion. There- o . o o
o ; detail in Sectiori 3]3. This kind of synchronization
fore, we have been looking into nonblocking syn-

-) has some overhead. Therefore, it should be avoided
chronization schemes: lock-free and wait-free syn- . .
chronization. for objects that otherwise independent threads must

access.

The secondary goals strongly favor lock-free syn-

o . H1 our synchronization scheme, waiting for events
chronization schemes: Locks induce overhead, and
Inside critical sections is not allowed. This restric-

in the multi-CPU case, the CPUs would compete..
: tion ensures wait-freedom. We will show in Section
for the locks. We therefore generally disallow lock- . - .
@ that this restriction does not limit the synchro-
based schemes for frequently-used global state ex=

hization mechanism’s power.
cept where we have no other way out.

| deul desi thodol . Once adesigner has decided which object should be

N particiar, our design methodology COmIDrIS‘es‘synchronized with which scheme, our methodology

the following guidelines: . ;
becomes very straightforward to use. It approxi-

We classify a system’s objectas follows: Lo- ~ Mates the ease of use of programming with mutual
cal stateconsists of objects used only by related €xclusion using monitors while still providing the
threads, that is, threads that cooperate on a givefi€sired real-time properties.

job or assignmentGlobal stateconsists of the ob-

jects shared by unrelated threads.) . . .
: Y 3.3 Wait-free locking with helping

Frequently-accessed global statehould be imple-

mented using data structures that can easily be agye suggest a wait-free locking-with-helping
cessed with lock-free synchronization. scheme. Each object to be synchronized in this
n Secon(z. v meniond a e of g5 2O leck i 3 vt sk
structures that can be synchronized in this fashion
on x86 CPUs using only CAS: Counters, bitfields, A lock knows which thread holds it upon entering
stacks, and FIFO queues. its critical section. When a thread wants to ac-

3\We will point out incompatibilities of our design method- duire a lock that is in use by a different thre@git

ology with multiprocessor architectures where they occur. ~ puts itself on top of the lock’s helper stack. Then,

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 6

instead of blocking and waiting fdB to finish, it wait-and-notify monitor§ [12] (or their recent de-
helpsB by passing the CPU t8, thereby effec- scendant, Java synchronized methods). Whenever a
tively lending its priority toB and pushind® out of monitor-protected object’s method is called, we ac-
its critical section. Every timé is reactivated (be- quire the object’s lock. The wait operation would
cause the previous time slice has been consumethen be implemented as an unlock-sleep—lock se-
or because of some other reason), it checks whethguence. Figur§ 2 shows a possible monitor imple-
it now owns the lock; if it does not, it continues to mentation that uses a simple lock-free semaphore,
helpB until it does. WhemB finishes its critical sec- shown in Figurg]1.

tion, it will find a helping thread on top of the lock’s

stack—in this case, threa—and passes the lock Synchronization is more difficult when more than
(and the CPU) to that thread. one object can be locked at a time. We will discuss

two scenarios: nested monitor calls (i.e., nested
Using a stack instead of a FIFO wait queue has amritical sections), and atomic acquisition of multi-
important advantage: Given that threads are schegle locks.
uled according to hard priorities, it follows that the
thread with the highest priority lands on top of the As long as monitor methods never wait for events,
helper stack. There is no way for a lower-priority locking with helping works for nested monitor calls
thread to get in front of a higher-priority thread: IN the same way as for non-nested monitors. How-

As the high-priority thread does not go to sleep af_ever., if a nested method.wants to wait for an event,
ter enqueuing in the helper stack, it cannot be pretreelng the nested monitor does not help because
empted by a lower-priority thread and remains onthe outer monitor would still be locked during the
top of the stacl This property ensures that the sleep—which is illegal under our scheme. That is
highest-priority threads get their critical sectionsWhy nested monitor calls must not sleep.

through first. It makes our locking mechanism an

. . S) There are two ways to deal with this restriction:
implementation of priority inheritance.

