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ABSTRACT
Usage-awaRe Interactive Content Adaptation (URICA) is an auto-
matic technique that adapts content for display on mobile devices
based on usage semantics. URICA allows users who are unsatisfied
with the system’s adaptation decision to take control of the adapta-
tion process and make changes until the content is suitably adapted
for their purposes. The successful adaptation is recorded and used
in making future adaptation decisions. To validate URICA, we
implemented a prototype system called Chameleon that performs
fidelity adaptation on web images. We conducted a user study
in which participants used Chameleon to browse image-rich web
pages on bandwidth-limited cellular links and used the collected
traces to evaluate our system. We show that Chameleon reduces the
latency for browsing web content by up to 65% and reduces band-
width consumption by up to 80%. Chameleon also allows users
to exchange bandwidth consumption for user interaction based on
their personal preferences.

Categories and Subject Descriptors
C.5 [Computer System Implementation]: Miscellaneous; H.4
[Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Performance, Experimentation, Human Factors

Keywords
Content Adaptation, Mobile Devices, Customization, Learning

1. INTRODUCTION
Mobile devices face severe resource constraints, such as limita-

tions in display size, battery life and network connectivity [22, 23,
35, 36]. In particular, the difference in bandwidth availability be-
tween desktop computers with broadband connectivity and mobile
devices causes a significant degradation in the experience of mo-
bile users as they go about using ubiquitous applications, such as
browsing the World Wide Web. Even though the rollout of 2.5G
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and 3G cellular technology has significantly increased the band-
width that is theoretically available to mobile users, several recent
studies have reported that, in practice, cellular bandwidth is con-
siderably lower than originally claimed [4, 7, 8], and that the re-
alistic throughput of wide-area mobile data services is similar to
that of dial-up modems. For example, effective data rates for 2.5G
technologies, such as GPRS and CDMA 1X, are reported at around
30-70 kbps and 100-120 kbps, respectively. In the experiments pre-
sented in this paper, where stationary users browsed the web on a
PDA using CDMA 1X connectivity, we observed average band-
width to be around 83 kbps. In addition, most reasonably priced
data services charge based on the amount of bandwidth consumed
by the user. A price of $10 per MB of downloaded data is typical.

Some researchers have attempted to address the bandwidth con-
straint for mobile users by creating systems that distribute network
communication over multiple cellular interfaces [33, 34]; however,
this approach adds significant complexity and cost, which limits
the deployment of such systems to specific usage scenarios, such
as providing Internet connectivity to mobile users in a public bus
via a specialized wireless hub that uses multiple cellular interfaces.

A promising alternative is to use automatic content adaptation
systems that utilize lossy compression techniques to tradeoff con-
tent fidelity for bandwidth consumption [11, 14, 16, 24, 29, 31].
The key challenge in automatic content adaptation is the design of
policies that perform appropriate adaptations. This is a hard prob-
lem because adaptation requirements often depend on the content’s
usage semantics. Consider the case of a web adaptation system
that conserves bandwidth by reducing image fidelity. Suppose that
an image of a 1964 Ford Mustang appears both on a Mustang Fan
Club web page that includes images of many Mustang models from
different years, and on a page of the Department of Transportation
where the 1964 Mustang is used to illustrate what cars look like in
general. It is likely that the fidelity level that would satisfy users
of these two web sites would be different. Unfortunately, exist-
ing systems do not take usage semantics into account when making
adaptation decisions. This results in adaptations that either waste
system resources by loading higher fidelity content than required,
or inconveniencing the user by providing objects at lower fidelity
than what the user requires.

This paper introduces Usage-awaRe Interactive Content Adapta-
tion (URICA1), an automatic technique that adapts content for dis-
play on mobile devices based on usage semantics. URICA allows
users who are unsatisfied with the system’s adaptation decision to
take control of the adaptation process and make changes until the
content is suitably adapted for their purposes. The successful adap-
tation is recorded and used in making future adaptation decisions
for the same or other users. URICA is a general adaptation tech-
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nique that can be applied to a wide range of problems, such as
fidelity adaptation of images and video, customizing the layout of
HTML documents for display on small screens, or automatic user
interface repurposing for heterogeneous devices.

We also present Chameleon, a system that applies the URICA
technique to the problem of adapting image-rich web pages for
browsing over bandwidth-limited network links. Chameleon re-
duces the latency and bandwidth consumption of browsing web
pages by loading images at lower fidelity. When the system’s pre-
diction results in serving an image at lower fidelity than what the
user requires, Chameleon lets the user interact with the image to in-
crease its fidelity. Chameleon learns from the user’s feedback and
adjusts its prediction for future accesses to the same image. For
example, Chameleon initially serves the image of the 1964 Mus-
tang to users of the two web sites described above at the same low
fidelity level; however, after observing that users of the Mustang
Fan Club page increase the image’s fidelity, Chameleon adjusts its
prediction and starts serving users of this page higher fidelity ver-
sions of the image. Users of the Department of Transportation page
continue to get the lower fidelity version.

By default, Chameleon minimizes the latency for browsing web
pages; however, Chameleon can also be configured to allow the
exchange of bandwidth consumption, which for many cellular users
has a direct monetary cost, for user involvement in the adaptation
process. In this mode, the user can specify the minimum expected
monetary savings that would make it worthwhile for her to provide
interaction. If a user prefers to save money, Chameleon becomes
more aggressive and serves images at lower fidelities. This saves
bandwidth, and thus money, but increases the likelihood that the
user will have to interact with the system to obtain a satisfactory
adaptation. Alternatively, if a user prefers to interact with images
infrequently, the savings she will require for every interaction will
be greater, and Chameleon will serve images at higher fidelities.
This reduces the amount of interaction that is required but can cause
more bandwidth consumption as the system may serve images at
fidelities greater than what the user actually needs.

We evaluated Chameleon in a controlled user study where 30
University students were asked to use Chameleon to browse image-
rich web content. Chameleon presented users with highly adapted
images and allowed them to improve image fidelity one level at a
time. The user study validated Chameleon’s assumptions that con-
tent adaptation requirements depend on usage semantics. When
performing the same tasks, we found that users shared adaptation
requirements for the same images but the desired adaptation var-
ied from image to image. Also, when images were used to com-
plete different tasks, we found that fidelity selections were clustered
around a small set of clearly identifiable fidelity levels.

Chameleon reduces latencies of browsing web content by up to
65% and can reduce the amount of bandwidth consumption by
as much as 80%. It achieves large savings even when content is
used for multiple tasks that have different adaptation requirements.
Chameleon is robust and provides consistently good performance
across different web sites and over different network conditions.

This paper makes four contributions: (i) it introduces URICA,
an automatic adaptation technique that learns how to adapt content
for display on mobile devices by allowing users to interact with the
adaptation system to correct bad adaptation decisions; (ii) it shows
that content adaptation requirements depend on usage semantics,
and that users browsing the same content share adaptation require-
ments; (iii) it shows that minimizing the latency of browsing adap-
ted content requires taking into account the relative latencies asso-
ciated with data transfer and user interaction to correct bad adapta-
tion decisions, and provides an algorithm that minimizes the overall

latency; and (iv) it shows that it is possible to exchange bandwidth
consumption for user interaction, and provides an algorithm that
lets users control this tradeoff.

