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Abstract use of existing operating systems. For example, while

General-purpose operating systems provide inade€arly Web servers used a process per connection, recent
quate support for resource management in large-scaldervers [41, 49] use a single-process model, which re-
servers.  Applications lack sufficient control over duces context-switching costs.
scheduling and management of machine resources, While the work cited above has been fruitful, it has
which makes it difficult to enforce priority policies, and generally treated the operating system’s application pro-
to provide robust and controlled service. There is a fun-gramming interface (API), and therefore its core abstrac-
damental mismatch between the original design assumgions, as a constant. This has frustrated efforts to solve
tions underlying the resource management mechanisni§iornier problems of server scaling and effective con-
of current general-purpose operating systems, and th&ol over resource consumption. In particular, servers
behavior of modern server applications. In particular, thenay still be vulnerable to “denial of service” attacks, in
operating system’s notions of protection domain amd  Which a malicious client manages to consume all of the
source principatoincide in the process abstraction. This Server's resources. Also, service providers want to exert
coincidence prevents a process that manages large nur@plicit control over resource consumption policies, in
bers of network connections, for example, from properlyorder to provide differentiated quality of service (QoS) to
allocating system resources among those connections. clients [1] or to control resource usage by guest servers

We propose and evaluate a new operating system aii? @ Rent-A-Server host [45]. Existing APIs do not al-
straction called aesource containewhich separates the 10w applications to directly control resource consump-
notion of a protection domain from that of a resourcetion throughout the host system.
principal. Resource containers enable fine-grained re- The root of this problem is the model for resource
source management in server systems and allow the dé&anagement in current general-purpose operating sys-
velopment of robust servers, with simple and firm controltems. In these systems, scheduling and resource man-

over priority policies. agement primitives do not extend to the execution of sig-
_ nificant parts of kernel code. An application has no con-
1 Introduction trol over the consumption of many system resources that

Networked servers have become one of the most imthe kernel consumes on behalf of the application. The
portant applications of large computer systems. For mangXplicit resource management mechanisms that do exist
users, the perceived speed of computing is governed b§re tied to the assumption that a process is what consti-
server performance. We are especially interested in théltes an independent gctlv}tyProcessgs are the resource
performance of Web servers, since these must often scaRfincipals: those entities between which the resources of
to thousands or millions of users. the system are to be shared.

Operating systems researchers and system vendors Modern high-performance servers, however, often use
have devoted much attention to improving the perfor-a single process to perform many independent activities.
mance of Web servers. Improvements in operating sysEor example, a Web server may manage hundreds or
tem performance have come from reducing data move€ven thousands of simultaneous network connections, all
ment costs [2, 35, 43], developing better kernel algo-Withinthe same process. Much of the resource consump-
rithms for protocol control block (PCB) lookup [26] and tion associated with these connections occurs in kernel
file descriptor allocation [6], improving stability under  1we use the ternindependent activityo denote a unit of compu-
overload [15, 30], and improving server control mech-tation for which the application wishes to perform separate resource
anisms [5, 21]_ Application designers have also at_allqcation and accounting; for example, the processing associated with
tacked performance problems by making more efficienf: S"9'¢ HTTP request.




mode, making it impossible for the application to control HTTP Master HTTP Slave Processes

which connections are given priority Process
In this paper, we address resource management in
monolithic kernels. While microkernels and other novel

systems offer interesting alternative approaches to this
problem, monolithic kernels are still commercially sig-
nificant, especially for Internet server applications.

We describe a new model for fine-grained resource
management in monolithic kernels. This model is based
on a new operating system abstraction calledsaurce /E
container A resource container encompasses all system bond HTTP
resources that the server uses to perform a particular in- eending HTTP - F——1——TZ onnections
dependent activity, such as servicing a particular client
cor.m.ect'ion. All user and kernel [evel processing for. aNkjg. 1: A process-per connection HTTP server with a
activity is charged to the appropriate resource container, - <. process.
and scheduled at the priority of the container. This model
allows fairly arbitrary interrelationships between protec- model. The forking overhead quickly became a problem,
tion domains, threads and resource containers, and caand subsequent servers (such as the NCSA httpd [32]),
therefore support a wide range of resource managemenised a set of pre-forked processes. In this model, shown
scenarios. in Figure 1, a master process accepts newnections

We evaluate a prototype implementation of this model and passes them to the pre-forked worker processes.
as a modification of Digital UNIX, and show that it is ef-

fective in solving the problems we described. HTTP Server HTTP
Process Thread

R |
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Listen || Kernel

TCP/IP

2 Typical models for high-performance
servers

This section describes typical execution models for select) ,~ v
high-performance Internet server applications, and pro- \lk >\ Userlevel
vides the background for the discussion in following sec- g'gé?(’;t __ Kernel
tions. To be concrete, we focus on HTTP servers and |  —@8 ——
proxy servers, but most of the issues also apply to other /E
servers, such as malil, file, and directory servers. We as-
sume the use of a UNIX-like API; however, most of this Pending HTTP | ———= HTTP
discussion is valid for servers based on Windows NT. Connections Connections

An HTTP server receives requests from its clients via
TCP connections. (In HTTP/ll, several I’equests may be F|g 2: A sing'e_process event-driven server.
sent serially over one connection.) The server listens on
a well-known port for new connection requests. When a |\/|u|ti-process servers can suffer from context-
new connection request arrives, the system delivers thewitching and interprocess communication (IPC) over-
connection to the server application via tecept() heads [11, 38], so many recent servers use a single-
system call. The server then waits for the client to sendhrocess architecture. In the event-driven model (Fig-
a request for data on this connection, parses the requesiye 2), the server uses a single thread to manage all con-
and then returns the response on the same connectiofections at the server. (Event-driven servers designed
Web servers typically obtain the response from the locator multiprocessors use one thread per processor.) The
file system, while proxies obtain responses from otheserver uses theelect() (or poll() ) system call
servers; however, both kinds of server may use a cachg simultaneously wait for events on all connections it
to speed retrieval. Stevens [42] describes the basic opefs handling. Wherselect() delivers one or more
ation of HTTP servers in more detail. events, the server's main loop invokes handlers for each