Either construct the system such that second-level
Of course, execution of critical sections may pemonitors or even all monitors never sleep, or make
preempted by higher-priority threads that becomdhe locking more coarse-grained so that all objects
ready to run in the meantime. However, to ensuréhat would have to be locked before going to sleep
wait-freedom, threads executing a critical section@'€ in fact protected by a single monitor.

must not sleep or wait. In the Fiasco microkernel, we have chosen the first

Instead, threads first must leave critical section®Ption; in fact, we constructed the kernel so that
they have entered before they go to sleep. Thi€ritical sections never need to sleep. We discuss
requirement raises the question of how to deapynchronization in the Fiasco microkernel in more
with producer—consumer-like situations withoutdetail in Sectiori-413.

race conditions. There are a number of textbook so;

. .) .~ A different situation arises if the locks a critical
lutions for this problem. We describe our solution . . .
. . section needs are known before the critical section
in Section413.

starts, and during its execution. In this case, the

As long as critical sections do not nest, it is easy taVait operation can release all locks before sleeping,
see that our construction can be used to implemerfind reacquire them afterwards.

4This is generally true only for uniprocessors. For multi-
processors, the priority ordering of the helper list could be en-
sured by using a different data structure—a priority queue—or ®There is a large variety of monitors with differing seman-
by first migrating the helper to the CPU of the lock owner to tics, but most of them can be shown to have equivalent expres-
force it into that CPU'’s priority-based execution order. There sive power [T3[15]. Wait-and-notify monitors, also classified as
are subtle arguments for both designs, which are beyond th&no-priority nonblocking monitors”[5], have first been used in
scope of this work. Mesa [T4].

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 7

class Binary_semaphore

{
Thread_list d_q; // Lock-free thread list
int d_count;
public:
void down ()
{
d_q.enqueue (current());
int old;
do
{
old = d_count;
}
while (! CAS (&d_count, old, old - 1));
if (old > 0)
{

// Own the semaphore,
// can safely dequeue myself
d_q.dequeue (current());
} else {
sleep (Thread_sem_wakeup) ;
// Have been dequeued in up ()

}
}
void up (O
{
int old;
do
{
old = d_count;
}
while (! CAS (&d_count, old, old + 1));
if (old < 0)
{
Thread* t = d_q.dequeue_first ();
wakeup (t, Thread_sem_wakeup) ;
}
}

}; // Binary_semaphore

Figure 1 Pseudocode for a simple lock-free binary
semaphore (for single-CPU machines). It make
use of a lock-free list of threadSHread 1ist)
with a given queuing discipline, for example a FIFO
queue or a priority queue, ard eep andwakeup

primitives like those in Figurg 3.

class Monitor

{
Helping_lock d_lock;

public:
void enter ()

{
d_lock.lock (); // Locking w/ helping
X

void leave ()

{
d_lock.unlock ();
}

void wait (Binary_semaphore* condition)
{

d_lock.unlock ();

condition->down ();

d_lock.lock (); // Locking w/ helping
}

void signal (Binary_semaphore* condition)
{
condition->up ();

}
}; // Monitor

Figure 2 Pseudocode for a wait-and-notify monitor

based on a helping lock. This is a simple textbook
implementation—except that it uses only non-
blocking synchronization primitives. Semaphores
used as condition variables need to be initialized
with O.

The signal operation wakes up a waiter ac-
cording to the semaphore’s queueing discipline.
When one or more waiters have been restarted,
and more threads are trying to enter the monitor,
the Helping lock’s helper stack guarantees that
the thread with the highest priority can enter the

S) .
monitor first.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX '01) 8

4 Synchronization in the Fiasco dler thread. The kernel sends this thread a
microkernel message every time the interrupt occurs.

Mapping trees. Like L4, the Fiasco microker-

We developed the Fiasco microkernel as the basis nel allows transferring persistent virtual-to-
of the DROPSoperating-system project—aresearch ~ Physical page mappings via IPC between
project exploring various aspects of hard and soft ~ tasks. The mapping in the receiving task is
real-time systems and multimedia applications on ~ dependent on the sender such that when the
standard PC hardwaré [8]. The microkernel runs ~ Mapping is fI'ushed in thg sendgr's address
on uniprocessor x86 PCs, and it is an implemen- ~ SPace, mappings depending on it are recur-

tation of the L4/x86 binary interface [15]. It is sively flushed as well[15]. Mapping trees are

able to run BLinux [9], a Linux server running objects to keep track of these dependencies.
as a user-level program that is binary compatible ~ There is one mapping tree per physical page
with standard Linux, and it is freely available from frame.

http://os.inf.tu-dresden.de/drops/.

