Virtualization

Based on materials from:

Introduction to Virtual Machines by Carl Waldspurger

Understanding Intel® Virtualization Technology (VT) by N. B. Sahgal and D. Rodgers

Intel Virtualization Technology Roadmap and VT-d Support in Xen by Jun Nakajima

A Performance Comparison of Container-based Virtualization Systems for MapReduce
Clusters by M. G. Xavier, M. V. Neves, and C.A.F. De Rose

Starting Point: A Physical Machine

= Physical Hardware

* Processors, memory, chipset, I/0
devices, etc.

* Resources often grossly
underutilized

Application

Operating System = Software

 Tightly coupled to physical
hardware

* Single active OS instance
* OS controls hardware

What is a Virtual Machine?

— = Software Abstraction
ges * Behaves like hardware

* Encapsulates all OS and

Operating System Operating System 0 .
application state

= Virtualization Layer
* Extra level of indirection

Virtualization Layer

* Decouples hardware, OS
¢ Enforces isolation

* Multiplexes physical hardware
across VMs

Virtualization Properties

= |solation
* Fault isolation
* Performance isolation
= Encapsulation
¢ Cleanly capture all VM state
* Enables VM snapshots, clones
= Portability
¢ Independent of physical hardware
* Enables migration of live, running VMs
= Interposition
* Transformations on instructions, memory, 1/0

* Enables transparent resource overcommitment,
encryption, compression, replication ...

Virtualization Applications

Types of Virtualization

" Process Virtualization

* Language-level Java, .NET, Smalltalk
* OS-level processes, Solaris Zones, BSD Jails, Docker Containers
* Cross-ISA emulation Apple 68K-PPC-x86

System Virtualization

¢ \VMware Workstation, Microsoft VPC, Parallels

* VMware ESX, Xen, Microsoft Hyper-V

Guest Application process Application process
IANRAANANAS

e
Runtime izi
Process
0s ’ virtual
VaVal machine
Host VAV,

Types of Virtualization

= Native/Bare metal (Type 1)
 Higher performance
* ESX, Xen, HyperV, KVM

= Hosted (Type 2)
* Easier to install
* Leverage host's device drivers
¢ VMware Workstation, Parallels

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

Hardware
@
Applications ADDHAca!lons
ot J AR Wovver
0s 0s
’ AAANAY
VMM System
virtual
Host Hardware machine
®)
Types of Virtualization
= Full virtualization
¢ Unmodified OS, virtualization is transparent to OS
= Para virtualization
* OS modified to be virtualized
Ring 3 [EEEAE Direct Ring 3
Execution o E\ruc(
of User ing xecution
Ring 2 Roquests of User
Ring 1 Requests
Ring 1 Wy e | Hypercasto e
Translation Ring 0 Virtualization
Ring 0 VMM of 0S Layer replace
Requests V\rluallzahcn Layer Non-virtualizable
OS Instructions

Host Computer Host Computer
System Hardware System Hardware

Attribution http://forums.techarena.in/guides-tutorials/1104460.htm

What is a Virtual Machine Monitor?

= Classic Definition (Popek and Goldberg ’74)

A virtual machine is taken to be an efficient, iso-
lated duplicate of the real machine. We explain these
notions through the idea of a virtual machine monitor
(vMmMm). See Figure 1. As a piece of software a vMm has
three essential characteristics. First, the vMM provides
an environment for programs which is essentially iden-
tical with the original machine; second, programs run
in this environment show at worst only minor decreases
in speed; and last, the vMM is in complete control of
syslem resources.

= VMM Properties

* Equivalent execution: Programs running in the virtualized environment run
identically to running natively.

* Performance: A statistically dominant subset of the instructions must be
executed directly on the CPU.

» Safety and isolation: A VMM most completely control system resources.

What Needs to Virtualized Virtualized?

® Processor
®= Memory
= |0

Guest OS + Applications

I

[[
sasssaaannni Page [seeanqUndef[nannny’ Nemmmman

W W U
viRQ

MMU CPU 110

Emulation Emulation Emulation

Virtual Machine Monitor

Unprivileged

Privileged

Processor Virtualization

: (> res

An architecture is classically/strictly virtualizable if all its sensitive
instructions (those that violate safety and encapsulation) are a
subset of the privileged instructions.

