
Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 1

Pragmatic nonblocking synchronization for real-time systems

Michael Hohmuth Hermann Ḧartig

Dresden University of Technology
Department of Computer Science

drops@os.inf.tu-dresden.de, http://os.inf.tu-dresden.de/drops/

Abstract

We present a pragmatic methodology for design-
ing nonblocking real-time systems. Our method-
ology uses a combination of lock-free and wait-free
synchronization techniques and clearly states which
technique should be applied in which situation.

This paper reports novel results in various respects:
We restrict the usage of lock-free mechanisms to
cases where the widely available atomic single-
word compare-and-swap operation suffices. We
show how Brinch Hansen’s monitors (alias Java’s
synchronized methods) can be implemented on top
of our mechanisms, thereby demonstrating their
versatility. We describe in detail how we used
the mechanisms for a full reimplementation of a
popular microkernel interface (L4). Our kernel—
in contrast to the original implementation—bounds
execution time of all operations. We report on
a previous implementation of our mechanisms in
which we used Massalin’s and Pu’s single-server
approach, and on the resulting performance, which
lead us to abandon this well-known scheme.

Our microkernel implementation is in daily use
with a user-level Linux server running a large vari-
ety of applications. Hence, our system can be con-
sidered as more than just an academic prototype.
Still, and despite its implementation in C++, it com-
pares favorably with the original, highly optimized,
non-real-time, assembly-language implementation.

1 Introduction

In recent years, nonblocking data structures have
caught the attention not only of the real-time sys-
tems community but of theoretical and some prac-
tical operating-systems groups. Many researchers
have devised new methods for efficiently synchro-
nizing interesting data structures in a nonblocking
fashion. Others have conceived general method-
ologies for transforming any algorithm into a non-
blocking one; however, these results have a more
theoretical nature as the methodologies often lead
to very inefficient implementations. The next sec-
tion briefly discusses a number of these works.

In contrast to this boom, we know of only a few sys-
tem implementations that successfully exploit non-
blocking synchronization. The only two operating
systems we are aware of that use exclusively non-
blocking synchronization are SYNTHESIS [16] and
the CACHE kernel [7].

One of the problems with the approach is that it
appears difficult to apply to many modern CPU
architectures: Many of the most efficient algo-
rithms available for lock-free data structures require
a primitive for atomically updating two indepen-
dent memory words (two-word compare-and-swap,
CAS2), and many processors like the popular x86
CPUs do not provide such an instruction. Signif-
icantly, SYNTHESIS and the CACHE kernel orig-
inate from the Motorola 68K architecture, which
does have a CAS2 primitive.

In this paper, we present a pragmatic approach
for building nonblocking real-time systems. Our
methodology works well even on CAS2-less archi-

http://os.inf.tu-dresden.de/drops/

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 2

tectures. It does not rely solely on lock-free syn-
chronization for implementing nonblocking data
structures—which would be both inconvenient and
slow on the architectures we considered. Instead,
our methodology does allow for locks, but ensures
that the system is wait-free nonetheless. In addi-
tion, our technique is easy to apply because from
a developer’s perspective, it looks much like pro-
gramming with mutual exclusion using monitors.

We describe the application of our approach to
build a real system: Using our methodology, we
developed the Fiasco microkernel, a kernel for the
DROPSreal-time operating system [8] that runs on
x86 CPUs. This kernel is an implementation of the
L4 microkernel interface [15], and it is sufficiently
mature to support all the software developed for L4,
including DROPS servers and L4Linux [9].1 We
evaluate the effectiveness of our methodology for
nonblocking design by examining the Fiasco mi-
crokernel’s real-time properties and synchroniza-
tion overheads.

Fiasco currently runs only on uniprocessors. Con-
sequently, we concentrate on single-processor im-
plementation details. However, our methodology
lends itself to multiprocessor-system implementa-
tions as well, and we point out routes for multipro-
cessor extensions.

We also discuss a number of nonblocking synchro-
nization mechanisms. In their SYNTHESIS work,
Massalin and Pu [16] introduced the concept of
a “single-server” thread (a variant of the “serial-
izer” pattern first described by Hauser and asso-
ciates [10]), which serializes complex object up-
dates that cannot be implemented in a nonblocking
fashion. In this paper, we present a simple mod-
ification to the single-server scheme that makes it
truly nonblocking and useful for use in real-time
systems. Furthermore, we show that the single-
server mechanism is semantically equivalent to a
locking scheme. In particular, the real-time version
can be replaced by a locking scheme with priority
inheritance that is easier to implement and has bet-
ter performance.

1L4Linux is a port of the Linux kernel (version 2.2.x) that
runs as a user program on top of L4 and is binary compatible
with original Linux.

We see our contribution as leading the recent inter-
est in nonblocking synchronization to a practicable
interim result, which the scientific community can
verify. The source code to the Fiasco microkernel
is freely available, allowing researchers to further
study our techniques and experiment with them.

This paper is organized as follows: In Section 2,
we consider related work on nonblocking synchro-
nization. In Section 3, we develop our methodology
for designing wait-free real-time systems. Section 4
shows how we applied this methodology to the de-
velopment of the Fiasco microkernel. In Section 5,
we present performance values for the Fiasco mi-
crokernel, and we evaluate the kernel’s real-time
properties. In Section 6, we derive conditions for
the applicability of our methodology for the devel-
opment of multithreaded user-mode real-time pro-
grams. We conclude the paper in Section 7 with a
summary and suggestions for future work.

2 Nonblocking synchronization
and related work

2.1 Lock-free and wait-free synchroniza-
tion

Overview. Nonblocking synchronization strate-
gies have two important properties: First, they pro-
vide full preemptability and allow for multi-CPU
concurrency. Second, priority inversion is avoided;
lower-priority threads cannot block higher-priority
threads because there is no blocking at all. These
characteristics make nonblocking synchronization
very interesting for real-time systems.

The concepts discussed in this section are not new
in any way, and many systems implement variants
of them such as optimistic concurrency control [1]
and priority inheritance [20]. We describe them
here for completeness.