The architecture of HTTP servers has undergone radready connection. Squid [41] and Zeus [49] are examples
ical changes. Early servers forked a new process to haryf event-driven servers.

dle each HTTP @nnection, following the classical UNIX Alternatively, in the single-process multi-threaded
2In this paper, we use the terpriority loosely to mean the cur- model (F|gure 3)' eacmnectlon 1S aSS|gned toaunique
rent scheduling precedence of a resource principal, as defined by tHéread. These can either be user-level threads or kernel
scheduling policy based on the principal’s scheduling parameters. Th¢hreads. The thread scheduler is responsible for time-
scheduling policy in use may not be priority based. sharing the CPU between the various server threads.

TCP/IP




HTTP Server HTTP Threads entity. The process is also the “chargeable” entity for the
Process allocation of resources, such as CPU time and memory.

A basic design premise of such process-centric sys-

tems is that a process is the unit that constitutes an in-

n A N dependent activity. This give the process abstraction a
Iy I I\ Userlevel dual function: it serves both as a protection domain and
Listen YRR Kernel as a resource principal. As protection domains, processes
Socket provide isolation between applications. As resource prin-
cipals, processes provide the operating system’s resource
/E TCP/P management subsystem with accountable entities, be-

/ HTTP tween which the system’s resources are shared.
'?gfﬁg%t%gp — & FConnections We argue that this equivalence between protection do-
mains and resource principals, however, is not always ap-
propriate. We will examine several scenarios in which
the natural boundaries of resource principals do not co-
Idle threads accept newoonections from the listening incide with either processes or threads.
socket. TheAltaVistafront-end uses this model [8]. 3.1 The distinction between scheduling entities and
So far, we have assumed the use of static documents i\ itiag
(or “resources”, in HTTP terms). HTTP also supports
requests for dynamic resources, for which responses are —
created on demand, perhaps based on client-provided ar- Application Threads
guments. For example, a query to a Web search engine S'“g'eA'C”tﬂ,'?tF;,endem
such asAltaVistaresolves to a dynamic resource. Aoolication P
‘Dynamic responses are typically created by auxiliary (P‘:gtg’gi'c‘)’: D‘;‘;f:iis
third-party programs, which run as separate processes to + Resource Principal)
provide fault isolation and modularity. To simplify the
construction of such auxiliary programs, standard inter-
faces (such as CGI [10] and FastCGI [16]pport com-
munication between Web servers and these programs.
The earliest interface, CGl, creates a new process for
each request to dynamic resource; the newer FastCGI
allows persistent CGI processes. Microsoft and Netscape
have defined library-based interfaces [29, 34] to allow - - —
the construction of third-party dynamic resource mod- Fig. 4: A classical application.
ules that reside in the main server process, if fault isola-
tion is not required; this minimizes overhead.
In summary, modern high-performance HTTP server

Fig. 3: A single-process multi-threaded server.

User level

Kernel

A classical application uses a single process to per-
Jorm an independent activity. For such applications, the
sired units of isolation and resource consumption are

are implemented as a small set of processes. One ma tical. and th bstracti i Fi 4
server process services requests for static documents; dif:entical, and the process abstraction suffices. Figure
hows a mostly user-mode application, using one process

namic responses are created either by library code withi - ) g
to perform a single independent activity.

the main server process, or, if fault isolation is desired, I i . lication. h h of
by auxiliary processes communicating via a standard in- " & Network-intensive application, however, much o

terface. This is ideal, in theory, because the overheadf’® Processing is done in the kernel. The process is the
of switching context between protection domains is in-correct unit for protection isolation, but it does not en-

curred only if absolutely necessary. However, structurC0MPass all of the associated resource consumption; in

ing a server as a small set of processes poses numero¥'St Operating systems, the kernel generally does not
important problems, as we show in the next section. control or properly account for resources consumed dur-
' ing the processing of network traffic. Most systems do

3 Shortcomings of current resource man- protocol processing in the context of software interrupts,
agement models whose execution is either charged to the unlucky process

. , : running at the time of the interrupt, or to no process at

An operating system's scheduling and memory aIIO'aII. Figure 5 shows the relationship between the applica-

cgtlop policies attempt to provide fawpess among resour(ﬁeon, process, resource principal and independent activity
principals, as well as graceful behavior of the system un- ntities for a network-intensive application

der various load condlthng. Most operating systems treat Some applications are split into multiple protection
a process, or a thread within a process, as the schedulable
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Fig. 5: A classical network-intensive application. Fig. 6: A multi-process application.

domains (for example, to provide fault isolation betweenfor example, a CGI process.

different components of the application). Such applica- In some operating systems, e.g., Solaris, threads as-
tions may still perform a single independent activity, sosume some of the role of a resource principal. In these
the desired unit of protection (the process) is differentsystems, CPU usage is charged to individual threads
from the desired unit of resource management (all theather than to their parent processes. This allows threads
processes of the application). A mostly user-mode multito be scheduled either independently, or based on the
process application trying to perform a single indepen-combined CPU usage of the parent process’s threads.

dent activity is shown in Figure 6. The process is still the resource principal for the alloca-
tion of memory and other kernel resources, such as sock-
Application Process ets and protocol buffers.
ﬂp,;‘gggﬂﬁge%?mg'gal) Independent We stress thatitis not sufficient to simply treat threads
as the resource principals. For example, the processing
Application for a particular connection (activity) may involve mul-
Threads tiple threads, not always in the same protection domain

(process). Or, a single thread may be multiplexed be-
User level tween several connections.

