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Abstract

We develop a holistic framework for adaptively schedul-
ing asynchronous requests in distributed file systems.
The system is holistic in that it manages all resources,
including network bandwidth, server I/O, server CPU,
and client and server memory utilization. It acceler-
ates, defers, or cancels asynchronous requests in order
to improve application-perceived performance directly.
We employ congestion pricing via online auctions to co-
ordinate the use of system resources by the file system
clients so that they can detect shortages and adapt their
resource usage. We implement our modifications in the
Congestion-Aware Network File System (CA-NFS), an
extension to the ubiquitous network file system (NFS).
Our experimental result shows that CA-NFS results in
a 20% improvement in execution times when compared
with NFS for a variety of workloads.

1 Introduction
Distributed file system clients consume server and net-

work resources without consideration for how their op-
erations interfere with their future requests and other
clients. Each client request incurs a cost to the sys-
tem, expressed in increased load to one or more of its
resources. As more capacity, more workload, or more
users are added congestion rises, and all client operations
share the cost in delayed execution. However, clients re-
main oblivious to the congestion level of the system re-
sources.

When the system is under congestion, network file
servers try to maximize throughput across clients, as-
suming that their benefit increases with the flow rate.
This practice does not correspond well with application-
perceived performance because it fails to distinguish
the urgency and relative priority of file system opera-
tions across the client population. From the server’s
perspective, all client operations at any given time are
equally important. This is a fallacy. File system opera-

tions come at different priorities implicitly. While some
need to be performed on demand, many can be deferred.
Synchronous client operations (metadata, reads) bene-
fit more from timely execution than asynchronous op-
erations (most writes, read-aheads), because the former
block the calling application until completion. Also, cer-
tain asynchronous operations are more urgent than oth-
ers depending on the client’s state. For example, when a
client’s memory consumption is high, all of its write op-
erations become synchronous, leading to a degradation
in system performance.

In this paper, we develop a performance management
framework for distributed file systems that dynamically
assesses system load, manages system resources, and
schedules asynchronous client operations. When the sys-
tem resources approach critical capacity, we apply prior-
ity scheduling, preferring blocking to non-blocking re-
quests, and priority inheritance, e.g. performing writes
that block reads at high priority, so that non-time-critical
(asynchronous) I/O traffic does not interfere with on-
demand (synchronous) requests. On the other hand, if
the system load is low, we perform asynchronous opera-
tions more aggressively in order to avoid the possibility
of performing the same operations at a later time, when
the server resources will be congested.

The framework is based on a holistic congestion pric-
ing mechanism that incorporates all critical resources
among all clients and servers, from client caches to
server disk subsystems. Holistic goes beyond end-to-
end in that it balances resource usage across multiple
clients and servers. (End-to-end also connotes network
endpoints and holistic management goes from client ap-
plications to server disk systems.) The holistic approach
allows the system to address different bottlenecks in dif-
ferent configurations and respond to changing resource
limitations over time.

Servers encode their resource constraints by increas-
ing or decreasing the price of asynchronous reads and
writes in the system in order to “push back” at clients.
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As the server prices increase, the clients that are not re-
source constrained will defer asynchronous operations
for a later time and, thus, reduce their presented load.
This helps to avoid congestion in the network and server
I/O system caused by non-critical operations.

The underlying pricing algorithm, based on resource
utilization, provides a log-k competitive solution to re-
source pricing when compared with an offline algorithm
that “knows” all future requests. In contrast to heuristic
methods for moving thresholds, this approach is system
and workload independent.

We evaluate our proposed changes in CA-NFS
(Congestion-Aware Network File System), an extension
of the NFS protocol, implemented as modifications to the
Linux NFS client, server, and memory manager. Experi-
mental results show that CA-NFS outperforms NFS and
improves application-perceived performance by more
than 20% in a wide variety of workloads.

2 System Operation
In this section, we give the intuition behind schedul-

ing asynchronous operations and the effect these have on
system resource utilization. We then demonstrate how
clients adapt their behavior using pricing and auctions.

2.1 Asynchronous Writes
The effectiveness of asynchronous write operations

depends on the client’s current memory state. Writes
are asynchronous only if there is available memory; a
system that cannot allocate memory to a write, blocks
that write until memory can be freed. This hampers per-
formance severely because all subsequent writes become
effectively synchronous. It also has an adverse effect on
reads. All pending writes that must be written to storage
interfere with concurrent reads, which results in queuing
delays at the network and disk.

CA-NFS changes the way that asynchronous writes
are performed compared to regular NFS. NFS clients
write data to the server’s memory immediately upon re-
ceiving a write() system call and also buffer the write
data in local memory. The buffered pages are marked as
dirty at both the client and the server. To harden these
data to disk, the client sends a commit message to the
server. The decision of when to commit the data to the
server depends on several factors. Traditionally, systems
used a periodic update policy in which individual dirty
blocks are flushed when their age reaches a predefined
limit [32]. Modern systems destage dirty pages when the
number of dirty pages in memory exceeds a certain per-
centage (flushing point), which is typically a small frac-
tion of the available memory (e.g 10%). Then, a daemon
wakes up and starts flushing dirty pages until an adequate
number of pages have reached stable storage.