Nonblocking synchronization comes in two flavors:
wait-free and lock-free synchronization.

Wait-free synchronization can be thought of as
locking, with helping replacing blocking. When a

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 3

higher-priority threadA’s critical section detects an
interference with a lower-priority threadB, A helps
B to finish its critical section first. During helping,
A lendsB its priority to ensure that no other, lower-
prioritized activities can interfere. WhenB has fin-
ished,A executes its own critical section.

Wait-free object implementations satisfy a stronger
form of block-freedom than lock-free synchroniza-
tion (discussed in the next paragraph) as they guar-
antee freedom from starvation. Therefore, many
authors point out that wait-free synchronization is
a special case of lock-free synchronization. How-
ever, wait-free synchronization can also be imple-
mented using locks, albeit with a nonblocking help-
ing scheme. For example, a locking scheme with
priority inheritance can be considered a wait-free
synchronization scheme as long as critical sections
never block.

Lock-free synchronization works completely
without locks. Critical code sections are designed
such that they prepare their results out of line and
then try to commit them to the pool of shared
data using an atomic memory update instruction
like compare-and-swap (CAS). Thecomparepart
of CAS is used to detect conflicts between two
threads that simultaneously try to update the data; if
it fails, the whole operation is restarted. If needed,
retries can be delayed with an exponential backoff
to avoid retry contention.2

This synchronization mechanism has some nice
properties: Because there are no locks, it avoids
deadlocks; it provides better insulation from
crashed threads, resulting in higher robustness and
fault tolerance, because operations do not hold
locks on critical data; moreover, it is automatically
multiprocessing-safe.

Preconditions for using lock-free synchronization
are that primitives for atomic memory modifica-
tions are available, and data is stored in type-stable
memory management. We do not digress into type-
stable memory management in this paper (see [7]
for a discussion of operating-systems–related is-
sues); the rest of this subsection discusses atomic
memory modification.

2Backoff is never needed on single-CPU systems.

Atomic memory update. The x86 CPUs have
two kinds of atomic memory-modification opera-
tions: a test-and-set instruction (TAS) and a CAS
instruction. Newer models (Intel Pentium and
newer) also have a double-size–word (8 bytes)
compare-and-swap instruction (CASW). However,
these CPUs do not support atomically updating two
independent memory words (two-word compare-
and-swap, CAS2).

A number of data structures can be imple-
mented without locks directly on top of CAS and
CASW (i. e., without the overhead of a software-
implemented multi-word CAS): counters and bit-
fields with widths up to 8 bytes, stacks, and FIFO
queues. [21, 18]

Valois introduced a lock-free single-linked list de-
sign supporting insertions and deletions anywhere
in a list, as well as several other data structures
[23, 22]. These designs also work with just CAS.
However, Greenwald [6] has criticized them for be-
ing quite complex, difficult to get right, and com-
putationally expensive.

Most of the algorithms for lock-free data-structure
synchronization that have been developed recently
assume availability of a stronger atomic primitive
like CAS2. These data structures include general
single-linked and double-linked lists. [6]

A number of techniques exist for implement-
ing lock-free and wait-free general multi-word
compare-and-swap (MWCAS) on top of CAS and
CAS2, enabling nonblocking synchronization for
arbitrarily complex data structures [11, 19, 2, 6].
These techniques have considerable overhead in
both space and runtime complexity, especially
when compared to common lock-based operations,
making them less interesting for kernel design.

The most common technique to implement atomic
multi-word updates on uniprocessors is to prevent
preemption during the update. This is usually done
by disabling interrupt delivery in the CPU. The dis-
advantage of this method is (of course) that it does
not work on multiprocessors.

Bershad [4] has proposed to implement CAS in
software using an implementation and lock known

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 4

to the operating system. When preempting a thread,
the operating system consults the lock, and if it is
set, it rolls back the thread and releases the lock.
Greenwald and Cheriton [7] discuss a generaliza-
tion of this technique to implement CAS2 or MW-
CAS. This method has the disadvantage of incur-
ring overhead for maintaining the lock. Also, on
multiprocessors, the lock must be set even when
reading from shared data structures because other-
wise readers can see intermediate states.

Another technique to facilitate complex object up-
dates is the “serializer” or “single-server” approach
[10]. It uses a single server thread to serialize op-
erations. Other threads enqueue messages into the
server thread’s work queue to request execution of
operations on their behalf. If the server thread runs
at a high priority, it does not block the requesting
thread any more than if it had executed the opera-
tion directly.

2.2 Nonblocking synchronization in oper-
ating systems

We know of two other operating system projects
that have explored nonblocking synchronization in
the kernel: the CACHE kernel [7] and SYNTHESIS

[16].

Both systems run on architectures with a CAS2
primitive (the Motorola 68K CPU), and their au-
thors found CAS2 to be sufficient to synchronize
accesses to all of their kernel data structures. The
authors report that lock-free implementation is a vi-
able alternative for operating-system kernels.

Massalin and Pu [16] originally also implemented
a single-server mechanism for use in their lock-free
SYNTHESIS kernel, but later they found no need to
use it; the same was true for Greenwald and Cheri-
ton [7] in their CACHE kernel. We will revisit the
single-server approach in Section 4.4.

Greenwald and Cheriton [7] report that they found
a powerful synergy between nonblocking synchro-
nization and good structuring techniques for operat-
ing systems. They assert that nonblocking synchro-
nization can reduce the complexity and improves

the performance, reliability, and modularity of soft-
ware especially when there is a lot of communica-
tion in the system.

However, they also warn that their results may not
be applicable if the CPU does not support a CAS2
primitive. In this paper, we will investigate how
nonblocking systems can be implemented in such
an environment.

2.3 Nonblocking synchronization vs. real-
time systems

Nonblocking object implementations are of inter-
est for real-time systems because they provide pre-
emptability and avoid priority inversion. However,
while it is well-known that wait-free method im-
plementations are bounded in time (there is only a
fixed number of threads we have to help; no retry
loop), it is not immediately apparent that this also
applies to lock-free synchronization. On the sur-
face, lock-free methods (like the ones in Figure 3 in
Section 4.3) look dangerous because of their poten-
tially unlimited number of retries.