The kernel closely follows the design outlined in Global state

Section[B. In this section, we report how various

data structures are synchronized in this kernel, an&@resent list and ready list. These double-linked

we detail the design of our wait-free locking-with- ring lists contain all threads that are currently

helping mechanism. known to the system, or ready-to-run, respec-
tively. On both lists, the “idle” thread serves
as start and end of the list.

4.1 Kernel objects _ _
Array of address space referencesThis array is

indexed by an address space number. It con-
tains a reference for each existing address
space; for nonexisting address spaces, the ar-
ray contains an address space index referring
to the task that has a right to create the address
space. The Fiasco microkernel uses this ar-
ray for create-rights management, and to keep
track of and look up created tasks.

Let us begin by briefly describing the objects the
Fiasco microkernel implements. (For a philosoph-
ical discussion on what a microkernel should and
should not implement, we refer to Liedtke[15].)

Local state

Threads. The thread descriptors contain the com-Array of interrupt-descriptor references. In this
plete context for thread execution: a kernel array, the Fiasco microkernel stores assign-
stack, areas for saving CPU registers, a ref- ments between user-level handler threads and
erence to an address space, thread attributes, hardware interrupts.

IPC state, and infrastructure for locking (more

on the latter in Section2.3). Page allocator. This allocator manages the ker-

nel’s private pool of page frames.

Address spaces.There exists one address spac
per task. Address spaces implement the x8
CPU's two-level page tables. They also con-
tain the task number, and the number of the
task that has the right to delete this address
space.

apping-tree allocator. This allocator manages
mapping trees. Whenever a mapping is flushed
or transferred using IPC, the corresponding
mapping tree grows or shrinks. Once cer-
tain thresholds are exceeded, a new (larger or
smaller) mapping tree needs to be allocated;

Hardware_interrupt descriptors_ Each hardware this behavior is an artifact of the Fiasco micro-
interrupt can be attached to a user-level han- kernel'simplementation of mapping trees.

http://os.inf.tu-dresden.de/drops/

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 9

4.2 Synchronization of kernel objects managed in (concurrency-protected) mapping trees
and not in the page tables, mappings cannot get lost,

Following our design methodology from Section and all possiple states after such a concurrent up-
B2, the global state should be synchronized usingat€ are consistent.

lock-free synchronization while for local state thg We did not have to synchronize hardware-interrupt

overread 0]; Wa;t'frzri IOC(;('PQH']S accepc;talt_)le. PB“'descriptors at all because once they have been as-
martly, we closely adhered 10 these guidelines. Bu igned using their reference array (global state),
we also made the requirements somewhat strong%r

. . nly one thread ever accesses them.
where performance is critical, and we allowed a
small relaxation where it did not affect real-time

properties. Global state. The reference arrays for address
spaces and hardware-interrupt descriptors can eas-

_ _ ily be synchronized using simple CAS.
Local state. Threads are the most interesting ob-

jects that must be synchronized. We accomplistiFor the double-linked present and ready lists, we
synchronization using wait-free locks (described inhad to resort to simulate MWCAS by disabling in-
Section[43). However, for IPC-performance rea-terrupts for a short time. These lists and the sender
sons we do not lock all of a thread’s state. Insteadlist mentioned previously were the only objects for
we defined some parts of thread data to be not undevhich we had to revert to this “ugly” but inevitable
the protection of the lock, and use lock-free syn-synchronization methdf.

chronization for accessing these parts. In particu- _ o .

tors are implemented lock-free: the thread’s staté®mMel allocators for pages and mapping trees with
word, which also contains the ready-to-run flag andoCk-free synchronization; here we used wait-free
all condition flags for waiting for events (as ex- 10cking, as for the local state. We allowed this re-
plained in Sectiorf 313); and the sender queue, #xation of our guidelines in these instances for the
double-linked list of other threads that want to send©llowing reason: Threads with real-time require-
the thread a message. The state word can be syA1ents never allocate memory (for page tables) or
chronized using CAS. For the double-linked sendeghrink or grow mapping trees once they have ini-
list we use a simulated MWCAS that disables inter-tialized. Instead, they make sure that they allocate
rupts during memory modificatid. all memory resources they might need at initializa-
tion time. Therefore, real-time threads do not com-
The Fiasco microkernel protects mapping trees, likgpete for access to these shared resources, and the
the bulk of the thread data, using wait-free locks. overhead for accessing them is irrelevant. Should

_ _ __our assertion become untrue in the future, we will
Address spaces require very little synchronizationeyisit this design decision.

