
Community-Driven Adaptation: Automatic Content Adaptation in Pervasive
Environments

Iqbal Mohomed, Alvin Chin, Jim Chengming Cai and Eyal de Lara
Department of Computer Science

University of Toronto
(iq, achin, jcai, delara)@cs.toronto.edu

Abstract

Mobile devices are increasingly being used to access Web
content but lack the resources for proper presentation to the
user. To address this problem, content is typically adapted
to be more suitable for a mobile environment. Community-
Driven Adaptation (CDA) is a novel approach to automatic
content adaptation for mobile devices that adapts content
based on feedback from users. CDA groups users into com-
munities based on common characteristics, and assumes that
users of the same community have similar adaptation require-
ments. CDA learns how to adapt content by observing how
members of a community alter adapted content to make it
more useful to them. Experiments that consider the idealized
case, where all users perform the same task, show that CDA
can reduce wastage of network bandwidth by up to 90% and
requires less user interaction to correct bad adaptation deci-
sions compared with existing approaches to automatic con-
tent adaptation.

1. Introduction

Mobile devices, such as cell phones and network-enabled
personal digital assistants (PDAs) are fast becoming the plat-
form of choice for accessing Web content, and are expected
to play a leading role in the pervasive or ubiquitous-
computing [23, 28] environments of the future. However,
most Web content is intended for consumption on power-
ful desktop computers, and has to be adapted to meet the lim-
ited resources of mobile devices [1, 4, 8, 9, 15, 17, 22]. This
problem is exacerbated by an astonishing variety of mo-
bile devices with a wide array of capabilities (in terms of
network bandwidth, display size, user interface, comput-
ing power, storage, battery life, security and reliability), and
a similar multiplicity of data formats, communication proto-
cols, and supported services.

Systems that adapt content on-the-fly to specific de-
vices [4,6,10,18,20,25,26], have surfaced as a promising ap-
proach for coping with the resource constraints and high

degree of heterogeneity in pervasive-computing environ-
ments. The main challenge in automatic content adaptation
is designing adaptation policies that make optimal use of re-
sources and maximize user satisfaction. This is a non-trivial
problem as it is possible to adapt content across many dif-
ferent dimensions, such as fidelity, page layout and modality
(e.g., transforming text into speech). Even after deciding how
to adapt content, the question remains as to how much adap-
tation to perform. Too much adaptation is bad as it leaves
users with unusable content or may require frequent user in-
teraction to correct bad adaptation decisions – a major incon-
venience for the user. Too little adaptation is also undesirable
because it wastes valuable resources without producing addi-
tional benefit for the user.

This paper presents Community-Driven Adaptation
(CDA), an automatic content adaptation technique that
adapts content based on feedback provided by users. CDA
defines a community as a set of users with similar require-
ments for adaptation. CDA groups users into communities
based on common characteristics (e.g., device type or pref-
erences) and makes a decision on how to adapt content
based on past encounters with members of that com-
munity. This is done on the premise that adapted con-
tent that is suitable for some members of the commu-
nity is likely to be acceptable to other members as well. At
the outset, CDA makes an initial decision on the adapta-
tion to be performed on the content and then monitors users
as they modify the adaptation decisions to make the con-
tent more appropriate for their tasks (e.g., increase image
fidelity to allow a detailed comparison between two prod-
ucts). The user modifications constitute an implicit feedback
mechanism that CDA uses to improve its adaptation predic-
tions for future user accesses. All feedback is obtained dur-
ing the course of normal application usage, and users do
not have to perform any additional interaction other than
what is required for completing the task. To reduce the bur-
den that being an active part of the adaptation process places
on individual users, CDA leverages the aggregate experi-
ences of large numbers of users accessing common content.
Therefore, we do not expect that any given user will of-



ten find herself in the case where there is little historical
data. For CDA to be effective, a critical mass of users ac-
cessing the same content is required. However, when this
is not the case, users do not experience any worse perfor-
mance than existing techniques, as CDA defaults into a
rule or constraint-based approach when sufficient histori-
cal data is not available.

CDA is a significant improvement over existing rule-based
[4,14,24–26] and constraint-based [7,18,19,26] approaches
for content adaptation. Rule-based systems rely on high-level
rules to guide the adaptation process (e.g., convert images
larger than 50 KB to progressive JPEG images ). Constraint-
based adaptation extends rule-based adaptation to encode
tradeoffs between possible adaptation strategies. Rule-based
and constraint-based approaches are limited to performing
semantic-blind adaptation that apply to a large class of con-
tent (e.g., all thumbnail images are served at 60% resolu-
tion while full-sized images are served at 30% resolution),
whereas CDA adapts content based on the data semantics and
its relationship to the user’s task (e.g., images central to a task
are presented with higher detail than irrelevant objects).

CDA is a general technique that can be used to automati-
cally adapt content in the face of resource constraints that are
typical in ubiquitous-computing environments. On mobile de-
vices that have limited screen real-estate, CDA can be used
for page-layout adaptation. CDA can also be meaningfully
applied to fidelity and modality adaptation of content such as
images, audio or video. Configuring application parameters is
another example of an adaptation domain where CDA can be
used to improve user experience. In general, CDA can be use-
ful in any situation where users share preferences in the kinds
of adaptations that they require.

This paper establishes the efficacy of CDA. We deliber-
ately sidestep the important problem of grouping users into
communities, and instead quantify the effectiveness of CDA
by considering an idealized environment where all users per-
form the same task on the same device, and therefore belong
to one highly-cohesive community. Such singleness of pur-
pose among the members of a community is unlikely to ex-
ist in practice. Therefore, the results presented in this paper
are an upper bound on the perfromance of CDA.

