
Puppeteer: Component-based Adaptation for Mobile Computing

Eyal de Lara†, Dan S. Wallach‡, and Willy Zwaenepoel‡

† Department of Electrical and Computer Engineering
‡ Department of Computer Science

Rice University

Abstract

Puppeteer is a system for adapting component-based ap-
plications in mobile environments. Puppeteer takes ad-
vantage of the exported interfaces of these applications
to perform adaptation without modifying the applications.
The system is structured in a modular fashion, allowing
easy addition of new applications and adaptation policies.

Our initial prototype focuses on adaptation to limited
bandwidth. It runs on Windows NT, and includes support
for a variety of adaptation policies for Microsoft Power-
Point and Internet Explorer 5. We demonstrate that Pup-
peteer can support complex policies without any modifi-
cation to the application and with little overhead. To the
best of our knowledge, previous implementations of adap-
tations of this nature have relied on modifying the appli-
cation.

1 Introduction

The need for application adaptation in mobile and wire-
less environments is well established [6, 11, 12, 19, 30,
31]. Many approaches to adaptation have been proposed
before, and many taxonomies of adaptation are possible.
We focus here on where the adaptation is implemented,
and recognize system-based [20, 25] and application-
based adaptation [13, 14, 17, 32] as the opposite ends of
the spectrum. As the names imply, with system-based
adaptation, all adaptation is done once and for all in the
system, while with application-based adaptation, each ap-
plication implements its own adaptations. Application-
based adaptation enables a much larger class of adapta-
tions, but requires modification of the applications.

In this paper, we present a novel approach to adap-
tation we call component-based adaptation, which en-
ables application-specific adaptation policies without re-
quiring modifications to the application. The novel fea-
ture of component-based adaptation is that it uses the
exposed APIs of component-based applications to im-
plement application-specific policies. Component-based
adaptation attempts to bring together the benefits of
system-based and application-based adaptation, namely

to implement application-specific policies without mod-
ifying the applications.

Component-based adaptation is by nature restricted to
component-based applications with exported APIs. While
certainly a limitation, we observe that many desirable can-
didate applications for adaptation are already component-
based, including the Microsoft Office Suite, Internet Ex-
plorer, Netscape Navigator, the KDE Office Suite, and
Star Office. Recognizing the advantages of component-
oriented software construction – independent of adapta-
tion – we foresee an increasing number of such applica-
tions being developed as components with exported APIs.
Although traditionally associated with the Windows plat-
form and with COM/DCOM technology, component-
based technologies are becoming more common in the
UNIX world as well, where the push for component-
based technologies is led by the GNOME [1] and KDE [3]
projects. These open source initiatives strive to enable the
development of applications that allow seamless integra-
tion of components and have a consistent look-and-feel. A
good example is KOffice [4], an open source productivity
suite with powerful scripting capabilities. More recently,
StarOffice [5] released version 5.2 of its popular cross-
platform productivity suite, which implements a sophis-
ticated object model that allows scripting by third party
applications through a CORBA-based interface.

The more fundamental question about component-
based adaptation is to what extent it can support the
adaptation mechanisms that a customized application-
based approach can achieve and with what performance.
Furthermore, we wish to understand the scalability of
component-based adaptation. Clearly, the system needs
“drivers” for each application it wishes to support. For
the concept to be scalable in terms of the number of ap-
plications it supports, the effort involved in writing an ad-
ditional driver must be made small.

To address these questions, we have built a system we
call Puppeteer. This paper describes the design of the Pup-
peteer system, its implementation on Windows NT, and
our experience using this implementation to adapt two ap-
plications – Microsoft PowerPoint (a presentation graph-
ics system, hereafter “PowerPoint”) and Internet Explorer

Client

Puppeteer
Server

Data
Server

Puppeteer
Proxy

Application
Data

Weak
Link

Strong
Link

DMI

Figure 1: System architecture.

KERNEL

Import
Driver Coder

KERNEL

Policies

Tracking
Driver

Export
Driver

Decoder

Server ProxyClient Proxy

Figure 2: Puppeteer architecture.

5 (a Web browser, hereafter “IE”) – for low bandwidths.
We demonstrate that Puppeteer can easily and efficiently
support a number of desirable policies. We are currently
also in the process of porting Puppeteer to Linux and ex-
pect to support adaptation of StarOffice applications in the
near feature.

The rest of this paper is organized as follows. Section 2
presents the architecture of the Puppeteer system. Sec-
tion 3 introduces the applications we use to evaluate the
prototype. Section 4 describes the experimental platform.
Section 5 describes the documents we use in our experi-
ments. Section 6 presents our experimental results. Sec-
tion 7 discusses related work. Finally, Section 8 discusses
our conclusions.

2 Puppeteer

Figure 1 shows the four-tier Puppeteer system architec-
ture. It consists of the application(s) to be adapted, the
Puppeteer client proxy, the Puppeteer server proxy, and
the data server. The application and data server are com-
pletely unmodified. The Puppeteer client proxy and server
proxy work together to perform the adaptation.

The Puppeteer client proxy is in charge of executing
the policies that adapt the applications. The Puppeteer
server proxy is assumed to have strong connectivity to
the data server. In the most common scenario, it exe-
cutes on the same machine as the data server. The Pup-
peteer server proxy is responsible for parsing documents,
exposing their structure, and transcoding components as

requested by the client proxy. Data servers can be arbi-
trary repositories of data such as Web servers, file servers
or data bases.

2.1 Application Requirements

Puppeteer can adapt an application if it can uncover the
component structure of its documents and if the applica-
tion provides a run-time interface that enables Puppeteer
to view and modify the data the application operates on.
We refer to the latter feature as Data Manipulation Inter-
face (DMI). Additionally, Puppeteer can benefit greatly
from being able to track the user as she uses the applica-
tion. We demonstrate next how the Puppeteer implements
adaptation once these requirements are met.

