
PageTailor: Reusable End-User Customization
for the Mobile Web

Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N. Truong and Eyal de Lara
Department of Computer Science, University of Toronto

Toronto, Canada
{nilton, ronda, iq, khai, delara}@cs.toronto.edu

ABSTRACT
Most pages on the Web are designed for the desktop en-
vironment and render poorly on the small screens available
on handheld devices. We introduce Reusable End-User Cus-
tomization (REUC), a technique that lets end users adapt
the layout of Web pages by removing, resizing and mov-
ing page elements. REUC records the user’s customizations
and automatically reapplies them on subsequent visits to the
same page or to other, similar pages, on the same Web site.
We present PageTailor, a REUC prototype based on the Mi-
nimo Web browser that runs on Windows Mobile PDAs. We
show that users can utilize PageTailor to adapt sophisticated
Web sites, such as Amazon, BBC and MSN, for browsing on
a PDA. Moreover, the customizations remain effective for up
to a year, even as the content of pages is updated, and can
be reused across similar pages, limiting the customization
effort required to browse a site.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcom-
puters—Portable devices; H.4.3 [Information Systems Ap-
plications]: Communications Applications—Information
browsers; H.5.4 [Information Interfaces And Presenta-
tion]: Hypertext/Hypermedia—User issues

General Terms
Algorithms, Human Factors, Performance, Experimentation

Keywords
Mobile Web, Customization, End-User, Small Screen

1. INTRODUCTION
Today, browsing the Web on a handheld device, such as a

smart phone or a PDA, is an unpleasant experience [20, 21].
Most Web sites are designed for the desktop environment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’07, June 11–13, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

and render poorly on the small screens available on hand-
held devices. For example, figures 1(a) and 1(b) show the
homepage of the BBC Web site as it renders on a desktop
computer and a PDA, respectively. The limited screen size
of the PDA causes significant frustration to users as they
have to perform considerable scrolling to locate items of in-
terest on the page or may find it difficult to see content that
has been reduced in size.

Some content providers support handheld devices with
technologies such as WML [34] and cHTML [36], where ei-
ther device-specific or low quality versions of pages are hand-
crafted for display on small screens. Unfortunately, these ap-
proaches incur significant overhead as they require content
providers to maintain multiple versions of their content to
support a plethora of devices. As a result, adoption of these
techniques has been limited to a small set of high-traffic Web
sites that can afford the high cost of hand-tailoring content
for mobile clients; and even then, support is limited to a few
popular devices and content is updated at a lower frequency
than the desktop version of the Web site.

This paper introduces Reusable End-User Customization
(REUC 1), a technique that lets end users adapt the layout
of Web pages to the limited screen size of handheld devices.
REUC lets users remove, resize or move Web page elements
as part of their normal browsing activity. REUC records the
user’s customizations and automatically reapplies them on
subsequent visits to the same page or to other, similar pages,
on the same Web site. REUC supports even pages with
content that is updated regularly, such as in Web portals
and news sites, and requires users to customize only a small
number of pages in order to browse an entire site.

REUC takes advantage of the observation that content
in commercial Web sites tends to be generated from tem-
plates that do not change very often. Content providers
have strong incentives for keeping the structure of their Web
pages consistent because stable page layout provides for a fa-
miliar user experience and promotes Web site branding [18].

We describe PageTailor, a REUC prototype that runs on
Windows Mobile PDAs. We implemented PageTailor as a
plugin for Minimo, the mobile version of the popular Firefox
Web browser. PageTailor is fully self-contained and executes
stand alone on the PDA. It supports dynamic Web pages
with rich JavaScript functionality, as well as pages with con-
tent that is updated regularly. PageTailor allows users to
customize a page incrementally, over multiple sessions, and
can reapply user customizations across pages of the same
site. Figure 1(c) shows a version of the BBC homepage that

1Pronounced reuse.

was customized with PageTailor by a user interested in news
headlines.

Results from controlled experiments conducted with Page-
Tailor show that users are able to successfully customize so-
phisticated Web pages from five real-world sites: Amazon,
BBC, MSN, eBay, and Flickr. For a large majority of par-
ticipants in our experiments, PageTailor successfully reap-
plies the users’ customizations for at least a month, and in
some cases for over a year. Moreover, PageTailor succeeds
in reapplying the users’ customizations to at least 75% of
other pages which serve the same function in the site. On
average, users take 10 minutes to customize a page; a time
commitment that participants in our experiments deemed
acceptable for customizations that can be reused.

This paper makes four contributions: (i) it describes REUC
a technique that lets end users adapt the layout of Web
pages to the limited screen size of handheld devices; (ii) it
describes PageTailor, a PDA-based REUC prototype which
demonstrates that end-user customization of Web pages is
feasible for popular Internet sites using existing hardware
and software; (iii) it shows that even for the case of pages
with content that changes over time, page layout is stable
enough to support the reapplication of end-user customiza-
tions for a period of a month or longer; and (iv) it shows
that end-user customizations can be successfully reapplied
across pages in the same Web site, thus limiting the number
of pages that a user has to manually customize in order to
browse the site.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces Reusable End-User Customization as a
technique to adapt Web pages for mobile devices. Sec-
tion 3 describes PageTailor a prototype REUC implementa-
tion that runs on a PDA. Section 4 describes the controlled
experiments we conducted to evaluate PageTailor, and Sec-
tion 5 presents the results of this evaluation. Section 6 dis-
cusses related work, and Section 7 concludes the paper.

2. REUSABLE END-USER
CUSTOMIZATION

We introduce Reusable End-User Customization (REUC),
a technique that allows end users to adapt the layout of
Web pages originally designed for the desktop, to the limited
screen size of handheld devices, such as smart phones and
PDAs. In our technique, users customize Web pages on the
mobile device itself, using the same view of the content they
use for regular browsing, by directly manipulating graphical
objects on the screen to move, remove or resize elements
on the page. Under the covers, REUC translates the user’s
customizations into operations that mutate the structure of
the Document Object Model (DOM) [37] of the Web page
being adapted. Thus, users do not require programming
experience nor need to be familiar with the page’s intimate
structure in order to customize it.

The content and layout of modern Web pages is controlled
by a combination of HTML, CSS [35], and client-side scripts
mostly written in JavaScript. Typically, the browser first
renders the static portion of the page based on the HTML
and CSS descriptions, generating a DOM representation of
the page, and then executes any associated JavaScript code
which can dynamically add or reformat page elements. Cus-
tomizations in REUC are done after the page has been fully
rendered by the browser. This approach lets REUC sup-

(a)

(b) (c)

Figure 1: The BBC page as rendered on 1(a) a desk-
top and 1(b) a PDA. The same page is shown in 1(c)
after it has been customized with PageTailor.

port modern commercial Web sites that include sophisti-
cated Web pages whose content is increasingly being con-
trolled by JavaScript.

Because REUC requires user intervention, users are un-
likely to benefit much while they are actively involved in
customizing a Web page, as customization requires them to
perform additional activities that are not directly related to
their main purpose for visiting the page (e.g., restructuring
a news article and then reading it is likely to require more
effort than just reading the article). Instead, users benefit
from their customizations when these customizations are au-
tomatically reapplied on subsequent visits to the same page
or to other similar pages. We expect that REUC will be
most beneficial in support of frequent tasks that involve re-
peated visits to the same Web sites or pages (e.g., reading
news from our favorite site, going over the list of new Jazz
CD releases, checking the weather forecast for city where
we live). Conversely, REUC may be less applicable in the

case of arbitrary Web browsing involving unique visits to a
random set of Web pages.