Fortunately, Anderson and colleagues [3] recently
determined upper bounds for the number of retries
that occur in priority-based systems. They derived
scheduling conditions for hard–real-time, periodic
tasks that share lock-free objects, and reported that
lock-free shared objects often incur less overhead
than object implementations based on wait-free or
lock-based synchronization schemes.

3 A design methodology for real-
time systems

3.1 Design goals

Our main design goal was to allow for good real-
time properties of our systems. More specifically,
we wanted higher-priority threads to be able to pre-
empt the system (including the kernel) at virtually
any time, as soon as they are ready to run—thus
allowing for good schedulability of event handlers

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 5

[12]. This should be true for sets of threads that de-
pend on common resources, but even more so for
independent thread sets.

Secondary goals to the first one are that short crit-
ical sections working on global state should in-
duce essentially no overhead for synchronization;
also, the synchronization scheme should work for
both single-processor and multi-processor architec-
tures.3

Finally, the design should be applicable to x86-
compatible uniprocessors, that is, it must be imple-
mentable without CAS2.

3.2 Design guidelines

The first design goal rules out any synchronization
scheme that suffers from priority inversion. There-
fore, we have been looking into nonblocking syn-
chronization schemes: lock-free and wait-free syn-
chronization.

The secondary goals strongly favor lock-free syn-
chronization schemes: Locks induce overhead, and
in the multi-CPU case, the CPUs would compete
for the locks. We therefore generally disallow lock-
based schemes for frequently-used global state ex-
cept where we have no other way out.

In particular, our design methodology comprises
the following guidelines:

We classify a system’s objectsas follows: Lo-
cal stateconsists of objects used only by related
threads, that is, threads that cooperate on a given
job or assignment.Global stateconsists of the ob-
jects shared by unrelated threads.

Frequently-accessed global stateshould be imple-
mented using data structures that can easily be ac-
cessed with lock-free synchronization.

In Section 2.1, we mentioned a number of data
structures that can be synchronized in this fashion
on x86 CPUs using only CAS: Counters, bitfields,
stacks, and FIFO queues.

3We will point out incompatibilities of our design method-
ology with multiprocessor architectures where they occur.

With the x86 CPU lacking anything better than
single-word CAS, we suggest that other global data
(like double-linked lists) are also implemented in a
lock-free fashion, based on a software implementa-
tion of MWCAS.

In a kernel, the atomic update can be protected by
disabling interrupts as discussed in Section 2.1. Of
course, disabling interrupts does not help on mul-
tiprocessors; there, we suggest using spin locks to
protect very short critical sections.

We discuss software-MWCAS for user-mode pro-
grams in Section 6.

Global state not relevant for real-time comput-
ing, and local datacan be accessed using wait-free
synchronization. We propose a wait-free priority-
inheritance locking mechanism that can be charac-
terized as “locking with helping,” explained in more
detail in Section 3.3. This kind of synchronization
has some overhead. Therefore, it should be avoided
for objects that otherwise independent threads must
access.

In our synchronization scheme, waiting for events
inside critical sections is not allowed. This restric-
tion ensures wait-freedom. We will show in Section
3.3 that this restriction does not limit the synchro-
nization mechanism’s power.

Once a designer has decided which object should be
synchronized with which scheme, our methodology
becomes very straightforward to use. It approxi-
mates the ease of use of programming with mutual
exclusion using monitors while still providing the
desired real-time properties.

3.3 Wait-free locking with helping

We suggest a wait-free locking-with-helping
scheme. Each object to be synchronized in this
fashion is protected by a lock with a “wait” stack,
or more correctly, with a helper stack.

A lock knows which thread holds it upon entering
its critical section. When a threadA wants to ac-
quire a lock that is in use by a different threadB, it
puts itself on top of the lock’s helper stack. Then,

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 6

instead of blocking and waiting forB to finish, it
helpsB by passing the CPU toB, thereby effec-
tively lending its priority toB and pushingB out of
its critical section. Every timeA is reactivated (be-
cause the previous time slice has been consumed,
or because of some other reason), it checks whether
it now owns the lock; if it does not, it continues to
helpB until it does. WhenB finishes its critical sec-
tion, it will find a helping thread on top of the lock’s
stack—in this case, threadA—and passes the lock
(and the CPU) to that thread.

Using a stack instead of a FIFO wait queue has an
important advantage: Given that threads are sched-
uled according to hard priorities, it follows that the
thread with the highest priority lands on top of the
helper stack. There is no way for a lower-priority
thread to get in front of a higher-priority thread:
As the high-priority thread does not go to sleep af-
ter enqueuing in the helper stack, it cannot be pre-
empted by a lower-priority thread and remains on
top of the stack.4 This property ensures that the
highest-priority threads get their critical sections
through first. It makes our locking mechanism an
implementation of priority inheritance.

Of course, execution of critical sections may be
preempted by higher-priority threads that become
ready to run in the meantime. However, to ensure
wait-freedom, threads executing a critical section
must not sleep or wait.

Instead, threads first must leave critical sections
they have entered before they go to sleep. This
requirement raises the question of how to deal
with producer–consumer–like situations without
race conditions. There are a number of textbook so-
lutions for this problem. We describe our solution
in Section 4.3.

As long as critical sections do not nest, it is easy to
see that our construction can be used to implement

4This is generally true only for uniprocessors. For multi-
processors, the priority ordering of the helper list could be en-
sured by using a different data structure—a priority queue—or
by first migrating the helper to the CPU of the lock owner to
force it into that CPU’s priority-based execution order. There
are subtle arguments for both designs, which are beyond the
scope of this work.

wait-and-notify monitors5 [14] (or their recent de-
scendant, Java synchronized methods). Whenever a
monitor-protected object’s method is called, we ac-
quire the object’s lock. The wait operation would
then be implemented as an unlock–sleep–lock se-
quence. Figure 2 shows a possible monitor imple-
mentation that uses a simple lock-free semaphore,
shown in Figure 1.