We gathered traces of users browsing adapted image-rich
web pages over a bandwidth-limited network link. The par-
ticipants in the case study were assigned a common set of
tasks to perform over a number of web sites. All the images
on the web sites were initially served at their lowest fidelity,
and we tracked users as they increased the fidelity of individ-
ual images until they were good enough for the task at hand.
This allowed us to determine the lowest fidelity of each im-
age deemed sufficient for the tasks by every user in the com-
munity. We then used trace-driven simulation to evaluate the
performance of various rule-based and CDA adaptation poli-
cies. Experimental results show that CDA policies outperform
rule-based ones, resulting in up to 90% reduction in network

bandwidth wastage and up to 50% reduction in user requests
to improve fidelity. The traces show that users select similar
fidelity levels for the same task (which we define as local-
ity), confirming our initial hypothesis that users in the same
community have similar requirements for adaptation. More-
over, the traces show that the fidelity level for an object is
dependent on its relevance to the user’s task, and not on im-
age size, purpose (thumbnail vs. regular image), or location
(across web sites).

The rest of this paper is organized as follows. Section 2 in-
troduces Community-Driven Adaptation and describes a gen-
eral architecture for implementing this concept. Section 3 de-
tails a system that we developed for gathering traces of users
accessing adapted web images, and Section 4 presents the ex-
perimental results from our trace-driven simulation. Section 5
describes related work on automatic content adaptation and
recommendation-based systems. Finally, Section 6 concludes
the paper and describes avenues for future work.

2. Community-Driven Adaptation

In this section, we first describe the concept of
Community-Driven Adaptation (CDA) and provide an
architecture that implements this concept. Next, we dis-
cuss the adaptation process and the role of feedback. Finally,
we discuss practical deployment issues.

CDA is an automatic content adaptation technique that uti-
lizes feedback provided by users. CDA recognizes that users
(as opposed to the adaptation system) are best qualified to de-
termine whether content that has been adapted is appropriate
for a particular task. When serving an item for the first time,
CDA makes an educated guess about the best way to adapt
the content and behaves in a way that is similar to existing
constraint-based content adaptation systems. CDA’s strength
comes into play when the user determines that the adapted
content is not satisfactory and instructs the application to cor-
rect the situation (e.g., make content more readable by remov-
ing an irrelevant toolbar, convert text to speech, or increase
or reduce a video’s frame rate). The user modifications con-
stitute a feedback mechanism that CDA uses to improve its
adaptation predictions for future accesses.

CDA minimizes the need for user intervention by group-
ing users into communities such that members of a commu-
nity share requirements for adaptation. CDA assumes that by
observing the manner in which individual users interact with
adapted content, it is possible to improve the effectiveness of
content adaptation for the community as a whole.

We expect that in most cases, simply discernable char-
acteristics such as device type, network bandwidth, loca-
tion, battery power level, screen real-estate, user preferences,
and available I/O modalities will be sufficient to effectively
group users into communities. For example, we expect that
users browsing high-resolution images on a PDA with a low-
resolution display will require similarly adapted versions of



Figure 1. CDA architecture.

the images. However, in some situations, this will not suffice
and the user’s actual purpose vis-a-vis the content will have
to be examined. This is a non-trivial problem and we fore-
see that complex characteristics such as user-supplied pro-
files, commonality in access history or past content adapta-
tion requirements and context information such as user loca-
tion can be used to discern the user’s motivations with respect
to the content. In this paper, we do not give further consider-
ation to how communities can be formed and this is left for
future work.

2.1. CDA Architecture

CDA uses a proxy-based architecture (shown in Figure 1)
consisting of three components: adaptation-friendly client
applications, community center proxy and content servers.
Adaptation-friendly client applications allow users to inter-
act with the community center proxy to refine adaptation de-
cisions to tailor the adapted content to the requirements of the
task. The community center proxy is at the heart of the CDA
model. It mediates all accesses to content and serves as an ag-
gregation point for user requests. Content servers are arbitrary
data repositories that store the content that the user is access-
ing and are unaware of the adaptation process.

2.1.1. Adaptation-Friendly Client Applications CDA as-
sumes that adaptation-friendly client applications provide
users with the necessary facilities to make content more ap-
propriate to their tasks. An adaptation-friendly client appli-
cation should ideally provide the following functionality:
(1) it should make the user aware that the content has been
adapted (or could be adapted), (2) it should provide an ap-
propriate interface for correcting adaptation decisions, (3)
it should propagate adaptation corrections to the commu-
nity center proxy, and (4) for adaptation corrections that
require the community center proxy to supply a different ver-
sion of the content (e.g., a higher-fidelity version of an audio
file), the application has to support fetching of the new ver-
sion and updating the application’s state accordingly. Not all
adaptation corrections involve the transmission of a new con-
tent version. For example, an application that supports
page-layout adaptation may be able to locally support the re-
organization of the elements within a document.

The interface that the application provides for correcting
adaptation decisions depends on the data type being adapted,
and the adaptations supported by application and the commu-
nity center proxy. For example, an application that supports
the adaptation of streaming video could provide a control that
affects the size of the window that plays the video, the image’s
resolution, frames per second, or position of the stream where
playback starts. For document layout adaptation, the applica-
tion may provide the ability to split content into panels or sep-
arate windows, rearrange content position, or remove parts of
a document.

In most cases, adding feedback mechanisms such as those
described above require making modifications to the source
code for the application. Alternatively, the increasing popular-
ity of component-based software allows the feedback mech-
anism to be incorporated into a plug-in component, which is
developed using an application’s API [6].

Given that CDA aggregates the results of all users that pro-
vide feedback, even clients that do not wish or are unable
to run adaptation-friendly client applications can still bene-
fit from the results, provided that a sufficient number of other
users are using an adaptation-friendly client application.