The kernel has to synchronize only when it enters a
reference to a new second-level page table into the

first-level page table. Deletion does not have to b&q.3 Wait-free locking in the Fiasco micro-
synchronized because only one thread can carryout kernel

this operation: Thread 0 of the corresponding task

deletes it when it is itself deleted. Otherwise, we do . : . . .
. The implementation of wait-free locking with help-

not synchronize accesses to address spaces: Only a . . : : .
, , Ing in the Fiasco microkernel is very similar to the
task’s threads can access the task’s address space) .
. meéchanism presented in Sect[on 3.3.
and the result of concurrent updates of a mapping

at a virtual address is not defined. As mappings are 'For the SMP port, this does not present a problem: The
ready list is per-CPU, so interrupt-disabling can still be used.

8For the prospective port of the kernel to SMP machines,Accesses to the present list are seldom and can be synchro-
we plan to protect this MWCAS using a spin lock per receiver. nized using a spin lock.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX’'01) 10

The Fiasco microkernel extends the basic wait-fredion is aborted. All threads explicitly allow a set of
locking mechanism in two respects. locked operations on them by adjusting their state

i i i i accordingly.
First, thread locks in the Fiasco microkernel are fur-

nished with a switch hint. This hint overrides the Figure [B shows pseudocode for our sleep and
system’s standard policy of scheduling the threadswakeup operations. As a means to avoid race con-
locking thread or locked thread, once the lockerditions between sleep and wakeup, we use binary
frees the lock. Usually, the runnable thread with thecondition flags for synchronization. All condition
highest priority wins, but the Fiasco microkernel’s flags are located in the same memory word that also
IPC system call semantics dictate that the receivegontains the scheduler’s ready-to-run flag. Using
gets the CPU first. The hint is a flag that can takeCAS, a thread that wants to sleep can make sure
one of three values: When the lock is freed, switchthat the condition flag is still unset when it removes
to (1) the previously-locked thread, (2) the locker,the ready-to-run flag.

or (3) to whoever has the higher priority. To achieve

IPC semantics, the sender locks the receiver, wakekhis solution is only applicable inside a kernel, and

it up, and sets the hint to Value 1 before re|easindt restricts the number of condition flagS to the num-
the lock. ber of bits per memory word. For our microker-

_ _ _ ~nel, this was not a severe restriction (the Fiasco mi-
Second, when locking other objects (includingcrokernel needs less than 10 condition flags), but
threads), threads need to maintain a count of obit may become a problem for more complex sys-
jects they have locked. This count is checked inems, For such systems, a more general solution

the thread-delete operation to avoid deleting threadge_ g., protecting sleep and wakeup using a simple
that still hold locks. lock) can be used.

If one thread is locked by another, it usually can-

not be scheduled. If the scheduler or some othe& 4 Single-server synchronization revisited
thread activates a locked thread, its locker is ac-"
tivated instead. The only exception is an explicit
context switch from a thread's locker. The thread-Before we implemented the wait-free locking
delete operation uses this characteristic to push toicheme described in Sectipn]4.3, we experimented

be-deleted threads out of their critical sections. ~ With Massalin's and Pu's single-server synchro-
nization scheme discussed in Sectiod 2.1. In this

The time-slice donation scheme introduced in SECSection, we discuss how the single-server mecha-

tion 33 requires that nested critical sections do NOhism can be Changed for real-time systems, and

sleep. During the implementation of the Fiasco mi-why we changed it into the simpler locking-with-
crokernel, we did not find this limitation to be very helping scheme.

restricting. We completely avoided nesting critical

sections that might want to sleep: We found thatln Massalin’s and Pu’s scheme, threads that want to

even for complex IPC operations, there was no neeghange an object put a change-request message into

to lock both of two interacting threads. the request queue of the server thread that owns the
_ object. In similar spirit to our helping-lock design

Instead, a thread that needs to mgnlpulate another qom Section 313, we can minimize the worst-case

threadB usually locksB, but not itself). Ker- \yajt time for high-priority threads by replacing the

nel code running ilk's context needs to ensure that yequest queue with a stack (so that messages from
locked operations oA itself (by a third threadC) nigh-priority senders get processed first), and by

cannot change state thatis needed duisgocked |etiing requesters actively donate CPU time to the

operation onB. In practice, this is very easy 10 geryer thread until it has handled their request.
achieve: All locked operations first check whether a

change to the locked thread is allowed. If the lockedWhen we first designed and implemented our wait-
thread is not in the correct state, the locked operafree synchronization mechanism, we drew inspira-