Kermel 3.2 Integrating network processing with resource

management
§ \ N\ Application domain As described above, traditional systems provide little
® ¥ Extentlisbmtq the control over the kernel resources consumed by network-
HTTP Connections  foree Dt 1> intensive applications. This can lead to inaccurate ac-

counting, and therefore inaccurate scheduling. Also,
much of the network processing is done as the result of

In vet another scenario. an application consists of G{nterrupt arrivals, and interrupts have strictly higher pri-
Y ' PP .ority than any user-level code; this can lead to starvation

zg‘glesféﬁ(;ess’”gaeggorgnl:g% ;n:ilrtllplls '?gzgﬁgg%rgnfitr;v't'or livelock [15, 30]. These issues are particularly impor-
' PP gep ' "Tant for large-scale Internet servers.

redu'ce g:ontext-swnchlng a'f‘d IPC overheads. For the;e Lazy Receiver Processing (LRP) [15] partially solves
applications, the correct unit of resource management iShis problem, by more closely following the process-

smaller than a process: it is the set of all resources beingentric model. In LRP, network processing is integrated

EZﬁgﬁéi\t/?te allzflIS;’::IC;nstrloo\?vzcoégpzlilﬁhejain?ée :zenpe;ginto the system’s global resource management. Re-
Y. Tl9 ! Pe, 9€S0urces spentin processing network traffic are associated
process multi-threaded Internet server.

. . with and charged to the application process that caused
Real-world single-process Internet servers typlcallythe traffic. Incoming network traffic is processed at the

combine the last two s,cenanos: a single process usualll(cheduling priority of the process that received the traf-
manages all of server’'s connections, but additional pros

cesses are employed when modularity or fault isolationﬁc’ and excess traffic is discarded early. LRP systems
ploy Y exhibit increased fairness and stable overload behavior.

is necessary (see section 2). In this case, the desired unit LRP extends a process-centered resource principal

of resource management includes part of 'ghe aCt.'V.'ty 0fEnto the kernel, leading to the situation shown in Fig-
the main server process, and also the entire activity of,

Fig. 7: A single-process multi-threaded server.
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4.1 Resource containers

A resource container is an abstract operating system
entity that logically contains all the system resources be-
ing used by an application to achieve a particular inde-
pendent activity. For a given HTTP connection managed
by a Web server, for example, these resources include

User level CPU time devoted to the connection, and kernel objects

Kernel such as sockets, protocol control blocks, and network
buffers used by the connection.

Containers have attributes; these are used to provide
scheduling parameters, resource limits, and network QoS
values. A practical implementation would require an ac-
cess control model for containers and their attributes;
Fig. 8: A network-intensive application in a LRP system. space does not permit a discussion of this issue.

The kernel carefully accounts for the system re-
ure 8. However, LRP maintains the equivalence betweesources, such as CPU time and memory, consumed by
resource principal and process; it simply makes it morea resource container. The system scheduler can access
accurate. LRP, by itself, does not solve all of the prob-this usage information and use it to control how it sched-
lems that arise when the process is not the correct unit afiles threads associated with the container; we discuss
resource management. scheduling in detail in Section 4.3. The application pro-
3.3 Consequences of misidentified resource princi- cess can also access this usage info.rmation, anql might

' use it, for example, to adjust the container’'s numeric pri-

pals
orit
Our fundamental concern is to allow an application to g

. i X urrent operating systems, as discussed in Section 3,
explicitly allocate resource consumption among the '”deimplicitly treat processes as the resource principals,

pendent activities thatit manages. This isinfeasibleif the, ;1o ignoring many of the kernel resources they con-

operating system’s view of activity differs from that of g, e By introducing an explicit abstraction for resource
the application, or if the system fails to account forlarge containers, we make a clear distinction between protec-
chunks of consumption. Yet it is crucial for a server 10 5y domains and resource principals, and we provide for
supportaccurately differentiated QoS among its clients, tjjer accounting of kernel resource consumption. This
or to prevent overload from denial-of-service attacks, Orprovides the flexibility mcessary for servers to handle

to give its existing connections priority over new ones. complex resource management problems.
With a single-process server, for example, traditional

operating systems see only one resource principal — th#.2 Containers, processes, and threads
process. This prevents the application from controlling In classical systems, there is a fixed association be-
consumption of kernel CPU time (and other kernel re-tween threads and resource principals (which are either
sources) by various network connectiamishin this re-  the threads themselves, or the processes containing the
source principal. The application cannot control the or-threads). The resource consumption of a thread is charged
der in which the kernel delivers its network events; nor,to the associated resource principal, and this information
in most systems, can it control whether it receives netis used by the system when scheduling threads.
work events before other processes do. With resource containers, the binding between a
It is this lack of a carefully defined concept of re- thread and a resource principal is dynamic, and un-
source principal, independent from other abstractiongler the explicit control of the application; we call this
such as process or thread, that precludes the applicatidhe thread'sresource binding The kernel charges the
control we desire. thread’s resource consumption to this container. Mul-
tiple threads, perhaps from multiple processes, may si-
4 A new model for resource management  multaneously have their resource bindings set to a given
To address the problems of inadequate control ovecontainer.
resource consumption, we propose a new model for fine- A thread starts with a default resource container bind-
grained resource management in monolithic kernels. Wéng (inherited from its creator). The application can re-
introduce a new abstraction, calledesource container  bind the thread to another container as the need arises.
for the operating system’s resource principal. For example, a thread time-multiplexed between several
Sections 4.1 through 4.7 describe the resource coneonnections changes its resource binding as it switches
tainer model in detail. Section 4.8 then discusses its us&éom handling one connection to another, to ensure cor-
in Internet servers. rect accounting of resource consumption.

Application’s Resource
Principal extends into
the kernel.