= all instructions either trap or execute identically
= instructions that access privileged state trap

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

Trap and Emulate

® Run guest operating system deprivileged
= All privileged instructions trap into VMM

= VMM emulates instructions against virtual state
e.g. disable virtual interrupts, not physical interrupts

= Resume direct execution from next guest instruction

x86 Virtualization Challenges

x86 Virtualization Approaches

= Not Classically Virtualizable
* x86 ISA includes instructions that read or modify privileged state
* But which don't trap in unprivileged mode
= Example: POPF instruction
* Pop top-of-stack into EFLAGS register
* EFLAGS.IF bit privileged (interrupt enable flag)
* POPF silently ignores attempts to alter EFLAGS.IF in unprivileged mode!

* So no trap to return control to VMM

= Deprivileging not possible with x86!

= Binary translation
® Para virtualization

= HW support

Processor Paravirtualization

HW Support

= Make OS aware of virtualization

= Present to OS software interface that is similar, but not identical to
underlying hardware

= Replace dangerous system calls with calls to VMM
* Page table updates

= Advantages: High performance

= Disadvantages: Requires porting OS

= Examples: Xen

® Intel VT-x

¢ Codenamed "Vanderpool"

* Available since Itanium 2 (2005), Xeon and Centrino (2006)
= AMD-V

* Codename “Pacifica”

* Available since Athlon 64 (2006)

Intel VT-x

= VT extends the original x86 architecture to eliminate holes that
make virtualization hard.

Ring 0 €—— i
oo Apps Apps +—» Ring 3
Operating

R vMm vMm
——» Ring 0

[Hypervisor » Ring -1
Hardware I
wy Memory NiC Disk

Operating Modes

= VMX root operation:
* Fully privileged, intended for VM monitor
= VMX non-root operation:
 Not fully privileged, intended for guest software
* Reduces Guest SW privilege w/o relying on rings

* Solution to Ring Aliasing and Ring Compression

VM Entry and VM Exit

= VM Entry
* Transition from VMM to Guest
¢ Enters VMX non-root operation
Loads Guest state and Exit criteria from VMCS —
* VMLAUNCH instruction used on initial entry VM Exit | VM Entry VM Monitor
VMRESUME instruction used on subsequent entries

Physical Host Hardware

= VM Exit
¢ VMEXIT instruction used on transition from Guest to VMM
¢ Enters VMX root operation
* Saves Guest state in VMCS
¢ Loads VMM state from VMCS

= VMM can control which instructions cause VM exists
* CR3 accesses, INVLPG

Benefits: VT Helps Improve VMMs

= VT Reduces guest OS dependency
* Eliminates need for binary patching / translation
* Facilitates support for Legacy OS
= VT improves robustness
* Eliminates need for complex SW techniques
* Simpler and smaller VMMs
* Smaller trusted-computing base
= VT improves performance

* Fewer unwanted Guest <> VMM transitions

x86 Memory Management Primer

Memory Virtualization

= The processor operates with virtual addresses
= Physical memory operates with physical addresses
= x86 includes a hardware translation lookaside buffer (TLB)
* Maps virtual to physical page addresses
= x86 handles TLB misses in HW
* CR3 points to page table root
* HW walks the page tables
* Inserts virtual to physical mapping

Logical

= Native Process 1 Process 2
} Pages

LT

Physical
Pages

Virtual Machine #1 Virtual Machine #2

Vitualzed T (IO (T

Pages

\ Physical
J Pages

Machine
Pages

Memory Virtualization Techniques

Shadow Page Tables

= Shadow page tables
= Paravirtualization

= HW supported nested page tables

= Keep a second set of page tables hidden from guest
= Map between guest virtual and machine pages
= Detect when guest changes page tables
* TLB invalidation requests, page table creation, write to existing page tables
= Update shadow page accordingly
= On context switch, install shadow page instead of guest page
= Advantages: Can support unmodified guest
= Disadvantages: Significant overhead to maintain consistency
= Examples: VMware and Xen HVM

Memory Paravirtualization

Hardware Support

= Page table maps between virtual and machine addresses
= OS and VMM share page tables
= OS can only read

= Changes to page table require hyper call
* VMM validates that guest owns machine address

= Advantages: Higher performance can be achieved by batching
updates

= Disadvantages: Requires changes to the OS

= Examples: Xen

= Nested page tables

= HW keeps a second set of page tables that map from physical to
machine addresses.