The rest of the paper is organized as follows. Section 2 in-
troduces Usage-awaRe Interactive Content Adaptation (URICA).
Section 3 describes Chameleon, a URICA prototype, that adapts
image-rich web pages for browsing over bandwidth-limited net-
work links, and Section 4 details the workings of Chameleon’s pre-
diction algorithms. Section 5 presents the user study we conducted
to collect traces of users browsing adapted image-rich web con-
tent. Section 6 evaluates the performance of Chameleon. Finally,
Section 7 discusses background material on content adaptation and
compares our work with previous efforts, and Section 8 presents
our conclusions and avenues for future work.

2. USAGE-AWARE INTERACTIVE
CONTENT ADAPTATION (URICA)

Usage-awaRe Interactive Content Adaptation (URICA) is an au-
tomatic content adaptation technique that takes usage semantics of
content into account when making its adaptation decisions. URICA
empowers users by allowing them to change adaptation decisions
made by the system. If a user determines that the adaptation per-
formed on content is not satisfactory, she can instruct the appli-
cation to correct the situation (e.g., make content more readable
by removing an irrelevant toolbar, convert text to speech, or in-
crease a video’s frame rate). URICA views user modifications of
an object’s adaptation as corrective feedback on the system’s adap-
tation decision, and uses these corrections to improve the quality
of adaptation predictions for future accesses to the object by the
same or other users. Thus, URICA adaptation decisions reflect the
way users utilize content, in effect capturing the content’s usage
semantics. URICA is a general concept and can be applied to a
wide range of adaptation problems, such as fidelity adaptation of
images, audio and video, page-layout customization for display on
small screens, or automatic user interface repurposing for hetero-
geneous environments.

Adaptation systems based on URICA consist of three compo-
nents: client applications, an adaptation proxy and content servers.
Client applications present adapted content to users and allow them
to modify the decision made by the adaptation system. The adapta-
tion proxy mediates all accesses to content, provides adapted con-
tent, maintains history, and serves as an aggregation point for user
requests. Content servers are standard unmodified data reposito-
ries, such as web sites, databases and media servers, and no addi-
tional functionality is required for this component.

In the rest of this section, we first describe the support required
from client applications and the requirements of the adaptation
proxy. We then summarize the operation of the adaptation system
and discuss implementation issues.

2.1 Client Application Support
Client applications allow users to interactively change adaptation

decisions to make content more appropriate for their tasks. A client
application has to provide the following functionality: (1) it should
make the user aware that the content has been adapted (or could
be adapted), (2) it should provide an appropriate user-interface for
modifying adaptation decisions, (3) it should propagate the user’s
adaptation corrections to the adaptation proxy, (4) for adaptation
corrections that require the adaptation proxy to supply a different
version of the content (e.g., a higher-fidelity version of an audio
file), the application has to support fetching of the new version,
possibly in the form of a delta, and updating the application’s state



accordingly 2, and (5) the application can provide an interface for
users to specify adaptation preferences (e.g., system should mini-
mize bandwidth consumption).

The interface that the client application provides for correcting
adaptation decisions depends on the datatype being adapted, and
the supported adaptations. For example, an application that sup-
ports adapting streaming video may provide a user-interface to mod-
ify the size of the window that plays the video, the video’s resolu-
tion, frames per second, or the position of the stream where play-
back starts. For document-layout adaptation, the application can
provide the ability to split content into panels or separate windows,
rearrange content position, or remove parts of a document.

In most cases, adding feedback mechanisms such as those de-
scribed above requires modifications to the source code for the ap-
plication. Alternatively, the increasing popularity of component-
based software allows the feedback mechanism to be incorporated
into a plug-in component, which is developed using an applica-
tion’s API [12].

2.2 Adaptation Proxy Requirements
The adaptation proxy mediates all of the client’s content requests.

The proxy performs the following tasks: (1) determines the adapta-
tion to perform based on predictions, (2) retrieves the original con-
tent from content servers and adapts as needed, (3) serves the adap-
ted content to the client, (4) responds to client requests to change
the adaptation to perform on content, and (5) keeps track of user
adaptation corrections (feedback).

The adaptation proxy accumulates user feedback at the granular-
ity of individual content items (e.g., individual images in an HTML
page). The proxy relies only on feedback collected in the course
of normal application usage. The proxy assumes that the predic-
tion failed when the user changes the way the content was cus-
tomized (e.g., the user increases the fidelity of an image, or resizes
a text box). Conversely, the proxy assumes that an appropriate cus-
tomization has been found when the user opts not to change the
content any further. Therefore, the proxy views user modifications
as negative feedback (i.e., something was wrong with the adapta-
tion), and the lack of user action as positive feedback (i.e, the user
was satisfied with the adaptation decision). An alternative is to ex-
plicitly ask users for feedback. This approach, however, results in
significant burden as users have to provide additional information
that is not relevant to the performance of their task.

2.3 Adaptation Process
The adaptation process in URICA-based systems operates as fol-

lows. A user first requests content through the client application.
The client application forwards the user’s request to the adaptation
proxy. The adaptation proxy makes an adaptation decision based
on the history of adaptations that satisfied other users in the past. 3

Once the adaptation decision is made, the adaptation proxy checks
whether it has an appropriately adapted version of the desired con-
tent. If so, the adapted content is served to the user. If not, the
content is first fetched from the content server, and then it is appro-
priately adapted and cached. If the user is unhappy with the version
of the content that she got, she can then use the interface provided
by the application to apply a corrective measure. The user’s correc-
tion is then sent to the adaptation proxy where it becomes part of

�

Not all adaptation corrections involve the transmission of a new
content version. For example, an application that supports page-
layout adaptation may be able to locally support the reorganization
of the elements within a document.

�

When no history is available, a set of default rules or constraints
can be used to make the adaptation decision.

the history of the particular object being adapted and affects future
adaptation decisions. If the corrective measure requires the trans-
mission of data from the adaptation proxy (such as a higher fidelity
image), the content (potentially in the form of a delta) is sent to the
application and the application updates its state. In the case of mod-
ifications to streamed data, the client application and the adaptation
proxy negotiate to change the necessary properties of the stream.

2.4 Discussion
URICA requires a critical mass of viewers of the same content.

At first glance, this prevents the applicability of URICA to adapt-
ing dynamic Web content. Closer examination reveals that even
in cases where significant reuse of content is not apparent, such
as with dynamic content, URICA can prove useful. First, many
dynamic web pages are built from a set of static objects (such as
images) that are served to many users. Here, the scenario is no dif-
ferent because the user feedback accumulates for individual objects
that do not change. However, there are situations where content is
dynamically created for a specific user (e.g., an image showing the
current prices of stock in a user’s investment portfolio). If content
is created dynamically and tailored to a specific user, it is unlikely
that we can accumulate history for that object. In this situation, the
system can attach history to a placeholder representing the dynamic
content if we expect that the adaptation decisions carry over across
instances of the dynamically generated content. However, if a user
is the sole viewer of dynamic content that bears no resemblance to
past instances, then URICA will not apply as meaningful history
cannot be accumulated.

To improve performance, recently requested objects and their
adapted versions can be cached on the adaptation proxy. It should
be noted, however, that objects will typically be cached for much
shorter durations (minutes or hours) than their history (days, weeks
or more).

Most of the complexity inherent in the URICA technique is rel-
egated to the resource-rich servers hosting the adaptation proxies.
Therefore, mobile clients are shielded from the resource intensive
tasks associated with storing large history logs, running the predic-
tion mechanisms, and performing transcoding.