4.3 Resource containers and CPU scheduling to include only the container to which it currently has a
CPU schedulers make their decisions using informafesource binding.

tion about bpth the desired allocation of CPU time, and, 4 Other resources

the recent history of actual usage. For example, the tra-

qI|t|onaI 'UN.IX ;chedulgr USES NUMETIC Process priofl-g h as physical memory, disk bandwidth and socket
ties (which indicate desired behavior) modified by time- :

; uffers can be conveniently controlled by resource con-
decayed measures of recent CPU usage; lottery schedyl-. . g
) . . ainers. Resource usage is charged to the correct activity,
ing [48] uses lottery tickets to represent the allocations.

In systems that support threads, the allocation for aand the various resource allocation algorithms can bal-

thread may be with respect only to the other threads of 1c€ consumption between principals depending on spe-
cific policy goals.

the same process (*process contention scope”), or it may We stress here that resource containers are just a

be with respect to all ?f the threads in the system ( syS'mechanism, and can be used in conjunction with a large
tem contention scope”).

: L ._ variety of resource management policies. The container
Resource containers allow an application to associate

scheduling information with an activity, rather than with Mmechanism causes resource consumption to be charged

: ) to the correct principal, but does not change what these
athread or process. This allows the system’s scheduler t -
. . - .. Charges are. Unfortunately, policies currently deployed
provide resources directly to an activity, no matter how it.
. in most general-purpose systems are able to control
might be mapped onto threads.

The container mechanism supports a large variety OFonsumpnon of resources other than CPU cycles only

X : ; R in a very coarse manner, which is typically based on
scheduling models, including numeric priorities, guaran-_, . "~ ~. X
e . static limits on total consumption. The development of
teed CPU shares, or CPU usage limits. The allocation - .
. . . more powerful policies to control the consumption of
attributes appropriate to the scheduling model are asso- :
) ; L such resources has been the focus of complimentary re-
ciated with each resource container in the system. In our

) . . search in application-specific paging [27, 20, 24] and file
prototype, we implemented a multi-level scheduling pol- . o - ror” sk handwidth allocation [46, 47], and TCP
icy that supports both fixed-share scheduling and regula{)uffer man(;l ement [39] D
time-shared scheduling. 9 '

A thread is normally scheduled according to the4.5 The resource container hierarchy

SChedU“ng attributes of the container to which it is Resource containers form a hierarchy_ The resource
bound. However, if a thread is multiplexed betweenysage of a child container is constrained by the schedul-
several containers, it may cost too much to reschedulghg parameters of its parent container. For example, if
it (recompute its numeric priority and decide whether g parent container is guaranteed at least 70% of the sys-
to preempt it) every time its resource binding changestem's resources, then it and its child containers are col-
Also, with a feedback-based scheduler, using only theectively guaranteed 70% of the system’s resources.
current container’s resource usage to calculate a multi- Hierarchical resource containers make it possible to
plexed thread’s numeric priority may not accurately re-control the resource consumption of an entire subsys-
flectits recent usage. Instead, the threizaliid be sched-  tem without constraining (or even understanding) how
uled based on theombinedesource allocations and us- the subsystem allocates and schedules resources among
age of all the containers it is currently handling. its various independent activities. For example, a system
To support this, our model defines a binding, calledadministrator may wish to restrict the total resource us-
a scheduler bindingbetween each thread and the setage of a Web server by creating a parent container for all
of containers over which it is currently multiplexed. A the server's resource containers. The Web server can cre-
priority-based scheduler, for example, would construct aate an arbitary number of child containers to manage and
thread’s scheduling priority from the combined numeric distribute the resources allocated to its parent container
priorities of the resource containers in its scheduler bindamong its various independent activities, e.g. different
ing, possibly taking into account thegent resource con-  client requests.
sumption of this set of containers. The hierarchical structure of resource containers
A thread's scheduler binding is set implicitly by the makes it easy to implement fixed-share scheduling
operating system, based on the system’s observation @fasses, and to enforce a rich set of priority policies.
the thread’s resource blndlngs A thread that SerVice@ur prototype imp|ementa’[ion supports a hierarchy of

Only one container will therefore have a scheduler bindTesource principa's] but on'y Supports resource bindings
ing that includes jUSt this container. The kernel prune%etween threads and leaf containers.

the scheduler binding set of a container, periodically re- . i

moving resource containers that the thread has not rgt-6  Operations on resource containers

cently had a resource binding to. In addition, an appli- The resource container mechanism includes these op-
cation can explicitly reset a thread’s scheduler bindinggrations on containers:

Like CPU cycles, the use of other system resources



Creating a new container: A process can create a new behalf of this descriptor is charged to the container.

resource container at any time (and may have mul- A descriptor may be bound to at most one con-
tiple containers available for its use). A default tainer, but many descriptors may be bound to one
resource container is created for a new process as container. (Our prototype currently supports bind-
part of afork() , and the first thread of the new ing only sockets, not disk files.)

process is bound to this container. Containers are

. o : ; 4.7 Kernel execution model
visible to the application as file descriptors (and so , , )
are inherited by a new process aftéoek() ). Rgsource containers are effecpve only if ke'rnel pro-
cessing on behalf of a process is performed in the re-

Set a container’s parent: A process can change a con- source context of the appropriate container. As discussed

tainer's parent container (or set it to “no parent”). in Section 3, most current systems do protocol process-
dng in the context of a software interrupt, and may fail to
charge the costs to the proper resource principal.