2.2 Puppeteer Architecture

The Puppeteer architecture consists of four types of mod-
ules: Kernel, Driver, Transcoder, and Policy (see Fig-
ure 2). The Kernel appears once in both the client and
server Puppeteer proxy. A driver supports adaptation for a
particular component type. A driver for a particular com-
ponent type may call on a driver for another component
type, if a component of the latter type is included in a
component of the former type. At the top of this driver hi-
erarchy sits the driver for a particular application (which
itself is a component type). Drivers may execute both in
the client and the server Puppeteer, as may Transcoders
which implement specific transformations on component
types. Policies specify particular adaptation strategies and
execute in the client Puppeteer proxy.

2.2.1 Kernel

The Kernel is a component-independent module that im-
plements the Puppeteer protocol. The Kernel runs in both
the client and server proxies and enables the transfer of
document components. The Kernel does not have knowl-
edge about the specifics of the documents being adapted.
It operates on a format-neutral description of the docu-
ments, which we refer to as the Puppeteer Intermediate
Format (PIF). A PIF consists of a skeleton and a set of
data items. The skeleton captures the structure of the data

2

used by the application. The skeleton has the form of a
tree, with the root being the document, and the children
being pages, slides or any other elements in the document.
The skeleton is a multi-level data structure as components
in any level can contain sub-components. The data items
contain the native data of individual components. A com-
ponent can have one or more related data items.

When adapting a document, the Kernel first communi-
cates the skeleton between the server and the client proxy.
It then enables application policies to request a subset of
the components and to specify transcoding filters to apply
to the component’s data.

2.2.2 Drivers

For every component type it adapts, Puppeteer requires
an import and an export driver. To implement complex
policies, a tracking driver is also necessary. The import
drivers parse the documents, extracting their component
structure and converting them from their application spe-
cific file formats to PIF.

Most import drivers construct the skeleton by stati-
cally parsing the document in the Puppeteer server proxy.
When the application only exposes a DMI, but has an
opaque file format, Puppeteer runs an instance of the ap-
plication on the server, and uses the DMI to uncover the
structure of the data, in some sense using the application
as a parser. This configuration allows for a high degree
of flexibility and makes porting applications to Puppeteer
more straightforward as Puppeteer need not understand
the application’s file format. It creates, however, a large
overhead on the server proxy, resulting in lower perfor-
mance. Moreover, it requires both the client and server
to run the environment of the application, which in most
cases amounts to having to run the same operating sys-
tem in both servers and clients. In contrast, when the
file format is parsable, either because it is human read-
able (e.g., XML) or there is sufficient documentation to
write a parser, Puppeteer can parse the file(s) directly to
uncover the structure of the data. This results in better
throughput and enables clients and server to run on differ-
ent platforms (e.g., running the Puppeteer client proxy on
Windows NT while running the Puppeteer server proxy
on Linux).

However, static parsing at the server does not work well
for documents that choose what data to fetch and display
by executing a script, or by other dynamic mechanisms.
Instead, import drivers for dynamic content run on the
Puppeteer client proxy and rely on an intercept mecha-
nism that traces requests.

Regardless of whether the skeleton is built statically in
the server or dynamically in the client proxy, any changes
to the skeleton are reflected by the Kernel at both ends to
maintain a consistent view of the skeleton.

Export drivers un-parse the PIF and update the appli-
cation using the DMI interfaces exposed by the applica-
tion. A minimal export driver, has to support inserting
new components into a running application.

Tracking drivers are necessary for many complex poli-
cies. A tracking driver tracks which components are being
viewed by the user and intercepts load and save requests.
Tracking drivers can be implemented using polling or
event registration mechanisms.

2.2.3 Transcoders

Puppeteer makes extensive use of transcoding to perform
transformations on component data. Transcoders include
the conventional ones, such as compression and reduc-
ing image resolution. A novel transcoding mechanism is
used to enable loading subsets of components. Each ele-
ment of the PIF skeleton has a number of associated data
items that, among other things, encode in a component-
specific format the relationship between the component
and its children. To load a subset of the children of a
given node, it is sometimes necessary to modify the data
items associated with the parent node to reflect the fact
that we are only loading some of its children. In effect, by
transcoding the parent node’s data items, we create a new
temporary component that consists only of a subset of the
children of the original component.

2.2.4 Policies

Policies are modules that run on the client proxy and con-
trol the fetching of components. These policies traverse
the skeleton, choosing what components to fetch and with
what fidelity.

Puppeteer provides support for two types of policies:
general purpose policies that are independent of the com-
ponent type being adapted (e.g, prefetching); and com-
ponent specific policies that use their knowledge about
the component to drive the adaptation (e.g., fetch the first
page only) .

Typical policies choose components and fidelities
based on available bandwidth and user-specified prefer-
ences (e.g., pre-fetch all text first). Other policies track
the user as she runs the application and try to anticipate
her needs (e.g., fetch the PowerPoint slide that currently
has the user’s focus and pre-fetch subsequent slides in the
presentation), or react to the way the user moves through
the document (e.g., if the user skips pages, the the pol-
icy can drop components it was fetching and focus the
available bandwidth on fetching components that will be
visible to the user).

Regardless of whether the decision to fetch a compo-
nent is made by a general purpose policy or by a compo-
nent specific one, the actual transcoding and transfer of

3

component’s data is performed by the Kernel, relieving
the policy from the intricacies of communication.

2.3 The Adaptation Process

The adaptation process in Puppeteer is divided roughly
into three stages: parsing the document to uncover the
structure of the data, fetching selected components at spe-
cific fidelity levels, and updating the application with the
newly fetched data.