In contrast to regular NFS, CA-NFS clients adapt their
asynchronous write behavior by either deferring or ac-
celerating a write. CA-NFS clients accelerate writes by
forcing the CA-NFS server to sync the data to stable stor-
age so that the client does not need to buffer all of the cor-
responding dirty pages. The idea behind write accelera-
tion is that if the server resource utilization is low, there is
no need to defer the commit to a later time. Also, clients
may elect to accelerate writes in order to preserve their
cache contents and maintain a high cache hit rate. Note
that accelerating a write does not make the write opera-
tion synchronous. Instead, it invokes the write-back dae-
mon at the client immediately.

Write acceleration possibly increases the server disk
utilization and uses network bandwidth immediately. In
write-behind systems, many writes are canceled before
they reach the server [5, 34], e.g. writing the same file
page repeatedly, or creating and deleting a temporary file.
Thus, the load imposed to the server as a result of write
acceleration could be avoided. However, write accel-
eration has almost no negative effect on system perfor-
mance, because CA-NFS accelerates writes only when
the server load is low.

Deferring a write avoids copying dirty data to server
memory upon receiving a write request. Instead, clients
keep data in local memory only, until the price of using
the server resources is low. Clients price asynchronous
writes based on their ability to cache writes, i.e. available
memory. A client with scarce memory, because of write
deferral, will increase its local price for writes so that its
buffered pages will be transferred to the server as soon
as possible. To make write deferral possible, we modify
the operation of the write-back daemon on the clients by
dynamically changing the flushing point value based on
the pricing mechanism to dictate when the write-back of
dirty pages should begin.

Deferring a write consumes client memory with dirty
pages, saves server memory, and delays the consump-
tion of network bandwidth and server disk I/O. However,
it faces the risk of imposing higher latency for subse-
quent synchronous commit operations. This is because
a file sync may require a network transfer of the dirty
buffers from the client to server memory. Note that de-
ferring a write does not guarantee that the server price for
the same operation will be lower in the future. Instead,
this policy gives priority to operations originating from
resource-constrained clients.

CA-NFS follows NFS’s close-to-open consistency
model. Deferring or accelerating writes does not vio-
late the consistency semantics of NFS, because CA-NFS
does not change the semantics of the COMMIT opera-
tion. Asynchronous write-back in NFS includes a dead-
line that, when it elapses, escalates the operation to a syn-
chronous write. CA-NFS does the same.
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The server prices asynchronous writes based on its
memory, disk and network utilization. If the server mem-
ory contains blocks that are currently accessed by clients,
setting high prices forces clients to defer writes in order
to preserve cache contents and maintain a high cache hit
rate. Also, if the disk or network resources are heavily
utilized, CA-NFS defers writes until the load decreases,
to avoid queuing delays because of pending writes that
must be written to storage and interfere with concurrent,
synchronous reads. If the system resources are under-
utilized, the server encourages clients to flush their dirty
data by decreasing its price.

2.2 Asynchronous Reads
CA-NFS attempts to optimize the scheduling of asyn-

chronous reads (read-ahead). Servers set the price for
read-aheads based on the disk and network utilization.
If the server resources are heavily congested, CA-NFS
servers are less willing to accept read-ahead operations.

A client’s willingness to perform read-ahead depends
on its available memory and the effectiveness of the oper-
ation. If the server and network resources are congested
so that the server’s read-ahead price is higher than their
local price, clients perform read-ahead prudently in fa-
vor of synchronous operations. Capping the number of
read-ahead operations saves client memory, delays the
consumption of network bandwidth, but often converts
cache hits into synchronous reads because data were not
preloaded into the cache. On the other hand, if the server
price is low, clients perform read-ahead more aggres-
sively.

2.3 CA-NFS in Practice
Figure 1 shows the high-level operation of the system

and how the pricing model make clients adapt their be-
havior based on the state of the system. At this time, our
treatment of pricing is qualitative. We describe the de-
tails of constructing appropriate pricing models in Sec-
tion 3.3.

The server sets the price of different operations to
manage its resources and network utilization in a coor-
dinated fashion. In this example, the server’s memory is
near occupancy and it is near its maximum rate of I/O per
second (IOPS). Based on this, it sets the price of asyn-
chronous writes to be relatively high, because they con-
sume server memory and add IOPS to the system.