2.1.2. Community Center Proxy The community center
proxy mediates requests between adaptation-friendly client
applications and content servers. It consists of four compo-
nents: prediction, history, grouping, and transcoding. The
prediction component determines the adaptations to perform
on the content requested by the user. It uses a combination of
rules and constraints augmented by historical data. The his-
tory component keeps track of user requests, the initial adap-
tations performed by the system, and any explicit modifica-
tions that users make to adaptation decisions. These modifi-
cations are an indication that the prediction component failed
to adapt to the extent desired by the user, and are taken into
consideration by the prediction component to improve its pre-
diction strategy for future requests. The grouping component
classifies users into communities based on a variety of fac-
tors such as user-supplied profiles, commonality in access his-
tory or content adaptation requirements, device type, applica-
tion being used, and context information such as user loca-
tion. Finally, the transcoding component coordinates a rich set
of content transcoders that perform the actual content trans-
formations prescribed by the prediction component and cache
them for future user requests.

2.1.3. Content Servers Content servers are standard un-
modified data repositories such as web sites, databases, and
media servers. CDA does not require any additional function-
ality for this component.

2.2. Adaptation Process

The adaptation process for CDA operates as follows. A
user first requests content through the adaptation-friendly
client application. The adaptation-friendly client application



forwards the user’s request to the community center proxy.
The grouping component within the community center proxy
determines the community that this user belongs to. At the
outset, when the community center proxy has not gathered
sufficient historical data for a specific data object within a
community, the prediction component adapts based on rules
and constraints. As such, when there is no history, the system
performs no worse than the state-of-the-art. However, as the
system accumulates historical data, we can expect the perfor-
mance of the system to surpass that achieved by existing tech-
niques. Once the adaptation decision is made, the community
center proxy checks whether it has an appropriately adapted
version of the desired content. If so, the content is served
to the user. If not, the content is first fetched from the con-
tent server, and then appropriately adapted by the transcoding
component. The adapted version is then placed in the cache,
and a copy is returned to the client. If the user determines
that the provided version is not appropriate for the task, she
can then use the interface provided by the application to ap-
ply a corrective measure. The user’s correction is then sent to
the community center proxy where it becomes part of the his-
tory of the particular object being adapted for the user’s com-
munity. If the corrective measure requires the transmission of
an atomic object, such as an image from the community cen-
ter proxy, the content (potentially in the form of a delta) is
sent to the application and the application updates its state. In
the case of modifications to streamed data, the client applica-
tion and the community center proxy negotiate to change the
necessary properties of the stream.

2.3. User Feedback

The corrective measures employed by the user constitute
a feedback mechanism that CDA uses to improve its adapta-
tion predictions for future accesses. User feedback can be ei-
ther explicit or implicit. Explicit feedback requires extra effort
from the user for rating the adaptation decision while implicit
feedback is obtained in the process of normal application op-
eration. In both cases, the feedback can be deemed positive or
negative, with respect to the user’s reaction to the adaptation
decision made by the system. If explicit feedback is available,
there is no ambiguity in determining the user’s preferences.
Explicit positive or negative feedback fully assures the adap-
tation system of the correctness or lack thereof for an adapta-
tion decision.

Implicit feedback does not entail any explicit rating of the
adaptation decision. Implicit negative feedback occurs when
a user is not satisfied with the adapted content that was served
and requests a change in order to complete a task. In this case,
it is clear that the previous adaptation was insufficient and
there is no ambiguity in determining the user’s preferences.
Implicit positive feedback occurs when the user does not in-
teract with the content and in this case, it is unclear whether
the user was satisfied with the adaptation or simply decided

to give up performing the task.

A major problem with systems that require explicit feed-
back is that users must be somehow enticed to provide addi-
tional information, which is not relevant to the performance of
their task. Apart from the added burden that this imposes, the
system has no guarantee that users will provide useful feed-
back. If providing feedback is made mandatory in order to
use the system and this is coupled with a collection mech-
anism that users deem irksome, the quality of feedback be-
comes dubious as unwilling users “game” the feedback pro-
cess to make it as unobtrusive as possible.

For these reasons, CDA mainly relies on implicit feedback,
which is obtained during the course of normal application us-
age, and does not require users to perform any additional in-
teraction other than what is required for completing the task.
While CDA does not require explicit feedback, this can be ex-
ploited when available.

A problem with relying solely on implicit feedback is that
due to the ambiguity inherent in implicit positive feedback,
CDA might behave in a wasteful manner. For instance, CDA
might not be able to gain sufficient preference information
and provide higher-fidelity images than needed for a task.
This issue can be addressed in various ways. CDA can probe
for user preferences by over-adapting content (e.g., serving
images at lower fidelity) so as to solicit implicit negative feed-
back until it accumulates sufficient history. In a production
environment where the preferences of users change over time,
this process would have to be repeated to keep the history up
to date and ensure high quality predictions.

2.4. Practical Considerations

To be effective, CDA requires a critical mass of viewers of
the same content object in order for communities to be identi-
fied. In addition, the client application must be able to obtain
feedback from the user and relay it to the community cen-
ter. If implicit feedback is utilized, it is also imperative that
the application allow iteration in the presentation of the con-
tent and the content must be amenable to an iterative process.