User privacy is likely to be a concern in URICA. Whereas many
other systems can track the data that was accessed by a user, sys-
tems based on URICA can actually discern which objects captured
the user’s attention, and therefore are more relevant. This issue can
be addressed by having anonymous history traces and by aggregat-
ing user requests. An evaluation of the tradeoffs related to tracking
of individual user history versus aggregates, and how these aspects
influence the quality of predictions is beyond the scope of this pa-
per.

3. CHAMELEON
Chameleon is a URICA prototype that supports fidelity adap-

tation for browsing image-rich web pages over bandwidth-limited
network links. Chameleon provides fidelity-adapted versions of
web images but allows users to interact with individual images in
order to improve their fidelity.

Chameleon consists of an adaptive web browser running on an
AudioVox PDA with built-in CDMA 1X cellular connectivity, and
an adaptation proxy that performs progressive JPEG image trans-
coding. The proxy runs on a well-provisioned server with a high-
bandwidth and low-latency connection to the Internet. The PDA
connects to the Internet over the cellular CDMA 1X link, but is
configured to route all web traffic through the adaptation proxy.



By default, Chameleon minimizes the latency for browsing adap-
ted web pages. Specifically, Chameleon optimizes a user’s fulfill-
ment time, which is the sum of the download time to transfer con-
tent (including refinements) and the user interaction time required
to correct bad adaptation decisions. Chameleon can also be config-
ured to allow the exchange of bandwidth consumption, which for
many cellular users has a direct monetary cost, for user involvement
in the adaptation process. Specifically, a user can specify the mini-
mum expected monetary savings that would make it worthwhile for
her to provide interaction.

In this section, we describe the adaptive browser and adaptation
proxy used in Chameleon. We defer discussion of the adaptation
proxy’s prediction mechanism until Section 4.

3.1 Adaptive Browser
The adaptive browser is based on the Pocket PC version of In-

ternet Explorer. To allow users to refine images, we augmented
Internet Explorer with two user interfaces. We will refer to these
interfaces as tapping and multi-tab. With the tapping interface,
users can improve the fidelity of an image by tapping on it with
the stylus. With the multi-tab interface, users can increase image
fidelity by multiple levels in a single operation. The multi-tab inter-
face shows the available fidelity levels for an image with an array of
small boxes above the image. To request a specific fidelity level, the
user just taps on the appropriate box with the stylus. Boxes with un-
available fidelity levels, such as those at or below the current level,
are grayed out. Figure 1 shows a screenshot of the multi-tab inter-
face. We implemented two interfaces to allow us to research the
effects that different feedback mechanisms have on the quality of
adaptation predictions. However, determining the best interface for
applications that support fidelity adaptation is beyond the scope of
this paper.

If Chameleon is being used to optimize the user’s fulfillment
time, the adaptive browser must determine the user’s average inter-
action time and relay this back to the adaptation proxy. We define
a user’s interaction time to be the time it takes her to determine that
the current adaptation is inappropriate and request an improvement.
We acknowledge that determining interaction time is user-interface
specific. For instance, the computation of interaction time in an
interface that allows the fidelity of images to be improved indi-
vidually will be different from that in an interface that permits the
simultaneous refinement of all of the images on the screen or page.
In our implementation of the tapping and multi-tab interface, when
there is a single image on the page, average interaction time is sim-
ply the time between when the image is rendered on the screen and
when the user provides an interaction, averaged across many in-
stances of interaction. However, when a page has multiple images,
we only consider the time between consecutive interactions on the
same image, and disregard the time if the user provided interaction
to a different image in between.

The adaptive browser also provides a user-interface that allows
users to specify whether they are interested in optimizing fulfill-
ment time or whether they want to achieve a desired tradeoff be-
tween bandwidth consumption and the need to provide interaction.
When the user wishes to exchange bandwidth for interaction, the
interface lets the user specify the minimum expected monetary sav-
ings that would make it worthwhile for her to provide interaction.
Also, if the adaptation proxy cannot automatically determine the
user’s monetary cost of bandwidth, the user can provide this in-
formation. The browser relays this information to the adaptation
proxy.

Figure 1: Snapshot of the PDA with the multi-tab interface that
allows users to select an arbitrary fidelity level. The left and
right snapshots show the same image at low and high fidelity,
respectively.

3.2 Adaptation Proxy
In response to a request from the client, the proxy downloads the

web content from the origin web server (which is unmodified and is
not aware that content is being adapted) and transcodes any images
into a progressive JPEG format. The proxy then serves the HTML
file to the client along with fidelity-adapted versions of all images.
We configured the proxy to generate progressive JPEG images con-
sisting of 10 scans. Progressive JPEG images have the property that
if we only have the first few scans of the image, we can see a low
fidelity version of the image and as we load subsequent scans, im-
age quality improves. The relationship between fidelity levels and
scans is that fidelity level

�
corresponds to the progressive JPEG

image consisting of the first
�

scans of the image. Users can refine
the fidelity of individual images by requesting additional scans.

A key function of the adaptation proxy in the URICA model is to
keep track of the history of adaptations for an object that satisfied
users in the past. The proxy assumes that the highest fidelity of
an image that is served to a user is the adaptation that provides
satisfaction and we call this fidelity level the Fulfillment Fidelity.
For each image, the adaptation proxy keeps track of histories of
fulfillment fidelities of different users. The history of successful
adaptations is used by our prediction policies, which we describe
in detail in Section 4.

3.2.1 Learning and Prediction Modes
Chameleon only considers implicit feedback when recording the

history of fulfillment fidelities. That is, when an image is served
at a certain fidelity and the user does not provide any interaction,
Chameleon assumes that this is the fulfillment fidelity of the user.
Chameleon knows that the user was able to perform the task, but
Chameleon cannot assume the optimality of the adapted version.
For example, serving an image at a higher fidelity than required for
a given task will enable the user to perform the task, but will waste
resources. While the transmission of extra data forces the user to
wait longer, it is unlikely that the user, having waited for the higher-
resolution object to load, will instruct the application to lower the
image’s resolution. While the user must interact with the system to
correct adaptation decisions that prevent her from carrying out her
task, there is little motivation for modifying adaptations that enable
the task but waste resources. This is particularly true given that the



resources would have already been wasted (i.e., the high-fidelity
image was already loaded) and that interaction requires time and
effort 4.

We address the ambiguity of implicit feedback by having two
serving modes for every object: Learning and Prediction. The pur-
pose of the learning mode is to allow the system to rapidly attain
high quality histories of fulfillment fidelities and the duration of
this mode, � , is specified by the system operator. For each image,
the first � users who access it are not provided with any prediction.
Instead, the proxy always serves the first scan of the image ini-
tially, i.e., fidelity 1. After the first � accesses, the system switches
into prediction mode. In prediction mode, the system uses predic-
tion algorithms, described in the next section, to optimize a user’s
fulfillment time or a specified tradeoff between bandwidth and the
number of interactions. In practice, the usage semantics of content
may change over a long period of time. To address this, it may be
desirable for the system to periodically discard all accumulated his-
tory for an object and return to learning mode. This would ensure
that the system’s predictions utilize the current usage semantics of
the content. An investigation of the impact of changing usage se-
mantics over time is out of the scope of this paper.

