
Collaboration and DocumentEditing on Bandwidth-Limited Devices

Eyal deLara
�

, RajnishKumar
�

, DanS.Wallach
�

, andWilly Zwaenepoel
�

�

Departmentof ElectricalandComputerEngineering
�

Departmentof ComputerScience
RiceUniversity

Abstract

This paperpresentsthe designof CoFi, a novel archi-
tecturefor supportingdocumenteditingandcollaborative
work over bandwidth-limitedclients. CoFi combinesthe
previously disjoint notionsof consistency andfidelity in
a unified architecture. CoFi enablesbandwidth-limited
clients to edit documentsthat are only partially present
at the client (becausepartsof the documentswere loss-
ily transcoded,or only a portion of the documentwas
fetched),andto propagatemodificationsincrementallyby
progressively increasingtheir fidelity.

1 Intr oduction

Research on mobile computing has made signifi-
cant progressin supporting documentbrowsing over
bandwidth-limiteddevices [1, 2, 3]. Documentediting
andcollaborative work on theseplatforms,however, re-
mainsanopenproblem.

We identify threefactorsthathinderdocumentediting
andcollaborativework overbandwidth-limiteddevices:

1. The techniquesusedby adaptationsystemsto lower
downloadlatencies.Thesesystemsreducenetwork traf-
fic by use of subsettingand versioning. In subsetting
adaptations,only a subsetof thecomponentsof theorigi-
nal document,for examplethe first page,is transferred.
In versioningadaptationssomeof the componentsare
transcodedinto lower fidelity representations,for exam-
ple low-resolutionimages.In eithercase,thedocuments
presentat thebandwidth-limiteddevice areonly partially
loaded,andmaybesignificantlydifferentfrom thedocu-
mentsstoredat theserver. Naively storingusermodifica-
tionstoapartiallyloadeddocumentmayresultin thedele-
tion of componentsthat werenot includedin the subset,
or in thereplacementof high-fidelitycomponentswith the
lower-fidelity versionsavailableat thebandwidth-limited
device (even in caseswherethe userdid not modify the
transcodedcomponents).
2. The potential for large updates. Userscan produce
large multimedia content (e.g., photographs,drawings,

audionotes)thatmayincur longuploadlatenciesover the
bandwidth-limitedlink.
3. Thepossibilityof updateconflictsthatresultfrom the
useof optimisticconsistency models[4, 5], whereclients
modify their local copy of the documentand propagate
theirmodificationswhenthey reconnectto thenetwork.

Despite the above limitations, there is much to be
gainedfrom enablingusersof bandwidth-limiteddevices
to modify partially-loadeddocumentsandto share(even
low-fidelity versionsof) their modificationswith their
peers. For example,a manageraway on a conference,
couldmakechangesto apresentationfor launchinganew
productby loading and editing just the text portionsof
the slides his employeesare working on. Several en-
gineerscollaboratingin inspectinga large facility could
stayawareof each-other’sprogressby addingdigital pho-
tographsof their findingsto a sharedreport. Transcoded
versionsof thesephotographscouldthenbeviewedby the
otherengineers.

This paper introduces CoFi, a unified architecture
that combines the notions of cosistency and fidelity,
and supportsdocumentediting and collaborative work
on bandwidth-limiteddevices. CoFi supportsediting
partially-loadeddocumentsby decomposingdocuments
into theircomponentstructures(e.g.,pages,images,para-
graphs,sounds)and keepingtrack of changesmadeto
eachcomponentby the userand thosethat result from
adaptation. CoFi can then propagatejust user modifi-
cationsto componentspresentwith high-fidelity at the
client, or when the data type allows it, merge (at the
server) user modifications to low-fidelity components
with thehigh-fidelityversionsavailableat theserver.