Even in cases where significant reuse of content is not ap-
parent, such as with dynamic content, CDA might prove use-
ful. First, many dynamic web pages are built from a set of
static objects (such as images). Here, the scenario is no dif-
ferent because the histories are maintained for individual ob-
jects that do no change. However, there are situations where
content is dynamically created for a specific user (e.g., an im-
age showing the current prices of stock in a user’s investment
portfolio). If content is created dynamically and tailored to a
specific user, it is unlikely that a community will form. In this
situation, the system can attach history to a placeholder rep-
resenting the dynamic content if we expect that the adapta-
tion decisions carry over across instances of the dynamically
generated content. However, if a user is the sole viewer of dy-



namic content that bears no resemblance to past instances,
then CDA will not apply.

Most of the complexity inherent to CDA is relegated to
the resource-rich servers hosting the CDA community cen-
ter proxies. Therefore, mobile clients are shielded from the
resource intensive tasks associated with storing large his-
tory logs, running the prediction mechanisms, and perform-
ing transcoding. Moreover, logs can be truncated or charac-
terized to save space.

User privacy may be a concern in CDA. Whereas many
other systems can track the data that was accessed by a user,
CDA can actually discern which objects captured the user’s
attention, and therefore are more relevant. This issue can be
addressed by having anonymous history traces and by aggre-
gating user requests.

An evaluation of the tradeoffs related to identifying com-
munities, the size of history logs maintained and keeping
track of individual user history versus aggregates, and how
these aspects influence the quality of CDA’s predictions is be-
yond the scope of this paper.

3. Case Study

To evaluate the effectiveness of CDA policies, we de-
veloped a case study that explores the problem of adapting
image-rich web pages for browsing over a bandwidth-limited
link. Specifically, we gathered traces of users as they per-
formed a fixed set of tasks using adapted JPEG images on
a laptop computer with a 56Kbps network connection. The
fixed set of tasks groups the users into one highly-cohesive
community. We choose a laptop (as opposed to a PDA or cell
phone) for the client device, to simplify the system and elim-
inate any effects introduced by changes to page layout. We
controlled the bandwidth between the laptop and the proxy by
interposing a network emulator that simulates a 56Kbps wire-
less network link. The specific speed that we selected is opti-
mistic when compared with wide area wireless network con-
nectivity available to mobile devices and cellular phones in
practice. Finally, the focus on one adaptation type (JPEG im-
age compression) helps simplify evaluation.

The trace-gathering system initially presents users with
low-fidelity versions of the web images, and keeps track of
users as they refine the fidelity of images to complete a task.
Our experiments are designed to motivate users to success-
fully complete the tasks without asking for unnecessary re-
finements. As such, the version at which users stop requesting
improvements is the minimum fidelity that satisfies the user,
and thus is termed the optimal fidelity. This is a good approxi-
mation to the real-world where network bandwidth is not free
and users try to limit usage. Thus, the resulting traces cap-
ture the optimal fidelity required by users to complete a set of
assigned tasks. The optimal fidelity for specific images may
vary between users because people have varying preferences.

In Section 4, we use these traces to evaluate the quality of pre-
dictions made by CDA and rule-based policies.

While the trace gathering system shares many ideas with
CDA (users can iteratively change adaptation decisions and
these actions are logged), the system is not a working CDA
prototype as it does not do any prediction or use history of
previous accesses. We decided to build a trace-gathering sys-
tem rather than a prototype of a CDA system because we
wanted to experiment with a large number of adaptation poli-
cies. Moreover, carrying out analysis on live and external web
content requires extreme care because content updates and the
vagaries of the network can potentially make valid compar-
isons of user experiences impossible.

In this section we first describe the trace-gathering sys-
tem and then describe the tasks that we asked the users in our
experiments to perform. Finally, we describe the setup and
methodology of our case study.

3.1. Implementation

The trace-gathering system allows users to browse static
web content over a bandwidth-limited network link, and re-
quest fidelity improvements to images. The trace-gathering
system consists of three main components: an adaptation-
friendly web browser, a transcoding/logging proxy, and a
web server. The web browser runs on a laptop with a 14-
inch screen while the web server and the transcoding/logging
proxy run on desktop computers. The proxy is interposed in
the network path between the laptop and the web server on a
closed network in our lab. To control bandwidth, a network
simulator is placed between the laptop and the rest of the sys-
tem.

We implemented our adaptation-friendly web browser by
extending Microsoft Internet Explorer 6 (IE6) with an Ac-
tiveX plug-in [6] that allows users to request fidelity refine-
ments for images by right-clicking on an image. The proxy
converts images embedded in HTML documents obtained
from the web server into a progressive JPEG representa-
tion1 [16]. The progressive JPEG images are then divided into
pieces of equal file size, which can be served to clients on de-
mand. To create traces of user interaction with adapted data,
the proxy logs all user requests for fidelity refinements.

The system operates as follows. When loading an HTML
page, the proxy parses the HTML to extract all image refer-
ences, downloads the images, converts them to progressive
JPEG, and slices them into equally-sized pieces (10 slices for
regular images and 3 slices for thumbnail images). The slices
map directly to fidelity levels and thus regular images have
10 fidelities while thumbnails have 3. Upon first loading the
page, IE6 renders the images with the lowest fidelity (i.e., the

1 A useful property of a progressive image format, such as progressive
JPEG, is that any prefix of the file for an image results in a complete, al-
beit lower quality, rendering of the image. As the prefix increases in
length, the image quality approaches its maximum.



first progressive JPEG slice). The user, however, will imme-
diately recognize that the images have been adapted because
all the loaded images are presented with very low fidelity. The
user can then request an improvement in the fidelity of a spe-
cific image by right clicking on it. The right-click event is
trapped by the ActiveX plug-in which instructs IE6 to request
additional data that would allow the specific image to be pre-
sented with a higher fidelity level.

3.2. Web Sites and Tasks

An ideal web site to be used in the study would involve
a large number of images to maximize the opportunities for
adaptation predictions. Therefore, we developed three image-
rich web sites: a car show, an electronic store (e-store), and
a map service. All the web sites, including all image content,
are static and unchanging.