When the user opens a (static) document, the Kernel on
the Puppeteer server proxy instantiates an import driver
for the appropriate document type. The import driver
parses the document, extracts its skeleton and data, and
generates a PIF. The Kernel then transfers the document’s
skeleton to the Puppeteer client proxy. The policies run-
ning on the client proxy policy ask the Kernel to fetch
an initial set of components from within the skeleton at a
specified fidelity.

The policies then use the export driver to supply this
set of components to the application as though it had the
full document at its highest level of fidelity. The applica-
tion, believing that it has finished loading the document,
returns control to the user. Meanwhile, Puppeteer knows
that only a fraction of the document has been loaded and
will use the techniques described above to fetch or up-
grade the fidelity of the remaining components.

3 Prototype

We chose to support PowerPoint and IE as the first two ap-
plications for our initial prototype. Besides being widely
popular, these two applications comply with all or most
of the requirements for DMI, parsable file formats, and
tracking mechanism from Section 2.1. Furthermore, Pow-
erPoint and IE have radically different DMIs. By support-
ing both, we are more likely to accurately design the inter-
faces between the Puppeteer Kernel and the component-
specific aspects of the system. Next, we discuss the de-
sign of the drivers, transcoders, and policies that we im-
plemented to adapt these two applications. Table 1 shows
the code line counts for the various modules.

3.1 Drivers

3.1.1 Import drivers

PowerPoint 2000 supports two native file formats: the tra-
ditional binary format based on OLE archives [21, 22],
and a new XML-based format [23]. We choose to base
the PowerPoint import drivers on the XML representa-
tion because it is semantically comparable to the binary
format and the human readable nature of XML makes it

Module Code Lines

Kernel 7996
PPT Import Driver 1114

Export Driver 807
Track Driver 112
Transcoders 392
Policies 287
Total 2712

IE Import Driver 314
Export Driver 347
Track Driver 65
Transcoders 749
Policies 334
Total 1809

Table 1: Codel line counts for Kernel, PowerPoint (PPT)
and IE modules .

easier to parse and manipulate the document. We imple-
mented import drivers for the following component types:
PowerPoint, Slide, Images, Sound, Embedded Objects.

While HTML is straightforward to parse, the introduc-
tion of JavaScript in DHTML [15] has allowed for doc-
uments whose structure can change dynamically. For
DHTML, the import driver intercepts URL requests from
within a page, allowing it to dynamically add new im-
ages and components to a Web page’s skeleton (see Sec-
tion 2.2.2). We implemented import drivers for the fol-
lowing component types: IE, Images.

3.1.2 Export drivers

PowerPoint and IE DMIs are based on the Component
Object Model (COM) [7] and the Object Linking and Em-
bedding (OLE) [8] standards. The interfaces they provide
are reasonably well documented [24, 29] and have tra-
ditionally been used to extend the functionality of third
party applications.

The PowerPoint and IE DMIs provide excellent access
to compose and modify internal data structures. To sup-
port the policies we implemented for this paper the Pow-
erPoint export drivers includes support for opening and
closing presentation, and inserting slides, images and em-
bedded objects. The IE export driver includes support for
navigating to a URL and reloading individual items of a
page.

Powerpoint supports a cut-and-paste interface to update
a presentation. To paste slides into an active PowerPoint
presentation, active, the PowerPoint export driver creates
a new PowerPoint presentation, helper, that consists only
of the slides we want to paste in. The update process has
two stages. In Stage 1, the driver instructs PowerPoint to
load helper. In Stage 2, for every slide in helper, the driver
copies the slide to the clipboard, pastes it into active, and
deletes any earlier version of the same slide from active.

4

To update an object in IE, the IE export driver instructs IE
to reload only the URL associated with the object.

3.1.3 Tracking drivers

PowerPoint’s event notification mechanism is very prim-
itive and encompasses just a handful of large-granularity
events like opening or closing of document, making it in-
adequate for tracking the behavior of the user. The Pow-
erPoint tracking driver relies, instead, on polling the DMI
to determine the slide currently being displayed.

The IE tracking driver uses IE’s rich event mechanism
that allows third-party applications to register call-back
functions for a wide range of events. The driver uses this
interface to detect when the user types a URL, presses the
back or forward buttons, clicks on a link, or moves the
mouse over an image. The former events are used to in-
struct the Kernel to open a new HTML document, while
the latter is used by policies to drive image fetching and fi-
delity refinement (e.g., refine the image currently pointed
by the mouse).

3.2 Transcoders

The above policies use the following transcoders:

1 Slide selector. Creates a virtual presentation consist-
ing of specific slides.

2 OLE selector. PowerPoint stores OLE-based em-
bedded objects in single file. This transcoders cre-
ates a new file that contains only a subset of selected
OLE-based embedded objects.

3 Progressive JPEG. Converts GIF and JPEG images
into Progressive JPEG and back to JPEG.

4 GZIP compressor. Compresses an uncompresses
text and binary data using gzip.

3.3 Policies

This section presents some sample adaptation policies
that illustrate the power of component-based adaptation.
These policies would be difficult to implement in system-
based adaptation, because they affect not only the data
used by the application, but also its control flow. Such
adaptation policies have, to the best of our knowledge,
only been implemented by modifying the application. In
Puppeteer, however, they are implemented by using the
external APIs. As will be demonstrated in Section 6 these
policies also result in significant benefit under limited
bandwidth conditions.

1 PowerPoint: First slide. Fetch only the components
of the first slide at their highest fidelity, and return
control to the user. Fetch the rest of the presentation
in the background.

2 PowerPoint: Prefetch text. Fetch all slides, but
leave out any images and embedded objects. Mon-
itor the user and fetch images and embedded objects
of the slide that has the focus.

3 IE: Incremental rendering. Convert all GIF and
JPEG images in a HTML page into Progressive
JPEG. Load only the first 1/7 of the image, before
returning control to user. Refetch with progressively
higher fidelity the image pointed by the mouse.