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX’'01) 11

void sleep (unsigned condition)

{

Thread* thread = current ();

for (;3)
{
unsigned old_state = thread->state;
if (old_state & condition)
{
/* condition occurred */
break;
}
if (CAS (& thread->state,
old_state,
old_state & “Thread_running))
{
/* ready
schedule

flag deleted, sleep */
O3
}
/* try again */
}

thread->state &=
}

“condition;

void wakeup (Thread* thread,
unsigned condition)
{
for (;3;)
{
unsigned old_state = thread->state;
if (CAS (& thread->state,
old_state,
old_state | Thread_running
| condition))

{
/* CAS succeeded */
break;
}
}

if (thread->prio > current()->prio)
switch_to (thread);

Figure 3 Pseudocode for theleep and wakeup
operations. As the condition flag is stored in the
same memory word as the scheduler’s ready-to-ru
flag, thesleep implementation does not risk a race
condition with thewakeup code.

tion from Massalin’s and Pu’s work. In particular,
our design looked as follows:

Our kernel ensured serialization of critical sections
by allowing only one thread, an objectsvner,to
execute operations on that object. In other words,
all locked operations ran in the thread context of
the owner of an object.

Threads were their own owners. Consequently,
threads carried out themselves all locked operations
on them, including those initiated by other threads.

The kernel assigned ownership for other objects
(not threads) on the fly using lock-free synchroniza-
tion. This design can also be viewed as follows:
The only object type that can be locked at all is the
thread. All other objects are “locked” by locking
a thread and assigning ownership of the object to
that thread. Then, all operations on that object are
carried out by the owner.

Helping an owner was as simple as repeatedly
switching to the owner until either the owner had
completed the request, or a thread that deleted
the owner had aborted the request. The context-
switching code took care of executing all requests
before returning to the context of the thread.

We consider this design to be not inelegant, but un-
fortunately, it required a context switch for every
locked operation. Only later we realized that this
mechanism in fact shares many properties with the
wait-free locking scheme with priority inheritance
we derived in Section 3.3. Our new locking mecha-
nism is less complex and performs much better than
our original single-server scheme.

5 Performance evaluation

To evaluate the real-time properties of the Fiasco
microkernel and the overhead of its synchroniza-
tion mechanisms, we conducted two series of mea-
surements. First, to verify that the kernel matches
[ur requirements with regards to preemptability and
scheduling, we measured the lateness of a user-
level interrupt handler. Second, we measured the
overhead of our synchronization primitives in a
number of microbenchmarks.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX'01) 12

System \ Max. lateness System Cycles Cycles
Fiasco p-kernel /4Linux 65 s _ [PS] [P-I]

L4/x86 / LALinux 541 ps counter, unsynchronized 2 2
RTLinux 58 us counter, CAS 13 12

counter, Fiasco thread lock 245 245

Table 1 Maximum lateness of a periodic 250-us counter, old Massalin~Pu~ 627 607
interrupt handler. On the Fiasco p-kernel and on style thread lock (includes

L4/x86, the handler ran in a user task of its own; in one context switch)

RTLinux, the handler was a real-time task running |pC 653 810
in kernel mode. IPC, L4/x86 398 438
We carried out these measurements on a 200 MHz Pentium Pro |PC, L4/x86, small addr, 184 300
machine. The CPU’s built-in local APIC served as the interrupt spacﬁ

source.

a1 4/x86 offers an optimization called “small address
spaces,” which significantly reduces context-switch cost for

. .. small address spaces by implementing it using a segment
5.1 Real-time characteristics switch instead of a page-table switch [9].

For this test, we set up a timer device to trigger aTabIe 2 Synchronization overhead (under no con-

hardware interrupt every 250 us. We created auseF?nt'on) in the Fiasco microkernel on two differ-

level task containing a high-priority handler threade,‘nt machines. — For comparison, we show IPC

connected to the interrupt, and we measured thgmes (one-way) for the Fiasco microkernel and for

time between interrupt occurrences. From the re!‘4/X86' .
e measured the numbers in the P5 column on a 133-MHz

sults, we computed the maximum lateness. Duriniv) _
measurements. a cache-flooding application and aentlum box, and the number in the P-Il column on a 400-
Linux system running various multi-user bench- "2 Pentium-ll box. We used normal C or C++ programs

marks ran concurrently with the handler thread in_(not hand-optimized assembly) to conduct the measurements.

ducing a high load on the systém.