REUC succeeds in reapplying customizations across dif-
ferent pages in a Web site, and on different versions of a dy-
namically generated page (i.e., versions of Toronto’s weather
forecast page for different days), because the content in com-
mercial Web sites tends to be generated from a small number
of templates that serve as the basis for a much larger set of
pages. Moreover, these templates do not change very often
as content providers have strong incentives for keeping the
structure of their Web pages consistent. Thus, whereas the
content of a given page may change frequently, the structure
of the page tends to remain stable. REUC allows users to
customize a Web page incrementally over multiple sessions,
and reapplies these customizations in sequence, on future
visits to the page.

Notwithstanding, reapplying modifications to different ver-
sions of a page or across pages of a Web site is far from
trivial as even small modifications can significantly affect a
Web page’s DOM representation, and content providers do
make changes to their pages from time to time, e.g., adding
a new banner image to advertise items on sale. The re-
mainder of the section discusses the techniques that REUC
uses to reliably reuse customizations over different versions
of a page and across different pages. In the discussion, we
use the following terms to describe REUC and evaluate the
performance of the techniques presented. An operation is
a single adaptation instruction performed by the user to an
object (e.g. increasing the dimensions of an image once). A
customization is a sequence of operations performed by the
user to a single Web page in one session. Success rate is the
fraction of operations from a customization which apply to a
given page. Success rate indicates how well REUC is able to
locate Web page objects and reapply the user’s operations.
For example, a 70% success rate for a Web page indicates
that REUC is only able to locate objects required to perform
70% of the operations in a customization. A customization
applies successfully to a page if applying the customization
to the page generates a layout equivalent to that obtained
when the user initially created the customization, and its
application is beneficial to the user.

2.1 Reuse on the Same Page
REUC groups operations performed by the user on a given

Web page into a customization, and associates the customiza-
tion with the page’s URL. For every operation, REUC records
its type (e.g., move, remove, resize) and the page objects to
which it is applied. On subsequent visits to a URL, REUC
recovers all associated customizations from permanent stor-
age and attempts to reapply them to the page.

There are several possible approaches for identifying the
object to which an operation should be applied. First, we
discuss simple approaches and explain why they are ineffec-
tive. Then, we detail two optimizations that REUC uses.

One option for locating an object that is conceptually
straightforward involves keeping track of object identifiers
(IDs) during the initial customization. To locate an object
on later visits, the system can query objects by their IDs.
Although all HTML tags have a predefined ID attribute,
this technique does not work well in practice because Web
designers rarely provide identifiers to objects. Moreover, if
designers were to make use of IDs, then supporting reusable
customizations would require that such IDs are unique and

are employed consistently over time, such that they always
refer to the same content or replacement thereof, as the con-
tent of the Web page changes.

Instead, REUC records for each operation the path from
the root of the DOM tree to the object that is the target
of the operation. This approach is robust to replacement
of content, as the path will point to the correct location,
where the new content now appears. Reuse of customiza-
tions on subsequent visits to a page involve traversing the
DOM tree as specified by the instruction path of each oper-
ation, and applying the specified operations. Unfortunately,
this simple approach does not work very well in practice as
changes to the path to an object are common, for example
as new content is added.

For example, Figure 2(a) shows success rates achieved in
reapplying a customization to the Amazon homepage over
time. The customization consists of 13 operations which
were performed by one user on the homepage. The cus-
tomization was obtained from the longevity user study, which
we describe in Section 4. The results labeled simple report
the fraction of operations retained with the simple DOM
traversal approach we described. After 19 days from when
the user made the adaptations, only nine (70%) of those
adaptations are retained. The failures to accurately apply
user operations are due to changes to object locations, how-
ever, those objects are still present. Specifically, the simple
approach was unable to locate an account information table
displayed at the bottom of the page, which contains infor-
mation about passwords, shipping, tracking purchases and
product search. On day 19, Amazon had added a disclaimer
regarding their sale of personal and health products. This
disclaimer was placed in a new table immediately before
a form object surrounding the account information table.
The addition impeded the simple approach’s ability to lo-
cate that form object, and subsequently the target table. In
the user’s customization, she moved the account information
table to the top of the page and so, subsequent operations
that depend on the success of this operation, also resulted in
failures. Interestingly, by day 27 the approach is able to ap-
ply all operations again as the disclaimer had been removed
from the page.

2.1.1 Search
To address the false negatives observed with the simple

DOM traversal algorithm, we augment the traversal with a
depth first search. When traversing the DOM tree, as spec-
ified by an instruction path, REUC detects a path change
when it is unable to proceed to the next object it has been
instructed to traverse. In the Amazon example above, a
change in path would be detected when the traversal leads
to the new disclaimer table, instead of the form element
expected. At this point, a search can be performed on
neighbouring objects to the disclaimer table to find alter-
nate paths. In our example, this search would enable REUC
to find the expected form element immediately after the dis-
claimer table, and then proceed with the traversal.

In more complex cases, an expected object can be relo-
cated because another object of similar type is added at its
initial location. For example, instead of adding a disclaimer
table, Amazon could have added another form. In this case
REUC would not detect a failure until after it has traversed
the new form and was unable to locate the target table. In
such cases, when REUC is unable to locate an object at

a given tree level, it backtracks and searches for alternate
paths one level above. The backtracking process can con-
tinue until the root of the document is reached, as long as a
suitable alternate path is not found. This behaviour is de-
sirable since the detection of path changes may be delayed
for several levels. From experiments, we have encountered
pages in which a change in paths occurs at tables near the
document root, however they are not detected for a number
of subsequent traversals.

The above algorithm can, for some objects no longer present
in the page, lead to searches which explore the entire docu-
ment tree. To improve performance, REUC limits the search
space such that at any tree level only the nearest neighbours
to the expected object are searched. Thus, although the
search algorithm described has, in the worst case, a time
complexity O(n), where n represents the number of objects
in the page, on the average case its performance is better.
The benefits of the search over the simple traversal are illus-
trated in Figure 2(a), with the label search. Clearly, search
improves success rates, as can be seen, for example, in day
19. Consequently, false negative rates for this day also drop
considerably.

2.1.2 Context
One weakness of the algorithms introduced so far is that

the only mechanisms used to verify that the object located
is in fact one that should be modified are based solely on
the path traversed and the type of the object. Thus, in our
example, if the traversal lead to a table, there is no way of
knowing that this is in fact the account information table.
In fact, for day 19, one operation applied to the page with
the traversal algorithm augmented with search was a false
positive, as can be seen in Figure 2(c). A false positive is
the application of an operation to an incorrect object. In her
initial customization, the user removed a section of the page
showing a featured product of the day. In the reapplication,
REUC removed instead a different section which presents
ongoing sales. We enhance the algorithm by ensuring that
whenever a search is performed REUC uses context infor-
mation about the object located to determine whether it is
in fact the target of the operation. This context includes
information about the number and types of child objects, as
well as type information about the target’s parents.

Figure 2 shows that augmenting the DOM traversal with
both search and context achieves very low false negatives
while maintaining little or no false positives. In Figure 2(c),
for example no false positives are reported with search +
context for day 19. In fact, very few false positives are re-
ported over the course of the 270 days under this algorithm.