= On a TLB miss, first find physical address from guest page tables,
then map to machine address

= Intel EPT (Extended Page Table)
* Since Corei7 (2008)

= AMD RVI (Rapid Virtualization Indexing)
* Since Opteron and Phenom Il (2007)

ns LB Fill Hardware E
GVA | hPA ““‘ X

GuestPTPtr — QVA ->gPA
Guest
Vi

Nested PTPIr

\/ 5]

gPA—>hPA
sPAX

Issues with Nested Page Tables

Memory Reclamation

= Positives
* Simplifies monitor design
* No need for page protection calculus
® Negatives
* Guest page table is in physical address space

* Need to walk PhysMap multiple times
* Need physical-to-machine mapping to walk guest page table
* Need physical-to-machine mapping for original virtual address

= Balloning: guest driver allocates pinned PPNs, hypervisor
deallocates backing MPNs

= Swapping: hypervisor transparently pages out PPNs, paged in on
demand

= Page sharing: hypervisor identifies identical PPNs based on
content, maps to same MPN copy-on-write

Ballooning

Page Sharing

inflate balloon
(+ pressure)

o

Guest OS

may page out

Guest OS to virtual disk

guest OS manages memory
implicit cooperation

011010
110101

hash page contents

hint frame

Hash: ...06af
VM: 3
PPN: 43f8

MPN: 123b

...2bd806af

hash
table

1/0 Virtualization

may page in
Guest OS from virtual disk
deflate balloon
(— pressure))
Page Sharing
VM 1 I!iALI_I VM 3
!i shared frame
Momory J Hash: ...06af |
Refs: 2
MPN: 1236 | /| | pash
g table

®* Emulation

= Paravirtualization (split driver)

= Direct mapped/PCIl passthrough

= Hardware support

Emulation

10 Paravirtualization

= Guest runs original driver
= VMM emulates HW in SW
= Advantages: Can run unmodified guest

= Disadvantages: Slow

q

= Slip driver approach

= Privileged domain interact with 10 devices, exports high level
interface as back-end drive

= Guest domain implements front end driver

® Front and back end drivers

Application . VM Viewer: VNC, SD‘L
VMGL

Stub
X Server VMGL GL u

Commands ~ Vendog ‘

Open GIj
Guest Host:
Dom 0

Direct Mapped/PCl Passthrough

Hardware Support

= Allocate a physical device to a specific domain
= Driver runs of guest domain
= Cannot use DMA
= DMA uses physical addresses. Guest OS

= Breaks isolation _

= |JOMMU (I0 Memory Management Unit)
= Translates memory addresses from “lO space” to “physical space”

= Provides isolation. Limits device’s ability to access machine
memory.

= |ntel VT-d
= Core 2 (2008) Main Memory

* AMD-Vi Physical addressesT
= Six Core Opteron (2010)
L [IOMMU] [MMU]

Device Taddresses’ Virtual Taddresseé

Device CPU

Intel VT-d

VT-d Applied to Pass-through Model

= Provides infrastructure for 1/O virtualization

= DMA and interrupt remapping

§guy

PCI Express

= Direct Device Assignment to Guest OS
= Guest OS directly programs physical

device VM, VM,
= VMM sets up guest- to host-physical Guest OS Guest OS
DMA mapping and Apps and Apps
Devi Devi
= PCI-SIG /O Virtualization Working Group | prvers e
= Activity towards standardizing
natively sharable /O devices Hypervisor
* IOV devices provide virtual L)
interfaces, each independently Assianed
assignable to VMs D-% 3s10ns
Devices
= Advantages: High performance and

simple VMM
= Disadvantages: Limits VM migration

Operating System Level Virtualization

Operating System-Level Virtualization

* aka Container-based Virtualization

* Shared operating system

* A group of OS processes in an insolated environment
* Lightweight virtualization layer

Guest Guest
Guest OS Guest 0S8
Virtualization Layer | Virtualization Layer
Host OS Host0S
l Hardware l Hardware

I based i B:

* Each container has:
* Own virtual network interface (and IP Address)
* Own filesystem
* Isolation
= Processes in different containers can not see each other
* Allocation of RAM, CPU, I/O
* Examples
* Linux Vserver, OpenVZ, LXC

10

Hypervisor vs. System-Level Virtualization

Hypervisor OS-Level/Container

Different Kernel OS

Single Kernel

Device Emulation

Syscall

Limits per machine

Limits per process

Higher overhead

Lower overhead

More secure

Less secure

11