We conducted this test on three operating sys
tems: on the Fiasco microkernel witHLLinux,

on Liedtke’s high-performance L4/x86 kernel with
L%Linux, and, for comparison, on RTLinux_]24]

(with the handler running in kernel mode). Ta-5 2 Microbenchmarks
ble L shows the maximum latenesses for the three

systems. (The average lateness was very smaII—W ied out Il seri ‘ st
smaller than 1 ps on all systems.) e carried out a small series of measurements to

evaluate the overhead of our synchronization mech-
It turns out that maximum lateness in the Fiasco mi-anisms, and to get clues for future optimizations.
crokernel is an order of magnitude smaller thanthat _
for L4/x86. That is because L4/x86 uses interrupt'Ve implemented a simple one-word counter and
disabling liberally throughout the kernel to syn- protected its increment operation using the follow-

chronize accesses to kernel data structures. Mord?d Synchronization schemes: (,:AS; a wait-free
over, the Fiasco microkernel is close to RTLinux Nelping lock (Fiasco microkernel’s new synchro-

even though the interrupt handler under RTLinuxNiZation); and wait-free object lock with the oper-

ation running in a different thread (Fiasco micro-

8These measurements are equivalent to those Mehinert [17) . .
carried out in 1999. Mehnert's results showed a much WorsellemeI s old Massalin-Pu smgle-server—style Syn-

maximum lateness for the Fiasco microkernel: these poor reChronization). For comparison, we measured an
sults were caused by a kernel bug that has since been fixed. unprotected counter, and a complete address-space-

funs in kernel mode and in the kernel's address
space while Fiasco handlers run in their own task.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX’'01) 13

crossing short-IPC operation in the Fiasco micro-tion we discussed in Sectign P.1, or an operating-
kernel (needs no lock), and we put all results intosystem—assisted preemption-safe lock.
relation with the performance of Liedtke’s L4/x86’s

IPC performance. Table 2 shows the results. To avoid blocking inside critical sections, user pro-

grams must take extra care typically unnecessary in
We are quite satisfied with the performance overthe kernel: They need to ensure that critical sec-
head of our new helping-lock implementation. tions do not trigger page faults leading to paging.
Even though we are yet to optimize our code, weFor that, user programs need operating-system sup-
have already experienced a more-than-twofold im{ort.
provement in comparison to the implementation of

Massalin's and Pu’s single-server scheme. Optimally, the operating system should support pri-

ority inheritance in the kernel.

In summary, multi-threaded user programs can use
6 Nonblocking synchronization in our design technique if the operating system pro-
vides some support that real-time systems provide
user-mode programs frequently, or can easily implement: MWCAS sup-
port, preemption-safe locking, memory pinning,

In this section we discuss how our design methodolianOI priority inheritance.

ogy can be applied to multithreaded user-level pro-
grams. .
7 Summary and conclusion
Let us recall three preconditions for the effective-
ness of our methodology for nonblocking design: . .
First, MWCAS can only be simulated if concurrent We !ntroduced a 'pragmatlc. methodology for d?'
access to the shared data can be disabled. Secorggning nonblocking real-time systems that is
to ensure wait-freedom, critical sections protected!©t dependent on an atomic memory-modification

by priority-inversion—safe locks must not block. Primitive like CAS2; just CAS is sufficient.

Third, helping only works if the threading system o, methodology consists of four basic guidelines:
provides priority inheritance. Meeting these condl-(l) partition the system into global and local ob-

tions for user-level programs is most definitely pos'jects; (2) implement the global objects using lock-

_sible, but can be difficult. We discuss the conditionsg.o synchronization as far as possible; (3) protect
In turn. the other objects using locks with priority inheri-
tance; (4) never wait for events inside critical sec-

