
© 2010 VMware Inc. All rights reserved

NoSQL Databases
and

DynamoDB
Based on material from;

http://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/Getting
Started.Python.html

http://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/GettingStarted.Python.html

2

Scalability

3

Relational Databases

! Strengths
• ACID properties
• Strong consistency, concurrency, recovery
• Normalization
• Standard Query language (SQL)
• Vertical scaling (up scaling)

! Weaknesses
• Not designed to run over wide area network (georeplication)
• Joins are expensive
• Transactions are slow
• Hard to scale horizontally

4

NoSQL

! No strict definition for NoSQL databases.
• Initially, these systems did not support SQL, but provided a simpler GET/PUT

interface
• Invariably, as system matures, it tends to provide an SQL-like query language

! It is a nonrelational database.

! Designed to use for Big Data and Real time web applications.

! Key idea:
• Relax ACID and consistency

• Avoid complexity of full SQL
• Increase horizontal scalability

5

CAP Theorem

! impossible for a distributed data store to simultaneously
provide more than two out of the following three guarantees
• Consistency: Every read receives the

most recent write or an error

• Availability: Every request receives
a (non-error) response, without the
guarantee that it contains the
most recent write

• Partition tolerance: The system
continues to operate despite an
arbitrary number of messages
being dropped (or delayed)
by the network between nodes

6

NoSQL Types

Source: https://www.algoworks.com/blog/nosql-database/

https://www.algoworks.com/blog/nosql-database/

7

Key Value Pair Based

! Data model: (key, value) pairs

! Dictionary

! Collection of records having fields containing data.

! Stored and retrieved using a key that uniquely identifies the record

! Example: Oracle NoSQL Database, Riak.

8

Column Based

! It store data as Column families containing rows that have many
columns associated with a row key.

! Each row can have different columns.

! Column families are groups of related data that is accessed together.

! Example:Cassandra, HBase, Hypertable, Amazon DynamoDB.

9

DynamoDB

! Fully managed NoSQL database service
• More similar to a key-value store than a relational database

! Provides:
• 1) seamless scalability

• Store data on a cluster of computers
• Data is replicated for performance and fault tolerance

• Eventual consistency (Default)
• Strong consistency

• 2) fast and predictable performance
• Reads can be answered by a single node
• All data for an object stored together (no joins)

10

Key Principles

! Incremental scalability

! Decentralization

! O(1) routing

! Simple API:
• get(key)
• put(key, context, object)

11

Data Partitioning

! Consistent hashing
! Each node has (multiple) position on the ring
! Data stored on node based on a key hash

12

Replication

! Data replicated to N hosts
! Node handling a request = coordinator
! Coordinator replicates keys to N-1 successors

13

Consistency

! Eventual consistency model
• If no new updates are made to a given data item, eventually all accesses to

that item will return the last updated value.

! Quorum-based consistency protocol
• Min. no. of replicas needed for read (R)/write (W)
• Coordinator waits for R/W responses before replying to the client

14

Concepts

! Tables

• A table is a collection of data.

! Items

• An item is a group of attributes that is uniquely identifiable
among all of the other items.

• Each table contains multiple items.

• In many ways, items are similar to rows, records, or tuples in
relational database systems.

! Attributes

• Fundamental data element, something that does not need to
be broken down any further.

• Similar fields or columns in other database management systems.

• Each item is composed of one or more attributes.

! Primary Key

• Uniquely identifies each item in the table

15

Data Types

! Scalar Types

• Represent exactly one value.

• number, string, binary, Boolean, and null

! Document Types
• Represent a complex structure with nested attributes

• list and map.

! Set Types

• Represent multiple scalar values

• string set, number set, and binary set.

16

Primary Key Options

! Partition key

• A simple primary key, composed of one attribute known as the partition key.

• Hash of partition key determines the partition where the item is stored.

! Partition key and sort key

• A composite primary key, composed of two attributes.

• The first attribute is the partition key, and the second attribute is the sort key.

• Hash of partition key determines the partition where the item is stored.

• All items with the same partition key are stored together, in sorted order by sort key value.

17

Dynamo Example

Name Course Grade

Rosa Comp101 A

Rosa Eng101 B

Rosa Math101 A+

Jane Chem101 B

Jane Math101 A

Jake French101 A

Partition Key Sort Key

18

Dynamo Example

Name Course Grade

Jane Chem101 B

Jane Math101 A

Jake French101 A

Name Course Grade

Rosa Comp101 A

Rosa Eng101 B

Rosa Math101 A+

Partition1: A-M Partition2: N-Z

! Efficient query: All course taken by Jake

! Inefficient query: All students that took Math101
All students that got an A

19

Secondary Indexes

! Most reads use primary key attribute values.
! Provide efficient access to data with attributes other than the

primary key.
! Associated with exactly one table, from which it obtains its data.
! Define an alternate key for the index (partition key and sort key).
! Define the attributes that you want to be projected, or copied, from

the base table into the index.
! Can query or scan the index just as you would a table.
! Secondary index automatically maintained by DynamoDB.
• When you add, modify, or delete items in the base table, any indexes on that

table are also updated to reflect these changes.

:

20

Secondary Index Types

! Global secondary index
• Partition key and a sort key can be different from those on the base table.
• Queries on the index can span all of the data in the base table, across all

partitions.

! Local secondary index
• Same partition key as the base table, but a different sort key.

21

JSON

! JavaScript Object Notation

! Lightweight data-interchange format.
• Text format
• Language independent

! Easy for humans to read and write.

! Easy for machines to parse and generate.

! Based on JavaScript

21

22

JSON Structures

! A collection of name/value pairs.

22

23

JSON Example

11/6/20 2
3

24

Local Setup

! Download from:

• http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html

! Run:

• java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb

25

Command Line Interface

26

AWS SDK

! Use boto3

! Connect to dynamodb
• dynamodb = boto3.resource('dynamodb', region_name='us-east-1',

endpoint_url="http://localhost:8000")

• dynamodb = boto3.resource('dynamodb', region_name='us-east-1’)

27

Create Table

table = dynamodb.create_table(
AttributeDefinitions=[

{
'AttributeName': 'string',
'AttributeType': 'S'|'N'|'B'
},

],
TableName='string',
KeySchema=[

{
'AttributeName': 'string',
'KeyType': 'HASH'|'RANGE'
},

],
ProvisionedThroughput={

'ReadCapacityUnits': 123,
'WriteCapacityUnits': 123

}
)

28

Put

29

Get

30

Get Response Syntax

31

Query

32

Query Response

33

Scan

! Accessing every item in a table or a secondary index.

! Can provide a FilterExpression operation.

! If the total number of scanned items exceeds the maximum data set size limit of
1 MB, the scan stops and results are returned to the user as a
LastEvaluatedKey value to continue the scan in a subsequent operation. The
results also include the number of items exceeding the limit.

34

Scan

35

Scan

36

Zappa

• Deploy Python WSGI applications on AWS Lambda + API Gateway +
DynamoDB.
• https://github.com/Miserlou/Zappa

• Steps:
• Install and configure AWS CLI
• Create flask directory structure
• Create a python virtual environment:

> python3.6 -m venv venv
> source venv/bin/activate

• Install flask and boto3
"pip install flask
"pip install boto3

• Install zappa
> pip install zappa
> zappa init

37

Zappa

• zappa_settings.json

• Deploy application to AWS Lambda
> zappa deploy dev

• run.py (for local testing only)