3.4 Adding New Functionality

To adapt a new application with Puppeteer we need to im-
plement drivers, policies, and transcoders for each new
component type that is not currently supported by Pup-
peteer. For example, to enable MS Word we need to add
drivers for the Word component type, but we can reuse
the drivers and transcoders for the image and embedded
object component types that we implemented for Power-
Point (Table 1).

While the effort in adding new applications and new
policies is limited by the modular design of Puppeteer, the
lack of standard DMIs, event models, and file formats re-
quires new drivers to be written. Designing such standard
interfaces is part of our ongoing research.

4 Experimental environment

Our experimental platform consists of two Pentium III
500 MHz machines running Windows NT 4.0 that com-
municate via a third PC running the DummyNet network
simulator [28]. This setup allows us to control the band-
width between client and server to emulate various net-
work technologies.

All our experiments access data stored by an
Apache 1.3 Web server. For the experiments where we
measure the latency of loading the documents using the
native application, Apache is the only process running on
the server. For the Puppeteer experiments, the Apache
server and Puppeteer server proxy run on the same ma-
chine.

5 Data sets

We selected the set of PowerPoint documents used in our
experiments from a collection of Microsoft Office docu-
ments that we characterized earlier [10]. The full collec-
tion includes 2167 documents downloaded from 334 Web
sites with sizes ranging from 20 KB to 21 MB.

We obtained our HTML documents by re-executing the
traces of Web client accesses collected and characterized
by Cunha et. al. [9]. These traces include access from
2 user groups made during a period of 7 months from

5

November 1994 through May 1995. These traces have
46,830 unique URLs corresponding to 3026 Web sites.
For every URL that we were able to access (many pages
had either disappeared or were corrupted), we down-
loaded the HTML file and any images referenced by them.
We did not download any documents linked from these
pages. In this manner we acquired 3796 HTML files and
15,329 images, comprising 89 MB of data downloaded
from 1009 sites. Documents ranged in size from a few
bytes to 773 KB, including images.

Because these data sets are so large, transmitting them
at low bandwidth without transcoding would take a pro-
hibitive amount of experimental time. We chose to run our
experiments on just 92 PowerPoint documents and 182
HTML documents to limit the running time of tests. In the
slowest network configuration the selected sets requires
138 minutes for PowerPoint and 55 minutes for HTML
to complete the longest test. For completeness, however,
we ran one test over the full sets of both document types
over a high bandwidth network, verifying that our selected
documents and the full document sets produce similar re-
sults.

For our PowerPoint experiments, we selected 92 doc-
uments by sorting all documents larger that 32 KB into
buckets with sizes increasing by powers of 2. We then
randomly selected 10 documents from each bucket. The
largest bucket, consisting of documents with sizes greater
than 16 MB had only 2 documents. Thus, our experimen-
tal set has 9 � 10 � 2 � 92 members.

For our Web experiments, we selected 182 HTML doc-
uments from the downloaded set by sorting all documents
larger that 4 KB into buckets with sizes increasing by
powers of 2. We then randomly selected 25 documents
from each bucket. The largest bucket, consisting of doc-
uments with sizes greater than 512 KB had only 7 docu-
ments. Thus, our experimental set has 7 � 25 � 7 � 182
members.

6 Experimental results

The fundamental question we want to answer in this sec-
tion is how much overhead we pay for doing the adapta-
tion outside of the application as opposed to by modify-
ing the application. To answer this question in a definitive
way we would need to modify the original applications to
add the adaption behavior that we achieve with Puppeteer,
and compare its performance to the application running
with Puppeteer. This is not possible, since we do not have
access to the source code of the applications. Instead, we
have designed some experiments to measure the various
contributing factors to the Puppeteer overhead.

This overhead consists of two elements: a one-time ini-
tial cost, and a continuing cost. The one-time initial cost

0

10

20

30

40

50

60

70

256 512 1024 2048 4096 8192 16384

Document Size (KB)

O
ve

rh
ea

d
(%

)

10 Mb/sec
1.6 Mb/sec
384 Kb/sec

Figure 3: Percentage overhead of PPT.full over
PPT.native for various document sizes and bandwidths.

consists of the CPU time it takes to parse the document to
extract its skeleton and the network time to transmit the
skeleton and some additional control information. Con-
tinuing costs come from the overhead of the various DMI
commands used to control the application. We assume
that other costs, such as network transmission of applica-
tion data, transcoding, and rendering times are similar for
both implementations.

The remainder of this section is organized as follows.
First, we measure the one-time initial adaptation costs of
Puppeteer. Second, we measure the continuing adaptation
costs. Finally, we present several examples of policies that
significantly reduce user perceived latency.

6.1 Initial Adaptation Costs

6.1.1 Latency breakdown

To determine the one-time initial costs, we compared the
latency of loading PowerPoint and HTML documents in
their entirety using the native application (PPT.native,
IE.native) and the application with Puppeteer support
(PPT.full, IE.original). In the later configuration, Pup-
peteer loads the document’s skeleton and all its compo-
nents at their highest fidelity. This policy represents the
worst possible case as it incurs the overhead of parsing the
document’s skeleton but does not benefit from any adap-
tation.

Figures 3 and 4 show the percentage overhead of
PPT.full and IE.original over PPT.native and IE.native for
a variety of document sizes and bandwidths. Overall,
the Puppeteer overhead varied for PowerPoint documents
from 2% for large documents over 384 Kb/sec to 64% for
small documents over 10 Mb/sec, and for HTML docu-
ments from 4.7% for large documents over 56 Kb/sec. to
305% for small document over 10 Mb/sec.