2.2 Reuse on Similar Pages
REUC can apply customizations to pages that are similar

to those initially customized by the user. We next discuss
how REUC identifies which customizations apply to a new
page.

2.2.1 General Comparison of Document Structure
One possibility is to treat the problem of matching Web

pages to customizations as that of clustering documents pro-
duced from the same template. Once we know that a new
document originates from the same template as one the user
customized, we can apply customizations made to the earlier
document onto the new one. Clustering of structured docu-

(a) Success Rate

(b) False Negatives

(c) False Positives

Figure 2: Performance of object location algorithms.
The figure shows that search and context improve
success rates when reapplying customizations to a
Web page over time.

ments is a problem addressed in the information science and
information retrieval literature. By treating Web pages as
trees, we can take advantage of well known algorithms that
compute tree edit distances, the minimal cost to transform
one tree into another [12, 13, 10, 6, 38, 33]. The fastest
of these operate with time complexity O(n1n2), where n1

and n2 represent the number of objects in each document.
We have experimented with one fast algorithm, described in
[12], and found it to consistently require several minutes to
compare two average sized pages of nearly 1200 objects on a
reasonably powerful desktop computer. On a mobile device
this translates to tens of minutes. Moreover, the space com-
plexity of the algorithm is also high as it builds matrices of
size n1n2.

It is clear that such algorithms would not work well in
this context, as users cannot be expected to wait for tens of
minutes before they are told that no customizations apply
to the page on screen. The challenge with these algorithms
(in the context of our application) is their generality. They
take into consideration an entire document, rather than the
parts which are of interest for the customization, and this is
time consuming.

2.2.2 Customization-Based Structural Analysis
Instead of comparing documents for the purpose of recog-

nition, it is more efficient to compare a page against the
instruction paths specified in the customization operations.
In this approach, we determine the success rate of a cus-
tomization on the new page. If the success rate exceeds
a certain threshold, then the customization is considered
successful for that page. The success rate cannot be deter-
mined statically, as customization operations may depend
on the successful execution of other, non-idempotent op-
erations. For example, one operation may depend on the
relocation of an object by previous operations, and we can-
not determine whether such operation applies to the page
without executing all preceding operations on which it de-
pends. Thus, when the user loads a new page, the system
attempts to apply all available customizations using the al-
gorithm described in Section 2.1, and then decide which
customizations should be associated with the page. This
speculative application of customizations is not performed
on the actual page as it would result in a deformed page,
so rather, we test each customization on a shadow copy of
the page’s DOM tree. This shadow is a much lighter version
of the DOM tree as objects only contain the few attributes
needed for customization operations. Only when we iden-
tify successful customizations we apply those directly to the
document. At this point we also associate the URL of the
new page with the customizations so a future visit to the
page does not require an expensive structural analysis, as a
simple comparison of URLs will suffice.

To improve responsiveness, we restrict the recognition pro-
cess to include only customizations associated with the do-
main name for the page. This is a reasonable restriction
given that customizations are likely to be relevant only across
pages that serve similar functions. Moreover, in our expe-
rience the likelihood of finding pages with similar structure
on different sites is minimal.

Employing the full algorithm described earlier when test-
ing customizations onto pages that match poorly can lead to
unnecessary searches which are detrimental to the respon-
siveness of the system. Thus, since REUC only needs an in-

dication of whether it should apply a given customization, it
can employ a restricted version of the search. This algorithm
restricts the number of searches for a given path traversal
such that at most one search is allowed. So, if a search is
performed at a given level of the path, no search is allowed at
subsequent levels. Intuitively, this restriction limits support
to pages in which the overall structure is unchanged, except
that at one level an object may have been moved either by
addition of new objects or removal of old ones. It places
a bound on the search at the expense of success rates: the
algorithm may report higher false negatives (inability to lo-
cate existing elements) than the unrestricted search. As we
discuss in Section 5.5, experimental results indicate that the
restriction on search has only a limited impact on REUC’s
ability to match Web pages to customizations. However, the
improvements in responsiveness are significant, as shown in
Section 5.4.

We determined empirically that at 70% success rate, cus-
tomizations are still beneficial to users, and thus we use this
as a threshold to identify successful customizations. In other
words, we apply a customization to a page if the paths speci-
fied in 70% or more of its operations are present in the page.
Further discussion on how this threshold is determined is
presented in Section 5.3.

2.3 Discussion
Allowing users to modify the layout of Web pages can

have both negative and positive implications for content
providers. On the one hand, if content providers have incen-
tives to control the layout of content, they may not receive
this approach well. As such, providers can change the layout
of their pages frequently to circumvent reuse of customiza-
tions. This is costly, however, and reduces their ability to of-
fer a consistent experience to their users. A possible compro-
mise would be for content providers to tag documents with
meta-data hints that flag portions of the content that should
not be adapted by REUC. On the other hand, providers may
benefit from REUC as this approach may increase traffic to
their site from mobile users that may have otherwise stayed
away, and reduces the cost of supporting multiple devices.
Content providers could also improve REUC performance by
tagging documents with meta-data that identifies the tem-
plates used to generate pages. This support would simplify
the task of recognizing new Web pages, and would not re-
quire much effort from providers. For example, a provider
may add unique IDs to each template they use, which could
then be used by REUC.

3. PAGETAILOR
PageTailor is a prototype implementation of REUC for the

Minimo Web browser, which is a Firefox-based browser that
runs on Windows Mobile PDAs. PageTailor is implemented
as a plugin based on the Mozilla API.

In this implementation, we target PDAs as they readily
provide the processing power needed to accomplish reappli-
cation tasks at reasonably fast speeds. Application of REUC
to smart phones and other mobile platforms is left for future
work.

Figure 3: The PageTailor toolbar on a PDA.

When browsing a Web page, users invoke the PageTai-
lor customization interface through a button on their Web
browser. The interface consists of a toolbar presented at the
bottom of the browser’s window (see Figure 3). The toolbar
provides functionality that allows users to modify the lay-
out of the Web page displayed. Specifically, it has six but-
tons: “Remove”, “Increase”, “Decrease”, “Move, “Undo”
and “Done”. Users make modifications to the layout of the
page by using the stylus to tap on elements, such as images
or text fragments, and then select a button on the toolbar.
The interface also allows for selection of multiple objects by
dragging the stylus pen and tracing a line over the objects.

The PageTailor plugin executes within the environment of
the Web browser and accesses the DOM interface exposed
by the browser’s layout engine. PageTailor also accesses
persistent storage on the device in which it executes to store
and retrieve user customizations.

To customize a Web page, PageTailor operates on the
DOM model according to the user actions, and the lay-
out engine updates the user’s view of the page. When the
user completes a customization session, her customization is
saved to the device’s storage. Each customization is stored
as a file containing a sequence of operations and associated
paths to target objects. PageTailor also maintains an index
file which keeps track of associations between customizations
and Web pages.

To support reuse of customizations when the user loads
a page on the Web browser, the browser passes execution
control to PageTailor after it has rendered the page (gener-
ating its DOM model) and has completed the execution of
scripts. PageTailor then determines if there are customiza-
tions matching the page and applies them. When PageTailor
matches a customization to a new Web page, it generates a
regular expression which matches the new page and all other
pages already associated with the customization and stores
the association of this regular expression with the customiza-
tion on the index file. This mechanism makes reuse of the
customization on future visits to any of the associated pages
fast, as PageTailor need not perform a structural analysis of
the pages.