In the real world, users browse the sites that they are in-
terested in and have specific motivations for looking at con-
tent (e.g., read the latest news, or buy a product with a given
feature). Unfortunately, such communities of interest cannot
form spontaneously in a lab experiment with a limited number
of participants which requires us to use specific tasks to com-
pensate for this limitation. In the car show and e-store sites,
we motivate similar behavior by specifying tasks where users
have to look for a specific feature, whereas in the map service
we specify a goal-based task. The tasks are such that not all
images are relevant to their completion, and are designed to
provide a common objective to users in order to create a com-
munity. By giving users a common and explicit set of tasks in-
volving the viewing of images, we effectively force them into
a single community. Therefore, this is the idealized case for
CDA from the perspective that we are able to identify a com-
munity composed of members with a singleness of purpose.

3.2.1. Car Show The car show web site allows users to
browse 6 images of cars in sequential order. We asked users
to record the license plate numbers for cars that have license
plates. Only two cars in the site have license plates, but this
information is not provided to the users.

This task is feature-driven because users are specifically
asked to look for cars with license plates. We expect that the
task will result in locality because it is possible to determine
that a car does not have a license plate with a low-fidelity im-
age, but higher levels of fidelity are required for cars with li-
cense plates in order to identify the license plate number.

3.2.2. E-store The second web site is an electronic store (e-
store) which allows users to shop online for electronic prod-
ucts. It presents the users with four product categories: PDAs,
cell phones, MP3 players and AIBO robots. Accessories are
also appended at the end of each category. There are two sets
of images associated with each product: a thumbnail and a
full-size snapshot. Thumbnails are loaded with the product
by default, whereas full-size snapshots are loaded upon se-
lection by the user. Users are asked to purchase a PDA with

a red mark at the bottom right, a cellular phone with a la-
bel that reads ”Sierra Wireless”, and an AIBO robot wearing
a blue and silver necklace.

Similar to the car show, this task is also feature-driven and
exhibits locality because users have to find a specific product
in each product category. It differs from the car show in that
users are not forced to browse through every image, thus pro-
viding different user behavior; for example, users may choose
to browse through all PDAs in order, or randomly select a few
until they find the desired one. The specific task of finding a
product with a particular feature serves to artificially group
users into a community.

3.2.3. Map Service The last web site is a map service which
allows users to view a detailed online map of the University
of Toronto. The map is actually made of an 8 X 8 grid of im-
ages. Upon loading the web site, all images in the grid are vis-
ible at low fidelity. It is possible to refine individual images
in the 8 X 8 grid by right-clicking on them. Users are asked
to locate a path between the main University of Toronto li-
brary and a popular subway station, and record the names of
the buildings along the path.

Unlike previous tasks in the e-store and car show which are
feature-driven, this task is goal-driven because the intent is to
find directions to travel from a source to a destination. Im-
ages of the sliced map that are on the path between the source
and destination location, need to be increased in fidelity in or-
der to record the building names. Locality in this case occurs
because users are familiar with the map.

3.3. Methodology and Setup

A total of 28 users participated in the study. All users are
Computer Science undergraduate students at the University of
Toronto. Each user is asked to sit in front of our client laptop
and perform specific tasks on the three web sites described in
Section 3.2. On-line instructions were presented to the users
explaining that they were accessing content over a bandwidth-
limited link, that an adaptive proxy would transcode images
into low-fidelity versions to reduce download time, and that
they could improve image fidelity to perform the task. The in-
centives in our case study are structured so that users attempt
to complete the tasks with the fewest requests for refinement,
which mimics real-life where users have a monetary motiva-
tion for saving bandwidth.

4. Experimental Evaluation

In this section, we first describe the CDA and rule-based
policies that we use in our experiments. We then compare
the effectiveness with which the predictions generated by
the rule-based and CDA policies match the fidelity levels
captured in our user traces. Experimental results show that
CDA policies outperform rule-based policies, consuming less
bandwidth and requiring users to click fewer times. Finally,



we present an analysis of the user-trace data obtained from
our case study. Our analysis shows that most users select simi-
lar fidelities, and that image fidelity is dependent on the data’s
semantics and its relationship to the tasks.

4.1. Policies

We consider 5 rule-based policies: FIXED1, FIXED2,
FIXED4, FIXED10 and SIZE2. The FIXEDi policies serve
all images at a fixed fidelity level i. SIZE2 groups all im-
ages into 2 size-based classes with each class having the same
number of images. Since we have 100 images in total, we
place the smallest 50 images into the first class, while the re-
mainder are placed into the other. Images with larger sizes are
served at fidelity 3 while the smaller images are served at fi-
delity 7 (fidelities 1 and 3 for thumbnails, respectively). This
policy captures the intuition that larger images can be effec-
tively viewed at lower fidelity.

FIXED1 and FIXED10 provide upper bounds for compari-
son with other policies. FIXED1 serves all images at the low-
est fidelity. FIXED1 does not waste data, but results in the
maximum number of user requests for fidelity refinements.
In contrast, FIXED10 serves all images at their highest fi-
delity. FIXED10 does not require users to request fidelity re-
finements, but wastes the maximum amount of data.

We consider 8 CDA policies: MAX, MAX2, AVG, AVG2,
AVG3, MEDIAN, MODE, and UPPER60. When no history is
available for an image, the policies select the lowest fidelity.
Otherwise, the policies select the maximum, average, median,
and mode of the entries in the history log, respectively. The
policies ending with a 2 or 3 implement the operation indi-
cated by the policy’s name but limit the scope of the history
log to just the last 2 or 3 entries. For example, AVG2 and
AVG3 select the average fidelity chosen by the last 2 and 3
users in the history log, respectively. The restricted history
makes the policies more resilient to distortion because every
user remains in history for a limited amount of time, after
which their fidelity selection has no impact.