6

0

50

100

150

200

250

300

350

32 64 128 256 512

Document Size (KB)

O
ve

rh
ea

d
(%

)
10 Mb/sec
384 Kb/sec
56 Kb/sec

Figure 4: Percentage overhead of IE.original over
IE.native for various document sizes and bandwidths.

Cost (ms / component)
Single Additional

Operation Avg Stdev Avg Stdev

Slide (PPT) Stage 1 746 723 417 492
Stage 2 148 96 113 99

Image (IE) Synthetic N/A N/A 29 9
DMI 33 19 32 12

Table 2: Continuing adaptation costs for PowerPoint
(PPT) slides and IE images. The table shows the cost of
executing OLE calls that append PowerPoint slides or up-
grade the fidelity of IE images

These results show that the initial adaptation costs of
Puppeteer are small compared to the total document load-
ing time, for large documents transmitted over medium
and slow network speeds, where adaptation would nor-
mally be used.

Figure 5 plots the data breakdown for PowerPoint and
HTML documents. We divide the data into application
data and Puppeteer overhead, which we further decom-
posed into data transmitted to fetch the skeleton (skele-
ton) and data transmitted to request components (con-
trol). This data confirms the results of Figures 3 and 4.
The Puppeteer data overhead becomes less significant as
document size increases. The data overhead varied for
PowerPoint documents from 2.9% on large documents
to 34% on small documents, and for HTML documents
from 1.3% on large documents to 25% on small docu-
ments. This results, however, represent the worst possi-
ble case in which the policy fetches components individ-
ually. For policies that fetch several components simulta-
neously, Puppeteer batches control messages, incurring in
considerable less overhead.

0%

20%

40%

60%

80%

100%

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4 4 8 16 32 64 12
8

25
6

51
2

PPT IE

Document Size (KB)

N
et

w
or

k
U

sa
ge

skeleton control application

Figure 5: Data breakdowns for loading PowerPoint and
HTML documents.

6.2 Continuing Adaptation Costs

In this section we explore the continuing costs of adapt-
ing using the DMI. It is clear that these costs are policy-
dependent. Our purpose is not to give a comprehensive
analysis of DMI-related adaptation costs, but to show that
these costs are small compared to the network and ren-
dering costs, inherent in the application. We perform two
sample experiments: loading and pasting newly fetched
slides into a PowerPoint presentation, and replacing all the
images of an HTML page with higher fidelity versions. To
prevent network effects from affecting our measurements
we make sure that the data is present locally at the client
before we load it into the application.

We determine the PowerPoint DMI overhead by mea-
suring the time that the PowerPoint export driver spends
loading the new slides, Stage 1, and cutting and pasting,
Stage 2, as described in section 3.1.2. We expect that an
in-application approach to adaptation would have to per-
form Stage 1, but would dispense of Stage 2.

For IE we determine the DMI overhead for upgrad-
ing the images in two different ways: DMI, which uses
DMI to update the images; and Synthetic, which approx-
imates an in-application adaptation approach. Synthetic
measures the time to load and render previously gener-
ated pages that already contain the high fidelity images.
Synthetic is not a perfect imitation of in-application adap-
tation, because it requires IE to re-load and parse the
HTML portion of the page, which an in-application ap-
proach could dispense with. We avoid this problem by
using only pages where the HTML content is very small
(less than 5% of total page size), so that HTML parsing
and rendering costs are minimal.

Table 2 shows the results of these experiments. For
each policy, it shows the cost of updating a single com-
ponent (i.e., one slide or one image) and the additional

7

cost incurred by every extra component that is updated si-
multaneously. For PowerPoint, the table shows the time
in Stage 1 and Stage 2. For IE, the table shows the times
for the DMI and Synthetic implementations.

The PowerPoint results show that the time spent cut-
ting and pasting, Stage 2, is small compared to the time
spent loading slides, Stage 1, which an in-application also
has to do. Moreover, the time spent updating the applica-
tion Stage 1 + Stage 2 is small compared to the network
time. For example, the average network time to load a
slide over the 384 Kb/sec network is 2994 milliseconds,
with a standard deviation of 3943 milliseconds, while the
average time for updating the application with a single
slide is 994 milliseconds, with a standard deviation of 819
milliseconds.

The IE results show that the DMI implementation
comes within 10% of Synthetic. Moreover, image up-
date times are small compared to average network time.
For instance, the average time to load an image over
56 Kb/sec is 565 milli-seconds with a standard deviation
of 635 milli-seconds, compared to updating the applica-
tion which takes on average 33 milliseconds with a stan-
dard deviation of 19 milliseconds.

The above results suggest that the adaptation cost of
DMI calls is small, and that most of the time that it takes
to add or upgrade a component is spent transferring the
data over the network and loading it into the application,
two factors that are expected to be similar whether we im-
plement adaptation outside or within the application.

6.3 Some adaptation policies

We conclude this section by presenting the results, as the
end user would perceive them, of some of the Puppeteer
adaptation policies we have implemented so far (see Sec-
tion 3.3). These results also provide some indication of
the circumstances under which these adaptations are prof-
itable.

6.3.1 Powerpoint: First slide and Prefetch all text

In this experiment we measure the latency for a Pow-
erpoint adaptation policy that loads only the first slide
of a PowerPoint presentation before it returns control to
the user, and afterwards loads the remaining slides in the
background. We also present results for an adaptation pol-
icy that, in addition, fetches all of the text, in the Power-
point document before returning control. With these adap-
tations, user-perceived latency is much reduced compared
to the application policy of loading the entire document
before returning control to the user.