Regardless of whether the tapping or multi-tab interface is being
used, images are initially served at the lowest fidelity in learning
mode. In contrast, in prediction mode, the initial fidelity of served
images is determined by a prediction. With the tapping interface,
tapping on an image in learning mode increases its fidelity level
by one; however, tapping on an image in prediction mode provides
the next prediction, if available. Otherwise, the fidelity of the im-
age is improved by one. With the multi-tab interface, after the im-
age is initially served, the user can request arbitrary improvements
to the image’s fidelity. However, in prediction mode, if there are
subsequent predictions available, these are highlighted in the user-
interface.

4. CHAMELEON PREDICTION POLICIES
In this section we discuss two types of history-based predic-

tion policies in Chameleon. First, we describe prediction policies
based on statistical functions applied to the history of fulfillment
fidelities. Next, we describe the Personalized Adaptation Schedule
(PAS) prediction algorithm. PAS bases its adaptation decision on
the history of fulfillment fidelities, and also considers user-specific
information such as the user’s preference regarding the exchange
of bandwidth for interaction and average interaction time.

4.1 Statistics-Based Policies
We consider various statistics-based policies for predicting the

fidelity level at which an image should be served: MEAN, ME-
DIAN, MODE and MAX. These policies select the mean, median,
mode and maximum of the entries in the history of fulfillment fi-
delities, respectively. MEAN, MEDIAN and MODE are measures
of central tendency in a distribution and the prediction made by the
policies will reflect the fidelity levels most desired by users. MAX,
on the other hand, attempts to minimize the need for users to pro-
vide interaction by serving objects at the highest fidelity level that
was encountered so far.

Statistics-based policies make a single adaptation decision. If the
predicted fidelity is less than the user’s fulfillment fidelity, the user
must interact with the image in order to improve its fidelity.�

For some data types such as streaming video, it may be the case
that a user conscious of her power or bandwidth usage may be will-
ing to interact with the system to explore whether less resource-
intensive versions to the one currently being streamed meet her task
requirements.

4.2 Personalized Adaptation Schedule (PAS)
Personalized Adaptation Schedule (PAS) is a prediction algo-

rithm that takes into account the possibility that the user may be
unsatisfied with its previous prediction and would have to provide
interaction. Variations among individual users, as well as the fact
that the same image sometimes has multiple usage semantics (i.e.,
the image is being used for multiple tasks) implies that a single
adaptation decision may not satisfy all users. PAS addresses this
by creating a list of fidelity predictions, where the first fidelity in
the list is served to the user initially and the following fidelities are
served upon subsequent interactions. We call this list of predictions
a prediction schedule. The prediction schedule is individualized for
every object and user but it has to be computed only once (when an
object is first accessed by a user). PAS has two modes of operation.
In the first mode, PAS optimizes a user’s fulfillment time, which is
the sum of the download time to transfer content (including refine-
ments) and the user interaction time required to correct bad adapta-
tion decisions. The second mode allows users to specify a tradeoff
between bandwidth and user interaction, and PAS optimizes for
this. In the rest of this section, we first describe how PAS creates
prediction schedules that optimize fulfillment time, and then show
how PAS can create prediction schedules that achieve a desired
tradeoff between bandwidth consumption and user interaction.

4.2.1 Fulfillment Time Optimization
PAS can be used to create prediction schedules that optimize a

user’s expected fulfillment time. In Chameleon , fulfillment time is
the sum of download times for successively higher fidelities of an
image (which depends on image file-size, bandwidth and latency)
and the user interaction time that is required to request refinements.
PAS balances these two components so that the user does not have
to spend excessive time downloading data over the network and
also does not waste too much time interacting with the system.

We start by providing an analytical model for determining the
user’s expected fulfillment time. This model is used by PAS to
create a prediction schedule that optimizes a user’s expected ful-
fillment time. In our model, we suppose that a progressive JPEG
image is broken into � slices. We label the slices s � ,...,s � . Let fi-
delity level

�
correspond to the image composed of all slices from

s � to s � .5 Let ��� be the user’s true fulfillment fidelity, which is un-
known apriori, and thus a random variable in the model. Next, let �
be the current user’s average interaction time. Let �
	�� ������

be the
time required to download the slices s ��� ������� s� .

We can now define ��	�� ������
(where ���! � � � �! "� ) to be

the user’s expected fulfillment time when they request a refinement
at fidelity level

�
(the user’s current fidelity level) and we decide to

take them to some arbitrary fidelity level
� 6. The way in which we

calculate the value of expected fulfillment time depends on whether
or not we have provided the user with the highest fidelity level for
the image (i.e. whether or not

�  #� ). If
�  $� , we know that

the user’s fulfillment fidelity ( ��� ) cannot be higher than
�

since �
is the highest fidelity level, and the user will not request any refine-
ments subsequently. In this case, the user’s expected fulfillment
time is simply the download time required to transfer slices s �%� �

����� s � of the object. However, if
� �&� , fidelity level

�
may be

below the user’s true fulfillment fidelity and the user may need to
refine the image again. The user requests further refinements with'�(*),+ �����.- �0/ ���1- �2�

, which is the probability that when the user3
We add an additional definition to simplify the presentation of our

equations below. We define fidelity level 0 to be the case when the
user has slice s 4 , which is empty. This corresponds to the initial
situation when the user does not have any data.5 �

does not have to equal ���



is at fidelity level
�
, they need further refinements conditioned on

the fact that the user’s fulfillment fidelity level is greater than
�
. We

assume that if further refinements are required, we will serve the
user with the fidelity level

���
that minimizes her expected fulfill-

ment time. Thus, the user’s expected fulfillment time in the case
where

� � � has two components: �
	�� ������
and, if

� � ��� , the
time cost of providing an interaction summed with the the optimal
expected fulfillment time starting from

�
. These two cases are de-

fined in the following recurrence relation:

Base case:

� 	�� �� � �  �
	�� �� � �
��� ��� ( � �
�! � � � �

Recursive case:

� 	�� ������  �
	�� ��2�����
'�(*)*+ ����� - �0/ ���.- �2�
	
� � ��� � �� ��	�� � ������ �  � ���  ��	�� �  � ��� �

��� ��� ( � �
�! � � � � � �

We can now describe how PAS creates a prediction schedule,
which is a list of fidelities, where the first fidelity in the list is
served to the user initially and the following fidelities are served
upon subsequent interactions. To create the schedule, we first
solve the recurrence ET(i,j) for all pairs of fidelity levels. This
can be easily done in polynomial time using dynamic program-
ming techniques to avoid unnecessary recomputations. Once com-
puted, these expected values are stored in a table for quick ac-
cess. Next, we find the fidelity level � such that ��	����  � �  � � �� ��	���� �� �  ��� �  ��	����  � ��� . This becomes the first prediction
in our schedule. Whenever we have a prior predicted fidelity
level, say

�
, we can find the subsequent prediction

�
such that

��	�� ������  � � �� ��	�� �� ����� �  ��� �  ��	�� �� � ��� . This process is re-
peated until the prediction made is fidelity level � .