The UPPER60 policy constructs a probability distribution
function of user requests based on history and selects the fi-
delity at which 60% of the user requests get covered. For ex-
ample, out of 10 users, if 2 of them select fidelity 2, 6 of them
select fidelity 3 and 2 of them select fidelity 4, UPPER60 se-
lects fidelity 3.

4.2. CDA Performance

The traces gathered in our user study capture the fidelity
level that each user considered optimal for each image. We
next evaluate the extent to which the predictions generated by
the rule-based and CDA policies match the fidelity levels cap-
tured in the user traces.

We evaluate policies using two performance met-
rics: wastage (wasted bandwidth) and extra clicks required
by the user. These metrics capture the tradeoff in adapt-
ing content between conserving resources and inconvenienc-

0

171

70
18

749

3050

819

189 535

54 28 30

703

0

1000

2000

3000

4000

5000

6000

7000

FIX
E
D
1

FIX
E
D
2

FIX
E
D
4

FIX
E
D
10

S
IZ

E
2

A
V
G

A
V
G
2

A
V
G
3

M
E
D
IA

N

M
O
D
E

M
A
X

M
A
X
2

U
P
P
E
R
60

W
a

s
ta

g
e

 (
K

B
)

Figure 2. Wastage for various adaptation policies.

0

6

2

10

1

1515
16

15
17

2

17

31

0

20

40

60

80

100

120

F
IX

E
D
1

F
IX

E
D
2

F
IX

E
D
4

F
IX

E
D
1
0

S
IZ

E
2

A
V
G

A
V
G
2

A
V
G
3

M
E
D
IA

N

M
O
D
E

M
A
X

M
A
X
2

U
P
P
E
R
6
0

E
x
tr

a
 C

li
c
k
s

Figure 3. Extra clicks for various adaptation poli-
cies.

ing users when they are forced to interact with the sys-
tem. For every user request for an image, we apply each of
the policies to predict the fidelity at which to serve that im-
age. If a policy selects a fidelity that is higher than the optimal
(overshoot), we have wastage amounting to the difference be-
tween the size of the data that the user got served and that
which corresponds to their desired fidelity level. If a pol-
icy selects a fidelity lower than the optimal (undershoot),
the user is forced to provide feedback to the system in or-
der to reach the optimal fidelity. In this case, we have extra
clicks amounting to the difference between the optimal fi-
delity and that selected by the policy.

For CDA, our goal is to study the situation where the sys-
tem is out of its initial transitionary state. Since our study only
consisted of 28 participants, when measuring the performance



Figure 4. Wastage convergence for various adapta-
tion policies.

of each user, we rearrange the trace to make it seem that they
accessed content after all the other users in the trace. Because
the predictions made by some CDA policies are based not
only on the fidelity selected by previous users in the trace,
but also on the ordering of these accesses, we consider differ-
ent permutations of user orderings. Thus, we fix each of the
28 users to be the last one in the ordering, and then generate
a hundred random orderings of the other 27 users. The per-
formance of the user is an average of the 100 runs. When re-
porting the performance of each of the CDA policies, we av-
erage the results of the 28 users (an average over 2800 tri-
als). Given that the predictions generated by rule-based poli-
cies do not depend on history, no reordering or multiple runs
were necessary in computing the average performance expe-
rienced by the 28 users.

Figure 2 shows the average amount of data wasted and Fig-
ure 3 shows the average number of clicks required by each
policy over all three web sites. The bars indicate the range
of the respective metric over the entire set of users. The size
of all images at their full fidelity amounts to just over 5 MB.
Users consumed an average of 720 KB of data to perform
all tasks. FIXED10, which serves images at the highest fi-
delity, wastes close to 3 MB incurring over 325% overhead.
The wastage for FIXED10 is less than the full size of the
dataset would suggest (5 MB - 720 KB) because not all im-
ages are loaded by all users.

We observe the following when we compare the perfor-
mance of rule-based and CDA policies. First, where a rule-
based policy and a CDA policy produce the same wastage, we
find that the CDA policy requires fewer extra clicks. For ex-
ample, the rule-based policy SIZE2 produces similar wastage
to the CDA policy MAX (749KB versus 703KB), but the
MAX policy requires 5 times less extra clicks than SIZE2 (1
click versus 6 clicks). Second, in cases where a rule-based
policy and a CDA policy require the same number of ex-
tra clicks, the CDA policy produces less wastage. For exam-

Figure 5. E-store: Fidelity distribution for users.

ple, the rule-based policy FIXED2 requires the same number
of extra clicks as the CDA policy AVG (17 clicks), but the
AVG policy has 90% less wastage than FIXED2 (18KB ver-
sus 171KB). Third, there are cases where CDA policies re-
quire both fewer extra clicks and lower wastage compared to
rule-based policies. For example, the CDA policies AVG2,
AVG3, MEDIAN, and MODE have 60%, 68%, 84%, and
82% less wastage and 12%, 6%, 12%, and 12% less extra
clicks than FIXED2, respectively.

Figure 4 shows the rapid convergence of wastage for the
MAX2, MED, MODE and AVG CDA policies. The val-
ues plotted are averages over 2800 trials with different user-
orderings. The policies do not behave optimally for the first
few users but the wastage quickly reduces because better pre-
dictions are made as more history accumulates. Therefore, we
conclude that CDA policies do not require a large number of
previous user accesses to behave well.