The results of these experiment appear, under the labels
PPT.slide and PPT.prefetch, respectively, in Figures 6, 7,
and 8 for 384 Kb/sec, 1.6 Mb/sec, and 10 Mb/sec net-

0

100000

200000

300000

400000

500000

600000

700000

0 5000 10000 15000 20000

Document Size (KB)

La
te

nc
y

(s
ec

)

PPT.native

PPT.full

PPT.slide

PPT.prefetch

Figure 6: Load latency for PowerPoint documents at
384 Kb/sec. Shown are latencies for native PowerPoint
(PPT.native), and Puppeteer runs for loading all compo-
nents (PPT.full), loading just the components of the first
slide (PPT.slide), and loading the text of all slides in addi-
tion to all the components of the first slide (PPT.prefetch).

0

50000

100000

150000

200000

250000

300000

0 5000 10000 15000 20000

Document Size (KB)

La
te

nc
y

(s
ec

)

PPT.native

PPT.full

PPT.slide

PPT.prefetch

Figure 7: Load latency for PowerPoint documents at 1.6
Mb/sec.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5000 10000 15000 20000

Document Size (KB)

La
te

nc
y

(s
ec

)

PPT.native

PPT.full

PPT.slide

PPT.prefetch

Figure 8: Load latency for PowerPoint documents at 10
Mb/sec.

8

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000

Document Size (KB)

D
oc

um
en

t S
iz

e
(K

B
)

PPT.native

PPT.full

PPT.slide

PPT.prefetch

Figure 9: Data transfered to load PowerPoint documents.

work links. For each document, the figures contain four
vertically aligned points representing the latency or data
measurements in four system configuration: native Pow-
erPoint (PPT.native), and Puppeteer runs that load all the
components of the presentation (PPT.full), only the com-
ponents of the first slide (PPT.slide), and the first slide and
the text for all remaining slides (PPT.prefetch). We chose
these particular bandwidths because they capture the tran-
sition from the application being network-bound to being
CPU-bound. Figure 9 shows the data transfered in each of
the four scenarios.

While we expected that reduced network traffic
would improve latency with the slower 384 Kb/sec and
1.6 Mb/sec networks, the savings over the 10 Mb/sec
network came as a surprise. While Puppeteer achieves
most of its savings in the 384 Kb/sec and 1.6 Mb/sec
networks by reducing network traffic, the transmission
times over the 10 Mb/sec are too small to account for
the savings. The savings result, instead, from reducing
the initial parsing/rendering time. On average, PPT.slide
achieves latency reductions of 86%, 78%, and 62% for
documents larger than 1 MB on 384 Kb/sec, 1.6 Mb/sec,
and 10 Mb/sec, respectively. The data in Figure 9 also
shows that, for large documents, it is possible to return
control to the user after loading just a small fraction of the
total document’s data (about 4.5% for documents larger
than 3 MB).

When comparing the data points of the PPT.prefetch
run to PPT.slide, we see that the latency has moved up
only slightly. The latency is still significantly lower than
for PPT.native, achieving savings in averages of 75%,
72%, and 54% for documents larger than 1 MB over
384 Kb/sec, 1.6 Mb/sec, and 10 Mb/sec, respectively.
Moreover, the increase in the amount of data transfered,
especially for documents larger than 4 MB, is small,
amounting to only an extra 6.4% above original document

0

20

40

60

80

100

120

140

0 200 400 600 800

Document Size (KB)

La
te

nc
y

(s
ec

)

IE.native

IE.original

IE.imagtrans

IE.fulltrans

Figure 10: Load latency for HTML documents at 56
Kb/sec. Shown are latencies for native IE (IE.native),
and Puppeteer runs that load all images at original fidelity
(IE.original), load only the first 1

�
7 bytes of transcoded

images (IE.imagtrans), load transcoded images and text
(IE.fulltrans).

0

5

10

15

20

25

0 200 400 600 800

Document Size (KB)

La
te

nc
y

(s
ec

)

IE.native

IE.original

IE.imagtrans

IE.fulltrans

Figure 11: Load latency for HTML documents at 384
Kb/sec.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800

Document Size (KB)

La
te

nc
y

(s
ec

)

IE.native

IE.original

IE.imagtrans

Figure 12: Load latency for HTML documents at 10
Mb/sec.

9

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800

Document Size (KB)

D
oc

um
en

t S
iz

e
(K

B
)

IE.native

IE.original

IE.imagtrans

IE.fulltrans

Figure 13: Data transfered to load HTML documents.

size. These results are consistent with our earlier findings
of [10] where text accounted for a small fraction of the
total data in large PowerPoint documents. These results
suggest that text should be prefetched in almost all situ-
ations and that the lazy fetching of components is more
appropriate for the larger image and OLE embedded ob-
jects that appear in the documents.

Finally, an interesting characteristic of the figures is the
large variation in user-perceived latency at high network
speeds and the alignment of data points into lines as the
network speed decreases. The high variability over high
network speeds results from the experiment being CPU-
bound. Under these conditions, user-perceived latency is
mostly dependent on the time that it takes PowerPoint to
parse and render the presentation. For PowerPoint, this
time is not only dependent on the size of the presentation,
but is also a function of the number of components (such
as slides, images, or embedded object) in the presentation.

6.3.2 IE: JPEG compression

In this experiment we explore the use of lossy JPEG com-
pression and progressive JPEG technology to reduce user
perceived latency for HTML pages. Our goal is to reduce
the time required to render a full version of the page by
lowering the fidelity of some of the page’s elements.

Our prototype converts, at run time, GIF and JPEG im-
ages embedded in the HTML document into progressive
JPEG format1 using the PBMPlus [27] and Independent
JPEG Group [2] libraries. We then transfer only the first
1

�
7th of the resulting image’s bytes. In the client we con-

vert the low fidelity progressive JPEG back into normal
JPEG format and supply it to the browser as though it

1A useful property of a progressive image format, such as progressive
JPEG, is that any prefix of the file for an image results in a complete,
albeit lower quality, rendering of the image. As the prefix increases in
length and approaches the full image file, the image quality approaches
its maximum.

comprised the image at its highest fidelity. Finally, the
prototype only transcodes images that are greater than a
user specified size threshold. The results reported in this
paper reflect a threshold size of 8 KB, below which it be-
comes cheaper to simply transmit an image rather than run
the transcoder.