Figure 2 demonstrates a simple example of expected fulfillment
time computations. This figure is divided into 3 columns. The
first column shows past history, which is used to form probabilities.
The center column provides the calculations of expected fulfillment
time (ET) for all possible i, j combinations. Finally, the rightmost
column performs the computation for an illustrative set of parame-
ters. In our example, we set the object to be divided into n=4 slices,
interaction time I to be 1 second, and the time cost of transferring
a single slice to be 1 second also. Once all the expected fulfillment
time values for this user have been computed, we can compute the
prediction schedule for this user as follows: We suppose that the
user currently has the image at fidelity 0 (i.e. the user does not
have the image). We consider all possible adaptation decisions at
this level and pick the one that provides the lowest fulfillment time
to be the first prediction in our schedule. From ET(0,1), ET(0,2),
ET(0,3) and ET(0,4), we see that the expected fulfillment time for
providing fidelity 2 is the lowest (3.50 vs. 3.66, 4.00 and 4.16 sec-
onds), and so this is the first prediction in our schedule. To com-
pute the next prediction, we suppose that the user sees the image
at fidelity 2 and is not satisfied. We again consider all possible
adaptation decisions at this level and pick the one that provides the
lowest fulfillment time to be the second prediction in our schedule.
From ET(2,3), and ET(2,4), we see that the expected fulfillment
time for providing fidelity 4 is the lowest (2.00 vs 2.33 seconds),
and so this becomes the second prediction in our schedule. Since a
prediction in our schedule has reached the highest fidelity (n=4) in
our example, we are done. The computed schedule consists of two
predictions: 2 and 4.

4.2.2 Achieving a Desired Tradeoff between Band-
width Consumption and User Interaction

Often, it is the case that users have to pay for the amount of
bandwidth that they use over wide-area cellular links. An adapta-
tion system that minimizes bandwidth consumption, which is how
our system behaves in learning mode, would provide users with the
minimal amount of bandwidth that satisfies them and wastes no un-
necessary bandwidth. However, this requires the maximum number
of interactions and users may find this cumbersome. Our system al-
lows the user to specify a tradeoff between their willingness to in-
teract and their desire to save bandwidth (and thus money). Specif-
ically, a user can specify the minimum expected monetary savings
that would make it worthwhile for her to provide interaction We
now show how PAS can optimize a user-specified tradeoff, taking
into account both the monetary cost of interaction and the price of
bandwidth.

Let ���
� ��2���
(where � �! � � � �! � ) be the user’s expected

monetary cost if, given that the user has fetched all fidelity levels
up to level

�
and is requesting a fidelity improvement, we take them

to fidelity level
�
. Let ���
� � 2���

be the bandwidth cost required to
download the slices s ��� � ����� s� . This is just the cost per KB of data
multiplied by the sizes of all the slices that need to get transferred.
Finally, let ��� be the minimum cost savings that the user requires
in exchange for providing a single interaction. Now, we can define
the following recurrence relation:

Base case:

���
� �� � �  ���
� �  � �
��� ��� ( � �
�! � � � �

Recursive case:

���
� ������  ���
� � 2�����
'�(*),+ �����.- �0/ ���1- �2��	
� ��� ��� � �� ���
� � 2��� � �  �����  ���
� �  � �����

��� ��� ( � �
�! � � � � � �

The base case is the user’s expected monetary cost if we take
them to fidelity level � when they requested an improvement at
fidelity level

�
. This is simply the bandwidth cost of transferring

slices s �%� � ����� s � of the object. The recursive step is the user’s
expected monetary cost if we take them to fidelity level

�
when

they requested an improvement at fidelity level
�
. The expected

monetary cost in this case is the bandwidth cost of downloading the
delta between

�
and

�
, along with the cost of providing interaction

and the bandwidth cost of downloading additional slices if fidelity�
was insufficient. The monetary cost of further adaptation is only

incurred with
'�(,)*+ ����� - �0/ ���1- �2�

, which is the probability that
when the user is at fidelity level

�
, they need further refinements

(conditioned on the fact that the user’s fulfillment fidelity level is
greater than

�
).

We can now describe the workings of the PAS algorithm that
creates a prediction schedule to minimize the expected monetary
cost of adaptation and thus achieving the user-specified tradeoff
between bandwidth consumption and user interaction. To create
the schedule, we first solve the recurrence EC(i,j) for all pairs of fi-
delity levels. As before, this can be easily done in polynomial time
using dynamic programming techniques to avoid unnecessary re-
computations. Once computed, these expected values are stored in
a table for quick access. Next, we find the fidelity level � such that
���
���  � �  � � �� ���
��� �� �  �����  ���
���  � ��� . This becomes the first
prediction in our schedule. Whenever we have a prior predicted fi-



S4

S3

S2

S1

20

10

10

20

START

# of users 
satisfied
with this 
fidelity

Let DT(i,j)=1*(j-i) second
Let I=1 second

ET(3,4)=DT(3,4) ET(3,4)=1.00

ET(2,3)=DT(2,3)+(20/30)*(I+min[ET(3,4)]) ET(2,3)=2.33
ET(2,4)=DT(2,4) ET(2,4)=2.00

ET(1,2)=DT(1,2)+(30/50)*(I+min[ET(2,3), ET(2,4)]) ET(1,2)=2.80
ET(1,3)=DT(1,3)+(20/50)*(I+min[ET(3,4)]) ET(1,3)=2.80
ET(1,4)=DT(1,4) ET(1,4)=3.00

ET(0,1)=DT(0,1)+(50/60)*(I+min[ET(1,2),ET(1,3),ET(1,4)]) ET(0,1)=4.16
ET(0,2)=DT(0,2)+(30/60)*(I+min[ET(2,3),ET(2,4)]) ET(0,2)=3.50
ET(0,3)=DT(0,3)+(20/60)*(I+min[ET(3,4)]) ET(0,3)=3.66
ET(0,4)=DT(0,4) ET(0,4)=4.00

Figure 2: Example of expected fulfillment time computations. The left column shows past history, which is used to form probabilities.
The center column provides the calculations of expected fulfillment time (ET) for all possible i, j combinations. The rightmost column
performs the computation for an illustrative set of parameters. The computed schedule consists of two predictions: 2 and 4.

delity level, say
�
, we can find the subsequent prediction by finding

the
�

such that ���
� ��2���  � � �� ���
� �� � � � �  �����  ���
� �� � ��� . This
process is repeated until the prediction made is fidelity level � .

5. EXPERIMENTS
We conducted a user study to collect traces of users interacting

with adapted image-rich web content using our Chameleon proto-
type. The objective of the experiment is to validate the following
hypotheses:

��� � : Fidelity adaptation can significantly reduce bandwidth
consumption.

��� � : Users with the same usage semantics have similar adap-
tation requirements.

��� � : Adaptation requirements vary between images.

��� � : Users with different usage semantics have different re-
quirements for adaptation.

��� 3 : Usage semantics affect adaptation requirements.

��� 5 : Prediction based on history will result in good adapta-
tion performance.

����� : Different interfaces influence adaptive behaviors.

In the rest of this section, we will describe the three web sites
that we used as benchmarks in the user study. We then describe our
methodology and setup.

5.1 Benchmarks
We developed three image-rich web sites for our user study: Syn-

thetic, Photo Album, and Poster Ads. For each site, we gave users a
specific set of tasks to perform. Users must improve image fidelity
until enough detail is available to complete the task.

We asked users to perform specific tasks in order to simulate per-
sonal interests in the content and prevent random browsing behav-
ior. In the real world, users browse the sites that they are interested

in and have specific motivations for looking at content (e.g., read
the latest news, or buy a product with a given feature). We argue
that it is this motivation that determines the way in which an object
should be adapted. Unfortunately, such motivation cannot form
spontaneously in a lab experiment and requires us to use specific
tasks to compensate for this limitation.