Synchronization is more difficult when more than
one object can be locked at a time. We will discuss
two scenarios: nested monitor calls (i. e., nested
critical sections), and atomic acquisition of multi-
ple locks.

As long as monitor methods never wait for events,
locking with helping works for nested monitor calls
in the same way as for non-nested monitors. How-
ever, if a nested method wants to wait for an event,
freeing the nested monitor does not help because
the outer monitor would still be locked during the
sleep—which is illegal under our scheme. That is
why nested monitor calls must not sleep.

There are two ways to deal with this restriction:
Either construct the system such that second-level
monitors or even all monitors never sleep, or make
the locking more coarse-grained so that all objects
that would have to be locked before going to sleep
are in fact protected by a single monitor.

In the Fiasco microkernel, we have chosen the first
option; in fact, we constructed the kernel so that
critical sections never need to sleep. We discuss
synchronization in the Fiasco microkernel in more
detail in Section 4.3.

A different situation arises if the locks a critical
section needs are known before the critical section
starts, and during its execution. In this case, the
wait operation can release all locks before sleeping,
and reacquire them afterwards.

5There is a large variety of monitors with differing seman-
tics, but most of them can be shown to have equivalent expres-
sive power [13, 5]. Wait-and-notify monitors, also classified as
“no-priority nonblocking monitors” [5], have first been used in
Mesa [14].

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 7

class Binary_semaphore
{
Thread_list d_q; // Lock-free thread list
int d_count;

public:
void down ()
{

d_q.enqueue (current());

int old;
do
{
old = d_count;

}
while (! CAS (&d_count, old, old - 1));

if (old > 0)
{
// Own the semaphore,
// can safely dequeue myself
d_q.dequeue (current());

} else {
sleep (Thread_sem_wakeup);
// Have been dequeued in up ()

}
}

void up ()
{
int old;
do
{
old = d_count;

}
while (! CAS (&d_count, old, old + 1));

if (old < 0)
{
Thread* t = d_q.dequeue_first ();
wakeup (t, Thread_sem_wakeup);

}
}

}; // Binary_semaphore

Figure 1 Pseudocode for a simple lock-free binary
semaphore (for single-CPU machines). It makes
use of a lock-free list of threads (Thread list)
with a given queuing discipline, for example a FIFO
queue or a priority queue, andsleep andwakeup
primitives like those in Figure 3.

class Monitor
{
Helping_lock d_lock;

public:
void enter ()
{
d_lock.lock (); // Locking w/ helping

}

void leave ()
{
d_lock.unlock ();

}

void wait (Binary_semaphore* condition)
{
d_lock.unlock ();
condition->down ();
d_lock.lock (); // Locking w/ helping

}

void signal (Binary_semaphore* condition)
{
condition->up ();

}
}; // Monitor

Figure 2 Pseudocode for a wait-and-notify monitor
based on a helping lock. This is a simple textbook
implementation—except that it uses only non-
blocking synchronization primitives. Semaphores
used as condition variables need to be initialized
with 0.

The signal operation wakes up a waiter ac-
cording to the semaphore’s queueing discipline.
When one or more waiters have been restarted,
and more threads are trying to enter the monitor,
the Helping lock’s helper stack guarantees that
the thread with the highest priority can enter the
monitor first.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 8

4 Synchronization in the Fiasco
microkernel

We developed the Fiasco microkernel as the basis
of the DROPSoperating-system project—a research
project exploring various aspects of hard and soft
real-time systems and multimedia applications on
standard PC hardware [8]. The microkernel runs
on uniprocessor x86 PCs, and it is an implemen-
tation of the L4/x86 binary interface [15]. It is
able to run L4Linux [9], a Linux server running
as a user-level program that is binary compatible
with standard Linux, and it is freely available from
http://os.inf.tu-dresden.de/drops/.

The kernel closely follows the design outlined in
Section 3. In this section, we report how various
data structures are synchronized in this kernel, and
we detail the design of our wait-free locking-with-
helping mechanism.

4.1 Kernel objects

Let us begin by briefly describing the objects the
Fiasco microkernel implements. (For a philosoph-
ical discussion on what a microkernel should and
should not implement, we refer to Liedtke [15].)

Local state

Threads. The thread descriptors contain the com-
plete context for thread execution: a kernel
stack, areas for saving CPU registers, a ref-
erence to an address space, thread attributes,
IPC state, and infrastructure for locking (more
on the latter in Section 4.3).

Address spaces.There exists one address space
per task. Address spaces implement the x86
CPU’s two-level page tables. They also con-
tain the task number, and the number of the
task that has the right to delete this address
space.

Hardware-interrupt descriptors. Each hardware
interrupt can be attached to a user-level han-

dler thread. The kernel sends this thread a
message every time the interrupt occurs.

Mapping trees. Like L4, the Fiasco microker-
nel allows transferring persistent virtual-to-
physical page mappings via IPC between
tasks. The mapping in the receiving task is
dependent on the sender such that when the
mapping is flushed in the sender’s address
space, mappings depending on it are recur-
sively flushed as well [15]. Mapping trees are
objects to keep track of these dependencies.
There is one mapping tree per physical page
frame.

Global state

Present list and ready list. These double-linked
ring lists contain all threads that are currently
known to the system, or ready-to-run, respec-
tively. On both lists, the “idle” thread serves
as start and end of the list.

Array of address space references.This array is
indexed by an address space number. It con-
tains a reference for each existing address
space; for nonexisting address spaces, the ar-
ray contains an address space index referring
to the task that has a right to create the address
space. The Fiasco microkernel uses this ar-
ray for create-rights management, and to keep
track of and look up created tasks.

Array of interrupt-descriptor references. In this
array, the Fiasco microkernel stores assign-
ments between user-level handler threads and
hardware interrupts.

Page allocator. This allocator manages the ker-
nel’s private pool of page frames.