CA-NFS allows the system to exchange memory con-
sumption between the clients and the server. Clients
adapt their prices based on their local state. Client #1 has
available memory, so it stops writing dirty data. Client #2
is nearing its memory bound and, if it runs out of mem-
ory, applications will block awaiting the completion of
asynchronous writes. Thus, even though the server price
of asynchronous writes is high, this client is willing to

Client #1

AW  RA

20  17

Client #2

AW  RA

85  4
priceprice

memory

% reads

memory

% reads

Server

AW  RA

40  12
price

memory

network

disk IOPS

$ hit rate

RA eff

$ hit rate

RA eff

Figure 1: Overview of Congestion-Aware NFS. Clients and
servers monitor their resource usage from which they derive
prices for the different file system operations. (AW = asyn-
chronous write, RA = read ahead, RA eff = read-ahead effec-
tiveness.)

pay in order to avoid exhausting its memory. When the
server clears its memory, it will lower the price of asyn-
chronous writes and Client #1 will commence writing
again. Servers notify clients about their prices as part
of the CA-NFS protocol.

The criteria for whether to perform read-ahead pru-
dently or aggressively are similar. Client #1 has lots of
available memory, a read-dominated workload, and good
read-ahead effectiveness, so that read-ahead turns most
future synchronous reads into cache hits. Thus, it is will-
ing to pay the server’s price and perform more aggressive
read-ahead. Client #2 has a write-dominated workload,
little memory, and a relatively ineffective cache. Thus, it
halts read-ahead requests to conserve resources for other
tasks.

3 Pricing Mechanism
In distributed file systems, resources are heteroge-

neous and, therefore, no two of them are directly com-
parable. One cannot balance CPU cycles against mem-
ory utilization or vice versa. Nor does either resource
convert naturally into network bandwidth. This makes
the assessment of the load on a distributed system dif-
ficult. Previous models [20, 38, 44] designed to manage
load and avoid throughput crashes via adaptive schedul-
ing focus on one resource only or rely on high-level ob-
servations, such as request latency. The price unifica-
tion model in CA-NFS provides several advantages: (a)
it takes into account all system resources, (b) it unifies
congestion across all devices in order to be comparable,
and (c) it identifies bottlenecks across all clients and the
server in a collective way.

Underlying the entire system, we develop a unified al-
gorithmic framework based on competitive analysis for
the efficient scheduling of distributed file system opera-
tions with respect to system resources. We rely on the
algorithm of Awerbuch et al. [4] for bandwidth shar-
ing in circuit-sharing networks with permanent connec-



102 7th USENIX Conference on File and Storage Technologies USENIX Association

tions that uses an online auction model to price conges-
tion in a resource independent way. We adapt this theory
to distributed file systems by considering the path of file
system operations, from the client’s memory to server’s
disk, as a short-lived circuit.

CA-NFS uses a reverse auction model. In a reverse
auction, the buyer advertises a need for a service and the
sellers place bids, like a regular auction. However, the
seller who places the lowest bid wins the auction. Ac-
cordingly in CA-NFS, when the client is about to issue a
request, it compares its local price with the server price.
Depending on who offers the lower price the client ac-
celerates, or defers the operation.

We start by describing an auction for a single resource.
We then build a pricing function for each resource and
assemble these functions into a price for each NFS oper-
ation.

3.1 Algorithmic Foundation

For each resource, we define a simple auction in an
online setting in which the bids arrive sequentially and
unpredictably. In a way, a bid represents the client’s will-
ingness to pay for the use of the resource, i.e. the client’s
local price. A bid will be accepted immediately if it is
higher than the price of the resource at that time.

Our goal is to find an online algorithm that is com-
petitive to the optimal offline algorithm in any fu-
ture request sequence. The performance degradation
of an online algorithm (competitive ratio) is r =
max


Boffline/Bonline


in which Boffline is the benefit

from the offline optimal algorithm and Bonline the bene-
fit from the online algorithm. Awerbuch et al. [4] estab-
lish the lower bound at Ω(log k) in which k is the ratio
between the maximum and minimum benefit realized by
the online algorithm over all inputs. The lower bound is
achieved when reserving 1/ log k of the resource doubles
the price.

The worst case occurs when the offline algorithm sells
the entire resource at the maximum bid P , which was re-
jected by the online algorithm. For the online algorithm
to reject this bid, it must have set the price greater than P ,
which means it has already sold 1/ log k of the resource
for at least P/2.

Bonline >
P

2 log k
and

Boffline −Bonline < P

=⇒ r < 1 + 2 log k

Increasing price exponentially with increased utilization
leads to a competitive ratio logarithmic in k.

3.2 A Practical Pricing Function
This model gives us an online strategy that is prov-

ably competitive with the optimal offline algorithm in the
maximum usage of each resource. It has a weak (log, not
constant) competitive ratio, but even this weak ratio is
unprecedented in the storage system’s literature. The on-
line algorithm knows nothing about the future, assumes
no correlation between past and future requests, and is
only aware of the current system state.

Based on the theoretical framework, we define the
pricing function Pi for an individual resource i in our
framework as

Pi(ui) = Pmax
{kui

i − 1}
{ki − 1}

in which the utilization ui varies between 0 and 1 so that
the price varies between 0 and Pmax.

The parameter k represents the performance degrada-
tion experienced by the end user as the resource becomes
congested. Thus, appropriate values of k should provide
incremental feedback as the resource usage increases.