4.3. Analysis of User Traces

An inspection of the traces showed that while the three
web sites (car show, e-store and map service) have a com-
bined total of 100 images, not all are loaded by every user,
and that a fidelity level of 4 was sufficient for most users to
complete the tasks. A small number of images were requested
by one or two users at fidelity levels higher than 5. Given that
we have no control over awkward user behavior, it is reason-
able to consider these few points as random noise.

In our case study, locality occurs when users select simi-
lar optimal fidelity levels for an image, with each fidelity level
constituting a distinct fidelity class for the image. We find sig-
nificant locality in the optimal fidelity of users in our experi-
ments. Out of the 77 images that are loaded, 32 images have
only one fidelity class, which in most cases the fidelity level is
1. Of the 45 images that have multiple fidelity classes, 20 im-
ages have two fidelity classes, while the remainder have two
adjacent fidelity classes that cover over 80% of the fidelity se-
lections. For all images, one fidelity class covers at least 43%
of the fidelity selections.



Figure 6. Average user requested fidelity.

Figure 5 exemplifies these trends. The figure shows the
breakdown of fidelity classes for images in the e-store web
site that had two or more fidelity classes. For a given image,
each pattern in the image bar shows the number of users that
requested a particular fidelity class. The images are sorted in
decreasing order by number of requests for fidelity class 1 fol-
lowed by requests for fidelity class 2.

We find that images that are critical to the task show a
large number of fidelity classes, indicating that a large diver-
sity in selected fidelity classes is a good predictor of image
relevance to a specific task. For example, in the e-store, the
last three bars in Figure 5 represent products that users were
told to purchase. Similarly, the images that show a lot of di-
versity in the map service are the ones on the path between
the source and destination (not shown). Despite this diversity,
the majority of requests fall in two adjacent fidelity classes.

Figure 6 plots the average fidelity level selected for all im-
ages (sorted by size and grouped by web site and purpose) and
illustrates the lack of strong correlation between fidelity level
and image size, purpose (thumbnail vs. regular image), or lo-
cation (across web sites). An ANOVA test at an α � 0 � 05 sig-
nificance level confirmed that the mean image fidelity is not
the same for the three tasks. Also, we computed a Pearson’s
correlation coefficient value of 0.195 between image file size
and desired fidelity, indicating a very weak positive linear re-
lationship. This suggests that rule-based or constraint-based
approaches to image adaptation will fail to provide an opti-
mal browsing experience.

5. Related Work
There is significant research on content adaptation for mo-

bile devices [4, 6, 10, 11, 17–20, 24, 25], and even a few com-
mercial adaptation systems have been deployed [4, 15].

Two main techniques for automatic adaptation policy gen-
eration are rule-based [4, 14, 24–26] and constraint-based
[7,18,19,26] adaptation. In both approaches, adaptation poli-
cies are defined using high-level programming languages or
mathematical formulas [7, 14]. Rule-based systems rely on
high-level rules to guide the adaptation process. When adapt-

ing an object, the system determines the subset of rules that
apply and adapts accordingly (e.g., convert images larger than
50 KB to progressive JPEG images ). Constraint-based adap-
tation extends rule-based adaptation to encode tradeoffs be-
tween possible adaptation strategies. A constraint captures,
in a mathematical formula, the relationship between resource
consumption and user satisfaction for a specific adaptation.
An automatic solver adapts content by finding a solution that
meets all constraints, minimizes resource consumption, and
maximizes user satisfaction. Unfortunately, content providers
cannot be expected to provide constraints or rules for every
data object, as this would not be very different from supply-
ing customized content for every client type. As a result, small
sets of rules apply to broad sets of content (e.g., all JPEG im-
ages are adapted the same way independent of their purpose
or value to the user). Moreover, determining the relationship
between user satisfaction and content metrics, such as resolu-
tion or frame rate, is hard and often depends on the seman-
tics of the content being adapted and the user’s task, which
is rarely taken into consideration. In contrast, CDA generates
content-specific adaptation policies that take into account the
relevance of the data to the user’s tasks.

Narayanan [19] uses history logs for application adapta-
tion. By monitoring resource consumption, Narayanan can
predict the application’s operating mode that achieves a spec-
ified battery life and maximizes content fidelity. Narayanan’s
approach assumes that adaptation decisions are driven mainly
by the applications and are largely independent of the input.
In contrast, CDA can be used effectively with applications
where the optimal adaptation strategy is highly dependent on
the content being operated on.

CDA is related to previous efforts on recommendation-
based systems. Most recommendation systems [2, 5, 13, 27]
use collaborative filtering, in which people collaborate to help
one another perform filtering by recording their reactions to
documents they read. Balabanovic et al., [3] add the ability to
evaluate and provide feedback in order to learn and improve
on the recommendations. A collection of histories [21] can be
created and then mined to recommend to the user a set of can-
didate functions and to detect users’ erroneous behavior. Se-
mantics can be used to build a model of the user [12] such as
that used by online retailers like Amazon.com, which can then
be used to recommend other items in the same class of prod-
ucts. CDA is a radical new use of the community-based rec-
ommendation concept – adaptation prediction. Whereas pre-
vious efforts have focused on predicting what content to ob-
tain, CDA focuses on the question of how to adapt this con-
tent to offset the resource limitations of mobile devices.

6. Conclusions and Future Work
Community-Driven Adaptation (CDA) is an automatic

content adaptation technique for pervasive-computing envi-
ronments in which content is adapted based on user feedback
and the semantics of the content pertaining to the partic-



ular task that the user is performing. We gathered traces
of users browsing web sites with adapted images. The
traces capture the minimum fidelity that specific users per-
ceived as sufficient to carry out a specific task. Simulations
on the traces show that for a highly-cohesive commu-
nity where all the users perform the same tasks, CDA
policies that learn from previous user accesses easily out-
perform rule-based policies that are blind to the content
semantics. Compared to rule-based policies, CDA poli-
cies provide up to 90% reduction in wastage of network
bandwidth and up to 50% reduction in user requests to im-
prove fidelity.