Mapping-tree allocator. This allocator manages
mapping trees. Whenever a mapping is flushed
or transferred using IPC, the corresponding
mapping tree grows or shrinks. Once cer-
tain thresholds are exceeded, a new (larger or
smaller) mapping tree needs to be allocated;
this behavior is an artifact of the Fiasco micro-
kernel’s implementation of mapping trees.

http://os.inf.tu-dresden.de/drops/

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 9

4.2 Synchronization of kernel objects

Following our design methodology from Section
3.2, the global state should be synchronized using
lock-free synchronization while for local state the
overhead of wait-free locking is acceptable. Pri-
marily, we closely adhered to these guidelines. But
we also made the requirements somewhat stronger
where performance is critical, and we allowed a
small relaxation where it did not affect real-time
properties.

Local state. Threads are the most interesting ob-
jects that must be synchronized. We accomplish
synchronization using wait-free locks (described in
Section 4.3). However, for IPC-performance rea-
sons we do not lock all of a thread’s state. Instead,
we defined some parts of thread data to be not under
the protection of the lock, and use lock-free syn-
chronization for accessing these parts. In particu-
lar, the following data members of thread descrip-
tors are implemented lock-free: the thread’s state
word, which also contains the ready-to-run flag and
all condition flags for waiting for events (as ex-
plained in Section 3.3); and the sender queue, a
double-linked list of other threads that want to send
the thread a message. The state word can be syn-
chronized using CAS. For the double-linked sender
list we use a simulated MWCAS that disables inter-
rupts during memory modification.6

The Fiasco microkernel protects mapping trees, like
the bulk of the thread data, using wait-free locks.

Address spaces require very little synchronization.
The kernel has to synchronize only when it enters a
reference to a new second-level page table into the
first-level page table. Deletion does not have to be
synchronized because only one thread can carry out
this operation: Thread 0 of the corresponding task
deletes it when it is itself deleted. Otherwise, we do
not synchronize accesses to address spaces: Only a
task’s threads can access the task’s address space,
and the result of concurrent updates of a mapping
at a virtual address is not defined. As mappings are

6For the prospective port of the kernel to SMP machines,
we plan to protect this MWCAS using a spin lock per receiver.

managed in (concurrency-protected) mapping trees
and not in the page tables, mappings cannot get lost,
and all possible states after such a concurrent up-
date are consistent.

We did not have to synchronize hardware-interrupt
descriptors at all because once they have been as-
signed using their reference array (global state),
only one thread ever accesses them.

Global state. The reference arrays for address
spaces and hardware-interrupt descriptors can eas-
ily be synchronized using simple CAS.

For the double-linked present and ready lists, we
had to resort to simulate MWCAS by disabling in-
terrupts for a short time. These lists and the sender
list mentioned previously were the only objects for
which we had to revert to this “ugly” but inevitable
synchronization method.7

We believe that is it unnecessary to implement the
kernel allocators for pages and mapping trees with
lock-free synchronization; here we used wait-free
locking, as for the local state. We allowed this re-
laxation of our guidelines in these instances for the
following reason: Threads with real-time require-
ments never allocate memory (for page tables) or
shrink or grow mapping trees once they have ini-
tialized. Instead, they make sure that they allocate
all memory resources they might need at initializa-
tion time. Therefore, real-time threads do not com-
pete for access to these shared resources, and the
overhead for accessing them is irrelevant. Should
our assertion become untrue in the future, we will
revisit this design decision.

4.3 Wait-free locking in the Fiasco micro-
kernel

The implementation of wait-free locking with help-
ing in the Fiasco microkernel is very similar to the
mechanism presented in Section 3.3.

7For the SMP port, this does not present a problem: The
ready list is per-CPU, so interrupt-disabling can still be used.
Accesses to the present list are seldom and can be synchro-
nized using a spin lock.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 10

The Fiasco microkernel extends the basic wait-free
locking mechanism in two respects.

First, thread locks in the Fiasco microkernel are fur-
nished with a switch hint. This hint overrides the
system’s standard policy of scheduling the threads,
locking thread or locked thread, once the locker
frees the lock. Usually, the runnable thread with the
highest priority wins, but the Fiasco microkernel’s
IPC system call semantics dictate that the receiver
gets the CPU first. The hint is a flag that can take
one of three values: When the lock is freed, switch
to (1) the previously-locked thread, (2) the locker,
or (3) to whoever has the higher priority. To achieve
IPC semantics, the sender locks the receiver, wakes
it up, and sets the hint to Value 1 before releasing
the lock.

Second, when locking other objects (including
threads), threads need to maintain a count of ob-
jects they have locked. This count is checked in
the thread-delete operation to avoid deleting threads
that still hold locks.

If one thread is locked by another, it usually can-
not be scheduled. If the scheduler or some other
thread activates a locked thread, its locker is ac-
tivated instead. The only exception is an explicit
context switch from a thread’s locker. The thread-
delete operation uses this characteristic to push to-
be-deleted threads out of their critical sections.

The time-slice donation scheme introduced in Sec-
tion 3.3 requires that nested critical sections do not
sleep. During the implementation of the Fiasco mi-
crokernel, we did not find this limitation to be very
restricting. We completely avoided nesting critical
sections that might want to sleep: We found that
even for complex IPC operations, there was no need
to lock both of two interacting threads.

Instead, a threadA that needs to manipulate another
threadB usually locksB, but not itself (A). Ker-
nel code running inA’s context needs to ensure that
locked operations onA itself (by a third thread,C)
cannot change state that is needed duringA’s locked
operation onB. In practice, this is very easy to
achieve: All locked operations first check whether a
change to the locked thread is allowed. If the locked
thread is not in the correct state, the locked opera-

tion is aborted. All threads explicitly allow a set of
locked operations on them by adjusting their state
accordingly.

Figure 3 shows pseudocode for our sleep and
wakeup operations. As a means to avoid race con-
ditions between sleep and wakeup, we use binary
condition flags for synchronization. All condition
flags are located in the same memory word that also
contains the scheduler’s ready-to-run flag. Using
CAS, a thread that wants to sleep can make sure
that the condition flag is still unset when it removes
the ready-to-run flag.