The heterogeneous resources of distributed file sys-
tems complicate parameter selection. Different resources
become congested at different levels of utilization, which
dictates that parameters need to be set individually. With
very large k, the price function stays near zero until the
utilization is almost 1. Then the price goes up very
quickly. With very small k, the resource becomes ex-
pensive at lower utilization, which throttles usage prior
to congestion. The network exhibits few negative ef-
fects from increased utilization until near its capacity
and, thus, calls for a higher setting of k. Similarly, mem-
ory works well until it’s nearly full at which point it expe-
riences congestion in the form of fragmentation and syn-
chronous stalls from out-of-memory conditions. Disks,
on the other hand, require smaller values of k, because
each additional I/O interferes with all subsequent (and
some previous) I/Os, increasing the service time by in-
creasing queue lengths and potentially moving the head
out of position.

CA-NFS users do not need to set the value of k explic-
itly, as it is precomputed for most existing device types.
The pricing mechanism is robust to small hardware varia-
tions, e.g to different device brands. During various CA-
NFS deployments, we experimented extensively with the
value of k. (We do not present all these experiments as
they are quite tedious.)

We approximate the cumulative cost of all resources
by the highest cost (most congested) resource. The high-
est cost resource corresponds well with the system bot-
tleneck. Pmax is the same for all server resources and
the exponential nature of the pricing functions ensures
that resources under load become expensive quickly.
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In order to avoid the effects of over-tuning and enforce
stability, we set two additional constraints on the cost
function. Clients assign an infinitesimally higher value
to the maximum price for their resources (Pmax+) than
do servers. This ensures that when both the client and the
server are overloaded, the client sends the operations to
the server. In practice, servers deal with overload more
gracefully than do clients. Also, the client’s prices are
always higher than a minimum price Pmin so that if nei-
ther the client nor the server is congested, operations are
performed at the server.

3.3 Calculating Resource Utilization

The theoretical model does not make any explicit as-
sumptions about the type of resources managed. As a
result, adding new resources to the system is straight-
forward. We currently monitor the effective usage of five
resources, each with its own intricacies:

Server CPU: It is straightforward to establish the uti-
lization of the CPU accurately at any given time through
system monitoring.

Client and Server Network: The utilization of net-
works is also well defined. However, network bandwidth
needs to be time-averaged to stabilize the auction. With-
out averaging, networks fluctuate between utilization 0
when idle and 1 when sending a message. The price
would be similarly extreme and erratic. Thus, we moni-
tor the average network bandwidth over a few hundreds
of milliseconds.

Server Disk: Measuring disk utilization is difficult be-
cause of irregular response times. Although observed
throughput seems a natural way to represent utilization,
it is not practical because it depends heavily on the work-
load. A sequential workload experiences higher through-
put than a random set of requests. However, disk utiliza-
tion may be higher in the latter case, because the disk
spends head time seeking among the random requests.

We measure disk utilization by sampling the length of
the device’s dispatch queue at regular, small time inter-
vals. The maximum disk utilization depends on the sys-
tem configuration. We do not identify the locality among
pending operations nor do we use device-specific infor-
mation. Recently, Fahrad [36] and Zygaria [21] showed
the effectiveness of measuring disk utilization by exam-
ining the disk head time. We plan to evaluate this ap-
proach in future work.

Client and Server Memory: Pricing memory consump-
tion is exceedingly difficult, because memory is a single
resource used by many applications for many purposes,
caching for reuse, dirty buffered pages, and read ahead.
A cache must preserve a useful population of read-cache
pages. Deferring writes in CA-NFS could reserve more

memory pages to buffer writes, which may in turn re-
duces cache hit rates, To avoid this, we identify the por-
tion of RAM that is actively used to cache read data and
the effectiveness of that cache. We then use pricing to
preserve that portion of memory in order to maintain
cache hit rates. The price of memory increases if the ex-
isting set of pages yields a high cache hit rate or there are
a large number of dirty pages that have triggered write-
back.

Previous research [6] allows us to effectively track the
utility of read cache pages through the use of two ghost
caches. We introduce a virtual resource to monitor by
using the distribution of read requests among the ghost
caches to calculate the projected cache hit rates, and
thus, the effective memory utilization. A large fraction
of read requests falling in these regions indicates that the
client would benefit from more read caching, so defer-
ring writes is not of particular benefit.

Client Read-Ahead Effectiveness: We define a virtual
resource that captures the expected efficiency of read-
ahead [24, 37]. We build our metric of read-ahead con-
fidence on the adaptive read-ahead logic recently intro-
duced in the Linux kernel [12]. We define confidence as
the ratio of accesses to read-ahead pages divided by the
total number of pages accessed for a specific file. For
high values, the system performs read-ahead more ag-
gressively. For low values, the kernel will be more reluc-
tant to do the next read-ahead.