We designed each of our three web sites with a specific purpose
in mind. Synthetic represents the best case for Chameleon, where
users use images for the same purpose and steps have been taken to
reduce variation among subjects. Photo Album is a more realistic
scenario, where users interact with real images downloaded from
the web. These users still share the same task but there is more
opportunity for variation among individuals. Finally, Poster Ads
reflects the most challenging scenario, where users use the same
images to perform different tasks.

5.1.1 Synthetic
This is a controlled experiment where users are asked to recog-

nize 6 images that contain words made up of 10 random letters in
one of three font sizes (14, 20, and 26pt). The font size affects the
fidelity level at which the word can be recognized (smaller fonts
require higher fidelity levels). Users are presented one image at a
time as shown in Figure 1. Together with the image, users are pre-
sented with 4 text buttons, and are asked to choose the button that
corresponds to the image. Should the user select the wrong button,
the system prompts the user to select again. However, the entry for
this particular trial is discarded so that our analysis only considers
the traces of users who correctly performed the task.

5.1.2 Photo Album
This web site consists of two pages. Each page has 6 pho-

tographs arranged in a single column. On the first page, users
are asked to determine how many of the 6 pictures show a popular
movie actor. In the second page, users are asked to identify those
pictures that show a widely-recognized politician. Since multiple
images are displayed on a single page, users have the freedom to
interact with images in different order, as opposed to the controlled



experiment where users had to interact with images in sequence.
All of our test subjects were previously familiar with the appear-
ance of the actor and the political personality used in this experi-
ment.

The design of this experiment is similar to that of the synthetic
experiment but since the task depends on a user’s capability for
recognizing the individual in the photograph, we expect to see more
variance in the adaptation requirements of different users for the
same object.

5.1.3 Poster Ads
We designed this web site (and its related tasks) to explore a

situation where the same content is used to accomplish multiple
tasks. The web site contains 4 poster images for a large electronics
store. On each image, there are multiple products listed with their
promotion price. Users are asked to perform one of three tasks.
The tasks involve browsing the posters in sequence, and obtaining
relevant information, such as prices for on-sale items.

We expect that users performing the same task would have sim-
ilar adaptation requirements but these would differ significantly
from the adaptation requirements of users performing other tasks.

5.2 Methodology and Setup
We asked 30 University students to participate in our user study.

Test subjects were asked to perform the Synthetic experiment with
both the tapping and the multi-tab interfaces. A fully randomized,
within-subjects design was used. The two interfaces (tapping and
multi-tab) were counter balanced between subjects. That is, all
30 students performed the synthetic experiment on both interfaces;
15 users performed the experiment with the tapping interface first,
while the other 15 used the multi-tab interface initially. In the Photo
Album and Poster Ads experiment, all users performed the tasks
only with the tapping interfaces.

In the Poster Ads experiments, we divided users into three equal-
sized groups and assigned each group one of the three available
tasks. Users were randomly assigned to groups at the start of the
experiment.

We provided test subjects with instructions both on-line and on
paper sheets. The users were told that they were accessing content
over a CDMA 1X cellular connection, and that an adaptive proxy
would transcode images into low fidelity to reduce download time.
They were also given a brief training session at the beginning of the
experiment to become familiar with the system.

We purposely forced the system to be in learning mode through
all our experiments so that we could collect traces that would tell
us the minimum fidelity that enabled our experiment participants to
complete tasks. We designed our incentives structure to encourage
users to finish the tasks as quickly as they could. This setup en-
courages users to stop refining image fidelity once image quality is
sufficient for the task at hand.

Finally, to reduce variation due to differences in cellular cov-
erage, we conducted all experiments in the same location during
business hours. Even with these precautions, we experienced sig-
nificant variations in CDMA 1X network bandwidth between test
subjects.

6. EXPERIMENT EVALUATION
In this section, we start by providing an analysis of the traces

collected during our user study. Next, we evaluate the performance
of our prediction algorithms. Finally, we analyze the impact of
different user interfaces on adaptive behavior.

6.1 Trace Analysis
On average, users were able to complete the user study with

just a fraction of the bandwidth required by the full fidelity con-
tent (44% for Synthetic, 19% for Photo Album, and 49% for Poster
Ads). Thus, we conclude that (R1 7) fidelity adaptation can sig-
nificantly reduce bandwidth consumption.

Figure 3 shows a histogram of the fulfillment fidelities for one
representative image from each of our three web sites. The his-
togram of the Synthetic image shows strong locality in fulfillment
fidelity with 80% of user study subjects selecting fidelity 3 for this
image. The histogram also shows that even within a controlled ex-
periment, there are small variations in fulfillment fidelity with some
users selecting fidelity 2 and fidelity 4. We attribute this variation to
differences in user perception. The histogram of the Photo Album
image shows a similar pattern to the Synthetic image with 43% of
subjects selecting fidelity 3 for this image; however, we see a higher
variance in fulfillment fidelities. We attribute the higher variance to
differences in the ability of users to recognize the person in the pho-
tographs. When we consider users who requested fidelity levels 2,
3 and 4, we find that 87% of users fall into this range. Based on the
observation that the fulfillment fidelity of most users is clustered
over a small range of fidelities, and the fact that all users performed
the same tasks in the Synthetic and Photo Album experiments, we
conclude that (R2) users with the same usage semantics have
similar adaptation requirements.

Other Synthetic images show similar strong locality with the
caveat that the most popular fulfillment fidelity changes based on
the font size of the letters in the image. Overall the most common
fulfillment fidelities were 3, 5, and 9 for images with large, medium
and small text font size, respectively. Other images in the Photo Al-
bum experiment show similar clustering of fulfillment fidelity, but
the location of the cluster differs across images. Thus, we conclude
that (R3) adaptation requirements vary from image to image.

Finally, the histogram for the Poster Ads image shows a distinc-
tive pattern where fulfillment fidelity is concentrated in three dif-
ferent clusters. This occurs because we gave users three distinct
tasks to perform over the same set of images. Thus, we conclude
that (R4) users with different usage semantics have different re-
quirements for adaptation.

Based on observations R2, R3 and R4, we conclude that (R5)
usage semantics affect adaptation requirements.

6.1.1 Discussion
The commonality in fulfillment fidelity across users observed in

the histograms of Figure 3 motivates a history-based approach to
fidelity prediction; however, the spread in fulfillment fidelity in the
histograms (due to differences in user preferences or semantics of
the object vis-a-vis the task) suggests that predictions based only on
history (e.g., serve mean fidelity) are likely to result in significant
user interaction. Therefore, to optimize fulfillment time, a predic-
tive approach also needs to consider the latencies associated with
user interaction. It is this realization that motivated the Chameleon
PAS policy.

6.2 Prediction Performance
In this section, we evaluate the performance of Chameleon in

prediction mode. We start by describing our methodology for cal-
culating the performance of various policies. Next, we evaluate
Chameleon when the goal is optimizing fulfillment time. Sub-
sequently, we evaluate our system when the user wishes to trade
bandwidth consumption for interactions. All of the results pre-
�
The R in section 6 correspond to H in section 5.
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Figure 3: Fulfillment fidelity distribution for 3 web sites.

sented in this section are for the tapping interface. We discuss re-
sults for the multi-tab interface in section 6.3.