PageTailor avoids downloading images which have been
removed by the user’s customization by initially prevent-
ing the browser from loading all images, as images are not
needed to generate the required DOM model. It is only af-
ter PageTailor has applied all customizations matching the
page that it triggers the browser to load and display those
images not removed by the user’s customizations.

PageTailor also provides feedback to the user by show-
ing on the browser’s status bar the percentage of operations
that were successfully applied to the page. It also gives
the user the option of undoing the effects of customization
operations, one at a time or all at once. In addition, Page-
Tailor provides an interface that enables users to manually
associate customizations to new pages for cases where the
automatic process fails to do so, or in cases in which the
user wishes to reuse existing customizations on domains that
differ from those on which the customizations were initially
made. With the same interface users can remove customiza-
tions, if they are no longer of benefit.

3.1 Discussion
The current PageTailor prototype is fully self-contained

and executes stand-alone on the PDA. The main advantage

of this approach is that it greatly simplifies the deployment
of PageTailor. Once a user has installed Minimo on their
PDA, by downloading a freely available executable from the
Web, they only have to download and install the PageTai-
lor plugin and they are ready to go. Because the plugin is
written in JavaScript there is no need to compile any code.

The design of PageTailor, however, does not preclude the
use of a server side proxy if one were to be available. The
proxy could be used to offload the permanent storage of
customizations, as well as the computation required to de-
termine the suitability of customizations to Web pages. In
addition, assuming the proper safeguards are put in place
to protect the user’s privacy, the proxy could operate as an
aggregation point that lets users share customizations if so
they choose.

A limitation of PageTailor is that allowing users to move
objects arbitrarily on a page, without regard for the seman-
tics of the underlying structure, makes it possible to break
JavaScript code which addresses objects by path. This dan-
ger is limited, however, as well written JavaScript code ad-
dress objects by IDs rather than paths, since paths can vary
across browser implementations. A similar problem can oc-
cur when a user’s customization moves a submission button
outside the scope of its form. A possible solution to be ex-
plored could be maintaining a shadow copy of the page’s
DOM which maps original paths to new ones.

4. EXPERIMENTS
We conducted two controlled experiments to evaluate the

suitability of PageTailor as a tool for adapting complex Web
pages, as well as to determine PageTailor’s performance in
terms of its success rate for reapplying customizations to
pages with content that changes over time, and across pages
in the same Web site.

We conducted our user studies in a laboratory at the Uni-
versity of Toronto with participants from the general student
body. Study participants were recruited through ads placed
in high traffic areas of our building, emails sent to various
departmental mailing lists and word of mouth. In both stud-
ies, participants were free to perform customizations which
were of interest to them.

4.1 User Study 1: Longevity
The first goal of the study was to evaluate the feasibility of

customizing Web pages using PageTailor. This is achieved
by determining whether PageTailor provides the required
functionality to accomplish customization objectives of users
within a reasonable time. The second goal was to deter-
mine the longevity of user customizations, defined as the
length of time (measured in days) over which a given user
customization is accurately reapplied to a page. Longevity
of customizations provides a measure of the length of time
over which the effort a user invests in customizing a Web
page can be amortized. Additional metrics we use to evalu-
ate longevity are desirability, the length of time over which
participants find it desirable to apply their initial customiza-
tions and accuracy, the participants’ subjective view of how
well PageTailor applies their customizations on a given day
for which they deemed desirable. Desirability provides an
upper bound on the longevity of customizations and the
performance of PageTailor. Accuracy, on the other hand, is
a measure of the closeness with which PageTailor approxi-
mates this upper bound.

4.1.1 Methodology
The study was organized in two phases, a customization

and a validation phase. For the customization phase, the
methodology was as follows. To evaluate PageTailor’s abil-
ity to meet users’ adaptation goals, before we introduced
PageTailor to participants, we presented them with a print-
out of the page they were about to customize, and an outline
illustrating the area of the page that could be viewed at once
on the screen of a PDA. We then asked participants to sketch
on paper their intended design. We told participants to take
into consideration the dimensions of the outline, but we did
not specify any other constrains on how the page could be
transformed. Once they had completed their paper-based
designs, participants were introduced to PageTailor and al-
lowed time to familiarize themselves with its operation by
customizing a sample Web page. Participants were then
asked to attempt to replicate the customizations they had
sketched earlier on paper, but this time using PageTailor.
During this process, we collected traces of participants’ cus-
tomizations. Once they finished customizing, we asked for
their feedback on whether they were able to accomplish their
design goals.

In the validation phase, participants were asked to assess
the desirability and accuracy of their customizations on fu-
ture versions of the page they customized initially. For this
purpose we asked participants to compare different versions
of the page as they were being simultaneously presented on
two desktop displays. The first display showed two views
of the initial page the participant customized, one before
and one after her customization was applied. The second
display, showed two views of a future version of the same
page, both before and after the participant’s customization
was applied.

For the future version of the page displayed, participants
were asked first, to specify whether it was desirable to them
to apply their initial customizations to the new page, and
second, what percentage of their initial customizations was
applied correctly by PageTailor. They were then asked to
provide the same information for additional future versions.

We recruited sixteen participants with varying degrees of
experience using PDAs. Four participants reported having
no experience using a PDA, four others reported having low
comfort with a PDA, and eight reported that they are com-
fortable using a PDA.

4.1.2 Platform
At the time we conducted our first user study, the Mi-

nimo Web browser was in its early stages of development,
and did not provide support for extensions. Thus, we used a
thin-client approach to enable participants to perform cus-
tomizations on the PDA. We ran the Mozilla Firefox browser
fitted with the PageTailor plugin on a dedicated desktop PC,
and used VNC [28] to map the desktop’s screen to the PDA.
The PDA and desktop communicated over a dedicated low
latency 802.11b link. In this configuration, to the partic-
ipant, PageTailor appears to be executing directly on the
PDA.

Our desktop had a 2.4GHz CPU, 512MB of RAM, two
displays, and was running Fedora Core Linux 4. The desk-
top also ran the Mozilla Firefox 1.0.7 browser and a VNC
server. Our PDA was a Dell Axim X51v equipped with a
634MHz XScale processor and 64MB of memory. The PDA
ran Windows Mobile 5.0 and a VNC client. It’s interface

Web Page Trace Length (Days) DOM Objects
Amazon 270 2003
BBC 501 1359
MSN 431 1242
eBay 32 1231

Table 1: Pages used in Longevity Experiment

consisted of a 3.7-inch touch screen with support for VGA
resolution at 480x640 pixels (portrait) with 16 bit color.

4.1.3 Pages Studied
The experiments were conducted on homepages of four

popular Web sites: Amazon, BBC, MSN and eBay. We
chose these four pages, first, due to their popularity and,
second, because they are updated frequently making it im-
portant for customizations to persist. These pages include
JavaScript code and are relatively sophisticated in terms of
DOM objects, each having more than 1000 objects. For
comparison, as of November 27, 2006, the Google homepage
had only 110 objects.