Figures 10, 11, and 12 show the latency for load-
ing the HTML documents over 56 Kb/sec, 384 Kb/sec,
and 10 Mb/sec network links. We have again chosen
these bandwidths to illustrate the transition from the ap-
plication being network-bound to CPU-bound. Figure 13
shows the data transfered to load the documents. The fig-
ures show latencies for native IE (IE.native), and for Pup-
peteer runs that load all the images at their original fidelity
(IE.original), load only the first 1

�
7 bytes of transcoded

images (IE.imagtrans), and load transcoded images and
gzip-compressed text (IE.fulltrans).

IE.imagtrans shows that on 10 Mb/sec networks,
transcoding is always detrimental to performance. In
contrast, on 56 KB/sec and 384 KB/sec networks, Pup-
peteer achieves average reduction in latency for docu-
ments larger than 128 KB of 59% and 35% for 56 KB/sec
and 384 KB/sec, respectively. A closer examination re-
vealed that roughly 2

�
3 of the documents see some la-

tency reduction. The remaining 1
�
3 of the documents,

those seeing little improvement from transcoding, are
composed mostly of formated HTML text and have lit-
tle or no image content. To reduce the latency of these
documents we added gzip text compression to the proto-
type. The IE.fulltrans run shows that with image and text
transcoding, Puppeteer achieves average reductions in la-
tency for all documents larger than 128 KB, at 56 KB/sec
and 384 KB/sec, of 76% and 50%, respectively.

Overall transcoding time took between 11.5% to less
than 1% of execution time. Moreover, since Puppeteer
overlaps image transcoding with data transmission, the
overall effect on execution time diminishes as network
speed decreases.

As with PowerPoint, we notice in the figures for IE that
for low bandwidths the data points tend to fall in a straight
line, while for higher bandwidths the data points become
more dispersed. The reason is the same as for Powerpoint:
At high bandwidths the experiment becomes CPU-bound
and governed by the time it takes IE to parse and render
the page. For IE, parsing and rendering time depends on
the content types in the HTML document.

6.3.3 IE: Incremental rendering

In this section we extend the IE.fulltrans method ex-
plained in Section 6.3.2 by incrementally increasing the
fidelity of the images displayed by the browser. This ex-
periment comprises a significant departure from the origi-
nal browser policy that loads single images incrementally,

10

 A

 B

 C

0

20

40

60

80

100

120

140

160

0 200 400 600 800

Document Size (KB)

La
te

nc
y

(s
ec

)
IE.low

IE.medium

IE.high

Figure 14: Incremental rendering of HTML documents at
56Kb/sec.

but fetches images in order, with at most four images be-
ing loaded at one time. Instead, Puppeteer loads all im-
ages at their lowest fidelity first and only then begins to
increase image fidelity level.

In this experiment we assume that images have 3 fi-
delity levels, which we will refer to as IE.low, IE.medium,
and IE.high. We chose these levels to correspond to the
first 1

�
7, next 2

�
7, and last 4

�
7 of the bytes in the pro-

gressive JPEG representation. For GIF images, we first
convert them to JPEG. IE.low and IE.medium are then the
same as above. For IE.high, however, we transmit the
original GIF image. This will support GIF features not
present in JPEG, such as animations and transparency.

Figure 14 shows the results of this experiment for load-
ing the HTML document at 56 Kb/sec . For every doc-
ument, it displays three aligned points with the latency
required to load the document at its lowest fidelity (e.g.,
point A in the plot) and then refined twice (e.g., point B
and C). The median time to load all images in a docu-
ment for documents larger than 128 KB at IE.low fidelity
was 7.22 seconds. Increasing the fidelity to IE.medium
and IE.high required and addition median time of 3.68 and
22.48 seconds, respectively.

7 Related work

Much work has gone into extending the system architec-
ture to better support mobile clients [20] and to creat-
ing programming models that incorporate adaptation into
the design of the application [16]. The project that most
closely relates to Puppeteer is Odyssey [26], which splits
the responsibility for adaptation between the application
and the system. Puppeteer takes a similar approach, push-
ing common adaptation tasks into the system infrastruc-
ture and leaving the application-specific aspect of adap-

tation to application drivers. The main difference be-
tween the two systems lays in Puppeteer’s use of existing
run-time interfaces to adapt existing applications, whereas
Odyssey requires applications to be modified to work with
it.

Visual Proxies [32], an offspring of Odyssey, imple-
ments application specific adaptation policies without
modifying the application using interposition between the
X-server and the application. While this technique en-
ables many adaptations that are possible with Puppeteer,
it requires much more complicated application drivers.

Another project that uses similar ideas to Puppeteer is
Dynamic Documents [18]. This instrumentation of the
Mosaic Web browser uses Tcl scripts to set the policies
for individual HTML documents. While Puppeteer uses
the external interfaces provided by the application, Dy-
namic Documents use an internal script interpreter in the
browser.

8 Conclusions

We presented the design and measured the effectiveness
of Puppeteer, a system for adapting component-based ap-
plications in mobile environments. Puppeteer implements
adaptation by using the exposed APIs of component-
based applications, enabling application-specific adapta-
tion policies without requiring modifications to the appli-
cation.

We described the architecture of Puppeteer and its im-
plementation. The architecture allows for the modular ad-
dition of new applications, component types, transcoders,
and policies. We demonstrated that complex policies, that
traditionally require significant application modifications,
can be implemented easily and efficiently in Puppeteer.