6.2.1 Methodology
We consider 4 adaptation policies in our evaluation: Oracle,

NoAdaptation, Mean and PAS. Oracle illustrates a perfect predic-
tive adaptation policy that loads images at the user’s fulfillment fi-
delities captured in the user study traces, and as such Oracle pro-
vides an upper bound to the performance of the adaptation system.
In contrast, NoAdaptation corresponds to a simple policy that loads
all images at their full fidelity. NoAdaptation provides a lower
bound on the performance of the adaptation system below which
adaptation becomes counter-productive. The fulfillment time for
Oracle and NoAdaptation consists exclusively of the time taken to
transfer image data over the network, as neither policies involve any
user interaction. We estimate the fulfillment time of a given image
for each user under Oracle and NoAdaptation by dividing the size
of the image by the average network bandwidth and latency expe-
rienced by the user while performing the user study.

Mean is representative of a class of Chameleon policies that con-
sider history but do not account for user interaction time. We also
experimented with other statistics-based policies. While different
policies perform best for individual web sites (e.g., Mode performs
best for Photo Album), Mean was the best overall performer. We
use the traces collected in our user study to estimate the expected
performance of Mean in steady state. For each of the 30 users
in the traces, we simulate steady state by assuming that the sys-
tem has gathered history data by previously interacting with the
other 29 users in learning mode. When Mean predicts a fidelity
level that is equal or higher than the user’s fulfillment fidelity, ful-
fillment time consists only of the time required to download the
predicted fidelity. However, when the prediction is lower than the
user’s fulfillment fidelity, fulfillment time consists of the sum of the
time required to download the fulfillment fidelity and the product of
the user’s average interaction time and the number of interactions

needed to get from the predicted fidelity to the user’s fulfillment fi-
delity. For example, if a user’s fulfillment fidelity for an image is 7,
but Mean predicts fidelity 5, then the fulfillment time is the time to
download the image at fidelity 7 plus two times the user’s average
interaction time.

We estimate the expected performance of PAS in steady state
similar to Mean. For each of the 30 users, we compute their PAS
schedule for each image based on the history of the other 29 users,
the average network bandwidth experienced by the user, and the
user’s average interaction time. To determine the user’s expected
fulfillment time for a specific image, we first determine the low-
est fidelity level in the user’s PAS adaptation schedule that is equal
or higher than the user’s fulfillment fidelity captured in the trace.
We refer to this fidelity as the target fidelity. We then compute
fulfillment time by adding the time it takes to download the target
fidelity under the average network bandwidth experienced by the
user to the product of the user’s average interaction time and the
number of interactions needed to get to the target fidelity. For ex-
ample, if the PAS schedule of a user for an image is {2,5,7,10} and
the user’s fulfillment fidelity for the image is 6, then the expected
fulfillment time equals the time to download the image at fidelity 7
plus two times the user’s average interaction time.

Overall, the average user interaction time for subjects in our user
study was 2388ms, with a standard deviation of 1421ms and the av-
erage CDMA 1X network bandwidth was 83 Kbps with a standard
deviation of 16.9 Kbps.

6.2.2 Optimizing Fulfillment Time
Figures 4 and 5 show the average per-page fulfillment time and

bandwidth consumption across users for Oracle, NoAdaptation,
Mean, and PAS over CDMA 1X8. Error bars in all figures show

�

The fulfillment time and bandwidth consumption for Photo Al-
bum are significantly higher than that of Synthetic and Poster Ads
because web pages in Photo Album each have 6 images while those
in Synthetic and Poster Ads only contain single images.
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Figure 5: Bandwidth consumption over CDMA 1X.
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Figure 6: Fulfillment time over simulated 3G.

95% confidence intervals9.
We see that both Mean and PAS achieve large reductions in ful-

fillment time and bandwidth consumption compared to NoAdapta-
tion for the Synthetic and Photo Album web sites. Also, in compar-
ison to Oracle, both policies come within 13% in terms of fulfill-
ment time and 4% in terms of bandwidth consumption, suggesting
that both policies are very effective and that there is little room for
improvement. For the Poster Ads web site, however, although PAS
reduces fulfillment time by 33% and gets within 14% of Oracle,
Mean increases fulfillment time by 6%. It should be noted that
both Mean and PAS consume similar amounts of bandwidth, which
is significantly lower than that consumed by NoAdaptation. The
difference in fulfillment time is attributable to the amount of inter-
action each policy requires. PAS correctly identifies the different
fidelity levels that are suitable for the varying tasks being carried
out on the Poster Ads site, and therefore quickly jumps to the next
relevant fidelity once the user asks for an improvement. In contrast,
Mean requires the user to interact several times when it mispredicts.

Figures 6 shows the average per-page fulfillment time across
users for Oracle, NoAdaptation, Mean, and PAS over a simulated
3G link with an effective per user bandwidth of 384 Kbps 10. The
figure shows that even for the much higher bandwidth of 384 kbps
(three times higher than the data rate of wide area mobile data
services currently available in North America), adaptation is still
highly beneficial. Overall, PAS still achieves savings for all three
web sites (e.g., for Photo Album, PAS provides a 47% reduction and
comes within 6% of Oracle). These results show that PAS is able
to adapt its prediction schedules and take advantage of the increase
in available bandwidth. PAS increases its bandwidth consumption
by 20% compared to the CDMA 1X results, but the download time
is more than offset by a reduction in user interaction time. In con-
trast, Mean’s predictions remain fixed and its performance suffers
greatly as the relative contribution of user interaction time to fulfill-
ment time increases. Note that even though the absolute fulfillment
time savings for adaptation may become smaller in such high band-
width environments, users still benefit from conserving significant
amounts of bandwidth.

Figure 7 illustrates how PAS generates personalized adaptation
schedules that (in addition to history) take into account the prevail-
ing bandwidth and latency conditions, as well as the user’s average
interaction time. Figure 7 shows two adaptation schedules for an
image in the Poster Ads web site. The left and right schedules cor-
respond to the users that experienced the fastest (107 Kbps) and
slowest (54 Kbps) average network bandwidth, respectively. Bars
in the schedule represent the order in which image fidelity will be
improved. For example, for the user with slow connectivity, PAS
provides the image initially at fidelity 2, and at fidelities 5, 9 and
10 upon user request. As expected, PAS generates a schedule with
more predictions for the user with slower connectivity, and a sched-
ule with fewer predictions for the user with the faster connection
speed. In general, when the average user interaction time is high, or
the connection speed is relatively fast, PAS serves users at a higher
initial fidelity level and improves object fidelity in greater strides.
It is worth noting that the schedule for the user with slow connec-
tivity corresponds to the fidelity levels that most users will select
in this image. This suggests that PAS is capable of identifying user
selection “hot spots" on-the-fly.

�

In Figure 5, the NoAdaptation policy does not have error bars
since every user is served with all of the content at full fidelity.

� 4 While the nominal bandwidth for a 3G cell is rated at around 2
Mbps, effective per-user bandwidth is expected to be 384 Kbps or
lower.
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width/interaction tradeoffs.