For the eBay homepage, we cached copies of it every hour
for 32 days. For the other pages, we obtained copies span-
ning longer periods from the Internet Archive’s Wayback
Machine [32]. The Internet Archive data gives us a larger
range of dates (from 270 to 501 days), but the dataset is
sparse, in some cases missing daily pages for periods of over
one month. For Amazon, BBC and MSN, we chose the ini-
tial date to correspond to a day in which a new layout design
is observed. We then included future versions of the page.
In choosing future versions our goal was to provide both fine
granularity and a long range of dates. To accomplish this,
we approximate the sequence of dates to a power sequence
of base 2, with days 0, 1, 2, 4, 8 and so on, as long as a ver-
sion for the date is available. When a version of a page for a
given day was not available in the archive, we chose the ver-
sion for the next closest date. Table 1 gives a list of pages,
the range of days studied and the number of DOM objects
present in each page. Each Web page was customized and
evaluated independently by four participants.

4.2 User Study 2: Coverage
The goals of this study were to determine the extent to

which PageTailor can reapply customizations across pages of
the same Web site and to quantify PageTailor’s performance
on a PDA. We define coverage as the proportion of pages in
a site for which a given set of customizations can be applied
successfully.

4.2.1 Methodology
We observe that while a Web site may have a large number

of pages, these pages can be grouped into a much smaller
number of page types that support specific functions within
the site. For example, Figure 4 shows a somewhat simplified
schematics of BBC News, a section the larger BBC Web site,
which includes three types of pages: the section homepage,
subsection homepages such as Europe and Entertainment,
and article pages. Clearly, the number of page types varies
between sites, and three is simply the example we use here.

The study was divided into a customization and a vali-
dation phase. In the customization phase, we asked par-
ticipants to choose, out of a set of well known sites, one
which they felt was most familiar to them. We then asked

News Home

Europe Entertainment

Article 1

...

Article 2 ... Article n Article p ... Article xArticle q

Figure 4: Schematics of the BBC News site.

the participants to customize two or three pages which serve
different functions on a single section of their selected site.
We collected traces of the operations employed in these cus-
tomizations for later evaluation. In the validation phase
we determined the coverage of the users’ customizations by
reapplying the customizations to other pages of the same
site.

The study employed twenty participants, and their ex-
perience with PDAs also varied. Six reported having no
experience using a PDA, two reported having low comfort
with a PDA, and twelve reported that they are comfortable
using a PDA. There is little overlap between participants of
this study and those of the first study. Only one participant
took part in both studies.

4.2.2 Platform
This study also used the Dell Axim X51v PDA. However,

this time, the Minimo Web browser version 0.014 augmented
with the PageTailor plugin ran natively on the PDA.

For the purpose of evaluating user customizations on a
large number of pages, we transferred traces of the cus-
tomizations to a desktop workstation where we applied them
to the pages. The desktop was equipped with a 3GHz pro-
cessor and 2GB memory, and ran version 1.5.0.3 of Mozilla
Firefox browser.

We also measured the execution times of PageTailor when
reapplying customizations to Web pages on the PDA device
itself.

4.2.3 Sites Studied
In this study participants customized pages from four

sites. The first three were taken from the set of sites eval-
uated in the longevity study, and they were Amazon, BBC
and MSN. For the fourth site, we wanted to study reuse of
customizations on a site with user generated content, so we
included pages from Flickr.

For Amazon, we asked participants to customize pages
from its Music section, specifically, a Jazz CD page and
the General Jazz Listings page. For BBC, from the News
section, participants customized a news article and the Eu-
rope News homepage. For MSN, participants customized
a Health news article and the Health News homepage. Fi-
nally, for Flickr participants customized a page containing
one photo belonging to a Flickr user, a tag page, and the
homepage of the same user.

To evaluate the coverage of customizations, we chose pages
which serve the same function as those that the participants

customized. For Amazon we included CD pages and CD list-
ings, for BBC, we selected news articles and news subsection
homepages, for MSN we included health articles and health
subsection homepages, and for Flickr we chose photo pages,
user tags and sets, and user homepages. For each of these
sets, we include all pages with similar function available,
the exception being when there are more than twenty, e.g.,
Amazon Music has a very large number of CD pages. In
such case we limit the choice to twenty randomly selected
pages for each set. Table 2 lists the pages customized from
each site and the test sets to which these customizations
were applied. Each site was customized independently by
five participants.

5. RESULTS
We begin by presenting results which evaluate the feasi-

bility of customizing Web pages with PageTailor on a PDA.
We then present results evaluating the longevity and cover-
age of user customizations. Finally, we discuss the execution
time for reapplying customizations on same and other pages.

5.1 Feasibility
Of the sixteen participants in the longevity study, four-

teen reported being able to implement their paper designs
using PageTailor. The two participants unable to fully im-
plement their designs, reported being able to make most of
the customizations, however, they encountered challenges in
selecting multiple elements and moving those with precision.
It is encouraging to see, however, that during their first use,
a large majority of users is able to implement designs which
are as unrestricted as the paper and pencil allows.

Figure 5 shows, for each of the two studies, the minimum,
average and maximum times users spent customizing pages
in each site. In the longevity study, the average customiza-
tion times varied between 5 and 11 minutes. In the coverage
study, they varied between 4 and 7 minutes. On average,
participants to the coverage study were faster because they
were free to change their design objectives as they discov-
ered layouts that were satisfactory to them. This result is
somehow surprising as we expected the participants of the
longevity study to do better than the other group as the
time needed for the cognitive task of choosing the content
to customize happened during the paper prototyping phase.
Overall, the customization times for both experiments were
reasonable, especially when considering the complexity of
the pages involved.

Test Set
Site Page Customized Description Number of Pages

Amazon
Jazz CD Jazz CDs 20

General Jazz CD Listing Other Jazz CD Listings 17

BBC
News Article News Articles 20

Europe News Homepage News Subsection Homepages 12

MSN
Health Article Health Articles 15

Health News Homepage Health Subsection Homepages 9

Flickr

User Photo User Photos 17

User Tag
User Sets & Tags 20

Other Sets & Tags 20
User Homepage Users Homepages 20

Table 2: Sites used in coverage experiment. From each site, participants customized two pages, and these
customizations were tested on sets of other pages. For Flickr, participants were asked instead to customize
three pages.

(a) Longevity Study (b) Coverage Study

Figure 5: Minimum, average and maximum customization times for each study.

5.2 Longevity
In this section, we look at longevity, the length of time

during which customizations originally made by a user re-
main applicable to a page. Longevity is important because
it determines the length of time over which the user benefits
from her customization effort. We found from participants’
responses that they considered the effort spent customizing
to be reasonable if these customizations would last for one
month. In the remainder of this section, we show that for
the majority of the users, PageTailor is able to preserve most
of their customizations for more than 30 days.

Figure 6 shows the results of the longevity experiment
for our four homepages, as time progresses. The histogram
for each page shows the number of users that considered
their customizations still desirable for the new version of
the page on a given day. The histogram also shows the
number of users who stated that PageTailor had properly
applied all (100%) and at least 80% of their customizations
to the new version of the page. For example, Figure 6(d)
shows that after 32 days all four users still wanted to reapply
their customizations to the page. Of these three considered
that PageTailor reapplied all of their customization opera-
tions correctly and the remaining one considered that more
than 80% of his customization operations were properly ap-
plied.

