
Spring 2006 CSC 2227S Review Exercise #1

— or —

Swapping in the state from undergraduate OS∗

These questions are meant to quickly and thoroughly restore your existing
understanding of undergraduate OS course material. It may require review on
your part, which is an appropriate action for the first week of class.

Although this is not to be handed in, it is strongly recommended that you
make a serious attempt to answer all of these questions and check your own
understanding against the sample solutions which will be posted next week.

1. Definitions. Define the following terms:

(a) Internal and external fragmentation. Also, which of them can occur
in a paging system? A system with pure segmentation?

(b) Translation look-aside buffer (TLB).

(c) Interrupt.

(d) Distributed shared memory.

(e) Stateful and stateless servers. Also, list two file systems, one that
is stateful and one that is stateless, and explain how having or not
having state affects file service.

(f) Swapping.

(g) Inverted page table.

(h) Disk sector, track, and cylinder.

(i) Thrashing.

2. Short answer. Provide a short answer to each of the following questions:

(a) Give a reason why virtual memory address translation is useful even
if the total size of virtual memory (summed over all programs) is
guaranteed to be smaller than physical memory.

(b) Compare and contrast access control lists and capabilities.

∗Questions taken from past undergraduate operating systems final examinations given at

Berkeley and CMU.

1



(c) The length of the time slice is a parameter to round robin CPU
scheduling. What is the main problem that occurs if this length is
too long? Too short?

(d) List an advantage and a disadvantage to increasing the virtual mem-
ory page size.

3. Virtual memory addressing. Suppose we have a machine that uses a three-
level page table system. A 32-bit virtual address is divided into four fields
of widths a, b, c, and d bits from left to right. The first three are indices
into the three levels of page table; the fourth, d, is the offset. Express the
number of virtual pages available as a function of a, b, c, and d.

4. Page replacement. Suppose a machine with 4 physical pages starts running
a program (in other words, the physical pages are initially empty). The
program references the sequence of virtual pages as follows:

A B C D E D C B A E D C B A C E

For each of the following paging algorithms, replicate the reference pattern
and underline each reference that causes a page fault (or make references
that cause a page fault uppercase, and those that don’t lowercase):

(a) LRU.

(b) FIFO.

(c) Optimum.

5. Multiprocessing. Suppose you have a large source program containing m

files that you want to compile. You have a cluster of n “shared-nothing”
workstations, where n > m, on which you may compile your files. At best
you will get an m-fold speedup compared to a single processor. List at
least three reasons as to why the actual speedup might be less than this.

6. Achieving fast file reads.

(a) Give at least three strategies that a file system can employ to reduce
the time a program spends waiting for data reads to complete.

(b) For each strategy you listed, describe a read pattern for which the
strategy would do well, and one for which the strategy would do
poorly.

7. Synchronization. Your OS has a set of queues, each of which is protected
by a lock. To enqueue or dequeue an item, a thread must hold the lock
associated with the queue.

You need to implement an atomic transfer routine that dequeues an item
from one queue and enqueues it on another. The transfer must appear to
occur atomically.

This is your first attempt:

2



void transfer(Queue *queue1, Queue *queue2)

{

Item thing; /* the thing being transferred */

queue1->lock.Acquire();

thing = queue1->Dequeue();

if(thing != NULL) {

queue2->lock.Acquire();

queue2->Enqueue(thing);

queue2->lock.Release();

}

queue1->lock.Release();

}

You may assume that queue1 and queue2 never refer to the same queue.
Also, assume that you have a function Queue::Address() which takes a
queue and returns, as an unsigned integer, its address.

(a) Explain how using this implementation of transfer() can lead to
deadlock.

(b) Write a modified version of transfer() that avoids deadlock and
does the transfer atomically.

(c) If the transfer does not need to be atomic, how might you change
your solution to achieve a higher degree of concurrency? Justify why
your modification increases concurrency.

8. Networking. You are developing a network protocol for the reliable de-
livery of fixed-sized messages over unreliable networks. You are using a
sequence number in each message to allow the receiver to eliminate dupli-
cates, but you still have three design alternatives to consider.

The design alternatives are: (1) the sender must receive an acknowledge-
ment for the previously sent message before it can send the next message
in the sequence, (2) the sender can transmit up to n unacknowledged
messages, but the receiver will discard any messages that are received out
of sequence (in other words, it will only acknowledge a message if it is
received in sequence), and (3) the sender can transmit up to n unacknowl-
edged messages, and the receiver will acknowledge each on receipt, even if
they arrive out of order.

For each alternative, answer the following question:

• Explain what state the receiver must keep around to implement each
of the three alternatives (remember, the receiver must be able to
detect and discard duplicates).

9. Serving multiple clients. There are two main approaches to organizing a
server daemon, such as a web server:

3



(a) Create a new kernel thread for each client (for each web browser
connection);

(b) Use a single process responding to all clients, usually based on the
select() system call.

Compare and contrast these two approaches.

4