CoFi enablesuser of bandwidth-limited devices to
sharetheirmodificationsby usingsubsettingandversion-
ing adaptationsto supportpartialandincrementalpropa-
gation of modifications. For example,underlow band-
width conditions,a user can chooseto propagateonly
a portion of the modified components,or can transcode
componentsandpropagatelower-fidelity versions.Later,
on reconnectingover higher-capacitylinks, the usercan
propagatethe remainingcomponentsor upgradethe fi-
delity of componentsthatwerepreviously propagatedto

1

theserver.
Two characteristicsof CoFireducethelikelihoodof up-

dateconflicts. First, CoFi keepstrackof modificationsat
the level of components,insteadof the full documents,
which reducesthesizeof theconsistency unit. Secondly,
theuseof subsettingandversioningencouragesclientsto
propagatemodificationsmore frequently, increasingthe
awarenessthat usershave about the modificationbeing
performedby otherusersandreducingthelikelihoodthat
two userswill inadvertentlymodify thesamecomponent.

Therestof thispaperis organizedasfollows. Section2
presentsthegeneraldesignof CoFi. Section3 discusses
relatedwork. Finally, Section4 concludesthepaperand
discussesfutureplansfor implementation.

2 CoFi

CoFi supportsdocumentediting andcollaborative work
over bandwidth-limiteddevices by decomposingdocu-
mentsinto their componentsstructures(e.g.,pages,im-
ages,paragraphs,sounds),andkeepingtrack of modifi-
cationsto individual componentswith a model that in-
corporatesoptimistic consistency [4, 5] andfidelity. We
basedCoFi on an optimistic consistency modelbecause
we think this is the preferredmode of operation for
bandwidth-limiteddevices. CoFi, however, can be eas-
ily adaptedto operatewith strongerconsistency require-
ments,providedthattheusersarewilling to paythehigher
priceof amorerestrictiveconsistency model.

CoFi allows differentversionsof thesamecomponent,
which we call views, to coexist in differentpartsof the
system.Two viewsmaydiffer becausethey havedifferent
creationtimes,andhencereflectdifferentstagesin thede-
velopmentof thecomponent,or becausethey havediffer-
entfidelity levels. CoFi supportstwo fidelity classes:full
andpartial. For a given creationtime, a componentcan
have only onefull-fidelity view but many partial-fidelity
views. We saythata componentis presentat full fidelity
whenits view containsdatathat is equalto the reference
view (i.e., theoriginalview) of thecomponentfor agiven
stagein the component’s development. Conversely, we
saythata componentis presentwith partial fidelity if its
view waslossily transcodedfrom the component’s refer-
enceview. Fidelity is by naturea type-specificnotion,
andhencetherecanbeatype-specificnumberof different
partial-fidelityviews. CoFi assumes,however, thatall the
views of a componentcanbe arrangedinto a monotoni-
cally increasingorderaccordingto their fidelity, with the
first view having thelowest-possiblefidelity (maybeeven
anemptyview), andthelastbeinga full-fidelity view.

CoFi enablesusersof bandwidth-limiteddevicesto re-
ducethe latency for downloadingcomponentsby load-
ing partial-fidelity views. In a similar manner, userscan
reduceupload time by making available to other user

partial-fidelityviewsof their updates.
In principle, CoFi doesnot assumea predetermined

relationshipbetweensystemnodes. CoFi nodescan be
configuredinto client-server relationshipsor peer-to-peer
groups.For easeof explanation,however, we assumefor
the remainderof this papera systemwith a client-server
configuration.In this configuration,documentsaremade
persistentat the server (or servers in a replicatedimple-
mentation). Clientscancachea subsetof a document’s
component,or even the full document,but it is assumed
thatall clientmodificationswill beeventuallypropagated
to theserver.

Servers operatewith a simple consistency model. A
server alwayshasa consistentview of thecomponentsit
serves,andcanserve both full- andpartial-fidelityviews
of components.Servers acceptnew views only if they
aremorerecentthanthecurrentserver view or they rep-
resentfidelity refinements.Clients by default fetch the
mostrecentandhighest-fidelityview availablefor acom-
ponent.Client can,however, requestolderviews (usually
for conflictresolution),or requestpartial-fidelityviewsby
specifyingtranscodingtransformationfor thecomponent
data.

Thefollowing discussionsfocuson thestatesof a sin-
glecomponentonaclientnode.Wefirst consideramodel
that includesa traditional implementationof optimistic
consistency. We thenextendthis modelto incorporatefi-
delity. While CoFi allowsclientsto cachemultiple views
of a component,the following discussionsrelate to the
mostrecentandhighest-fidelityview of thecomponent.