The results differ across pages. PageTailor perform best
for the eBay homepage as this is the most static of the four
pages studied, with layout components changing less fre-
quently. Overall, by day 27, nine out of the sixteen partici-

pants still experience full accuracy. Moreover, almost all of
our users reported that PageTailor reapplied at least 80% of
their customizations for over a month, and in some cases as
long as 16 months 2. At 80% accuracy, we find that failures
are either because the original content to which the user
performed an operation is no longer present in the page or
new content that has been added is left uncustomized. In
general, we find that these failures have little impact on the
overall layout of the page, and can be easily rectified by
adding operations which customize only those objects that
were left uncustomized.

5.3 Coverage
In this section we show that customizations can be reused

across pages that serve the same function in a given Web
site. The implication is that a user only needs to customize
a small number of pages in order to browse a site which may
contain a very large number of pages.

Figure 7 shows results from the coverage experiment eval-
uating reuse of customizations across pages which are simi-
lar. Each bar shows the breakdown of the success rate with
which customizations are reapplied across pages that serve
identical functions in each Web site. Success rate measures
the fraction of operations from a customization which ap-

2The results for the Amazon Web page shows a discrepancy
in days 27 and 74. We attribute this discrepancy to one
participant who, confused with the instructions, reported
his customization to be undesirable yet found it to apply
properly.

(a) Amazon (b) BBC

(c) MSN (d) eBay

Figure 6: Longevity experiment. The figure shows that for the majority of users PageTailor is able to reapply
their customizations accurately for over a month.

plied to a page. For example, Figure 7(b) shows that for
81% of news articles, PageTailor successfully reapplied at
least 70% of the users’ original customization operations.
For all Web sites, PageTailor was able to apply all opera-
tions (100% success rate) to between 33% and 80% of pages
that serve the same function.

To understand the practical implications of the differences
in the success rates, we compared the accuracy perceived by
users (as reported in Section 5.2) against the success rates
reported by the system for Figure 6. We find that users
reported 100% accuracy for pages where the system success
rate was as low as 67%. We also analyzed in detail a ran-
dom sample of pages from each of our sites and found that
for success rates above 70%, the failures reported by the sys-
tem were mainly due to missing content, and very often they
were failures to remove those missing objects. For example,
for the Amazon site, we observed failures to remove miss-
ing promotional banners. The effect of these failures to the
overall layout of the page is minimal. Below the 70% suc-
cess rate, failures become noticeable. There is a significant
rate of false negatives, as well as some false positives. At
these success rates, the structure of the pages begin to dif-

fer. Based on these observations, we consider success rates
above the 70% to be accurate enough to provide a bene-
fit.

Overall, for 75% of the pages we considered PageTailor
succeeds in applying at least 70% of customization oper-
ations. Thus, customizations to one page provide coverage
for a large number of pages serving the same function within
a Web site. For example, participants that customized 1 CD
page could reuse their customizations to browse close to 90%
of the Amazon CD collection.

We also explored the application of customizations across
pages that fulfill different functions (e.g., CDs and CD List-
ings), and across sections of large Web sites such as Amazon,
where we evaluated how well customizations performed to
a CD page apply to a DVD or a book page. As expected,
for most pages customizations do not transfer well across
functions or across sections, with PageTailor reporting ac-
curacies well below 50%.

5.4 Execution Times
In this section we evaluate the time users will be required

to wait for customizations to apply to a page they visit.

(a) Amazon (b) BBC

(c) MSN (d) Flickr

Figure 7: Coverage experiment. The figure indicates that customizations are reusable on pages which serve
the same function within a section of a site.

For this evaluation, we select the following Web pages.
Three BBC news articles with sizes (number of objects)
which approximate the median size of all pages employed in
the user study. To evaluate the effects of varying page size
on execution time we also select a smaller Flickr page. We
then select several customizations from various participants
from our studies. One customization has 19 operations,
the median size of customizations performed by all partic-
ipants, and other customizations have smaller and larger
sizes, specifically 7, 18 and 41 operations each. This allows
us to observe the effects of varying customization sizes.

Table 3 presents execution times for reapplying customiza-
tions on a PDA, and a desktop. For comparison, we also
present the expected download times for each page over a
CDMA 1X cellular network, assuming an effective network
bandwidth of 80 kbps. For the execution times on the PDA,
we break down the results into two components, recogni-
tion time and reapplication time. Recognition refers to the
time PageTailor takes to decide whether to apply a given
customization to the page loaded or not. Reapplication in-
dicates the time required to apply a customization to a page
once they have been matched. We measured these times by

loading each Web page and allowing PageTailor to execute.
We report average results over five runs. In all cases, stan-
dard deviation was under 6%.

In Table 3, results for the first entry (BBC Article 1) show
the times taken when loading a page the user customized ini-
tially. Since the URL for this page is already associated with
the customization, the recognition phase does not involve
any structural comparison of the Web page against the cus-
tomizations on the device. Rather, it only includes the time
taken to read the list of customizations from file and com-
paring the URLs of those customizations against the URL
of the page on display. For all other results, customizations
are applied to unseen pages, and therefore PageTailor incurs
the recognition cost.

From Table 3, we expect the execution time for the aver-
age user to take between 12 and 29 seconds. The execution
times are non-negligible, and this is in part because Minimo
remains in its early stages of development as indicated by
its version number (0.014), and as such remains to be opti-
mized for PDAs. From Table 3, we can see that even without
search (BBC Article 1) reapplication time is already 12 sec-
onds. To show that these execution times could be better

Page Page Size Customization Success Recognition Reapplication Total Desktop
(objects) Size (operations) Rate (%) Time (s) Time (s) (s) (s)

BBC Article 1 (self) 1070 19 100 0.0 12.0 12.0 0.3

BBC Article 2
(good match)

1072 7 100 16.0 8.2 24.2 0.4
1072 19 100 16.2 12.4 28.6 0.7
1072 41 100 17.4 59.4 76.8 1.5

Flickr Photo (good match) 829 7 100 12.4 5.8 18.2 0.3
BBC Article 3
(poor match)

1146 7 71.43 17.8 27.8 45.6 0.9
1146 19 36.84 19.2 55a 19.2 0.4

aAt 36.84% success rate, the reapplication process does not normally execute as the recognition fails to match the page to
the customization. However, we force its execution to evaluate the usefulness of a restricted search.

Table 3: Execution times. The table shows that execution time is dependent on the number of customization
operations, page size and success rate.

on the PDA, we have included in the table results showing
the total execution times of the same prototype on a desk-
top. This desktop is equipped with a 2.4GHz processor and
a 512MB memory. The ratio between the processor speeds
of the two devices is less than 4, however the ratio between
execution times consistently exceeds 40. Moreover, as anec-
dotal evidence, we note that starting Minimo on the PDA
requires approximately 23 seconds, whereas Pocket Internet
Explorer requires only 3. Similarly the Opera browser also
takes under 9 seconds on the same device.

The results in Table 3 also show that reapplication time is
affected more significantly than recognition time by the size
of the customizations, the complexity of the page and, the
success rate with which a customization applies to a page.
This is expected because the restricted search employed dur-
ing recognition limits the search space to one level for each
path.