The interrupt-disabling method to prevent preemp- W d that followina th |
tions does not work on user level. Therefore,1ONS: We argued that following these rules ensures

disabling concurrent access implies some kind Olwalt-freedom_

locking. As critical sections accessing data thalyye gerived three conditions for an operating sys-
is updated using simulated MWCAS are typically tem on which our methodology becomes applicable
very short, priority inversion is best prevented by, \vait-free user-mode programs: (1) the operat-

employing preemp.tion-safe Iocks_(i. e., Iockg thating system must provide help for a user-mode im-
prevent descheduling a lock-holding thread in fa‘plementation of MWCAS, either directly or by sup-
vor of a thread that shares the lock-protected datﬁorting preemption-safe locks; (2) it must provide

structure). In general,_the Iocking mechanism dey service for memory pinning; (3) it must support
pends on the underlying operating system. Forpriority inheritance.

example, spin locks can be used on multipro-

cessor systems that always gang-schedule all dVe proposed a wait-free locking-with-helping
the program’s threads; uniprocessors can use th@echanism with priority inheritance, and we
operating-system-assisted MWCAS implementashowed that it is similar in effect to, but better

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX '01) 14

performing than, the single-server synchronizationAcknowledgements

mechanism introduced by Massalin and Pu [16].

We devised a monitor implementation that works\we would like to thank Frank Mehnert for provid-

on top of our locking mechanism. ing his measurement framework, and Michael Peter
for improving Fiasco’s synchronization primitives.

The appl;‘catlon”of our mlet.hodology can Ife"’\‘/c\j/tOhSyS'We are grateful to our shepherd, Sheila Harnett, and
tems wit exce en_t real-time prppernes. € Naves our anonymous reviewers for their valuable sug-
built the Fiasco microkernel using the methOdOI'gestions

ogy. Together with tLinux, the Fiasco microkernel
reaches a level of preemptability that is close to thaSpecial thanks go to Thomas Roche who helped de-
of RTLinux. bugging our prose.

Currently our work has two significant limitations. This project has been partially funded by the
First, our performance results are preliminary inDeutsche Forschungsgemeinschaft in the frame-
many ways. Our next steps will be to ana|yze inWOfk of the Sonderforschungsbereich 358, and sup-
more detail what is causing worst-case interrupt laPorted by generous grants from IBM (University
tencies of more than 50 ps, and to look at processdrartnership and Shared University Research pro-
dependencies. From this evaluation, we intend t@rams) and from Intel (MRL Lab Hillsboro).

develop a model for predicting worst-case interrupt

latencies for our methodology. Second, we have not

compared the performance of our synchronizatiorReferences

primitives to the performance of primitives found in

other commercial and research operating systems[1] Atul Adya, Barbara Liskov, Robert Gruber, and

Both limitations are being addressed as part of the ~ UMesh Maheshwari. Efficient optimistic concur-
first author's thesis work rency control using loosely synchronized clocks.

In Proceedings of SIGMODSan Jose, CA, May

In the near future, we plan to add multiprocessor 1995.

support to the Fiasco microkernel in order to verify [2] James H. Anderson, Srikanth Ramamurthy, and

our methodology for multiprocessors. Following Rohit Jain. Implementing wait-free objects on
which, we plan to optimize the Fiasco microker- ~ Priority-based systems. liProceedings of the
nel's locking-with-helping mechanism and thread ~ Sixteenth Annual ACM Symposium on Principles

of Distributed Computingpages 229-238, Santa

switching. Barbara, California, 21-24 August 1997.

Also, we plan to research the applicability of the [3] james H. Anderson, Srikanth Ramamurthy, and
techniques for user-level programs in more depth, Kevin Jeffay. Real-time computing with lock-free

that is, with real software and measurements. shared objects.ACM Transactions of Computer
Systemsl5(2):134-165, May 1997.

[4] B. N. Bershad. Practical considerations for non-

blocking concurrent objects. In Robert Werner,

I editor, Proceedings of the 13th International Con-
Availability ference on Distributed Computing Systemages

264-274, Pittsburgh, PA, May 1993. IEEE Com-

. . .) puter Society Press.
The Fiasco microkernel is freely available; re-

searchers are invited to study the implementation[5] Peter A. Buhr and Michael Fortier. Monitor classi-
of our design methodology, and to experimentwith ~ fication. ACM Computing Survey®7(1):63-107,
it March 1995.

_ _ [6] Michael Greenwald. Non-blocking Synchroniza-
Fiasco and fLinux can be downloaded from tion and System DesigfhD thesis, Stanford Uni-

http://os.inf.tu-dresden.de/drops/. versity, August 1999.

http://os.inf.tu-dresden.de/drops/

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX’'01) 15

[7] Michael Greenwald and David Cheriton. The syn- [15] J. Liedtke.