2.1 Optimistic Consistency

The dark ovals in Figure 1 show the statetransitiondi-
agramfor a componentin a client that supportsan op-
timistic consistency model,but hasno notion of fidelity.
A componentcanbe in oneof five states:Empty, Clean,
Dirty, Obsolete, or Conflict. Transitionsbetweenstates
aremarked with dark arrows andoccurby replacingthe
currentview with a morerecentone(Replace), modify-
ing thecurrentview (Write), pushingmodificationsto the
server (Push), learningaboutthe existenceof a morere-
centview at theserver(New View), or resolvingaconflict
(ClientResolveandServerResolve).

New componentsareinitially placedin theEmptystate,
which reflectsthat the client is awareof the existenceof
thecomponentbut doesnot yet have a view for it. Com-
ponentcreatedby the client, arethenmoved to Dirty to
reflectthattheclient hasdatathatneedsto bepropagated
to the server. Componentsthat exist initially only at the
server transitionto Clean after fetching the most recent
view of the component.If the client modifiesa compo-
nent,its statemovesto Dirty. Thecomponentgoesback
to Cleanby pushingits modificationsbackto the server.
If the client learnsthat the server hasa newer view of

2

Conflict

Dirty

Empty

Clean

Obsolete
Partial

�

Obsolete

Partial
Dirty

�
Partial
Clean

Partial
�

Conflict

Rep
� lace

Partia
l

Write

Push
Write

N
ew

 V
ie

wR
eplace

R
eplace P

artial

C
lien t R

esolve

Write

Upgrad
�

e�

R� ep�

l	 a
 ce P� a
 r� t i� a
 l	

Server Resol
�

ve�

Upgrad
�

e�

R� ep�
l� a� ce

Write
Upgrad

�
e�

Rep

� lac
e

Upgrad
�

e�

Server Resolve
�

M� er� g�

e

N
ew

� V
ie

w

N
ew

 V
ie

w

N
ew

 V
ie

w

Push

Push Partial Push PartialUpgrade Partial

Upgrade Partial

Upgrade PartialUpgrade Partial

Write

Figure1: CoFi statetransitiondiagram.

the component(createdby someotherclient), the com-
ponenttransitionsto Obsoletewhenthe componentwas
not changedat theclient, andto Conflictwhentheclient
editedthe component.A componentin Obsoletetransi-
tions to Cleanby fetchingthe new view availableat the
server. A componentin Obsoletemovesto Conflict if the
clientmodifiesit. To resolveconflicts,thetwo conflicting
views needto be merged. Dependingon the implemen-
tation,merging canbedoneat theclient or at the server.
Whenthe merging happenson the client, the component
movesto Dirty to reflect that the new view needsto be
propagatedto the server. Whenmerging happensat the
server, the componentmoves to Obsoleteto reflect that
theserverhasa morerecentview thantheclient.

2.2 Consistencyand Fidelity

We extend our model to accountfor fidelity by adding
four new statesto the diagramof Figure1. We assume
that the statesdescribedin the lastsectionreflecta com-
ponentwith a full-fidelity view, and that the new states
representa componentwith a partial-fidelity view. We
denotepartial-fidelitystatesby pre-pendingthewordPar-
tial to thestate’s name.In this mannera componentwith
a partial-fidelityview canbein oneof four states:Partial
Clean,Partial Dirty, Partial Obsolete, andPartial Con-
flict. The new stateshave similar meaningto the states
introducedin the previous section. For example, both
the Dirty and Partial Dirty statesreflect that a compo-
nent hasdatathat needsto be propagatedto the server.
Thestatesdiffer in that in theformer, theusermodifieda
full-fidelity view, while in thelattershemodifiedapartial-
fidelity view.