LRP, as discussed in Section 3.2, addresses this prob-
lem by associating arriving packets with the receiving
process as early as possible, which allows the kernel to
charge the cost of received-packet processing to the cor-
rect process. We extend the LRP approach, by associat-
Sharing containers between processedkesource con- ing a received packet with the correct resource container,

tainers can be passed between processes, analmstead of with a process. If the kernel uses threads for
gous to the transfer of descriptors between UNIX network processing, the thread handling a network event
processes (the sending process retains access to tben set its resource binding to the resource container; a
container). When a process receives a reference tnon-threaded kernel might use a more ad-hoc mechanism
a resource container, it can use this container as o perform this accounting.

resource context for its own threads. This allows When there is pending protocol processing for multi-
an application to move or share a computation beple containers, the priority (or other scheduling param-
tween multiple protection domains, regardless ofeters) of these containers determines the order in which
the container inheritance sequence. they are serviced by the kernel’'s network implementa-

. . S tion.
Container attributes: An application can set and read

the attributes of a container. Attributes include 4.8 The use of resource containers
scheduling parameters, memory allocation limits, We now describe how a server application can use re-
and network QoS values. source containers to provide robust and controlled behav-

Container usage information: An application can ob- '™ We consider several example server designs.
tain the resource usage information charged to a First, consider a single-process multi-threaded Web

particular container. This allows a thread that server, that uses a dedicated kernel thread to handle each

serves multiple containers to timeshare its execu-HTTP connection. The server creates a new resource

tion between these containers based on its particu(-:om"’llner for each newoanection, and assigns one of a

lar scheduling policy. poql of free threads to, service the connection. The apph-

cation sets the thread’s resource binding to the container.

These operations control the relationship between cor’no-‘ny subsequent kernel' prQCessing for this gonnecti.on .is

. L charged to the connection’s resource container. This sit-

tainers, threads, sockets, and files: L9 P

uation is shown in Figure 9.

Binding a thread to a container: A process can set the If a particular connection (for example, a long file
resource binding of a thread to a container at anytransfer) consumes a lot of system resources, this con-
time. Subsequent resource usage by the threagumption is charged to the resource container. As a re-
is charged to this resource container. A processsult, the scheduling priority of the associated thread will
can also obtain the current resource binding of adecay, leading to the preferential scheduling of threads
thread. handling other connections.

Next, consider an event-driven server, on a uniproces-
sor, using a single kernel thread to handle all of its con-
nections. Again, the server creates a new resource con-
tainer for each newannection. When the server does
Binding a socket or file to a container: A process can processing for a given connection, it sets the thread’s re-

bind the descriptor for a socket or file to a con- source binding to that container. The operating system
tainer; subsequent kernel resource consumption oadds each such container to the thread’s scheduler bind-

Container release: Processes release their references t
containers usinglose() ; once there are no such
descriptors, and no threads with resource bindings
to the container, it is destroyed. If the parent P of
a container C is destroyed, C’s parent is set to “no
parent.”

Reset the scheduler binding: An application can reset
athread’s scheduler binding to include only its cur-
rent resource binding.
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Fig. 9: Containers in a multi-threaded server. Fig. 10: Containers in an event-driven server.
ing. Figure 10 depicts this situation. with a listening socket to set the priority of accepting

If a connection consumes a lot of resources, this usagaew connections relative to servicing the existing ones.
is charged to the corresponding container. The servein particular, to defend against a denial-of-service at-
application can obtain this usage information, and usdack from a specific set of clients, the server can cre-
it both to adjust the container’'s numeric priority, and to ate a socket whose filter matches this set, and then bind
control how it subsequently expends its resources for thé to a resource container with a numeric priority of
connection. zero. (This requires the network infrastructure to reject

Both kinds of servers, when handling a request forspoofed source addresses, a problem currently being ad-
a dynamic (CGI) document, pass the connection’s condressed [33].)
tainer to the CGI process. This may either be done by A server administrator may wish to restrict the total
inheritance, for traditional CGI using a child process, orCPU consumption of certain classes of requests, such as
explicitly, when persistent CGl server processes are usedCGl requests, requests from certain hosts, or requests for
(If the dynamic processing is done in a module within certain resources. The application can do this by creat-
the server process itself, the application simply binds itdng a container for each such classttisg its attributes
thread to the appropriate container.) appropriately (e.g., limiting the total CPU usage of the

A server may wish to assign different priorities to re- class), and then creating the resource container for each
qguests from different sources, even for processing thaindividual request as the child of the corresponding class-
occurs in the kernel before the application sees the conspecific container.
nection. This could be used to defend against some Because resource containers enable preciseuatc
denial-of-service attacks, and could also be used by aing for the costs of an activity, they may be useful to
ISP to provide an enhanced class of service to users whadministrators simply for sending accuraiéishto cus-
have paid a premium. tomers, and for use in capacity planning.

To support this prioritization, we define a new  Resource containers are in some ways similar to many
sockaddr namespace that includes a “filter” specify- resource management mechanisms that have been devel-
ing a set of foreign addresses, in addition to the usuabped in the context of multimedia and real-time operat-
Internet address and port number. Filters are specifiethg systems [17, 19, 22, 28, 31]. Resource containers are
as tuples consisting of a template address and a CIDRlistinguished from these other mechanism by their gen-
network mask [36]. The application uses thiad() erality, and their direct applicability to existing general
system call to bind multiple server socketach withthe purpose operating systems. See Section 6 for more dis-
same<local-address, local-port tuple but with a dif-  cussion of this related work.
ferent<template-address, CIDR-masKilter. The sys-
tem uses these filters to assign requests from a particul® Performance
client, or set of clients, to the socket with a matching fil-  We performed several experiments to evaluate
ter. By associating a different resource container withwhether resource containers are an effective way for a
each socket, the server application can assign differeritVeb server to control resource consumption, and to pro-
priorities to different sets of clients, prior to listening for vide robust and controlled service.
and accepting newonnections on these sockets. (One5 1 Protot imol tati
might also want to be able to specify complement filters,™ rototype imp emen ation o
to accept onnectiongxceptfrom certain clients.) Our prototype was implemented as modifications to

