
Position Summary: Architectures For Adaptation Systems

Eyal de Lara†, Dan S. Wallach‡, and Willy Zwaenepoel‡

Departments of Electrical and Computer Engineering† andComputer Science‡

Rice University
{delara,dwallach,willy}@cs.rice.edu

1 Introduction

Modern systems need support for adaptation, typically
responding to changes in system resources such as avail-
able network bandwidth. If an adaptation system is imple-
mented strictly at the system layer, data adaptations can be
added within the network or file system. This makes the
adaptation system portable across applications, but sacri-
fices opportunities to change an application’s behavior. It’s
not possible, for example, to first return a low-quality ver-
sion of an image and later upgrade it should excess network
capacity be available. On the flip side, the adaptation logic
could be built into each and every application, with the sys-
tem providing information to the applications in order to
help them adapt their behavior. This becomes impractical
because many applications will never be written to perform
adaptation, and an application writer may not be able to
foresee all possible adaptations that may be desirable.

We argue that adaptation systems should be centralized,
where they can make global observations about system us-
age and resource availability. We further argue that applica-
tions shouldnot be written to perform adaptation. Instead,
applications should support an interface where the adapta-
tion system can dynamically modify an application’s behav-
ior as it runs.

How would such an interface work? Largely, we would
like applications to make visible theirdocument object
model (DOM) – the hierarchy of documents, containing
pages or slides, containing images or text, etc. Likewise,
we would like a standard way to know what portions of a
document are on the user’s screen. Finally, it’s quite helpful
when the file formats are standardized, such that the system
can see and manipulate the components within a file.

In order to support adaptation while documents are being
edited, we would like a standard way to learn which compo-
nents are “dirty” and to compute diffs between those dirty
components and their original contents. Likewise, it would
be helpful for applications to support conflict detection and
resolution between components.

2 Experience

We observe that many “component-based” applications
already support interfaces for external programs to manip-
ulate their components as the application is running. Tak-
ing advantage of this, we developed a system called Pup-
peteer [1], as it “pulls the strings” of an application.

Puppeteer currently supports Microsoft Word, Power-
Point, and Internet Explorer, as well as their StarOffice
equivalents. In terms of implementation complexity, Pup-
peteer has roughly 8000 lines of Java code shared across
applications. The Internet Explorer drivers are 2700 lines
and the PowerPoint drivers are 1800 lines of code.

Our current system supports adaptation for read-only
files. We achieve significant improvements in user-
perceived latency at a modest cost in system overhead.

3 Future Work

Building on the base Puppeteer system, we are working
on a number of extensions. We are investigating a “thin
client” version of Puppeteer to minimize the client mem-
ory footprint – an important consideration on PDAs. We
are designing a special-purpose language to express adapta-
tion policies at a high-level. We are investigating alternative
network transmission protocols and hierarchical scheduling
of network transmissions to better reflect the priorities of
the adaptation policy. We are also working on extensions to
Puppeteer to support writes, dealing with issues like cache
coherence and conflict resolution. So far, the Puppeteer ar-
chitecture has proven flexible enough to accommodate such
a wide variety of extensions without sacrificing its portabil-
ity or core architecture.

References

[1] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based adaptation for mobile computing. InPro-
ceedings of the 3rd USENIX Symposium on Internet Technolo-
gies and Systems, San Francisco, California, Mar. 2001.