Weextendthemodelwith fivenew transitions:Replace
Partial, Upgrade, Upgrade Partial, Push Partial, and
Merge. Wedenotethesetransitionsin Figure1 with dotted
lines. A componenttransitionsinto a partial-fidelitystate

by fetching a partial-fidelity versionof the most recent
view (i.e.,ReplacePartial). For example,a componentin
Obsoletetransitionsto Partial Cleanby fetchinganup to
datepartial-fidelityview. A componenttransitionsfrom a
partial-fidelitystateto a full-fidelity stateby oneof three
ways: It canupgradeits view with a full-fidelity refine-
ment (i.e., Upgrade); or replaceits view with a more-
recentfull-fidelity view (i.e.,Replace); or it canoverwrite
theserver view with its modificationsto a partial-fidelity
view (i.e., Push), effectively makingtheclient’s view the
up to datefull-fidelity view. For example,a component
in Partial Clean transitionsto Cleanby fetchingrefine-
mentsto upgradeits view to full fidelity. A componentin
a partial-fidelitystatecanimprove thefidelity of its view
(without reachingfull fidelity) by fetchingpartial-fidelity
improvements(i.e.,UpgradePartial). For example,auser
modifying a partial-fidelity image(componentis Partial
Dirty) canfetchfidelity refinementsandmergethemwith
his modifications. This, of course,assumesthat the ap-
plicationcansafelymergetheusermodificationswith the
refinementimprovements.Finally, CoFi enablespushing
partial-fidelityviewsof modifiedcomponents.For exam-
ple,ausercanpushapartial-fidelityview of adigital pho-
tographacquiredat the client (i.e., componentin Dirty
state). The componentwill remainin Dirty until a full
fidelity view is pushedto the server (or we detecta con-
flict).

Partial Dirty is a particularly interestingstate. While
the view fetchedform the server is partial fidelity, the
modificationmadeby the client are full fidelity. CoFi
supportsthreemethodsfor propagatingthesemodifica-
tions. First, the client canset its view as the up to date
full-fidelity view, replacingthe server view (i.e., Push),
and transitioningto Clean. Second,the client can ask
theserver to mergethefull-fidelity modificationswith the
server full-fidelity view (i.e., Merge). A Merge createsa
new view on theserver, andthe client transitionsto Par-

3

tial Obsoleteto reflectthat a more-recentview exists on
theserver. Third, theclientcanpropagateapartial-fidelity
view of themodifications(i.e.,PushPartial).

CoFi supportsconflict resolution for componentsin
partial-fidelity statesat both the client and the server.
Resolvingconflicts on the client requiresfetching full-
fidelity versionsof the conflicting views, which hasthe
effect of transitioningfrom Partial Conflict to Conflict.
Conflict resolutionthenoccursasdescribedin Section2.1
andthecomponenttransitionsto Dirty. For server-based
resolution,a full-fidelity versionof the modificationsis
transferedto theserver, whereit is mergedwith thecon-
flicting view. The componentin the client transitionsto
Partial Obsoleteto reflect that the server hasa morere-
centview.

2.3 Implementation Considerations

TheCoFiarchitecturepresentedin theprevioussectional-
lows for severalpossibleimplementations.Onepossibil-
ity is to write or modify applicationsto implementCoFi
natively. An alternative is to implementCoFi in anadap-
tation system. We believe that the later is a more prof-
itableproposition.Mostpartsof theCoFiarchitectureare
boundto be commonfor most applications. By imple-
mentingCoFi aspartof thegeneraladaptationinfrastruc-
turewegetto leveragethecodingeffort acrossawiderset
of applications.

CoFi does not assumea predeterminedmethod for
propagatingmodificationsbetweennodesandcansupport
implementationsbasedon datashipping,operationship-
ping,or a combinationof dataandoperationshipping.

3 RelatedWork

While severaladaptationsystems[1, 2, 3] usesubsetting
andversioningto reducedocumentdownloadtime, to the
bestof ourknowledge,CoFi is thefirst to provideadapta-
tion supportfor documenteditingandcollaborativework
overbandwidth-limiteddevices.

Coda[6], Ficus[7], andBayou[8] provide supportfor
documentediting on disconnecteddevices. CoFi differs
from thesepreviousefforts in thatit assumesthatmodifi-
cationspropagationandconflict resolutioncanoccurover
bandwidth-limitedconnectionsanddonothaveto wait for
thedevice to bestronglyconnected.