3.4 CA-NFS Implementation
We have implemented CA-NFS by modifying the ex-

isting Linux NFS client and server in the 2.6.18 kernel.
Specifically, we added support for the exchange of pric-
ing information and we changed the NFS write operation
to add support for acceleration and deferral. We have
also made modifications to the Linux memory manager
to support the classification of the memory accesses and
the read-ahead heuristics.

The CA-NFS server advertises cost information to
clients, which implement the scheduling logic. We have
overridden the FSSTAT protocol operation (NFSv3) to
include pricing information about server resources. Nor-
mally, FSSTAT retrieves volatile file system state infor-
mation, such as the total size of the file system or the
amount of free space. Upon a client’s FSSTAT request,
the server encodes the prices of operations based on its
monitored resource usage. In our implementation, the
server computes the statistics of the resource utilization
and updates its local cost information every one second.
FSSTAT is a lightweight operation that adds practically
no overhead to the system resources. Clients do not block
waiting for the operation to complete.

Clients send an FSSTAT request to the server every
ten READ or WRITE requests or when the time interval
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Figure 2: Time to copy a 4GB directory over NFS and CA-NFS
and a breakdown of CA-NFS savings

from the previous query is more than ten seconds. As
part of CA-NFS extensions, we intend to have the server
notify active clients via callbacks when its resource us-
age increases sharply.

4 Evaluation
We run experiments on a cluster of twenty-four ma-

chines running at 3.2GHz with 2GB of RAM each. One
machine has 4GB of RAM and acts as the server. All
nodes are connected via Gigabit Ethernet. To compare
CA-NFS with NFSv3, we run a set of micro-benchmarks
and application workloads based on the different profiles
available in filebench [25], Sun’s filesystem benchmark,
and IOzone [18].

4.1 Microbenchmarks

We start our analysis with a simple filebench experi-
ment. A single thread of just one client copies a large
directory of 4GB over CA-NFS and NFS. This workload
creates a hierarchical directory tree, then measures the
rate at which files can be copied from the source tree
to the new tree. The sizes of the files in the directory
vary from 1KB to 200MB. Even in such a simple config-
uration, CA-NFS provides 15% improvement in perfor-
mance, measured by completion time (Figure 2).

Regular NFS clients fail to use their local memory to
good effect even though it is not congested. NFS clients
read data from the server and start buffering write pages
until they reach the statically defined limit of dirty pages.
Then, the flushing daemon forces the pages to be writ-
ten to the server. This requires the server to harden data
to disk. The resulting write traffic delays disk read re-
quests. In contrast, CA-NFS clients determine that the
server disk is heavily utilized through the exchange of
pricing information. CA-NFS clients use a much larger
portion of their RAM to buffer dirty pages, avoiding the
large, asynchronous writes to the server that interfere
with reads. The effects of read-ahead optimizations are

 0

 5

 10

 15

 20

ReaderWriter

Ap
pl

ic
at

io
n 

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

NFS
CA-NFS

Cache Hit Rate
 0

 20

 40

 60

 80

 100

(%
)

Figure 3: Application execution time and cache hit rates when
accelerating writes

less dramatic, but still important. Read-aheads are issued
aggressively in the beginning, because there is free mem-
ory space and they yield a high hit rate for this mostly
sequential workload. As the server memory resources
become more congested with dirty pages, client-initiated
read-aheads are performed more prudently. Figure 2 also
breaks out the portion of the improvement attributed to
write (12%) and read-ahead optimizations (3%).

4.1.1 Operation Scheduling

Accelerating writes: The next experiment combines
two IOzone workloads to show how CA-NFS preserves
cache hit rates by valuing client memory highly. We con-
sider a client application that writes a 2GB file sequen-
tially. On the same client, another application performs
re-reads, i.e. reads that will be server cache hits if the
system does not evict the pages.

Figure 3 shows the execution times of the two appli-
cations for NFS and CA-NFS. CA-NFS improves read
performance by 21% when compared with NFS. The
NFS client evicts memory pages used for read caching
in order to buffer writes. This reduces the cache hit rate
and application-perceived read performance as a conse-
quence. NFS clients replace approximately 15% of the
pages used for caching and realize a cache hit rate of only
70%. In contrast, CA-NFS accelerates writes by flush-
ing them immediately, anticipating the importance of the
cache contents. CA-NFS clients maintain a cache hit rate
of 90%. The client prefers to accelerate all asynchronous
writes, because its read cache is producing a high hit rate,
thus its price for asynchronous writes is high. The server
price for asynchronous writes is low, because none of its
resources is congested.

Deferring writes: We now demonstrate how CA-NFS
uses write-buffering at the client to avoid I/O interference
at the server. One client issues random reads that are ser-
viced by the server’s disk. Another client writes a 1GB
file to the server. The NFS client sends the write requests
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Figure 4: Execution time for two clients reading and writing to
a file when deferring writes

to the server, which flushes them to stable storage. These
disk writes increase the service time of disk reads, be-
cause they interfere at the disk with read requests coming
from the first client. Through pricing, CA-NFS identifies
congestion at the disk, which causes the writing client
to buffer dirty data and reduces the amount of write data
delivered to the server. Figure 4 shows that CA-NFS im-
proves read performance by 18%. In this case, write per-
formance is also improved by 6%.