In summary, the results above show that execution times
when reusing customizations with the current prototype will,
for the average user, vary between 12 and 29 seconds. These
times are likely to drop, however, as the Minimo code ma-
tures. Moreover, because the recognition phase generates a
regular expression on success, its costs need not be incurred
every time a user visits a new page. For pages where URLs
are similar, except perhaps with differing suffixes, a regular
expression generated for one would also match the other.
The results also show that execution times depend on the
number customization operations, complexity of the Web
pages and number of failed operations.

5.5 Discussion
As we indicated in Section 2.2.2, because the recognition

phase employs a restricted version of the search algorithm,
we expect a larger rate of false negatives to occur. For
all pages and customizations used in the coverage study we
compared the success rates of PageTailor under both the re-
stricted and the unrestricted version of the search algorithm.
For 14% of the pages to which the unrestricted algorithm
reports success rates above 70%, the restricted algorithm
reports success below that mark. The implication is that
PageTailor will fail to automatically match customizations
for 14% of appropriate pages, a sacrifice made to improve
responsiveness. In such cases, however, users can explicitly
associate existing customizations with the pages.

There is an inherent limitation to the size of our con-
trolled experiment, both in the number of web sites and
users involved. As a result, we cannot claim that the results
presented in this paper are representative of unrestricted

browsing behavior; however, based on our positive experi-
ence adapting, what by any measure constitute fairly com-
plex pages, we are optimistic about the expected perfor-
mance of PageTailor in real world conditions.

6. RELATED WORK
There has been significant research and industry effort

related to adaptation of Web pages for consumption on de-
vices with small screens. Some content providers have man-
ually authored versions of Web pages for specific devices
they wished to support [20]. Others employ a “lowest com-
mon denominator” approach, in which they design pages
with only the features appropriate for the least capable de-
vice they wish to support. This is commonly achieved with
technologies such as WML, cHTML or even low graphics
or text-only versions of HTML pages. These solutions are
inadequate as designing for each device incurs significant
overhead and does not scale, and the lowest common de-
nominator is inappropriate for users of devices with support
for more features than the common denominator. For ex-
ample, users of PDAs capable of displaying high resolution
images and processing rich content are unhappy to be re-
stricted to text-only versions of news articles. In addition,
even users of similar devices may be interested in different
content from a Web page. For example visitors to the BBC
News homepage are often interested in different news topics.
Thus, the layout of the page should facilitate each user’s ac-
cess to the content of their interest, a requirement which is
clearly not met with these approaches.

There has also been research on systems which adapt Web
pages automatically [7, 9, 8, 3, 11, 24, 29, 17]. Text summa-
rization is a technique which allows automatic summariza-
tion of Web pages and progressive disclosure of details. In
Power Browser [9] and Digestor [3], for example, users are
presented with a summary page containing links to different
units of the original page. However, this technique requires
that users navigate back and forth between the summary
page and the sectioned blocks and may result in loss of con-
textual information about the content.

A similar approach for automatically adapting Web pages
is page fragmentation [11, 24, 5, 1, 17]. Based on Web page
structure, Chen et al. [11] and Milic-Frayling et al. [24] par-
tition Web pages into fragments or units that can fit in the
small screen, and present a two-level hierarchy to navigate
within the page. However, this technique still requires users
to navigate back and forth within the hierarchy. Borodin et.
al. [5] improve on page fragmentation by determining auto-
matically the most relevant fragment when a user follows a

link, and providing that fragment first. However, this tech-
nique may be prone to error as it guesses what the user’s
interest is within a page. In contrast, in our approach users
make an explicit choice of what is of interest to them. More-
over, with the above approach, users interested in multiple
content from a Web page (e.g. sports and weather from a
news portal) may have to manually navigate through many
fragments.

Minimap [29] scales content of Web pages to automati-
cally improve the display of Web pages on small screens.
Minimap scales down non-textual elements such as images
so they fit within the viewport of the device’s browser while
maintaining the dimensions of textual elements. Because
this approach does not take the user’s interest into con-
sideration, the user may still need to scroll significantly.
pTHINC [22] uses a thin-client approach to perform screen
scaling on a server, and allows users to zoom into areas of the
page. Screen scaling makes content of large pages too small
for comfortable reading on a small screen, and an unscaled
screen requires that users scroll considerably.

There are other systems that automatically adapt content
based on a combination of rules and constraints [7, 23, 30,
31]. Unfortunately, content providers cannot be expected
to provide constraints or rules for every data object, as this
would not be very different from supplying customized con-
tent for every client type. As a result, small sets of rules
apply to broad sets of content (e.g., all JPEG images are
adapted the same way independent of their value to the
user).

End-user customization has been used previously on the
desktop environment to enable personalization of Web pages.
Web pages such as Google Personalized Homepage, allow
users to choose content units to be displayed in the page,
and select the areas of the page in which these units should
appear. However, support for such technique is limited to
a few sites, the customization options offered are restricted,
and users need to be familiar with the different interfaces
provided by each site.

Closer in spirit to our approach are Chickenfoot [4], Grease-
monkey [19] and Platypus [27]. Chickenfoot and Greasemon-
key provide programming interfaces for the desktop through
which users specify actions to be performed on page con-
tent, such as removing elements. Platypus adds a What You
See Is What You Get (WYSIWYG) interface to Greasemon-
key, allowing desktop users to customize graphically. How-
ever, none of these systems employ algorithms to ensure
customizations are long-lived, nor are able to automatically
reuse customizations on similar pages. Moreover, these sys-
tems have not been explored in the context of browsing on
small screens.

In the mobile environment, Baudisch et al. [2] explore the
use of a marquee menu to adapt the view of Web pages
on small screens. In this approach, users can collapse and
expand content units based on their interest. Because this
technique uses the same mechanism as [11] to partition Web
pages, user adaptations are limited to automatically identi-
fied fragments. Moreover, the focus of that work is on the
interaction technique to allow users to specify customiza-
tions. In contrast, the focus of our paper is on reuse of
customizations on dynamic pages as their content changes
over time, and across similar pages of a Web site. We could
support the use of a marquee menu, in addition to the cur-
rent interface provided by PageTailor.

There has also been research effort in adapting Web con-
tent to address other limitations of mobile devices [14, 16,
25, 26, 15]. These systems address problems that are or-
thogonal to the screen constraints, such as limited comput-
ing power and bandwidth, and could be used conjunction
with REUC.

7. CONCLUSIONS
We proposed Reusable End-User Customization (REUC),

a technique for adapting Web pages to small devices. We
presented PageTailor, a PDA-based REUC implementation
and showed that it enables customizations made by users to
a Web page to be reapplied in future visits to the page, even
as content changes, and across similar pages within a site.

We showed that it takes users an average of 10 minutes
to customize complex Web pages using PageTailor, and that
because the structure of Web pages is stable enough, these
customizations can be reapplied for over one month, and
in some cases for up to 16 months. We also showed that
because commercial web sites use a relatively small number
of templates to generate their content, a user only needs to
customize a limited number of pages to browse a large site.
Overall, we found that customizations made to one page
apply to at least 75% of other pages which serve the same
function within the site.

8. ACKNOWLEDGMENTS
This research was supported by Bell University Labs un-

der grant number 302814, and by the Canadian Foundation
for Innovation and the Ontario Innovation Trust under grant
number 7739.

9. REFERENCES
[1] S. Baluja. Browsing on small screens: Recasting

Web-page segmentation into an efficient machine
learning framework. In Proceedings of the 15th
International World Wide Web Conference
(WWW2006), Edinburgh, Scotland, UK, May 2006.