In this paper, we artificially constrain users to a single
community to demonstrate that the CDA technique works.
In the future, we plan to research techniques for automati-
cally grouping users into appropriate communities. In addi-
tion, we plan to evaluate the effectiveness of CDA for adapt-
ing other data types (such as video and audio), the applica-
bility of CDA to other adaptation domains (such as page lay-
out and content modality), and the extent to which specific
user interfaces affect the quality of the user-provided feed-
back and the resulting adaptation prediction.

References

[1] R. Bagrodia, W. W. Chu, L. Kleinrock, and G. Popek. Vision,
issues, and architecture for nomadic computing. IEEE Per-
sonal Communications, 2(6):14–27, Dec. 1995.

[2] M. Balabanovic and Y. Shoham. Fab: content-based, collabora-
tive recommendation. Communications of the ACM, 40(3):66–
72, 1997.

[3] M. Balabanovic, Y. Shoham, and Y. Yun. An adaptive agent
for automated web browsing. Journal of Visual Communica-
tion and Image Representation, 6(4), 1995.

[4] K. Britton, R.Case, A. Citron, R. Floyd, Y. Li, C. Seekamp,
B. Topol, and K. Tracey. Transcoding: Extending e-business
to new environments. IBM Systems Journal, 40(1):153–178,
2001.

[5] CiteSeer. http://citeseer.ist.psu.edu/.
[6] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:

Component-based adaptation for mobile computing. In Pro-
ceedings of the 3rd USENIX Symposium on Internet Technolo-
gies and Systems, San Francisco, California, Mar. 2001.

[7] Y. Dotsenko, E. de Lara, D. S. Wallach, and W. Zwaenepoel.
Extensible adaptation via constraint solving. In Proceedings
of the 4th IEEE Workshop on Mobile Computing Systems and
Applications, Callicoon, New York, June 2002.

[8] D. Duchamp. Issues in wireless mobile computing. In Pro-
ceedings of Third Workshop on Workstation Operating Sys-
tems, pages 1–7, Key Biscayne, Florida, Apr. 1992.

[9] G. H. Forman and J. Zahorjan. The challenges of mobile com-
puting. IEEE Computer, pages 38–47, Apr. 1994.

[10] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to
network and client variability via on-demand dynamic distilla-
tion. SIGPLAN Notices, 31(9):160–170, Sept. 1996.

[11] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer. Adapt-
ing to network and client variation using infrastructural prox-

ies: Lessons and perspectives. IEEE Personal Communica-
tions, 5(4):10–19, Aug. 1998.

[12] R. Ghani and A. Fano. Building recommender systems using
a knowledge base of product semantics. In 2nd International
Conference on Adaptive Hypermedia and Adaptive Web Based
Systems, Malaga, Spain, May 2002.

[13] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using col-
laborative filtering to weave an information tapestry. Commu-
nications of the ACM, 35(12):61–70, 1992.

[14] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and
J. Rubas. Dynamic adaptation in an image transcoding proxy
for mobile web browsing. IEEE Personal Communications,
5(6):8–17, 1998.

[15] iAnywhere Solutions. Avantgo. www.avantgo.com.
[16] Independent JPEG Group. www.ijg.org.
[17] R. H. Katz. Adaptation and mobility in wireless information

systems. IEEE Personal Communications, 1(1):6–17, 1994.
[18] W. Y. Lum and F. C. Lau. A context-aware decision engine for

content adaptation. IEEE Pervasive Computing, 1(3):41–49,
July 2002.

[19] D. Narayanan, J. Flinn, and M. Satyanarayanan. Using his-
tory to improve mobile application adaptation. In Proceedings
of the 3rd IEEE Workshop on Mobile Computing Systems and
Applications, Monterey, California, Dec. 2000.

[20] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adaptation
for mobility. Operating Systems Review (ACM), 51(5):276–
287, Dec. 1997.

[21] N. Ohsugi, A. Monden, and K. Matsumoto. A recommen-
dation system for software function discovery. In Proceed-
ings of the 9th Asia-Pacific Software Engineering Conference
(APSEC2002), Gold Coast, Queensland, Australia, Dec. 2002.

[22] M. Satyanarayanan. Fundamental challenges in mobile com-
puting. In Fifteenth ACM Symposium on Principles of Dis-
tributed Computing, Philadelphia, Pennsylvania, May 1996.

[23] M. Satyanarayanan. Pervasive computing: Vision and chal-
lenges. IEEE Personal Communications, 2001.

[24] B. N. Schilit, J. Trevor, D. M. Hilbert, and T. K. Koh. Web in-
teraction using very small internet devices. IEEE Computer,
35(10):37–45, 2002.

[25] J. R. Smith, R. Mohan, and C.-S. Li. Content-based transcod-
ing of images in the Internet. In Proceedings of the IEEE Inter-
national Conference on Image Processing, Chicago, Illinois,
Oct. 1998.

[26] J. R. Smith, R. Mohan, and C.-S. Li. Transcoding internet con-
tent for heterogeneous client devices. In Proceedings of the
IEEE International Symposium on Circuits and Systems, Mon-
terey, California, May 1998.

[27] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter.
Phoaks: a system for sharing recommendations. Commun.
ACM, 40(3):59–62, 1997.

[28] M. Weiser. Some computer science problems in ubiquitous
computing. Communications of the ACM, July 1993.