4.1.2 On the Pricing Metric
We characterize how the pricing function captures sys-

tem dynamics by comparing resource utilization and re-
source price side-by-side. We show that pricing reflects
congestion on heterogeneous resources, i.e. on networks,
for memory, and on the disk. Prices create a single view
of system load in a resource independent manner.

For the network resource, we run a network inten-
sive workload with four clients reading a 1GB file from
server’s memory at a rate of 50MB/sec each over a GbE
network. Three clients suffice to saturate the network
bandwidth. We start each client at 10 second time in-
tervals in order to provide incremental load to the sys-
tem. Figure 5(a) plots the server-perceived throughput
and the average throughput at the clients. Figure 5(b)
shows the server’s system price, governed by the net-
work, at the same time scale. As the system load in-
creases, each client gets a smaller share of the bandwidth
and average client throughput drops. Over time, the net-
work price increases to near it maximum value (1.0, the
value of Pmax in all experiments). The increase in price
causes the clients to back off, preventing overload, and
the server throughput remains stable under heavy load.

We run a similar experiment for memory-bound work-
loads and memory price. A client issues reads by increas-
ing the number of requests for already accessed data. By
recycling the client’s memory, we force all re-read re-
quests to be serviced out of the server cache only. From
the server’s perspective, as the hit ratio increases cache
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Figure 6: CA-NFS throughput sensitivity to the correct param-
eterization of k

data become more important, so it increases the price for
memory operations (Figures 5(c) and 5(d)).

For disk-bound workloads, we run a client process
that issues random read requests over increasingly larger
spans of the disk. As we increase the span, client
throughput drops from increased disk head utilization
that leads to more requests in the disk dispatch queue
(Figure 5(e)). In response to the increase in the number
of pending requests, the system increases the price for
the disk resource (Figure 5(f)).

In the next experiment, we show how the selection of
parameter k affects system performance. We run a read-
write IOzone workload on two clients accessing a 2GB
file on the server. Through measurements, we have estab-
lished a value of k for each device type, which yields the
best throughput for this experiment. We alter the value
of k for the client and server memory, the network and
the disk resources, and we examine the drop in system
throughput.

Figure 6 shows that small perturbations of k do not af-
fect CA-NFS performance. However, if the value of k
differs significantly from its optimal (as calculated) set-
ting, performance degradation is notable. Low values of
k lead to underutilization of the system resources, while
high values make the system less adaptive, as prices in-
crease very rapidly. Figure 6 also shows that the disk
and the network are more sensitive to correct parame-
terization. This is because, these resources exhibit very
high (disk) or very low interference (network) between
past and future requests. As already mentioned, CA-NFS
users do not have to set the value of k explicitly. In the
next set of experiments, we show that the CA-NFS pa-
rameter selection is robust to different workload types.

4.2 Application Benchmarks
Microbenchmark experiments demonstrate the opera-

tion of CA-NFS by isolating the benefits of individual
optimizations. To better understand how CA-NFS effects
applications, we turn our attention to macrobenchmarks.
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Figure 5: Examining the pricing mechanism for three different resources (network (a,b), memory (c,d), and disk (e,f))
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Figure 7: Average number of ops/sec per client for the file-
server benchmark

First, we evaluate CA-NFS by running the
fileserver synthetic workload provided by
filebench, on eight clients. This workload is mod-
eled after SPECsfs [39], an industry standard test suite
that is based on data collected by SFS committee mem-
bers from thousands of real NFS servers operating at
customer sites. The test performs a sequence of creates,
deletes, appends, reads, writes and attribute operations
on the file system. We randomly set the number of user
threads, the number of files written and the average
file size to numbers between 100-200, 1000-5000 and
100-5120KB respectively. This workload contains a
large number of asynchronous operations.

Figure 7 shows that CA-NFS outperforms NFS by
more than 10% in the single client setup and by more
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Figure 8: CDF of the time that the system schedules write-
backs for NFS and CA-NFS

than 20% in the eight-client setup. Figure 8 shows the cu-
mulative distribution function of the time that elapses be-
tween a write operation submitted by the application and
the relevant pages marked for commit by the file system.
CA-NFS schedules asynchronous write operations very
differently from NFS. NFS clients are forced to commit
many pages almost immediately as they become dirty, in
order to prevent the system from running out of mem-
ory to buffer dirty pages. No page stays dirty for more
than 12 seconds after the write is issued. CA-NFS sched-
ules the write-back operations more evenly across the 30-
second time frame that defines the reliability window for
asynchronous writes in most current operating systems.
As a result, traffic in CA-NFS is less bursty, a significant
factor that improves performance.
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Figure 9: Aggregate client throughput for the oltp benchmark a
function of the number of clients

NFS CA-NFS
ops/sec

2443 2503

ms/op
open file 34.3 33.7
read file 5.3 5.1

close file 4.0 4.2
append log 7.1 7.2

Table 1: NFS and CA-NFS under the webserver workload

The next benchmark examines CA-NFS characteris-
tics under an OLTP workload that performs transactions
into a filesystem using an I/O model from Oracle 9i.
This workload tests for the performance of small random
reads and writes in conjunction with moderate (128KB)
synchronous writes. Operations represent read and write
OLTP transactions and writes to the log file respectively.
On each client, we launch 200 reader processes, 10 pro-
cesses for asynchronous writing, and a log writer. We
run the experiments four times, modifying the number of
active clients.