[2] P. Baudisch, X. Xie, C. Wang, and W.-Y. Ma.
Collapse-to-Zoom: Viewing Web pages on small
screen devices by interactively removing irrelevant
content. In Proceedings of the 17th Symposium on
User Interface Software and Technology (UIST ’04),
Santa Fe, NM, USA, Oct. 2004.

[3] T. W. Bickmore and B. N. Schilit. Digestor:
Device-independent access to the World Wide Web. In
Proceedings of the 6th International World Wide Web
Conference (WWW6), Santa Clara, CA, USA, Apr.
1997.

[4] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered
Web pages. In Proceedings of the 18th Symposium on
User Interface Software and Technology (UIST’05),
Seattle, WA, USA, Oct. 2005.

[5] Y. Borodin, J. Mahmud, and I. Ramakrishnan.
Context browsing with mobiles - when less is more. In
Proceedings of the International Conference on Mobile
Systems, Applications and Services (MobiSys 2007),
San Juan, PR, USA, June 2007.

[6] T. M. Breuel. Information extraction from HTML
documents by structural matching. In Proceedings of

the 2nd International Workshop on Web Document
Analysis (WDA2003), Edinburgh, Scotland, UK, Aug.
2003.

[7] K. Britton, R.Case, A. Citron, R. Floyd, Y. Li,
C. Seekamp, B. Topol, and K. Tracey. Transcoding:
Extending e-business to new environments. IBM
Systems Journal, 40(1):153–178, 2001.

[8] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke.
Seeing the whole in parts: Text summarization for
Web browsing on handheld devices. In Proceedings of
the 10th International World Wide Web Conference
(WWW10), Hong Kong, China, May 2001.

[9] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and
T. Winograd. Power Browser: Efficient Web browsing
for PDAs. In Proceedings of the Conference on Human
Factors in Computing Systems 2000 (CHI’00), The
Hague, The Netherlands, Apr. 2000.

[10] S. S. Chawathe. Comparing hierarchical data in
external memory. In Proceedings of the 25th
International Conference on Very Large Data Bases
(VLDB’99), Edinburgh, Scotland, UK, Sept. 1999.

[11] Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting Web
page structure for adaptive viewing on small form
factor devices. In Proceedings of the 12th International
World Wide Web Conference (WWW2003),
Budapest, Hungary, May 2003.

[12] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis.
A methodology for clustering XML documents by
structure. Information Systems, 31(3), May 2006.

[13] D. de Castro Reis, P. B. Golgher, and A. S. da Silva.
Automatic Web news extraction using tree edit
distance. In Proceedings of the International World
Wide Web Conference (WWW2004), New York, NY,
USA, May 2004.

[14] E. de Lara, D. S. Wallach, and W. Zwaenepoel.
Puppeteer: Component-based adaptation for mobile
computing. In Proceedings of the 3rd USENIX
Symposium on Internet Technologies and Systems
(USITS ’01), San Francisco, CA, USA, Mar. 2001.

[15] Y. Dotsenko, E. de Lara, D. S. Wallach, and
W. Zwaenepoel. Extensible adaptation via constraint
solving. In Proceedings of the 4th IEEE Workshop on
Mobile Computing Systems and Applications
(WMCSA 2002), Callicoon, NY, USA, June 2002.

[16] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir.
Adapting to network and client variability via
on-demand dynamic distillation. SIGPLAN Notices,
31(9):160–170, Sept. 1996.

[17] Google Mobile Search.
http://www.google.com/xhtml.

[18] K. Goto. Brand value and the user experience. Digital
Web Magazine, July 2004.

[19] Greasemonkey. http://greasemonkey.mozdev.org/.
[20] M. Jones, G. Marsden, N. Mohd-Nasir, K. Boone, and

G. Buchanan. Improving Web interaction on small
displays. In Proceedings of the 8th International World
Wide Web Conference (WWW8), Toronto, Canada,
May 1999.

[21] T. Kamba, S. A, Elson, T. Harpold, T. Stamper, and
P. Sukaviriya. Using small screen space more
efficiently. In Proceedings of the Conference on Human
Factors in Computing Systems 1996 (CHI ’96),
Vancouver, Canada, Apr. 1996.

[22] J. Kim, R. A. Baratto, and J. Nieh. pTHINC: A
thin-client architecture for mobile wireless Web. In
Proceedings of the 15th International World Wide
Web Conference (WWW2006), Edinburgh, Scotland,
UK, May 2006.

[23] W. Y. Lum and F. C. Lau. A context-aware decision
engine for content adaptation. IEEE Pervasive
Computing, 1(3):41–49, July 2002.

[24] N. Milic-Frayling and R. Sommerer. SmartView:
Flexible viewing of Web page contents. In Proceedings
of the 11th International World Wide Web Conference
(WWW2002), Honolulu, HI, USA, May 2002.

[25] D. Narayanan, J. Flinn, and M. Satyanarayanan.
Using history to improve mobile application
adaptation. In Proceedings of the 3rd IEEE Workshop
on Mobile Computing Systems and Applications
(WMCSA 2000), Monterey, CA, USA, Dec. 2000.

[26] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile
application-aware adaptation for mobility. Operating
Systems Review (ACM), 51(5):276–287, Dec. 1997.

[27] Platypus. http://platypus.mozdev.org/.
[28] T. Richardson, Q. Stafford-Fraser, K. Wood, and

A. Hopper. Virtual Network Computing. IEEE
Internet Computing, 2(1), Jan/Feb. 1998.

[29] V. Roto, A. Popescu, A. Koivisto, and E. Vartiainen.
Minimap - a Web page visualization method for
mobile phones. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI 2006),
Montreal, Canada, Apr. 2006.

[30] B. N. Schilit, J. Trevor, D. M. Hilbert, and T. K. Koh.
Web interaction using very small internet devices.
IEEE Computer, 35(10):37–45, 2002.

[31] J. R. Smith, R. Mohan, and C.-S. Li. Transcoding
internet content for heterogeneous client devices. In
Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS ’98), Monterey, CA,
USA, May 1998.

[32] The Wayback Machine. http://web.archive.org.
[33] G. Valiente. An efficient bottom-up distance between

trees. In Proceedings of the International Symposium
on String Processing and Information Retrieval
(SPIRE 2001), Laguna de San Rafael, Chile, Nov.
2001.

[34] WAP Forum. Wireless Application Protocol: Wireless
Markup Language specification. http://www.
wapforum.org/what/technical/wml-30-apr-98.pdf,
Apr. 1998.

[35] World Wide Web Consortium. Cascading Style Sheets,
Level 2: CSS2 specification.
http://www.w3.org/TR/REC-CSS2/, May 1998.

[36] World Wide Web Consortium. Compact HTML for
Small Information Appliances. http://www.w3.org/
TR/1998/NOTE-compactHTML-19980209/, Feb. 1998.

[37] World Wide Web Consortium. Document Object
Model (DOM) Level 2 Core Specification.
http://www.w3.org/TR/2000/

REC-DOM-Level-2-Core-20001113/, Nov. 2000.
[38] J. T. Yao and M. Zhang. A fast tree pattern matching

algorithm for XML query. In Proceedings of the
International Conference on Web Intelligence
(WI’04), Beijing, China, Sept. 2004.