[8]

[10]

[11]

[12]

[13]

[14]

ergy between non-blocking synchronization and
operating system structure. [Bnd Symposium

on Operating Systems Design and Implementa-
tion (OSDI '96), October 28-31, 1996. Seattle,

WA pages 123136, Berkeley, CA, USA, October [16]

1996. USENIX.

H. Hartig, R. Baumgartl, M. Borriss, Cl.-J.
Hamann, M. Hohmuth, F. Mehnert, L. Reuther,
S. Sclnberg, and J. Wolter. DROPS: OS sup-
port for distributed multimedia applications. In
Proceedings of the Eighth ACM SIGOPS European
Workshop Sintra, Portugal, September 1998.

H. Hartig, M. Hohmuth, J. Liedtke, S. Sohberg,
and J. Wolter. The performance of y-kernel-based
systems. Inl16th ACM Symposium on Operat-
ing System Principles (SOSPprges 66—77, Saint-
Malo, France, October 1997.

Carl Hauser, Christian Jacobi, Marvin Theimer,
Brent Welch, and Mark Weiser. Using threads
in interactive systems: A case study. 1dth
ACM Symposium on Operating System Principles
(SOSP) pages 94-105, Asheville, NC, December
1993.

Maurice Herlihy. A methodology for implement-
ing highly concurrent data objectsACM Trans-

actions on Programming Languages and Systems
15(5):745-770, November 1993.

Michael Hohmuth. The Fiasco kernel: Require-
ments definition. Technical Report TUD-FI-
12, TU Dresden, December 1998. Available
from URL: http://os.inf.tu-dresden.de/
papers_ps/fiasco-spec.ps.gz.

John H. Howard. Signaling in monitors. Bec-
ond International Conference on Software Engi-

neering pages 47-52, San Francisco, CA, October[24]

1976.

B. W. Lampson and D. D. Redell. Experience with
processes and monitors in Mes2ommunications
of the ACM 23(2):105-117, February 1980.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

On p-kernel construction. [kbth
ACM Symposium on Operating System Principles
(SOSP)pages 237-250, Copper Mountain Resort,
CO, December 1995.

Henry Massalin and Calton Pu. A lock-free mul-
tiprocessor OS kernel. Technical Report CUCS-
005-91, Columbia University, 1991.

Frank Mehnert. LARTL: Porting RTLinux API to
L4/Fiasco. InWorkshop on a Common Microker-
nel System PlatforpKiawah Island, SC, Decem-
ber 1999.

Maged M. Michael and Michael L. Scott. Sim-
ple, fast, and practical non-blocking and blocking
concurrent queue algorithms. Proceedings of
the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC '96)pages 267—
275, New York, USA, May 1996. ACM.

M. Moir. Transparent support for wait-free trans-
actions. Lecture Notes in Computer Science
1320:305, 1997.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-time
synchronization.|[EEE Transactions on Comput-
ers 39(9):1175-1185, September 1990.

R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Al-
maden Research Center, April 1986.

John D. Valois. Lock-free linked lists us-
ing compare-and-swap. IRroceedings of the
Fourteenth Annual ACM Symposium on Princi-
ples of Distributed Computingpages 214-222,
Ottawa, Ontario, Canada, 2-23 August 1995.
Erratum available atttp://ftp.cs.rpi.edu/
pub/valoisj/podc95-errata.ps.gz.

John D. Volois. Lock-Free Data StructuresPhD
thesis, Rensselaer Polytechnic Institute, May 1995.

Victor Yodaiken and Michael Barabanov. A Real-
Time Linux. In Proceedings of the Linux Appli-
cations Development and Deployment Conference
(USELINUX) Anaheim, CA, January 1997. The
USENIX Association.

	Introduction
	Nonblocking synchronization and related work
	Lock-free and wait-free synchronization
	Nonblocking synchronization in operating systems
	Nonblocking synchronization vs. real-time systems

	A design methodology for real-time systems
	Design goals
	Design guidelines
	Wait-free locking with helping

	Synchronization in the Fiasco microkernel
	Kernel objects
	Synchronization of kernel objects
	Wait-free locking in the Fiasco microkernel
	Single-server synchronization revisited

	Performance evaluation
	Real-time characteristics
	Microbenchmarks

	Nonblocking synchronization in user-mode programs
	Summary and conclusion