This solution is only applicable inside a kernel, and
it restricts the number of condition flags to the num-
ber of bits per memory word. For our microker-
nel, this was not a severe restriction (the Fiasco mi-
crokernel needs less than 10 condition flags), but
it may become a problem for more complex sys-
tems. For such systems, a more general solution
(e. g., protecting sleep and wakeup using a simple
lock) can be used.

4.4 Single-server synchronization revisited

Before we implemented the wait-free locking
scheme described in Section 4.3, we experimented
with Massalin’s and Pu’s single-server synchro-
nization scheme discussed in Section 2.1. In this
section, we discuss how the single-server mecha-
nism can be changed for real-time systems, and
why we changed it into the simpler locking-with-
helping scheme.

In Massalin’s and Pu’s scheme, threads that want to
change an object put a change-request message into
the request queue of the server thread that owns the
object. In similar spirit to our helping-lock design
from Section 3.3, we can minimize the worst-case
wait time for high-priority threads by replacing the
request queue with a stack (so that messages from
high-priority senders get processed first), and by
letting requesters actively donate CPU time to the
server thread until it has handled their request.

When we first designed and implemented our wait-
free synchronization mechanism, we drew inspira-

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 11

void sleep (unsigned condition)
{
Thread* thread = current ();

for (;;)
{
unsigned old_state = thread->state;
if (old_state & condition)
{
/* condition occurred */
break;

}
if (CAS (& thread->state,

old_state,
old_state & ~Thread_running))

{
/* ready flag deleted, sleep */
schedule ();

}
/* try again */

}

thread->state &= ~condition;
}

void wakeup (Thread* thread,
unsigned condition)

{
for (;;)

{
unsigned old_state = thread->state;
if (CAS (& thread->state,

old_state,
old_state | Thread_running

| condition))
{
/* CAS succeeded */
break;

}
}

if (thread->prio > current()->prio)
switch_to (thread);

}

Figure 3 Pseudocode for thesleep and wakeup
operations. As the condition flag is stored in the
same memory word as the scheduler’s ready-to-run
flag, thesleep implementation does not risk a race
condition with thewakeup code.

tion from Massalin’s and Pu’s work. In particular,
our design looked as follows:

Our kernel ensured serialization of critical sections
by allowing only one thread, an object’sowner,to
execute operations on that object. In other words,
all locked operations ran in the thread context of
the owner of an object.

Threads were their own owners. Consequently,
threads carried out themselves all locked operations
on them, including those initiated by other threads.

The kernel assigned ownership for other objects
(not threads) on the fly using lock-free synchroniza-
tion. This design can also be viewed as follows:
The only object type that can be locked at all is the
thread. All other objects are “locked” by locking
a thread and assigning ownership of the object to
that thread. Then, all operations on that object are
carried out by the owner.

Helping an owner was as simple as repeatedly
switching to the owner until either the owner had
completed the request, or a thread that deleted
the owner had aborted the request. The context-
switching code took care of executing all requests
before returning to the context of the thread.

We consider this design to be not inelegant, but un-
fortunately, it required a context switch for every
locked operation. Only later we realized that this
mechanism in fact shares many properties with the
wait-free locking scheme with priority inheritance
we derived in Section 3.3. Our new locking mecha-
nism is less complex and performs much better than
our original single-server scheme.

5 Performance evaluation

To evaluate the real-time properties of the Fiasco
microkernel and the overhead of its synchroniza-
tion mechanisms, we conducted two series of mea-
surements. First, to verify that the kernel matches
our requirements with regards to preemptability and
scheduling, we measured the lateness of a user-
level interrupt handler. Second, we measured the
overhead of our synchronization primitives in a
number of microbenchmarks.

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 12

System Max. lateness

Fiasco µ-kernel / L4Linux 65 µs
L4/x86 / L4Linux 541 µs
RTLinux 58 µs

Table 1 Maximum lateness of a periodic 250-µs
interrupt handler. On the Fiasco µ-kernel and on
L4/x86, the handler ran in a user task of its own; in
RTLinux, the handler was a real-time task running
in kernel mode.
We carried out these measurements on a 200 MHz Pentium Pro

machine. The CPU’s built-in local APIC served as the interrupt

source.

5.1 Real-time characteristics

For this test, we set up a timer device to trigger a
hardware interrupt every 250 µs. We created a user-
level task containing a high-priority handler thread
connected to the interrupt, and we measured the
time between interrupt occurrences. From the re-
sults, we computed the maximum lateness. During
measurements, a cache-flooding application and a
Linux system running various multi-user bench-
marks ran concurrently with the handler thread, in-
ducing a high load on the system.8

We conducted this test on three operating sys-
tems: on the Fiasco microkernel with L4Linux,
on Liedtke’s high-performance L4/x86 kernel with
L4Linux, and, for comparison, on RTLinux [24]
(with the handler running in kernel mode). Ta-
ble 1 shows the maximum latenesses for the three
systems. (The average lateness was very small—
smaller than 1 µs on all systems.)

It turns out that maximum lateness in the Fiasco mi-
crokernel is an order of magnitude smaller than that
for L4/x86. That is because L4/x86 uses interrupt
disabling liberally throughout the kernel to syn-
chronize accesses to kernel data structures. More-
over, the Fiasco microkernel is close to RTLinux
even though the interrupt handler under RTLinux

8These measurements are equivalent to those Mehnert [17]
carried out in 1999. Mehnert’s results showed a much worse
maximum lateness for the Fiasco microkernel; these poor re-
sults were caused by a kernel bug that has since been fixed.

System Cycles Cycles
[P5] [P-II]

counter, unsynchronized 2 2
counter, CAS 13 12
counter, Fiasco thread lock 245 245
counter, old Massalin–Pu–
style thread lock (includes
one context switch)

627 607

IPC 653 810
IPC, L4/x86 398 438
IPC, L4/x86, small addr.
spacea

184 300

aL4/x86 offers an optimization called “small address
spaces,” which significantly reduces context-switch cost for
small address spaces by implementing it using a segment
switch instead of a page-table switch [9].