The server can use the resource container associatdg® Digital UNIX 4.0D kernel. We changed the CPU



scheduler, the resource management subsystem, and tbennection-per-requestHTTP, and 9487 requests/sec. us-

network subsystem to understand resource containers. ing persistent-connection HTTP. These rates saturated the
We modified Digital UNIX's CPU scheduler sched- CPU, corresponding to per-request CPU costs 0f:338

uler to treat resource containers as its resource princiand 10%s, respectively.

pals. A resource container can obtain a fixed-share QUAE 4 st of new primitives

antee from the scheduler (within the CPU usage restric=" o )

tions of its parent container), or can choose to time-share Ve measured the costs of primitive operations on re-

the CPU resources granted to its parent container with itSCUrce containers. For each new primitive, a user-level

sibling containers. Fixed-share guarantees are ensurdjogram invoked the system call 10,000 times, measured

for timescales that are in the order of tens of seconds of'€ total elapsed time, and divided to obtain a mean

larger. Containers with fixed-share guarantees can have/a'm-cache” cost. The results, in Table 1, show that

child containers; time-share containers cannot have chil@!l Such operations have costs much smaller than that of

dren. In our prototype, threads can only be bound to leaf® single HTTP transaction. This implies that the use of
level containers. resource containers should add negligible overhead.

We changed the TCP/IP subsystem to implement LRP-

style processing, treating resource containers as resource| Operation : | Cost iis) |
principals. A per-process kernel thread is used to per- | Créate resource container 2.36
form processing of network packets in priority order of | destroy resource container 2.10

their containers. To ensure correct accounting, thisthread | change thread's resource binding| 1.04
sets its resource binding appropriately while processing | ©btain container resource usage | 2.04

each packet. set/get container attributes 2.10
Implementing the container abstraction added 820 | move container between processes3.15
lines of new code to the Digital UNIX kernel. About obtain handle for existing container1.90

1730 lines of kernel code were changed and 4820 lines
of code were added to integrate containers as the sys-
tem’s resource principals, and to implement LRP-style
network processing. Of these 6550 lines (1730 + 4820
of integration code, 2342 lines (142 changed, 2200 new,
concerned the CPU scheduler, 2136 lines (205 change
1931 new) were in the network subsystem, and the re
mainder were spread across the rest of the kernel.
Code changes were small for all the server applica5.5 Prioritized handling of clients

tions that we considered, though they were sometimes Our next experiment tested the effectiveness of re-
fairly pervasive throughout the application. source containers in enabling prioritized handling of
clients by a Web server. We consider a scenario where a

5.2 Experimental environment ) - . .
. - server's administrator wants to differentiate between two
In all experiments, the server was a Digital Personal

; classes of clients (for example, based on payment tariffs).
\[/)Vorksrgatl%réligolau (|5(2)OM_rf1; 3116;]1, Sgﬁgﬁhe’ |8:I3<B . Our experiment used an increasing number of low-
f -gac eh, SPECe'VGQ _uTz'e SCJE ef, RAM EVEL S UNi- hriority clients to saturate a server, while a single high-
\ed cache, !nt o= ! & 0 ), running priority client made requests of the server. All requests
our modified version of Digital UNIX 4.0D. The client

hi 166MUz Penti Pro PG ith 64MBwere for the same (static) 1KB file, with one request per
machines were 166MHz Pentium Pro PCs, with connection. We measured the response time perceived
of memory, and running FreeBSD 2.2.5. All experiments ; P
) X by the high-priority client.
ran over a private 100Mbps switched Fast Ethernet.
Our server software was a single-process event-drive
program derived from thttpd [44]. We started from a

modified version of thttpd with numerous performance

Table 1: Cost of resource container primitives.

We verified this by measuring the throughput of our
erver running on the modified kernel. In this test, the
eb server process created a new resource container for
ach HTTP request. The thughput of the system re-
mained effectively unchanged.

Figure 11 shows the results. The y-axis shows the re-
Yponse time seen by the high-priority clieiti,{,,) as a
function of the number of concurrent low-priority clients.
The dotted curve shows how};,,) varies when using
fhe unmodified kernel. The application attempted to give
preference to requests from the high-priority client by
5.3 Baseline throughput handling events on its socket, returneddstect() ,

We measured the throughput of our HTTP server run_befor.e evgnts on othgr sockets. The figures shows that,
ning on the unmodified kernel. When handling requestgiespite this preferential treatmerifi,{, ) increases sharply
for small files (1 KByte) that were in the filesystem cache,Whe” there are enough low-priority clients to saturate the

our server achieved a rate of 2954 requests/sec. usirRfVer- This happens because most of request processing
occurs inside the kernel, and so is uncontrolled.

containers. Our clients used the S-Client software [4].
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problemis that each call gelect() = must specify, via
a bitmap, the complete set of descriptors that the appli-
cation is interested in. The kernel must check the status
of each descriptor in this set. This causes overhead linear
in the number of descriptors handled by the application.
The solid curve, labeled “With containers/new event
API”, shows the variation iff;,; 4, when the server uses
a new scalable event API, described in [5]. In this
case/l;4, increases very slightly as the number of low-
priority clients increases. The remaining slight increase
in T} 45 reflects the cost of packet-arrival interrupts from
low-priority connections. The kernel must handle these
interrupts and invoke a packet filter to determine the pri-
ority of the packet.