For the oltp workload, CA-NFS is more scalable
than NFS. Although this workload exhibits some cache
locality on the server, the main bottleneck in this exper-
iment is the server’s disk, which is overwhelmed by the
number of incoming requests. Figure 9 plots the aggre-
gate client throughput for different client populations.
For a small number of clients (one to four), CA-NFS
provides a rather small performance advantage. As the
number of clients increases, the relative throughput of
CA-NFS increases when compared with NFS. In the case
of NFS, the aggregate throughput for the 23-client setup
is less than in the 12-client setup. This is because the
number of incoming requests overwhelms the server re-
sulting in a throughput crash.

In our last experiment, we examine the performance
of CA-NFS under a workload that contains mostly syn-
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Figure 10: Number of asynchronous client writes blocked

chronous read operations. The file server exports its
filesystem to a number of web servers. The webserver
workload from the filebench suite consists of a mix of
open/read/close of multiple files in a directory tree, plus
a file append (to simulate the web log) in which 16KB is
appended to the weblog for every 10 reads.

CA-NFS performs slightly better (about 3%) than NFS
thanks to the read-ahead optimizations. Write optimiza-
tions are not a factor in this benchmark, because of the
small number of write operations. Table 4.2 shows that
for all operations the latency for both NFS and CA-NFS
is almost identical.

Macrobenchmark experiments show that CA-NFS sig-
nificantly outperforms NFS under workloads with a sig-
nificant number of asynchronous operations, such as
the fileserver benchmark. For workloads that are
read-dominated (webserver) or contain small, asyn-
chronous requests (oltp), CA-NFS performs compa-
rably to NFS, showing that our modifications are light-
weight.

4.3 High-Speed Hazards

To further evaluate our framework, we perform mea-
surements over a 10-Gbps Infiniband network. As op-
posed to the previous set of experiments, in this setup, the
network bandwidth outstrips disk transfer rates. We con-
sider the two clients writing file data sequentially to the
server for fifteen seconds over NFS and CA-NFS. During
the write burst, both clients write data at the maximum
rate, close to 200MB/sec.

This experiment shows that running out of mem-
ory turns asynchronous file system operations into syn-
chronous that block all progress (Figure 10). Regular
NFS experiences synchronous waits for asynchronous
writes starting at 2 seconds. When the number of dirty
pages on the NFS clients reaches the flushing point,
clients start writing data, which overwhelms the disk sys-
tem and memory available to buffer writes at the server
fills. All subsequent writes block awaiting completion.
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CA-NFS detects congestion on the server memory and
I/O system through pricing and buffers writes in local
memory. This makes the effective write-buffering space
8GB, 2GB on each client and 4GB on the server, rather
than the 4GB of server memory that NFS uses. CA-NFS
does not experience synchronous waits until 8 seconds
and blocks fewer writes overall. This results in higher
overall throughput as well. CA-NFS writes 4.8GB worth
of data whereas regular NFS writes only 3.9GB, an im-
provement of 23%.

This scenario shows how the emergence of high-speed
networking makes holistic storage management critical.
For storage systems, we are on the verge of a new era. In-
finiband and 10Gbps Ethernet deliver data at such rapid
rates that storage systems that receive and process these
data cannot keep up. This gap between network band-
width and disk throughput creates a memory crisis for
storage servers. Many clients writing data in parallel will
create a data stream that a server cannot transfer to disk.
Flow control in the transport protocol will be irrelevant,
because the system is not network bound. The server
buffers data pending I/O completion and the buffered
data accumulate until memory is full. This results in a
cascading throughput crash over the entire system [11].

5 Future Directions
Although our focus is on the scheduling of asyn-

chronous operations, pricing synchronous operations
wisely can enable the system to manage nonstandard I/O
processes. Distributed file systems often have lower-
priority I/O tasks, such as data mining, indexing, backup,
etc. Capping the willingness to pay for synchronous op-
erations causes these low-priority tasks to halt automati-
cally when resources become congested. Clients can also
encode application priorities and differentiate between
critical and noncritical tasks by charging different pro-
cesses different prices.

The proposed framework does not address the issue
of fairness over time. Operation costs are proportional
to the current state of the system but independent of the
client that put the system into the state. For example, one
client could fill the server cache with dirty data, pushing
up prices for all others.