Table 2 Synchronization overhead (under no con-
tention) in the Fiasco microkernel on two differ-
ent machines. For comparison, we show IPC
times (one-way) for the Fiasco microkernel and for
L4/x86.
We measured the numbers in the P5 column on a 133-MHz

Pentium box, and the number in the P-II column on a 400-

MHz Pentium-II box. We used normal C or C++ programs

(not hand-optimized assembly) to conduct the measurements.

runs in kernel mode and in the kernel’s address
space while Fiasco handlers run in their own task.

5.2 Microbenchmarks

We carried out a small series of measurements to
evaluate the overhead of our synchronization mech-
anisms, and to get clues for future optimizations.

We implemented a simple one-word counter and
protected its increment operation using the follow-
ing synchronization schemes: CAS; a wait-free
helping lock (Fiasco microkernel’s new synchro-
nization); and wait-free object lock with the oper-
ation running in a different thread (Fiasco micro-
kernel’s old Massalin–Pu single-server–style syn-
chronization). For comparison, we measured an
unprotected counter, and a complete address-space-

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 13

crossing short-IPC operation in the Fiasco micro-
kernel (needs no lock), and we put all results into
relation with the performance of Liedtke’s L4/x86’s
IPC performance. Table 2 shows the results.

We are quite satisfied with the performance over-
head of our new helping-lock implementation.
Even though we are yet to optimize our code, we
have already experienced a more-than-twofold im-
provement in comparison to the implementation of
Massalin’s and Pu’s single-server scheme.

6 Nonblocking synchronization in
user-mode programs

In this section we discuss how our design methodol-
ogy can be applied to multithreaded user-level pro-
grams.

Let us recall three preconditions for the effective-
ness of our methodology for nonblocking design:
First, MWCAS can only be simulated if concurrent
access to the shared data can be disabled. Second,
to ensure wait-freedom, critical sections protected
by priority-inversion–safe locks must not block.
Third, helping only works if the threading system
provides priority inheritance. Meeting these condi-
tions for user-level programs is most definitely pos-
sible, but can be difficult. We discuss the conditions
in turn.

The interrupt-disabling method to prevent preemp-
tions does not work on user level. Therefore,
disabling concurrent access implies some kind of
locking. As critical sections accessing data that
is updated using simulated MWCAS are typically
very short, priority inversion is best prevented by
employing preemption-safe locks (i. e., locks that
prevent descheduling a lock-holding thread in fa-
vor of a thread that shares the lock-protected data
structure). In general, the locking mechanism de-
pends on the underlying operating system. For
example, spin locks can be used on multipro-
cessor systems that always gang-schedule all of
the program’s threads; uniprocessors can use the
operating-system–assisted MWCAS implementa-

tion we discussed in Section 2.1, or an operating-
system–assisted preemption-safe lock.

To avoid blocking inside critical sections, user pro-
grams must take extra care typically unnecessary in
the kernel: They need to ensure that critical sec-
tions do not trigger page faults leading to paging.
For that, user programs need operating-system sup-
port.

Optimally, the operating system should support pri-
ority inheritance in the kernel.

In summary, multi-threaded user programs can use
our design technique if the operating system pro-
vides some support that real-time systems provide
frequently, or can easily implement: MWCAS sup-
port, preemption-safe locking, memory pinning,
and priority inheritance.

7 Summary and conclusion

We introduced a pragmatic methodology for de-
signing nonblocking real-time systems that is
not dependent on an atomic memory-modification
primitive like CAS2; just CAS is sufficient.

Our methodology consists of four basic guidelines:
(1) partition the system into global and local ob-
jects; (2) implement the global objects using lock-
free synchronization as far as possible; (3) protect
the other objects using locks with priority inheri-
tance; (4) never wait for events inside critical sec-
tions. We argued that following these rules ensures
wait-freedom.

We derived three conditions for an operating sys-
tem on which our methodology becomes applicable
for wait-free user-mode programs: (1) the operat-
ing system must provide help for a user-mode im-
plementation of MWCAS, either directly or by sup-
porting preemption-safe locks; (2) it must provide
a service for memory pinning; (3) it must support
priority inheritance.

We proposed a wait-free locking-with-helping
mechanism with priority inheritance, and we
showed that it is similar in effect to, but better

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 14

performing than, the single-server synchronization
mechanism introduced by Massalin and Pu [16].
We devised a monitor implementation that works
on top of our locking mechanism.

The application of our methodology can lead to sys-
tems with excellent real-time properties: We have
built the Fiasco microkernel using the methodol-
ogy. Together with L4Linux, the Fiasco microkernel
reaches a level of preemptability that is close to that
of RTLinux.

Currently our work has two significant limitations.
First, our performance results are preliminary in
many ways. Our next steps will be to analyze in
more detail what is causing worst-case interrupt la-
tencies of more than 50 µs, and to look at processor
dependencies. From this evaluation, we intend to
develop a model for predicting worst-case interrupt
latencies for our methodology. Second, we have not
compared the performance of our synchronization
primitives to the performance of primitives found in
other commercial and research operating systems.
Both limitations are being addressed as part of the
first author’s thesis work.

In the near future, we plan to add multiprocessor
support to the Fiasco microkernel in order to verify
our methodology for multiprocessors. Following
which, we plan to optimize the Fiasco microker-
nel’s locking-with-helping mechanism and thread
switching.

Also, we plan to research the applicability of the
techniques for user-level programs in more depth,
that is, with real software and measurements.

Availability

The Fiasco microkernel is freely available; re-
searchers are invited to study the implementation
of our design methodology, and to experiment with
it.

Fiasco and L4Linux can be downloaded from
http://os.inf.tu-dresden.de/drops/.

Acknowledgements

We would like to thank Frank Mehnert for provid-
ing his measurement framework, and Michael Peter
for improving Fiasco’s synchronization primitives.
We are grateful to our shepherd, Sheila Harnett, and
to our anonymous reviewers for their valuable sug-
gestions.