5.6 Controlling resource usage of CGI processing
Section 2 described how requests for dynamic re-

sources are typically handled by processes other than

In a system that time-

the effect of using resource containers. Here, the serveshares the CPU equally between processes, these back-
uses two containers, with different numeric priorities, as-end (CGI) processes may gain an excessive share of the
signing the high-priority requests to one container, andCPU, which reduces the throughput for static documents.
the low-priority requests to another. The dashed curveWe constructed an experiment to show how a server can
labeled “With containersklect() ", shows the effect use resource containers to explicitly control the CPU
of resource containers with the application still usingcosts of CGI processes.

select() to wait for events. 7}, increases much We measured the throughput of our Web server (for
less than in the original system. Resource containers akached, 1 KB static documents) while increasing the num-
low the application to control resource consumption atber of concurrent requests for a dynamic (CGl) resource.
almost all levels of the system. For example, TCP/IPEach CGI request process consumed about 2 seconds of
processing, which is performed in FIFO order in classi-CPU time. These results are shown in the curve labeled
cal systems, is now performed in priority order. “Unmodified System” in Figure 12.

The remaining increase in response time is due to some As the number of concurrent CGI requests increases,
known scalability problems of thselect() system the CPU is shared among a larger set of processes, and
call [5, 6]. These problems can be alleviated by a smarthe main Web server’s share decreases; this sharply re-
implementation described in [6], but some inefficiency duces the throughput for static documents. For exam-
is inherent to the semantics of teelect() ~ APIl. The  ple, with only 4 concurrent CGI requests, the Web server



itself gets only 40% of the CPU, and the static-requesto” 300
throughput drops to 44% of its maximum. ﬁ

The main server process actually gets slightly more of{% 2500 L
the CPU than does each CGl process, because of misa& \
counting for network processing. This is shown in Fig- g 2000 ;LK Hi
ure 13, which plots the total CPU time used by all CGIl = |
processes. 3 [\

In Figures 12 and 13, the curves labeled “LRP Sys-&
tem” show the performance of an LRP version of Digital 5
UNIX. LRP fixes the misaccounting, so the main serveri=

|_
process shares the CPU equally with other processea.

1500 - -

X
1000\ With Resource Containers—+—
Unmodified System--x--

\\
. . = 500} 4 —
This further reduces the throughput for static documentsi— X
To measure how well resource containers al!qw fine-T 0 R R
grained control over CGI processes, we modified our 10 20 30 40 50 60 70
server so that each container created for a CGI request ;
was the child of a specific “CGl-parent” container. This SYN-Flood Rate (1000s of SYNs/sec)

CGl-parent container was restricted to a maximum frac- ' ) )

tion of the CPU (recall that this restriction includes its F19- 14: Server behavior under SYN-flooding attack.
children). In Figures 12 and 13, the curves labeled “RC

System 1” show the performance when the CGl-parent.8 |solation of virtual servers

container was limited to 30% of the CPU; the curves 1a-  gection 5.6 shows how resource containers allow “re-

belgd “RC System 2" correspond toa limit of 10%. source sand-boxes” to be put around CGI processes. This
Figure 13 shows that the CPU limits are enforced al-pnr0ach can be used in other applications, such as con-

most exactly. Figure 12 shows that this effectively formsyyq|jing the total resource usage of guest servers in a Rent-
a “resource sand-box” around the CGI processes, and Sg_ggrver [45] environment.

the throughput of static requests remains almost constant |, current operating systems, each guest server, which

as the number of concurrent CGI requests increases frorpp“ght consist of many processes, can appear to the sys-

ltos. . i tem as numerous resource principals. The number may
Note that the Web server could additionally imposeyary gynamically, and has little relation to how much

relative priorities among the CGI requests, by adjustingcpy time the server's administrator wishes to allow each
the resource limits on each corpesding container. guest server.

5.7 Immunity against SYN-flooding We performgd an informaI. experiment to show how
We constructed an experiment to determine if resourcE€SOUTCe containers solve this problem. We created 3
containers, combined with the filtering mechanism de-ICP-1€vel containers and restricted their CPU consump-
scribed in Section 4.7, allow a server to protect agains:{'On to fixed CPU .shares. Each container was then used
denial-of-service attacks using "SYN-flooding.” In this &S the root container for a guest server. Subsequently,
experiment, a set of “malicious” clients sent bogus SYNthree sets of clients plaped varying request loads on these
packets to the server's HTTP port, at a high rate. We the/$€Vers: the requests included CGI resources. We ob-
measured the server's throughput for requests from weliServed that the total CPU time consumed by each guest
behaved clients (for a cached, 1 KB static document). server exactly matc_hed |t_s aIIocatl'on. More_zover, because
Figure 14 shows that the throughput of the unmodifiedthe resource container hlerarghy is recursive, each guest
system falls drastically as the SYN-flood rate increasesSeTVe" can itself control how its allocated resources are
and is effectively zero at about 10,000 SYNs/sec. W €-divided among competing connections.
modified the kernel to notify the application when it 6 Related Work
drops a SYN (due to queue overflow). We also modi- i
fied our server to isolate the misbehaving client(s) to a, Many mechanisms have been developed to support
low-priority listen-socket, using the filter mechanism de- fine-grained research management. Here, we contrast
scribed in Section 4.8. With these modifications, event'€S€ With our resource container abstraction.
at 70,000 SYNs/sec., the useful throughput remains at 1ne Scout operating system [31] is based ontath
about 73% of maximum. This slight degradation resultsaPStraction, representing an 1/0 channel (such as a TCP
from the interrupt overhead of the SYN flood. Note that Connection) through a multi-layered system. A path en-
LRP, in contrast to our system, cannot protect againsgapsulates the specific att.rlbutes of an I/O channel, and
such SYN floods: it cannot filter traffic to a given port allows access Fo these attrllbutes across layers. Paths have
based on the source address. been used to implement fine-grained resource manage-
ment in network appliances, including Web server ap-