Several efforts on collaborative applications(e.g.,Al-
liance[9] andDuplex [10]) haveusedthedocumentscom-
ponentstructureto reduceconflictsandlimit theamount
of datathatneedto bepresentat thedevice. Theseefforts,
however, do notallow thepropagationof low fidelity ver-
sionsof modifications.MASSIVE-3 [11] usestranscod-
ing to reducedatatraffic necessaryto keepusersof a col-
laborative virtual world awareof eachother. MASSIVE-

3, however, implementsa pessimisticsingle-writercon-
sistency model.

4 Conclusionsand Futur e Work

We describedCoFi, a novel architecturefor supporting
documentediting andcollaborative work on bandwidth-
limited devices. CoFi supportsediting partially-loaded
documentsby decomposingdocumentsinto their compo-
nentsstructures(e.g.,pages,images,paragraphs,sounds)
and keeping track of changesmade by the user and
thosethat result from adaptation. CoFi enablesusers
of bandwidth-limiteddevicesto sharetheir modifications
by usingsubsettingandversioningadaptationsto support
partialandincrementalpropagationof modifications.

In futurework, we planto implementCoFi in thePup-
peteeradaptationsystem[1].

References
[1] E. de Lara, D. S. Wallach, and W. Zwaenepoel,“Puppeteer:

Component-basedadaptationfor mobilecomputing,” in Proceed-
ingsof the3rd USENIXSymposiumon InternetTechnologiesand
Systems, (SanFrancisco,California),Mar. 2001.

[2] A. Fox, S. D. Gribble, E. A. Brewer, andE. Amir, “Adapting to
network andclientvariability viaon-demanddynamicdistillation,”
SIGPLANNotices, vol. 31,pp.160–170,Sept.1996.

[3] B. D. Noble, M. Satyanarayanan,D. Narayanan,J. E. Tilton,
J. Flinn, and K. R. Walker, “Agile application-aware adaptation
for mobility,” OperatingSystemsReview (ACM), vol. 51,pp.276–
287,Dec.1997.

[4] J. J. Kistler andM. Satyanarayanan,“Disconnectedoperationin
the Codafile system,” ACM Transactionson ComputerSystems,
vol. 10,pp.3–25,Feb. 1992.

[5] G. J. Popek,R. G. Guy, T. W. Page,Jr., and J. S. Heidemann,
“Replication in Ficus distributed file systems,” in Proceedings
of the Workshopon Managementof ReplicatedData, (Houston,
Texas),pp.20–25,Nov. 1990.

[6] P. KumarandM. Satyanarayanan,“Flexible andsaferesolutionof
file conflicts,” in Proceedingsof theUSENIXWinter 1995Techni-
cal Conference, (New Orleans,Louisiana),Jan.1995.

[7] P. Reiher, J. Heidemann,D. Ratner, G. Skenner, and G. Popek,
“Resolving file conflicts in the Ficus file system,” in Proceed-
ingsof theSummerUSENIXConference, (Boston,Massachusetts),
pp.183–195,June1994.

[8] D. B. Terry, M. M. Theimer, K. Petersen,A. J.Demers,M. J.Spre-
itzer, andC. H. Hauser, “Managingupdateconflicts in Bayou,a
weakly connectedreplicatedstoragesystem,” in Proceedingsof
the FifteenthACM Symposiumon Operating SystemPrinciples,
(CooperMountain,Colorado),pp.172–183,Dec.1995.

[9] D. Decouchant,V. Quint, andM. R. Salcedo,“Structuredcoop-
erative authoringon theWorld Wide Web,” in Proceedingsof the
Fourth InternationalWorld Wide WebConference, (Boston,Mas-
sachusetts),Dec.1995.

[10] F. Pacull, A. Sandoz,andA. Schiper, “Duplex: A distributedcol-
laborative editing environmentin large scale,” in Proceedingsof
the ACM Conferenceon ComputerSupportedCooperative Work
(CSCW), (ChapelHill, NorthCarolina),pp.165–173,Oct.1994.

[11] C. Greenhalgh,J. Purbrick,andD. Snowdon, “Inside Massive-3:
Flexible supportfor dataconsistency and world structuring,” in
Proceedingsof theThird InternationalConferenceon Collabora-
tive Virtual Environments, (SanFrancisco,California),September
2000.

4