Puppeteer’s reliance on application specific drivers to
provide tailored adaptation raises the question of porting
new application to the system. While we found the effort
required to be modest, we are developing a set of standard
APIs suitable for adaptation, including facilities for data
manipulation and event registration.

References

[1] GNOME. http://www.gnome.org.
[2] Independent JPEG Group. http://www.ijg.org/.
[3] KDE. http://www.kde.org.
[4] KOffice. http://koffice.kde.org.
[5] StarOffice. http://www.stardivision.

com.
[6] BAGRODIA, R., CHU, W. W., KLEINROCK, L.,

AND POPEK, G. Vision, issues, and architecture for
nomadic computing. IEEE Personal Communica-
tions 2, 6 (Dec. 1995), 14–27.

11

[7] BROCKSCHMIDT, K. Inside OLE. Microsoft Press,
1995.

[8] CHAPPELL, D. Understanding ActiveX and OLE.
Microsoft Press, 1996.

[9] CUNHA, C. R., BESTAVROS, A., AND CROV-
ELLA, M. E. Characteristics of WWW client-based
traces. Tech. Rep. TR-95-010, Boston University,
Apr. 1995.

[10] DE LARA, E., WALLACH, D. S., AND

ZWAENEPOEL, W. Opportunities for band-
width adaptation in Microsoft Office documents.
In Proceedings of the Fourth USENIX Windows
Symposium (Seattle, Washington, Aug. 2000).

[11] DUCHAMP, D. Issues in wireless mobile comput-
ing. In Proceedings of Third Workshop on Worksta-
tion Operating Systems (Key Biscayne, Florida, Apr.
1992), pp. 1–7.

[12] FORMAN, G. H., AND ZAHORJAN, J. The chal-
lenges of mobile computing. IEEE Computer (Apr.
1994), 38–47.

[13] FOX, A., GRIBBLE, S. D., BREWER, E. A., AND

AMIR, E. Adapting to network and client variability
via on-demand dynamic distillation. Sigplan Notices
31, 9 (Sept. 1996), 160–170.

[14] FOX, A., GRIBBLE, S. D., CHAWATHE, Y., AND

BREWER, E. A. Adapting to network and client
variation using infrastructural proxies: Lessons and
perspectives. IEEE Personal Communications 5, 4
(Aug. 1998), 10–19.

[15] GARDNER, D. Beginner’s guide to DHTML.
http://wsabstract.com/howto/dhtmlguide.shtml.

[16] JOSEPH, A. D., DELESPINASSE, A. F., TAUBER,
J. A., GIFFORD, D. K., AND KAASHOEK, M. F.
Rover: a toolkit for mobile information access. In
Proceedings of the 15th ACM Symposium on Oper-
ating Systems Principles (SOSP ’95) (Copper Moun-
tain Resort, Colorado, Dec. 1995), pp. 156–171.

[17] JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK,
M. F. Building reliable mobile-aware applications
using the Rover toolkit. In Proceedings of the
2nd ACM International Conference on Mobile Com-
puting and Networking (MobiCom ’96) (Rye, New
York, Nov. 1996).

[18] KAASHOEK, M. F., PINCKNEY, T., AND TAUBER,
J. A. Dynamic documents: mobile wireless access
to the WWW. In Proceedings of the Workshop on
Mobile Computing Systems and Applications (WM-
CSA ’94) (Santa Cruz, California, Dec. 1994), IEEE
Computer Society, pp. 179–184.

[19] KATZ, R. H. Adaptation and mobility in wireless in-
formation systems. IEEE Personal Communications
1, 1 (1994), 6–17.

[20] KISTLER, J. J., AND SATYANARAYANAN, M. Dis-
connected operation in the Coda file system. ACM

Transactions on Computer Systems 10, 1 (Feb.
1992), 3–25.

[21] MICROSOFT CORPORATION. Microsoft Office
97 Drawing File Format. Redmond, Washing-
ton, 1997. MSDN Online, http://msdn.
microsoft.com.

[22] MICROSOFT CORPORATION. Microsoft PowerPoint
File Format. Redmond, Washington, 1997. MSDN
Online, http://msdn.microsoft.com.

[23] MICROSOFT CORPORATION. Microsoft Office 2000
and HTML. Redmond, Washington, 1999. MSDN
Online, http://msdn.microsoft.com.

[24] MICROSOFT PRESS. Microsoft Office 2000 / Visual
Basic Programmer’s Guide, 1999.

[25] MUMMERT, L. B., EBLING, M. R., AND SATYA-
NARAYANAN, M. Exploiting weak connectivity for
mobile file access. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (Cop-
per Mountain Resort, Colorado, Dec. 1995).

[26] NOBLE, B. D., SATYANARAYANAN, M.,
NARAYANAN, D., TILTON, J. E., FLINN, J.,
AND WALKER, K. R. Agile application-aware
adaptation for mobility. Operating Systems Review
(ACM) 51, 5 (Dec. 1997), 276–287.

[27] POSKANZER, J. PBMPLUS.
http://www.acme.com/software/pbmplus.

[28] RIZZO, L. DummyNet: a simple approach to the
evaluation of network protocols. ACM Computer
Communication Review (Jan. 1997).

[29] ROBERTS, S. Programming Microsoft Internet Ex-
plorer 5. Microsoft Press, 1999.

[30] SATYANARAYANAN, M. Hot topics: Mobile com-
puting. IEEE Computer 26, 9 (Sept. 1993), 81–82.

[31] SATYANARAYANAN, M. Fundamental challenges in
mobile computing. In Fifteenth ACM Symposium on
Principles of Distributed Computing (Philadelphia,
Pennsylvania, May 1996).

[32] SATYANARAYANAN, M., FLINN, J., AND

WALKER, K. R. Visual proxy: Exploiting OS
customizations without application source code.
Operating Systems Review 33, 3 (July 1999).

12