pliances [40]. Resource containers, in contrast to pathgarocess Web server, where the natural extent of a re-
allow the application to treat the resources consumed bgource principal is more complicated.
several 1/0 channels as being part of the same activity. A number of mainframe operating systems [14, 37,
Moreover, the composition of a path is limited by the 12] provide resource management at a granularity other
router graph specified at kernel-build time; resource conthan a process. These systems allow a group of processes
tainers encompass arbitrary sets of resources at run-timée.g. all processes owned by a given user) to be treated as
Mercer et al. [28] introduced theserveabstractionin  a single resource principal; in this regard, they are similar
the context of Real-Time Mach. Reserves insulate proto resource containers. Unlike our work, however, there
grams from the timing and execution characteristics ofare no provisions for resource accounting at a granular-
other programs. An application can reserve system reity smaller than a process. These systems account and
sources, and the system ensures that these resources Miithit the resources consumed by a process group over
be available, when needed, to threads associated with theng periods of time (on the order of hundreds of min-
reserve. Like a resource container, a reserve provides ates or longer). Resource containers, on the other hand,
thread with a resource context, may be passed betweearan support policies for fine-grained, short-term resource
protection domains, and may be bound to one thread oscheduling, including real-time policies.
multiple threads. Thus, reserves can be used to charge The resource container hierarchy is similar to other
to one resource principal the resources consumed by amerarchical structures described in the scheduling liter-
activity distributed across protection domains. Unlike re-ature [18, 48]. These hierarchical scheduling algorithms
source containers, reserves neither account for, nor corare complementary to resource containers, and could be
trol, kernel-mode processing on behalf of an activity (RTused to schedule threads according to the resource con-
Mach is a microkernel system, so network processing igainer hierarchy.
done in user mode [25]). Moreover, resources containers The exokernel approach [23] gives application soft-
can be structured hierarchically and can manage systemvare as much control as possible over raw system re-
resources other than CPU. sources. Functions implemented by traditional operating
Theactivity abstraction in Rialto [22] is similar to re- systems are instead provided in user-mode libraries. In
source containers. Like a resource container, an activitia network server built using an exokernel, the applica-
can account for resource consumption both across praion controls essentially all of the protocol stack, includ-
tection domains and at a granularity smaller than a proing the device drivers; the storage system is similarly ex-
tection domain. However, Rialto is an experimental real-posed. The application can therefore directly control the
time object-oriented operating system and was designecesource consumption for all of its network and file I/O.
from scratch for resource accountability. In contrast tolt seems feasible to implement the resource container
Scout, RT Mach and Rialto, our work aimed at devel-abstraction as a feature of an exokernel library operat-
oping a resource accounting mechanism for traditionaling system, since the exokernel delegates most resource
UNIX systems with minimal disruption to existing APIs management to user code.
and implementations. Almeida et al. [1] attempted to implement QoS sup-
The migrating threads of Mach [17] and Al- port in a modified Apache [3] Web server, running on
phaOSs [13], and thshuttlesof Spring [19] allow the re-  a general-purpose monolithic operating system. Apache
source consumption of a thread (or a shuttle) performingises a process for eachrmection, and so they mapped
a particular independent activity to be charged to the corQoS requirements onto numeric process priorities, ex-
rect resource management entity, even when the thregaerimenting both with a fully user-level implementation,
(or shuttle) moves across protection domains. Howeverand with a slightly modified Linux kernel scheduler. They
these systems do not separate the concepts of thread amgre able to provide differentiated HTTP service to dif-
resource principal, and so cannot correctly handle appliferent QoS classes. However, the effectiveness of this
cations in which a single thread is associated with multechnique was limited by their inability to control kernel-
tiple independent activities, such as an event-driven Welmmode resource consumption, or to differentiate between
server. Mach and Spring are also microkernel systemsgxisting connections and new connection requests. Also,
and so do not raise the issue of accounting for kernelthis approach does not extend to event-driven servers.
mode network processing. Several researchers have studied the problem of con-
Thereservation domainf/] of Eclipse and the&oft-  trolling kernel-mode network processing. Mogul and Ra-
ware Performance Unitsf Verghese et al. [46] allow the makrishnan [30] improved the overload behavior of a
resource consumption of a group of processes to be corbusy system by converting interrupt-driven processing
sidered together for the purpose of scheduling. Thesénto explicitly-scheduled processing. Lazgéiver Pro-
abstractions allow a resource principal to encompass aessing (LRP) [15] extended this by associating received
number of protection domains; unlike resource containpackets as early as possible with the receiving process,
ers, neither abstraction addresses scenarios, such a singlad then performed their subsequent processing based



on that process’s scheduling priority. Resource contain- The Eclipse Operating System: Providing Quality
ers generalize this idea, by separating the concept of a  of Service via Reservation Domains. Pnoc. 1998
resource principal from that of a protection domain. USENIX Technical Conferencéune 1998.

7 Conclusion [8] M. Burrows. Personal communication, Mar. 1998.

We introduced the resource container, an operating[®] P- Cao. Application Controlled File Caching and
system abstraction to explicitly identify a resource prin- Prefetching PhD thesis, Princeton University, Jan.
cipal. Resource containers allow explicit and fine-grained 1996.
control over resource consumption at all levels in the sys{10] The Common Gateway Interface. htthoohoo.n-
tem. Performance evaluations demonstrate that resource  csa.uiuc.edu/cgil.
containers allow a Web server to closely control the rel-[ll] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
ative priority of connections and the combined CPU us- M. F. Schwartz, and K. J. Worrell. A Hierarchi-
age of various classes of requests. Together withanew | |nternet Object Cache. Froc. 1996 USENIX
sockaddr namespace, resource containers provide im- Technical Conferencelan. 1996,
munity against certain types of denial of service attacks.

Our experience suggests that containers can be used k2] D- Chess and G. Waldbaum. The VM/370 re-
address a large variety of resource management scenar-  Source limiter. IBM Systems Journal0(4):424~
ios beyond servers; for instance, we expect that container 437,1981.

hierarchies are effective in controlling resource usage iff13] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An
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Distributed Kernel. InNorkshop on Micro-Kernels
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