Special thanks go to Thomas Roche who helped de-
bugging our prose.

This project has been partially funded by the
Deutsche Forschungsgemeinschaft in the frame-
work of the Sonderforschungsbereich 358, and sup-
ported by generous grants from IBM (University
Partnership and Shared University Research pro-
grams) and from Intel (MRL Lab Hillsboro).

References

[1] Atul Adya, Barbara Liskov, Robert Gruber, and
Umesh Maheshwari. Efficient optimistic concur-
rency control using loosely synchronized clocks.
In Proceedings of SIGMOD, San Jose, CA, May
1995.

[2] James H. Anderson, Srikanth Ramamurthy, and
Rohit Jain. Implementing wait-free objects on
priority-based systems. InProceedings of the
Sixteenth Annual ACM Symposium on Principles
of Distributed Computing, pages 229–238, Santa
Barbara, California, 21–24 August 1997.

[3] James H. Anderson, Srikanth Ramamurthy, and
Kevin Jeffay. Real-time computing with lock-free
shared objects.ACM Transactions of Computer
Systems, 15(2):134–165, May 1997.

[4] B. N. Bershad. Practical considerations for non-
blocking concurrent objects. In Robert Werner,
editor,Proceedings of the 13th International Con-
ference on Distributed Computing Systems, pages
264–274, Pittsburgh, PA, May 1993. IEEE Com-
puter Society Press.

[5] Peter A. Buhr and Michael Fortier. Monitor classi-
fication. ACM Computing Surveys, 27(1):63–107,
March 1995.

[6] Michael Greenwald. Non-blocking Synchroniza-
tion and System Design. PhD thesis, Stanford Uni-
versity, August 1999.

http://os.inf.tu-dresden.de/drops/

Appears in the Proceedings of the 2001 USENIX Annual Technical Conference (USENIX ’01) 15

[7] Michael Greenwald and David Cheriton. The syn-
ergy between non-blocking synchronization and
operating system structure. In2nd Symposium
on Operating Systems Design and Implementa-
tion (OSDI ’96), October 28–31, 1996. Seattle,
WA, pages 123–136, Berkeley, CA, USA, October
1996. USENIX.

[8] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J.
Hamann, M. Hohmuth, F. Mehnert, L. Reuther,
S. Scḧonberg, and J. Wolter. DROPS: OS sup-
port for distributed multimedia applications. In
Proceedings of the Eighth ACM SIGOPS European
Workshop, Sintra, Portugal, September 1998.

[9] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg,
and J. Wolter. The performance of µ-kernel-based
systems. In16th ACM Symposium on Operat-
ing System Principles (SOSP), pages 66–77, Saint-
Malo, France, October 1997.

[10] Carl Hauser, Christian Jacobi, Marvin Theimer,
Brent Welch, and Mark Weiser. Using threads
in interactive systems: A case study. In14th
ACM Symposium on Operating System Principles
(SOSP), pages 94–105, Asheville, NC, December
1993.

[11] Maurice Herlihy. A methodology for implement-
ing highly concurrent data objects.ACM Trans-
actions on Programming Languages and Systems,
15(5):745–770, November 1993.

[12] Michael Hohmuth. The Fiasco kernel: Require-
ments definition. Technical Report TUD–FI–
12, TU Dresden, December 1998. Available
from URL: http://os.inf.tu-dresden.de/
papers ps/fiasco-spec.ps.gz.

[13] John H. Howard. Signaling in monitors. InSec-
ond International Conference on Software Engi-
neering, pages 47–52, San Francisco, CA, October
1976.

[14] B. W. Lampson and D. D. Redell. Experience with
processes and monitors in Mesa.Communications
of the ACM, 23(2):105–117, February 1980.

[15] J. Liedtke. On µ-kernel construction. In15th
ACM Symposium on Operating System Principles
(SOSP), pages 237–250, Copper Mountain Resort,
CO, December 1995.

[16] Henry Massalin and Calton Pu. A lock-free mul-
tiprocessor OS kernel. Technical Report CUCS-
005-91, Columbia University, 1991.

[17] Frank Mehnert. L4RTL: Porting RTLinux API to
L4/Fiasco. InWorkshop on a Common Microker-
nel System Platform, Kiawah Island, SC, Decem-
ber 1999.

[18] Maged M. Michael and Michael L. Scott. Sim-
ple, fast, and practical non-blocking and blocking
concurrent queue algorithms. InProceedings of
the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’96), pages 267–
275, New York, USA, May 1996. ACM.

[19] M. Moir. Transparent support for wait-free trans-
actions. Lecture Notes in Computer Science,
1320:305, 1997.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Comput-
ers, 39(9):1175–1185, September 1990.

[21] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Al-
maden Research Center, April 1986.

[22] John D. Valois. Lock-free linked lists us-
ing compare-and-swap. InProceedings of the
Fourteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 214–222,
Ottawa, Ontario, Canada, 2–23 August 1995.
Erratum available atftp://ftp.cs.rpi.edu/
pub/valoisj/podc95-errata.ps.gz.

[23] John D. Volois. Lock-Free Data Structures. PhD
thesis, Rensselaer Polytechnic Institute, May 1995.

[24] Victor Yodaiken and Michael Barabanov. A Real-
Time Linux. In Proceedings of the Linux Appli-
cations Development and Deployment Conference
(USELINUX), Anaheim, CA, January 1997. The
USENIX Association.

	Introduction
	Nonblocking synchronization and related work
	Lock-free and wait-free synchronization
	Nonblocking synchronization in operating systems
	Nonblocking synchronization vs. real-time systems

	A design methodology for real-time systems
	Design goals
	Design guidelines
	Wait-free locking with helping

	Synchronization in the Fiasco microkernel
	Kernel objects
	Synchronization of kernel objects
	Wait-free locking in the Fiasco microkernel
	Single-server synchronization revisited

	Performance evaluation
	Real-time characteristics
	Microbenchmarks

	Nonblocking synchronization in user-mode programs
	Summary and conclusion