Finally, more complex resource management goals
can be realized by adding constraints to the auction
model. For example, resource reservations can be ac-
complished by differentially pricing the same resource
among clients. The goal is to insulate one client from
the consumption by non-reserving clients. To do so,
we need to limit the spending of non-reserving clients
and increase resource prices prior to exhaustion, creating
an artificial shortage. Also, proportional sharing arises
when clients are given salaries, i.e. a rate of consump-

tion or fixed amount of spending over some time interval.
This concept extends the ideas of flow control beyond
networks to cover all resources in the system. Pricing
certain resources and making all other resources free, al-
lows sharing to be targeted to specific resources only.

6 Related Work

Economic Models: Using economic models for re-
source management is not a novel approach [10].
Auction-based systems have been applied in a broad
range of distributed systems including clusters [9], com-
putational grids [26], parallel computers [40], and Inter-
net computing systems [27]. These systems are intended
for coarse-grained resource allocations.

Network Flow Control: Flow control schemes offer to
each client a proportional share of the network and, thus,
guarantee to a large extent fairness [31]. Many differ-
ent approaches exist in the literature, including TCP-
like window based protocols [14, 19], feedback schemes
[13], and optimization based methods [15].

The congestion pricing techniques upon which we
build have been used by Amir et al. [2] to manage a
single network resource. Kelly [23] was the first to de-
scribe pricing for flow and congestion control. However,
our approach and Amir’s are algorithmic, whereas Kelly
relies on economic theory.

Memory Management: Li et al [28] acknowledge the
asynchronous nature of writes and their dependence on
the client’s state. They propose a scheme where the stor-
age clients inform the storage servers about the types of
writes that they perform by passing write hints. These
write hints can then be used by the server to manage the
second-tier cache.

Carson and Setia [7] showed that for many workloads,
periodic updates from a write-back cache perform worse
than write-through caching. They suggest two alternate
disciplines: (1) giving reads non-preemptive priority and
(2) interval periodic writes in which each write gets its
own fixed period in the cache. Mogul [32] implements
an approximate interval periodic write-back policy that
staggers writes in time using a small (one second) timer.
Golding et al [16] delay write-back until the system
reaches an idle period. This reduces the delays seen by
reads by postponing competing writes until idle periods,
possibly with the help of nonvolatile memory, in order to
ensure consistency.

Storage controllers with nonvolatile memory employ
adaptive destaging policies that vary the rate of writing
[1, 43] or the destage threshold [33, 43], based on mem-
ory occupancy and filling and draining rates. In these
systems, cached writes are persistent, so they want to de-
lay destaging data as long as possible.
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Patterson et al [35] in TIP made cache residency and
prefetching decisions over the network following a cost
benefit analysis. Their work was based on models that
value memory pages for different type of data, such as
prefetched, buffered, or cached. Nelson et al [34] in
Sprite mentioned a weight used to trade off how to parti-
tion memory between pages for the file cache and for vir-
tual memory. Nelson’s principle was not applied to a dis-
tributed context. These approaches use heuristic methods
and do not look at the relative load across all clients.

Storage Scheduling and QoS: Storage quality of ser-
vice (QoS) attempts to optimize the system resources in-
dividually [17, 29] or conjunctively [22]. Fairness in the
QoS context is generalized to incorporate weights used
to introduce deliberate bias, depending for example on
different service-level agreements (SLAs) [45].

In general, quality of service (QoS) approaches are not
well-suited for multi-resource optimization. CA-NFS
complements QoS methods [8, 22, 30, 42] that employ
I/O throttling in order to limit resource congestion and
avoid throughput crashes. We do not offer the perfor-
mance guarantees to applications on which one might
build SLAs [29]. Instead, we follow a best-effort ap-
proach to improve application-perceived performance by
minimizing latency and maximizing throughput for syn-
chronous file system operations.

Provisioning: Provisioning systems use a single metric,
utility or cost in dollars, to unify heterogeneous resources
when deciding the initial configuration of a system under
a fixed utility budget. Recently, Strunk et al. [41] provide
a framework for provisioning based on detailed system
models and genetic algorithms to explore the configura-
tion space. This extends the previous work on provision-
ing of Andersonet al. [3].

While the unification of resources using utility is
superficially similar to pricing, provisioning solves a
very different problem. Provisioning determines how to
achieve the best availability, throughput, or IOPS under
a fixed budget as a static offline configuration problem.
CA-NFS examines dynamic pricing of operations under
changing workloads in static configurations.

7 Conclusions
We have shown the importance of using holistic per-

formance management for the adaptive scheduling of
lower-priority distributed file system requests based on
system congestion in order to reduce their interference
with foreground, synchronous requests. We also show
the virtue of adaptation based on application-perceived
performance, rather than server-centric metrics.

CA-NFS introduces a new dimension in resource man-
agement by implicitly managing and coordinating the us-

age of the file system resources among all clients. It
unifies fairness and priorities in a single framework that
assures that realizing optimization goals will benefit file
system users, not the file system servers.
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