6.2.2.1 Discussion.
These results show that the performance (with respect to fulfill-

ment time) of statistical policies that do not take into account user
interaction time can vary erratically across web sites and bandwidth
conditions. Thus (R6) Prediction based purely on history will re-
duce bandwidth consumption, but may not always result in op-
timal fulfillment time. In contrast, PAS proves robust across web
sites and evaluation conditions. Moreover, the tightness of the con-
fidence interval bars shows that PAS provides stable performance
across users. By taking into account the relative cost of network
transfer and user interaction, PAS seamlessly adjusts its prediction
schedule to account for differences in object size across web sites,
as well as changes in bandwidth conditions. Finally, PAS is ef-
fective even when content is used for multiple tasks with different
adaptation requirements.

6.2.3 Trading Bandwidth for User Interaction
Figures 8 and 9 show the effect of varying the monetary value as-

sociated with user interaction on bandwidth consumption, average
number of user interactions and fulfillment time, averaged across
all images in our user study for a hypothetical case where users
pay $10 per MB of data downloaded (or 1 cent per KB) 11. The
X-axis in Figure 8 represents different unit prices for interactions.
The Y-axis on the left shows the average bandwidth consumption
per image. The Y-axis on the right shows the average number of
interactions per image. Clearly, as interaction becomes cheaper,
the user will be required to provide more interactions, with a re-
sultant decrease in average bandwidth consumption. In contrast,
as interaction becomes more expensive, the system will require the
user to perform fewer interactions, resulting in higher bandwidth
consumption. Figure 8 shows that for the 3 web sites used in our
user study, an average user can reduce her bandwidth consumption
by close to 20 KB (save 20 cents) per image if she is willing to
interact with the system an average of 1.2 times per image. Figure
9 shows how fulfillment time varies from the optimal for different
bandwidth/interaction tradeoffs.

� �

In practice, it is not uncommon for users to pay as much as $30
per MB.
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Figure 10: Average fulfillment time in learning and prediction
mode with tapping and multi-tap interface for Synthetic web
site.
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Figure 11: Fulfillment fidelity distribution of tapping and
multi-tab interface for a single image

6.3 Effects of User Interface
Figure 10 shows average fulfillment time for the Synthetic web

site for Chameleon in learning and prediction modes with the tap-
ping and multi-tab interfaces (refer to Section 3.1 for details on the
two interfaces). In prediction mode, Chameleon uses PAS to opti-
mize fulfillment time. This figure illustrates an interesting tradeoff.
We see that multi-tab achieves lower fulfillment times in learning
mode (T-test �" � � � ��� ), but results in higher fulfillment times
once Chameleon switches to prediction mode. While multi-tab re-
quires fewer user interactions in learning mode (T-test � � � � � � � � ),
it also encourages users to select higher fulfillment fidelities (T-test
� � � � �,� � � ), which in turn results in higher bandwidth consump-
tion and longer download times. Moreover, as Figure 11 shows
multi-tap results in a wider spread in the range of fulfillment fideli-
ties, which degrades the quality of predictions. Therefore, there is
a tradeoff between the effort that users need to invest in training the
system and the potential benefits once the system moves into pre-
diction mode. Since we expect that Chameleon will be in prediction
mode most of the time, tapping appears to be a better choice of in-
terface. Thus we conclude that (R7) different interfaces impact
adaptive behaviors.

7. RELATED WORK
Numerous research efforts have considered content adaptation

for mobile devices [5, 9, 12, 15, 17, 22, 24, 26, 28, 29, 31, 32,
37, 38], and there has even been deployment of a few commercial
adaptation systems [5, 21]. In general, the goal of adaptation is
to tailor content so that it becomes more suitable for users than its
original form. Manual adaptation techniques, such as WAP [41],
strive to provide fine-grain content customization. However, these
techniques place significant onus on content creators who are re-
quired to maintain multiple versions of their content to support a
plethora of devices. As a result, deployment has been limited to a
small set of high-traffic Web sites that can afford the high cost of
hand-tailoring content for mobile clients; and even then, support is
limited to a few popular devices and content is updated at a lower
frequency than the main site. For example, CNN currently updates
its mobile version only twice a day; in contrast, its main page is
updated several times per hour.

Automatic adaptation systems [5, 12, 15, 26, 29, 38, 39] that
transform content on-the-fly are a promising alternative. The main
challenge for automatic content adaptation is the design of effective
adaptation policies. The two main techniques for policy generation
are rule-based [5, 19, 37, 38, 39] and constraint-based [13, 26, 28,
39] adaptation. In both approaches, policies are defined using high-
level programming languages or mathematical formulas. Unfortu-
nately, content providers cannot be expected to provide constraints
or rules for every data object, as this would not be very different
from supplying customized content for every client type. As a re-
sult, small sets of rules apply to broad sets of content (e.g., all JPEG
images are adapted the same way independent of their purpose or
value to the user). In contrast, URICA takes into account usage
semantics of content.

URICA builds on our preliminary work on history-based con-
tent adaptation [27] , where we presented a limited evaluation of a
proof-of-concept fidelity adaptation prototype that optimized band-
width consumption. In this paper, we show that focusing solely
on bandwidth optimization can lead to browsing latencies that are
higher than when no adaptation is performed. The Chameleon sys-
tem that we present in this paper allows users to minimize their
overall latency for browsing adapted content or achieve their de-
sired tradeoff between bandwidth consumption and the need to in-



teract with the system.
Contemporary real-time multimedia systems often utilize adap-

tive techniques alongside traditional scheduling and admission con-
trol mechanisms in order to meet Quality of Service (QoS) require-
ments [1, 6, 20, 25]. Factors such as server overload or conges-
tion within the network can trigger degradation in the quality of
the multimedia content that is provided to the client while meeting
real-time constraints.

Narayanan [28] used history logs of past system performance to
predict the operating mode of an application that achieves a spec-
ified battery life and maximizes content fidelity. In URICA, the
history that is used consists of past user preferences for the adapta-
tion decision. Also, in Narayanan’s approach the adaptation deci-
sion does not consider content usage semantics, which is the case
in URICA.

URICA is related to efforts on recommendation-based systems [2,
3, 10, 18, 30, 40], in which people collaborate to help one another
perform filtering by recording their reactions to content they access.
URICA is a radical new use of the history-based recommendation
concept – adaptation prediction. Whereas previous efforts have fo-
cused on predicting what content to provide, URICA focuses on the
question of how to adapt this content for display on mobile devices.

8. CONCLUSIONS
We presented Usage-awaRe Interactive Content Adaptation

(URICA), a technique for automatic content adaptation that makes
its adaptation decision based on usage semantics. URICA allows
users to change how content is adapted whenever it is unsuit-
able for their purposes and utilizes this feedback to improve fu-
ture adaptation decisions. To evaluate our technique, we developed
Chameleon, a system that performs fidelity adaptation of images
and allows users to conserve bandwidth as they browse the web
over cellular links. We conducted a user study in which partici-
pants used Chameleon to browse image-rich web pages in order
to complete tasks that simulated various usage semantics. The user
study showed that usage semantics impact adaptation requirements.
Chameleon reduces the latency of browsing content by up to 65%
and can reduce bandwidth consumption by up to 80 %. Users can
also utilize Chameleon to exchange bandwidth consumption, which
for many cellular users has a direct monetary cost, for user involve-
ment in the adaptation process. Chameleon is robust in that it works
well under different network conditions and achieves large savings
even when the same content has multiple usage semantics. Finally,
we showed that the choice of user interface for providing feedback
can influence adaptive behavior.

In the future, we plan to extend Chameleon for energy adapta-
tion. We also plan to explore the effect of other factors such as
context on the user’s adaptation requirements.
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